1
|
Ban Z, Hou YJ, Ku E, Zhu Y, Hu Y, Karadanaian N, Zhao Y, Estelle M. BTB/POZ-MATH proteins regulate Arabidopsis seedling development by promoting auxin-independent degradation of the Aux/IAA protein IAA10. PLANT PHYSIOLOGY 2025; 198:kiaf155. [PMID: 40257842 DOI: 10.1093/plphys/kiaf155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 04/23/2025]
Abstract
After germination, seedlings undergo etiolated development (skotomorphogenesis), enabling them to grow toward the soil surface. In Arabidopsis (Arabidopsis thaliana), etiolated seedlings exhibit rapid hypocotyl elongation, apical hook formation, and closed cotyledons to protect the meristem. In this study, we found that high-order mutants in the BPM (BTB/POZ-MATH) gene family displayed defects in seedling development, characterized by a shorter hypocotyl, early apical hook opening, and opened cotyledons in the dark. BPM1, BPM2, BPM4, and BPM5 exhibited distinct expression patterns and subcellular localization in etiolated seedlings. In a hypocotyl segment assay, the bpm mutants showed defects in auxin response, indicating impaired auxin signaling in the hypocotyl. Expression of the auxin reporter DR5:GFP was also altered in the bpm1,4,5 mutant in various tissues compared with the wild type. Furthermore, yeast 2-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assay analyses showed that BPM1 interacts with IAA10. Experiments in protoplasts indicated that BPM1 promotes IAA10 ubiquitylation and degradation, which was supported by greater IAA10 protein accumulation in the bpm1,4,5 mutant background. In addition, IAA10 overexpression resulted in phenotypes similar to those of the bpm mutants, indicating that the BPMs may target the Aux/IAA proteins for ubiquitylation and degradation. Overall, our findings shed light on the key roles of the BPMs in auxin signaling during seedling development.
Collapse
Affiliation(s)
- Zhaonan Ban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yueh-Ju Hou
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ellyse Ku
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - YingLin Zhu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yun Hu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Natalie Karadanaian
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yunde Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark Estelle
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Du L, Wang Q, Ding L, Li F, Fang C, Qu H, Wang C, Jiang P, Chen B, Qin Z, Kang Z, Mao H. TaDTGIP1-TaDTG6-B Del574-TaPIF1 module regulates drought stress response in wheat. THE NEW PHYTOLOGIST 2025. [PMID: 40195617 DOI: 10.1111/nph.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/12/2025] [Indexed: 04/09/2025]
Abstract
Drought is a major environmental constraint to wheat production, yet the genetic and molecular mechanisms underlying drought tolerance remain poorly understood. A gain-of-function protein variant TaDTG6-BDel574 has been identified and positively regulates TaPIF1 transcription to enhance wheat drought tolerance. However, the precise molecular pathways driving this response are yet to be fully characterized. In this study, we demonstrate that TaPIF1 plays a crucial role in mediating wheat drought tolerance by regulating stomatal aperture to control transpiration. RNA sequencing combined with biochemical assays revealed that TaPIF1 directly binds to E-box elements to activate the expression of key stress-responsive genes, including TaABI5, TaRD17, and TaP5CS1. Notably, overexpression of TaABI5 enhances wheat drought tolerance by promoting stomatal closure, thereby reducing water loss. Furthermore, TaPIF1 interacts with TaABI5 and the bHLH transcription factor TaAKS1 to synergistically enhancing the transcriptional activation of TaABI5, TaRD17, and TaP5CS1. Additionally, our findings verified that TaDTGIP1 interacts with TaDTG6-BDel574 to attenuate its binding affinity and regulatory activity on the TaPIF1 promoter, thereby negatively regulating drought tolerance. Together, our findings unveil the molecular mechanisms underlying wheat drought stress response mediated by the TaDTGIP1-TaDTG6-BDel574-TaPIF1/TaABI5/TaAKS1-target regulatory module and identify potential candidate genes for breeding elite drought-tolerant wheat varieties.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiannan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangfang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunhao Fang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanxiao Qu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Qin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Li S, Liu J, Wang J, Jia D, Sun Y, Ding L, Jiang J, Chen S, Chen F. CmCYC2d is a Regulator of Leaf Abaxial Curling in Chrysanthemum morifolium. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39934960 DOI: 10.1111/pce.15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Leaf morphology is crucial for plant photosynthesis and stress adaptation. While CIN-like TCP transcription factors are well-known for their roles in leaf curling and morphogenesis, the function of CYC-like TCPs in leaf development remains largely unexplored. This study identifies CmCYC2d as a key regulator of abaxial leaf curling in Chrysanthemum morifolium. Phenotypic analysis revealed that the downward curling observed in OX-CmCYC2d transgenic lines was primarily due to the enlargement of adaxial epidermal cells. Furthermore, a reduction in epidermal cell number was identified as a significant contributor to the smaller leaf area in these plants. Transcriptome and WGCNA analyses highlighted CmSAUR55 as a potential downstream target of CmCYC2d. ChIP-qPCR, EMSA, and LUC assays confirmed that CmCYC2d directly bound to the CmSAUR55 promoter. Additionally, transcriptome data revealed that the reduced cell number in OX-CmCYC2d transgenic lines may be mediated by auxin-related pathways and key genes such as CNR7. The CmCYC2d-CmSAUR55 module was also closely linked to the development of enlarged adaxial epidermal cells in the leaf sinus, emphasising its role in this developmental process. This study highlights the regulatory role of CmCYC2d in leaf development and sheds light on the molecular mechanisms underlying leaf curling in chrysanthemum.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junqing Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - YanYan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. Transcriptome Analysis Reveals Sugar and Hormone Signaling Pathways Mediating Flower Induction in Pitaya ( Hylocereus polyrhizus). Int J Mol Sci 2025; 26:1250. [PMID: 39941017 PMCID: PMC11818635 DOI: 10.3390/ijms26031250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Flower induction in pitaya (Hylocereus polyrhizus) is regulated by complex gene networks involving multiple signaling pathways that ensure flower bud (FB) formation, but its molecular determinants remain largely unknown. In this study, we aimed to identify key genes and pathways involved in pitaya flower induction by analyzing transcriptomics profiles from differentiating buds. Our results indicate that the flower induction process is driven by a combination of sugar, hormone, transcription factor (TF), and flowering-related genes. We found that during the FB induction period, the levels of sugar, starch, auxin (AUX), cytokinin (CTK) active forms dihydrozeatin riboside (dhZR), zeatin riboside (ZR), N6-isopentenyladenosine (iPA), and brassinosteroid (BR) increase in the late stage (LS), while active gibberellins (GA3, GA4) decrease, signaling a metabolic and hormonal shift essential for flowering. Differential gene expression analysis identified key genes involved in starch and sugar metabolism, AUX, CTK, BR synthesis, and (GA) degradation, with notable differential expression in photoperiod (COL, CDF, TCP), age-related (SPL), and key flowering pathways (FT, FTIP, AGL, SOC1). This study reveals a multidimensional regulatory network for FB formation in pitaya, primarily mediated by the crosstalk between sugar and hormone signaling pathways, providing new insights into the molecular mechanism of FB formation in pitaya.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Dong D, Deng Q, Zhang J, Jia C, Gao M, Wang Y, Zhang L, Zhang N, Guo YD. Transcription factor SlSTOP1 regulates Small Auxin-Up RNA Genes for tomato root elongation under aluminum stress. PLANT PHYSIOLOGY 2024; 196:2654-2668. [PMID: 39343733 DOI: 10.1093/plphys/kiae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Aluminum (Al) stress, a prevalent constraint in acidic soils, inhibits plant growth by inhibiting root elongation through restricted cell expansion. The molecular mechanisms of Al-induced root inhibition, however, are not fully understood. This study aimed to elucidate the role of Small Auxin-up RNAs (SlSAURs), which function downstream of the key Al stress-responsive transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (SlSTOP1) and its enhancer STOP1-INTERACTING ZINC-FINGER PROTEIN 1 (SlSZP1), in modulating root elongation under Al stress in tomato (Solanum lycopersicum). Our findings demonstrated that tomato lines with knocked-out SlSAURs exhibited shorter root lengths when subjected to Al stress. Further investigation into the underlying mechanisms revealed that SlSAURs interact with Type 2C Protein Phosphatases (SlPP2Cs), specifically D-clade Type 2C Protein Phosphatases (SlPP2C.Ds). This interaction was pivotal as it suppresses the phosphatase activity, leading to the degradation of SlPP2C.D's inhibitory effect on plasma membrane H+-ATPase. Consequently, this promoted cell expansion and root elongation under Al stress. These findings increase our understanding of the molecular mechanisms by which Al ions modulate root elongation. The discovery of the SlSAUR-SlPP2C.D interaction and its impact on H+-ATPase activity also provides a perspective on the adaptive strategies employed by plants to cope with Al toxicity, which may lead to the development of tomato cultivars with enhanced Al stress tolerance, thereby improving crop productivity in acidic soils.
Collapse
Affiliation(s)
- Danhui Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qilin Deng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Congyang Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiran Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Ban Z, Hou YJ, Ku E, Zhu Y, Hu Y, Karadanaian N, Zhao Y, Estelle M. BPMs regulate Arabidopsis seedling development by promoting auxin-independent degradation of the Aux/IAA protein IAA10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625463. [PMID: 39651233 PMCID: PMC11623633 DOI: 10.1101/2024.11.26.625463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
After germination, seedlings undergo etiolated development (skotomorphogenesis), enabling them to grow towards the soil surface. In Arabidopsis, etiolated seedlings exhibit rapid hypocotyl elongation, apical hook formation and closed cotyledons to protect the meristem. In this study, we found that high-order mutants in the BPM gene family displayed defects in seedling development, characterized by a shorter hypocotyl, early apical hook opening, and opened cotyledons in the dark. BPM1, BPM2, BPM4, and BPM5 exhibit distinct expression patterns and subcellular localization in etiolated seedlings. In a hypocotyl segment assay the bpm mutants showed defects in auxin response indicating impaired auxin signaling in the hypocotyl. Expression of the auxin reporter DR5:GFP was also altered in the bpm1,4,5 mutant in various tissues compared to the wild type. Furthermore, we showed that BPM1 and IAA10 interact in yeast two-hybrid, BiFC, and Co-IP assays. Experiments in protoplasts indicated that BPM1 promotes ubiquitylation and degradation of IAA10, and the level of IAA10 protein is greater in the bpm1,4,5 mutant. In addition, IAA10 over-expression resulted in phenotypes similar to the bpm mutants. These results indicate that the BPMs target the Aux/IAA proteins for ubiquitylation and degradation. Overall, our findings shed light on the key roles of the BPMs in auxin signaling during seedling development.
Collapse
|
7
|
Wang Y, Wang N, Lan J, Pan Y, Jiang Y, Wu Y, Chen X, Feng X, Qin G. Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium. THE PLANT CELL 2024; 36:2668-2688. [PMID: 38581433 PMCID: PMC11218827 DOI: 10.1093/plcell/koae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
The style and stigma at the apical gynoecium are crucial for flowering plant reproduction. However, the mechanisms underlying specification of the apical gynoecium remain unclear. Here, we demonstrate that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors are critical for apical gynoecium specification in Arabidopsis (Arabidopsis thaliana). The septuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 (tcpSEP) and duodecuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 tcp24 tcp1 tcp12 tcp18 tcp16 (tcpDUO) mutants produce narrower and longer styles, while disruption of TCPs and CRABS CLAW (CRC) or NGATHAs (NGAs) in tcpDUO crc or tcpDUO nga1 nga2 nga4 causes the apical gynoecium to be replaced by lamellar structures with indeterminate growth. TCPs are predominantly expressed in the apex of the gynoecium. TCP4 interacts with CRC to synergistically upregulate the expression level of NGAs, and NGAs further form high-order complexes to control the expression of auxin-related genes in the apical gynoecium by directly interacting with TCP4. Our findings demonstrate that TCP4 physically associates with CRC and NGAs to control auxin biosynthesis in forming fine structures of the apical gynoecium.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yige Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yidan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongqi Wu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuemei Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
8
|
Li C, Du J, Xu H, Feng Z, Chater CCC, Duan Y, Yang Y, Sun X. UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:897-908. [PMID: 38506424 DOI: 10.1111/jipb.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.
Collapse
Affiliation(s)
- Cheng Li
- Yunnan Key Laboratory of Crop Wild Relatives Omics, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiancan Du
- Yunnan Key Laboratory of Crop Wild Relatives Omics, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650031, China
| | - Zhenhua Feng
- Yunnan Key Laboratory of Crop Wild Relatives Omics, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | - Yuanwen Duan
- Yunnan Key Laboratory of Crop Wild Relatives Omics, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- Yunnan Key Laboratory of Crop Wild Relatives Omics, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xudong Sun
- Yunnan Key Laboratory of Crop Wild Relatives Omics, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
9
|
Xu R, Chong L, Zhu Y. Mediator kinase subunit CDK8 phosphorylates transcription factor TCP15 during tomato pollen development. PLANT PHYSIOLOGY 2024; 195:865-878. [PMID: 38365204 DOI: 10.1093/plphys/kiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/18/2024]
Abstract
Pollen development in flowering plants has strong implications for reproductive success. Pollen DNA can be targeted to improve plant traits for yield and stress tolerance. In this study, we demonstrated that the Mediator subunit CYCLIN-DEPENDENT KINASE 8 (CDK8) is a key modulator of pollen development in tomato (Solanum lycopersicum). SlCDK8 knockout led to significant decreases in pollen viability, fruit yield, and fruit seed number. We also found that SlCDK8 directly interacts with transcription factor TEOSINTE BRANCHED1-CYCLOIDEA-PCF15 (SlTCP15) using yeast two-hybrid screens. We subsequently showed that SlCDK8 phosphorylates Ser 187 of SlTCP15 to promote SlTCP15 stability. Phosphorylated TCP15 directly bound to the TGGGCY sequence in the promoters of DYSFUNCTIONAL TAPETUM 1 (SlDYT1) and MYB DOMAIN PROTEIN 103 (SlMYB103), which are responsible for pollen development. Consistently, disruption of SlTCP15 resembled slcdk8 tomato mutants. In sum, our work identified a new substrate of Mediator CDK8 and revealed an important regulatory role of SlCDK8 in pollen development via cooperation with SlTCP15.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Sanya Institute of Henan University, Sanya, Hainan 570203, China
| |
Collapse
|
10
|
Tao J, Pan Z, Kong W, Mo B, Chen X, Yu Y. miR319-TCPs-TGA9/TGA10/ROXY2 regulatory module controls cell fate specification in early anther development in Arabidopsis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:839-842. [PMID: 37987941 DOI: 10.1007/s11427-023-2453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/15/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Jinyuan Tao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zijie Pan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Wenwen Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xuemei Chen
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Clark G, Tripathy MK, Roux SJ. Growth regulation by apyrases: Insights from altering their expression level in different organisms. PLANT PHYSIOLOGY 2024; 194:1323-1335. [PMID: 37947023 PMCID: PMC10904326 DOI: 10.1093/plphys/kiad590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Apyrase (APY) enzymes are nucleoside triphosphate (NTP) diphosphohydrolases that can remove the terminal phosphate from NTPs and nucleoside diphosphates but not from nucleoside monophosphates. They have conserved structures and functions in yeast, plants, and animals. Among the most studied APYs in plants are those in Arabidopsis (Arabidopsis thaliana; AtAPYs) and pea (Pisum sativum; PsAPYs), both of which have been shown to play major roles in regulating plant growth and development. Valuable insights on their functional roles have been gained by transgenically altering their transcript abundance, either by constitutively expressing or suppressing APY genes. This review focuses on recent studies that have provided insights on the mechanisms by which APY activity promotes growth in different organisms. Most of these studies have used transgenic lines that constitutively expressed APY in multiple different plants and in yeast. As APY enzymatic activity can also be changed post-translationally by chemical blockage, this review also briefly covers studies that used inhibitors to suppress APY activity in plants and fungi. It concludes by summarizing some of the main unanswered questions about how APYs regulate plant growth and proposes approaches to answering them.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| | | | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| |
Collapse
|
12
|
Wang H, Ren J, Zhou S, Duan Y, Zhu C, Chen C, Liu Z, Zheng Q, Xiang S, Xie Z, Wang X, Chai L, Ye J, Xu Q, Guo W, Deng X, Zhang F. Molecular regulation of oil gland development and biosynthesis of essential oils in Citrus spp. Science 2024; 383:659-666. [PMID: 38330135 DOI: 10.1126/science.adl2953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024]
Abstract
Secretory structures in terrestrial plants serve as reservoirs for a variety of secondary metabolites. Among these, the secretory cavity of the Rutaceae family is notable for containing essential oils with a wide range of applications. However, the molecular basis underlying secretory cavity development is unknown. Here, we reveal a molecular framework for Citrus oil gland formation. Using genetic mapping and genome editing, we demonstrated that this process requires LATE MERISTEM IDENTITY1 (LMI1), a key regulator of leaf serration. A conserved GCC box element of the LMI1 promoter recruits DORNROSCHEN-like (DRNL) for transcriptional activation. This DRNL-LMI1 cascade triggers MYC5 activation, facilitating the development of oil glands and the biosynthesis of essential oils. Our findings spotlight cis-regulatory divergence within leaf shape genes, propelling novel functional tissue formation.
Collapse
Affiliation(s)
- Hongxing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Ren
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyun Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaoyuan Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenqiao Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Ziyan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyou Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shu Xiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
13
|
Yan Y, Luo H, Qin Y, Yan T, Jia J, Hou Y, Liu Z, Zhai J, Long Y, Deng X, Cao X. Light controls mesophyll-specific post-transcriptional splicing of photoregulatory genes by AtPRMT5. Proc Natl Acad Sci U S A 2024; 121:e2317408121. [PMID: 38285953 PMCID: PMC10861865 DOI: 10.1073/pnas.2317408121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yuwei Qin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Tingting Yan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou571100, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yifeng Hou
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Xian Deng
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
14
|
Land ES, Sheppard J, Doherty CJ, Perera IY. Conserved plant transcriptional responses to microgravity from two consecutive spaceflight experiments. FRONTIERS IN PLANT SCIENCE 2024; 14:1308713. [PMID: 38259952 PMCID: PMC10800490 DOI: 10.3389/fpls.2023.1308713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Introduction Understanding how plants adapt to the space environment is essential, as plants will be a valuable component of long duration space missions. Several spaceflight experiments have focused on transcriptional profiling as a means of understanding plant adaptation to microgravity. However, there is limited overlap between results from different experiments. Differences in experimental conditions and hardware make it difficult to find a consistent response across experiments and to distinguish the primary effects of microgravity from other spaceflight effects. Methods Plant Signaling (PS) and Plant RNA Regulation (PRR) were two separate spaceflight experiments conducted on the International Space Station utilizing the European Modular Cultivation System (EMCS). The EMCS provided a lighted environment for plant growth with centrifugal capabilities providing an onboard 1 g control. Results and discussion An RNA-Seq analysis of shoot samples from PS and PRR revealed a significant overlap of genes differentially expressed in microgravity between the two experiments. Relative to onboard 1 g controls, genes involved in transcriptional regulation, shoot development, and response to auxin and light were upregulated in microgravity in both experiments. Conversely, genes involved in defense response, abiotic stress, Ca++ signaling, and cell wall modification were commonly downregulated in both datasets. The downregulation of stress responses in microgravity in these two experiments is interesting as these pathways have been previously observed as upregulated in spaceflight compared to ground controls. Similarly, we have observed many stress response genes to be upregulated in the 1 g onboard control compared to ground reference controls; however these genes were specifically downregulated in microgravity. In addition, we analyzed the sRNA landscape of the 1 g and microgravity (μ g) shoot samples from PRR. We identified three miRNAs (miR319c, miR398b, and miR8683) which were upregulated in microgravity, while several of their corresponding target genes were found to be downregulated in microgravity. Interestingly, the downregulated target genes are enriched in those encoding chloroplast-localized enzymes and proteins. These results uncover microgravity unique transcriptional changes and highlight the validity and importance of an onboard 1 g control.
Collapse
Affiliation(s)
- Eric S. Land
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - James Sheppard
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Colleen J. Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Imara Y. Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
15
|
Yao X, Fang K, Qiao K, Xiong J, Lan J, Chen J, Tian Y, Kang X, Lei W, Zhang D, Lin H. Cooperative transcriptional regulation by ATAF1 and HY5 promotes light-induced cotyledon opening in Arabidopsis thaliana. Sci Signal 2024; 17:eadf7318. [PMID: 38166030 DOI: 10.1126/scisignal.adf7318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/17/2023] [Indexed: 01/04/2024]
Abstract
The opening of the embryonic leaves (cotyledons) as seedlings emerge from the dark soil into the light is crucial to ensure the survival of the plant. Seedlings that sprout in the dark elongate rapidly to reach light but keep their cotyledons closed. During de-etiolation, the transition from dark to light growth, elongation slows and the cotyledons open. Here, we report that the transcription factor ACTIVATING FACTOR1 (ATAF1) participates in de-etiolation and facilitates light-induced cotyledon opening. The transition from dark to light rapidly induced ATAF1 expression and ATAF1 accumulation in cotyledons. Seedlings lacking or overexpressing ATAF1 exhibited reduced or enhanced cotyledon opening, respectively, and transcriptomic analysis indicated that ATAF1 repressed the expression of genes associated with growth and cotyledon closure. The activation of the photoreceptor phytochrome A (phyA) by far-red light induced its association with the ATAF1 promoter and stimulation of ATAF1 expression. The transcription factor ELONGATED HYPOCOTYL5 (HY5), which is also activated in response far-red light, cooperated with phyA to induce ATAF1 expression. ATAF1 and HY5 interacted with one another and cooperatively repressed the expression of growth-promoting and cotyledon closure genes. Together, our study reveals a mechanism through which far-red light promotes cotyledon opening.
Collapse
Affiliation(s)
- Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Kang Qiao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Jiawei Xiong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Jiayi Lan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yuang Tian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xinke Kang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Hur YS, Oh J, Kim N, Kim S, Son O, Kim J, Um JH, Ji Z, Kim MH, Ko JH, Ohme-Takagi M, Choi G, Cheon CI. Arabidopsis transcription factor TCP13 promotes shade avoidance syndrome-like responses by directly targeting a subset of shade-responsive gene promoters. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:241-257. [PMID: 37824096 DOI: 10.1093/jxb/erad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.
Collapse
Affiliation(s)
- Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeonghwa Oh
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Namuk Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Ora Son
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Jiyoung Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Ji-Hyun Um
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Zuowei Ji
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
17
|
Agrahari RK, Kobayashi Y, Enomoto T, Miyachi T, Sakuma M, Fujita M, Ogata T, Fujita Y, Iuchi S, Kobayashi M, Yamamoto YY, Koyama H. STOP1-regulated SMALL AUXIN UP RNA55 ( SAUR55) is involved in proton/malate co-secretion for Al tolerance in Arabidopsis. PLANT DIRECT 2024; 8:e557. [PMID: 38161730 PMCID: PMC10755337 DOI: 10.1002/pld3.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Proton (H+) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H+ release linked to OAs excretion under Al stress has not been fully elucidated. Recent physiological and molecular-genetic studies have implicated the involvement of SMALL AUXIN UP RNAs (SAURs) in the activation of plasma membrane H+-ATPases for stress responses in plants. We hypothesized that STOP1 is involved in the regulation of Al-responsive SAURs, which may contribute to the co-secretion of protons and malate under Al stress conditions. In our transcriptome analysis of the roots of the stop1 (sensitive to proton rhizotoxicity1) mutant, we found that STOP1 regulates the transcription of one of the SAURs, namely SAUR55. Furthermore, we observed that the expression of SAUR55 was induced by Al and repressed in the STOP1 T-DNA insertion knockout (KO) mutant (STOP1-KO). Through in silico analysis, we identified a functional STOP1-binding site in the promoter of SAUR55. Subsequent in vitro and in vivo studies confirmed that STOP1 directly binds to the promoter of SAUR55. This suggests that STOP1 directly regulates the expression of SAUR55 under Al stress. We next examined proton release in the rhizosphere and malate excretion in the T-DNA insertion KO mutant of SAUR55 (saur55), in conjunction with STOP1-KO. Both saur55 and STOP1-KO suppressed rhizosphere acidification and malate release under Al stress. Additionally, the root growth of saur55 was sensitive to Al-containing media. In contrast, the overexpressed line of SAUR55 enhanced rhizosphere acidification and malate release, leading to increased Al tolerance. These associations with Al tolerance were also observed in natural variations of Arabidopsis. These findings demonstrate that transcriptional regulation of SAUR55 by STOP1 positively regulates H+ excretion via PM H+-ATPase 2 which enhances Al tolerance by malate secretion from the roots of Arabidopsis. The activation of PM H+-ATPase 2 by SAUR55 was suggested to be due to PP2C.D2/D5 inhibition by interaction on the plasma membrane with its phosphatase. Furthermore, RNAi-suppression of NtSTOP1 in tobacco shows suppression of rhizosphere acidification under Al stress, which was associated with the suppression of SAUR55 orthologs, which are inducible by Al in tobacco. It suggests that transcriptional regulation of Al-inducible SAURs by STOP1 plays a critical role in OAs excretion in several plant species as an Al tolerance mechanism.
Collapse
Affiliation(s)
| | | | - Takuo Enomoto
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Tasuku Miyachi
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Marie Sakuma
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceTsukubaIbarakiJapan
| | - Miki Fujita
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceTsukubaIbarakiJapan
| | - Takuya Ogata
- Biological Resources and Post‐harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaIbarakiJapan
| | - Yasunari Fujita
- Biological Resources and Post‐harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaIbarakiJapan
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Satoshi Iuchi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Masatomo Kobayashi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | | | - Hiroyuki Koyama
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| |
Collapse
|
18
|
Li ZA, Li Y, Liu D, Molloy DP, Luo ZF, Li HO, Zhao J, Zhou J, Su Y, Wang RZ, Huang C, Xiao LT. YUCCA2 (YUC2)-Mediated 3-Indoleacetic Acid (IAA) Biosynthesis Regulates Chloroplast RNA Editing by Relieving the Auxin Response Factor 1 (ARF1)-Dependent Inhibition of Editing Factors in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16988. [PMID: 38069311 PMCID: PMC10706925 DOI: 10.3390/ijms242316988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Although recent research progress on the abundant C-to-U RNA editing events in plant chloroplasts and mitochondria has uncovered many recognition factors and their molecular mechanisms, the intrinsic regulation of RNA editing within plants remains largely unknown. This study aimed to establish a regulatory relationship in Arabidopsis between the plant hormone auxin and chloroplast RNA editing. We first analyzed auxin response elements (AuxREs) present within promoters of chloroplast editing factors reported to date. We found that each has more than one AuxRE, suggesting a potential regulatory role of auxin in their expression. Further investigation unveiled that the depletion of auxin synthesis gene YUC2 reduces the expression of several editing factors. However, in yuc2 mutants, only the expression of CRR4, DYW1, ISE2, and ECD1 editing factors and the editing efficiency of their corresponding editing sites, ndhD-2 and rps14-149, were simultaneously suppressed. In addition, exogenous IAA and the overexpression of YUC2 enhanced the expression of these editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These results suggested a direct effect of auxin upon the editing of the ndhD-2 and rps14-149 sites through the modulation of the expression of the editing factors. We further demonstrated that ARF1, a downstream transcription factor in the auxin-signaling pathway, could directly bind to and inactivate the promoters of CRR4, DYW1, and ISE2 in a dual-luciferase reporter system, thereby inhibiting their expression. Moreover, the overexpression of ARF1 in Arabidopsis significantly reduced the expression of the three editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These data suggest that YUC2-mediated auxin biosynthesis governs the RNA-editing process through the ARF1-dependent signal transduction pathway.
Collapse
Affiliation(s)
- Zi-Ang Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Yi Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Dan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - David P. Molloy
- Department of Basic Medicine, Chongqing Medical University, Chongqing 400016, China;
| | - Zhou-Fei Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Hai-Ou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Jing Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Jing Zhou
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Ruo-Zhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Lang-Tao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| |
Collapse
|
19
|
Lan J, Wang N, Wang Y, Jiang Y, Yu H, Cao X, Qin G. Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovules. Nat Commun 2023; 14:5673. [PMID: 37704599 PMCID: PMC10499876 DOI: 10.1038/s41467-023-41416-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Abnormal high temperature (HT) caused by global warming threatens plant survival and food security, but the effects of HT on plant organ identity are elusive. Here, we show that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/ PCF (TCP) transcription factors redundantly protect ovule identity under HT. The duodecuple tcp2/3/4/5/10/13/17/24/1/12/18/16 (tcpDUO) mutant displays HT-induced ovule conversion into carpelloid structures. Expression of TCP4 in tcpDUO complements the ovule identity conversion. TCP4 interacts with AGAMOUS (AG), SEPALLATA3 (SEP3), and the homeodomain transcription factor BELL1 (BEL1) to strengthen the association of BEL1 with AG-SEP3. The tcpDUO mutant synergistically interacts with bel1 and the ovule identity gene seedstick (STK) mutant stk in tcpDUO bel1 and tcpDUO stk. Our findings reveal the critical roles of Class II TCPs in maintaining ovule identity under HT and shed light on the molecular mechanisms by which ovule identity is determined by the integration of internal factors and environmental temperature.
Collapse
Affiliation(s)
- Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yidan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Shankar N, Sunkara P, Nath U. A double-negative feedback loop between miR319c and JAW-TCPs establishes growth pattern in incipient leaf primordia in Arabidopsis thaliana. PLoS Genet 2023; 19:e1010978. [PMID: 37769020 PMCID: PMC10564139 DOI: 10.1371/journal.pgen.1010978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
The microRNA miR319 and its target JAW-TCP transcription factors regulate the proliferation-to-differentiation transition of leaf pavement cells in diverse plant species. In young Arabidopsis leaf primordia, JAW-TCPs are detected towards the distal region whereas the major mRNA319-encoding gene MIR319C, is expressed at the base. Little is known about how this complementary expression pattern of MIR319C and JAW-TCPs is generated. Here, we show that MIR319C is initially expressed uniformly throughout the incipient primordia and is later abruptly down-regulated at the distal region, with concomitant distal appearance of JAW-TCPs, when leaves grow to ~100 μm long. Loss of JAW-TCPs causes distal extension of the MIR319C expression domain, whereas ectopic TCP activity restricts MIR319C more proximally. JAW-TCPs are recruited to and are capable of depositing histone H3K27me3 repressive marks on the MIR319C chromatin. JAW-TCPs fail to repress MIR319C in transgenic seedlings where the TCP-binding cis-elements on MIR319C are mutated, causing miR319 gain-of-function-like phenotype in the embryonic leaves. Based on these results, we propose a model for growth patterning in leaf primordia wherein MIR319C and JAW-TCPs repress each other and divide the uniformly growing primordia into distal differentiation zone and proximal proliferation domain.
Collapse
Affiliation(s)
- Naveen Shankar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Preethi Sunkara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
21
|
Israeli A, Schubert R, Man N, Teboul N, Serrani Yarce JC, Rosowski EE, Wu MF, Levy M, Efroni I, Ljung K, Hause B, Reed JW, Ori N. Modulating auxin response stabilizes tomato fruit set. PLANT PHYSIOLOGY 2023; 192:2336-2355. [PMID: 37032117 PMCID: PMC10315294 DOI: 10.1093/plphys/kiad205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/01/2023]
Abstract
Fruit formation depends on successful fertilization and is highly sensitive to weather fluctuations that affect pollination. Auxin promotes fruit initiation and growth following fertilization. Class A auxin response factors (Class A ARFs) repress transcription in the absence of auxin and activate transcription in its presence. Here, we explore how multiple members of the ARF family regulate fruit set and fruit growth in tomato (Solanum lycopersicum) and Arabidopsis thaliana, and test whether reduction of SlARF activity improves yield stability in fluctuating temperatures. We found that several tomato Slarf mutant combinations produced seedless parthenocarpic fruits, most notably mutants deficient in SlARF8A and SlARF8B genes. Arabidopsis Atarf8 mutants deficient in the orthologous gene had less complete parthenocarpy than did tomato Slarf8a Slarf8b mutants. Conversely, Atarf6 Atarf8 double mutants had reduced fruit growth after fertilization. AtARF6 and AtARF8 likely switch from repression to activation of fruit growth in response to a fertilization-induced auxin increase in gynoecia. Tomato plants with reduced SlARF8A and SlARF8B gene dosage had substantially higher yield than the wild type under controlled or ambient hot and cold growth conditions. In field trials, partial reduction in the SlARF8 dose increased yield under extreme temperature with minimal pleiotropic effects. The stable yield of the mutant plants resulted from a combination of early onset of fruit set, more fruit-bearing branches and more flowers setting fruits. Thus, ARF8 proteins mediate the control of fruit set, and relieving this control with Slarf8 mutations may be utilized in breeding to increase yield stability in tomato and other crops.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Ramona Schubert
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Nave Man
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Naama Teboul
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | | | - Emily E Rosowski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
22
|
Zhang Q, Wang B, Kong X, Li K, Huang Y, Peng L, Chen L, Liu J, Yu Q, He J, Yang Y, Li X, Wang J. Knockout of cyclase-associated protein CAP1 confers tolerance towards salt and osmotic stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153978. [PMID: 37087999 DOI: 10.1016/j.jplph.2023.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
As a regulator of actin filament turnover, Arabidopsis thaliana CAP1 plays an important role in plant growth and development. Here, we analyzed the phenotypes of two Arabidopsis cap1 mutants: cap1-1 (a T-DNA insertion mutant) and Cas9-CAP1 (generated by CRISPR-Cas9 gene editing). Phenotypic analysis demonstrated that loss of CAP1 results in defects in seed germination and seedling morphology, with some seedlings exhibiting one or three cotyledons. The cap1-1 mutant took longer than the wild type to complete its life cycle, but its flowering time was normal, indicating that loss of CAP1 prolongs reproductive but not vegetative growth. Moreover, loss of CAP1 severely reduces seed production in self-pollinated plants, due to disruption of pollen tube elongation. RNA-seq and qRT-PCR analyses demonstrated that CAP1 may be involved in osmotic stress responses. Indeed, the cap1-1 mutant showed increased tolerance of salt and mannitol treatment, indicating that CAP1 plays a negative role in osmotic stress tolerance in Arabidopsis. Taken together, our results demonstrate that CAP1 functions not only in plant growth and development, but also in Arabidopsis responses to osmotic stress.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Boya Wang
- Southwest University of Science and Technology, School of Life Science and Engineering, Mianyang, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Mao J, Niu C, Li K, Fan L, Liu Z, Li S, Ma D, Tahir MM, Xing L, Zhao C, Ma J, An N, Han M, Ren X, Zhang D. Cytokinin-responsive MdTCP17 interacts with MdWOX11 to repress adventitious root primordium formation in apple rootstocks. THE PLANT CELL 2023; 35:1202-1221. [PMID: 36544357 PMCID: PMC10052379 DOI: 10.1093/plcell/koac369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/13/2023]
Abstract
Adventitious root (AR) formation plays an important role in vegetatively propagated plants. Cytokinin (CK) inhibits AR formation, but the molecular mechanisms driving this process remain unknown. In this study, we confirmed that CK content is related to AR formation and further revealed that a high auxin/CK ratio was beneficial to AR formation in apple (Malus domestica). A correlation between expression of CK-responsive TEOSINTE BRANCHED1, CYCLOIDEA, and PCF17 (MdTCP17) and AR formation in response to CK was identified, and overexpression of MdTCP17 in transgenic apple inhibited AR formation. Yeast two-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assays revealed an interaction between MdTCP17 and WUSCHEL-RELATED HOMEOBOX11 (MdWOX11), and a significant correlation between the expression of MdWOX11 and AR ability. Overexpression of MdWOX11 promoted AR primordium formation in apple, while interference of MdWOX11 inhibited AR primordium production. Moreover, a positive correlation was found between MdWOX11 and LATERAL ORGAN BOUNDARIES DOMAIN29 (MdLBD29) expression, and yeast one-hybrid, dual luciferase reporter, and ChIP-qPCR assays verified the binding of MdWOX11 to the MdLBD29 promoter with a WOX-box element in the binding sequence. Furthermore, MdTCP17 reduced the binding of MdWOX11 and MdLBD29 promoters, and coexpression of MdTCP17 and MdWOX11 reduced MdLBD29 expression. Together, these results explain the function and molecular mechanism of MdTCP17-mediated CK inhibition of AR primordium formation, which could be used to improve apple rootstocks genetically.
Collapse
Affiliation(s)
- Jiangping Mao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Chundong Niu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Ke Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Li Fan
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhimin Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Shaohuan Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Doudou Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Caiping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Juanjuan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Na An
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Xiaolin Ren
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
24
|
Si C, Zhan D, Wang L, Sun X, Zhong Q, Yang S. Systematic Investigation of TCP Gene Family: Genome-Wide Identification and Light-Regulated Gene Expression Analysis in Pepino (Solanum Muricatum). Cells 2023; 12:cells12071015. [PMID: 37048089 PMCID: PMC10093338 DOI: 10.3390/cells12071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Plant-specific transcription factors such as the TCP family play crucial roles in light responses and lateral branching. The commercial development of S. muricatum has been influenced by the ease with which its lateral branches can be germinated, especially under greenhouse cultivation during the winter with supplemented LED light. The present study examined the TCP family genes in S. muricatum using bioinformatics analysis (whole-genome sequencing and RNA-seq) to explore the response of this family to different light treatments. Forty-one TCP genes were identified through a genome-wide search; phylogenetic analysis revealed that the CYC/TB1, CIN and Class I subclusters contained 16 SmTCP, 11 SmTCP and 14 SmTCP proteins, respectively. Structural and conserved sequence analysis of SmTCPs indicated that the motifs in the same subcluster were highly similar in structure and the gene structure of SmTCPs was simpler than that in Arabidopsis thaliana; 40 of the 41 SmTCPs were localized to 12 chromosomes. In S. muricatum, 17 tandem repeat sequences and 17 pairs of SmTCP genes were found. We identified eight TCPs that were significantly differentially expressed (DETCPs) under blue light (B) and red light (R), using RNA-seq. The regulatory network of eight DETCPs was preliminarily constructed. All three subclusters responded to red and blue light treatment. To explore the implications of regulatory TCPs in different light treatments for each species, the TCP regulatory gene networks and GO annotations for A. thaliana and S. muricatum were compared. The regulatory mechanisms suggest that the signaling pathways downstream of the TCPs may be partially conserved between the two species. In addition to the response to light, functional regulation was mostly enriched with auxin response, hypocotyl elongation, and lateral branch genesis. In summary, our findings provide a basis for further analysis of the TCP gene family in other crops and broaden the functional insights into TCP genes regarding light responses.
Collapse
Affiliation(s)
- Cheng Si
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Deli Zhan
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Xuemei Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- Correspondence: (Q.Z.); (S.Y.)
| | - Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.Z.); (S.Y.)
| |
Collapse
|
25
|
Camoirano A, Alem AL, Gonzalez DH, Viola IL. The N-terminal region located upstream of the TCP domain is responsible for the antagonistic action of the Arabidopsis thaliana TCP8 and TCP23 transcription factors on flowering time. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111571. [PMID: 36535527 DOI: 10.1016/j.plantsci.2022.111571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
TCP proteins (TCPs) are plant-exclusive transcription factors that exert effects on multiple aspects of plant development, from germination to flower and fruit formation. TCPs are divided into two main classes, I and II. In this study, we found that the Arabidopsis thaliana class I TCP transcription factor TCP8 is a positive regulator of flowering time. TCP8 mutation and constitutive expression delayed and accelerated flowering, respectively. Accordingly, TCP8 mutant plants showed a delay in the maximum expression of FT and reduced SOC1 transcript levels, while plants overexpressing TCP8 presented increased transcript levels of both genes. Notably, the related class I protein TCP23 showed the opposite behavior, since TCP23 mutation and overexpression accelerated and retarded flowering, respectively. To elucidate the molecular basis of these differences, we analyzed TCP8 and TCP23 comparatively. We found that both proteins are able to physically interact and bind class I TCP motifs, but only TCP8 shows transcriptional activation activity when expressed in plants, which is negatively affected by TCP23. From the analysis of plants expressing different chimeras between the TCPs, we found that the N-terminal region located upstream of the TCP domain is responsible for the opposite effect that TCP8 and TCP23 exert over flowering time and regulation of FT and SOC1 expression. These results suggest that structural features outside the TCP domain modulate the specificity of action of class I TCPs.
Collapse
Affiliation(s)
- Alejandra Camoirano
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Antonela L Alem
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Ivana L Viola
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
26
|
Wang J, Sun N, Zheng L, Zhang F, Xiang M, Chen H, Deng XW, Wei N. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. THE PLANT CELL 2023; 35:390-408. [PMID: 36321994 PMCID: PMC9806594 DOI: 10.1093/plcell/koac316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lidan Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengda Xiang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
Saini K, Dwivedi A, Ranjan A. High temperature restricts cell division and leaf size by coordination of PIF4 and TCP4 transcription factors. PLANT PHYSIOLOGY 2022; 190:2380-2397. [PMID: 35880840 PMCID: PMC9706436 DOI: 10.1093/plphys/kiac345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/30/2022] [Indexed: 05/19/2023]
Abstract
High ambient temperature suppresses Arabidopsis (Arabidopsis thaliana) rosette leaf area and elongates the stem and petiole. While the mechanism underlying the temperature-induced elongation response has been extensively studied, the genetic basis of temperature regulation of leaf size is largely unknown. Here, we show that warm temperature inhibits cell proliferation in Arabidopsis leaves, resulting in fewer cells compared to the control condition. Cellular phenotyping and genetic and biochemical analyses established the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and TEOSINTE BRANCHED1/CYCLOIDEA/PCF4 (TCP4) transcription factors in the suppression of Arabidopsis leaf area under high temperature by a reduction in cell number. We show that temperature-mediated suppression of cell proliferation requires PIF4, which interacts with TCP4 and regulates the expression of the cell cycle inhibitor KIP-RELATED PROTEIN1 (KRP1) to control leaf size under high temperature. Warm temperature induces binding of both PIF4 and TCP4 to the KRP1 promoter. PIF4 binding to KRP1 under high temperature is TCP4 dependent as TCP4 regulates PIF4 transcript levels under high temperature. We propose a model where a warm temperature-mediated accumulation of PIF4 in leaf cells promotes its binding to the KRP1 promoter in a TCP4-dependent way to regulate cell production and leaf size. Our finding of high temperature-mediated transcriptional upregulation of KRP1 integrates a developmental signal with an environmental signal that converges on a basal cell regulatory process.
Collapse
Affiliation(s)
| | - Aditi Dwivedi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
28
|
Nagpal P, Reeves PH, Wong JH, Armengot L, Chae K, Rieveschl NB, Trinidad B, Davidsdottir V, Jain P, Gray WM, Jaillais Y, Reed JW. SAUR63 stimulates cell growth at the plasma membrane. PLoS Genet 2022; 18:e1010375. [PMID: 36121899 PMCID: PMC9522268 DOI: 10.1371/journal.pgen.1010375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/29/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth. Plant organs reach their final shape and size after substantial cell expansion. Proton pumps at the plasma membrane promote cell expansion by acidifying the cell wall to loosen it, and by increasing electrochemical potential across the plasma membrane for solute uptake that maintains intracellular turgor. Plasma-membrane-associated proteins tightly regulate proton pump activity, in order for organs to grow to an appropriate extent. We have studied requirements for activity of one such regulatory protein in the model plant Arabidopsis called SAUR63. This protein is made rapidly in response to plant growth hormones, and it increases proton pump activity to promote organ growth. These activities depend on its binding to anionic lipids in the plasma membrane, and forced plasma membrane association of SAUR63 can increase growth. Many proteins in the same family are found within Arabidopsis and in all land plants, and likely differ in their affinity for the plasma membrane or in other properties. Further studies of other family members may show how such proteins regulate growth under diverse physiological contexts.
Collapse
Affiliation(s)
- Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Keun Chae
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nathaniel B. Rieveschl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vala Davidsdottir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Prateek Jain
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
- * E-mail:
| |
Collapse
|
29
|
Xia Y, Du K, Ling A, Wu W, Li J, Kang X. Overexpression of PagSTOMAGEN, a Positive Regulator of Stomatal Density, Promotes Vegetative Growth in Poplar. Int J Mol Sci 2022; 23:ijms231710165. [PMID: 36077563 PMCID: PMC9456429 DOI: 10.3390/ijms231710165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Poplar is an important fast-growing tree, and its photosynthetic capacity directly affects its vegetative growth. Stomatal density is closely related to photosynthetic capacity and growth characteristics in plants. Here, we isolated PagSTOMAGEN from the hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its biological function in vegetative growth. PagSTOMAGEN was expressed predominantly in young tissues and localized in the plasma membrane. Compared with wild-type 84K poplars, PagSTOMAGEN-overexpressing plants displayed an increased plant height, leaf area, internode number, basal diameter, biomass, IAA content, IPR content, and stomatal density. Higher stomatal density improved the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate in transgenic poplar. The differential expression of genes related to stomatal development showed a diverged influence of PagSTOMAGEN at different stages of stomatal development. Finally, transcriptomic analysis showed that PagSTOMAGEN affected vegetative growth by affecting the expression of photosynthesis and plant hormone-related genes (such as SAUR75, PQL2, PSBX, ERF1, GNC, GRF5, and ARF11). Taken together, our data indicate that PagSTOMAGEN could positively regulate stomatal density and increase the photosynthetic rate and plant hormone content, thereby promoting vegetative growth in poplar. Our study is of great significance for understanding the relationship between stoma, photosynthesis, and yield breeding in poplar.
Collapse
Affiliation(s)
- Yufei Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Aoyu Ling
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Li
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| |
Collapse
|
30
|
Li M, Liu C, Hepworth SR, Ma C, Li H, Li J, Wang SM, Yin H. SAUR15 interaction with BRI1 activates plasma membrane H+-ATPase to promote organ development of Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2454-2466. [PMID: 35511168 PMCID: PMC9343009 DOI: 10.1093/plphys/kiac194] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 05/13/2023]
Abstract
Brassinosteroids (BRs) are an important group of plant steroid hormones that regulate growth and development. Several members of the SMALL AUXIN UP RNA (SAUR) family have roles in BR-regulated hypocotyl elongation and root growth. However, the mechanisms are unclear. Here, we show in Arabidopsis (Arabidopsis thaliana) that SAUR15 interacts with cell surface receptor-like kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) in BR-treated plants, resulting in enhanced BRI1 phosphorylation status and recruitment of the co-receptor BRI1-ASSOCIATED RECEPTOR KINASE 1. Genetic and phenotypic assays indicated that the SAUR15 effect on BRI1 can be uncoupled from BRASSINOSTEROID INSENSITIVE 2 activity. Instead, we show that SAUR15 promotes BRI1 direct activation of plasma membrane H+-ATPase (PM H+-ATPase) via phosphorylation. Consequently, SAUR15-BRI1-PM H+-ATPase acts as a direct, PM-based mode of BR signaling that drives cell expansion to promote the growth and development of various organs. These data define an alternate mode of BR signaling in plants.
Collapse
Affiliation(s)
- Mengzhan Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Chunli Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shelley R Hepworth
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Chaofan Ma
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hong Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | | | - Hongju Yin
- Authors for correspondence: (H.Y.) and (S.M.W.)
| |
Collapse
|
31
|
Fuentes-Merlos MI, Bamba M, Sato S, Higashitani A. Comparative Transcriptome Analysis of Grafted Tomato with Drought Tolerance. PLANTS 2022; 11:plants11151947. [PMID: 35893651 PMCID: PMC9332811 DOI: 10.3390/plants11151947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Grafting is a method used in agriculture to improve crop production and tolerance to biotic and abiotic stress. This technique is widely used in tomato, Solanum lycopersicum L.; however, the effects of grafting on changes in gene expression associated with stress tolerance in shoot apical meristem cells are still under-discovered. To clarify the effect of grafting, we performed a transcriptomic analysis between non-grafted and grafted tomatoes using the tomato variety Momotaro-scion and rootstock varieties, TD1, GS, and GF. Drought tolerance was significantly improved not only by a combination of compatible resistant rootstock TD1 but also by self-grafted compared to non-grafted lines. Next, we found the differences in gene expression between grafted and non-grafted plants before and during drought stress treatment. These altered genes are involved in the regulation of plant hormones, stress response, and cell proliferation. Furthermore, when comparing compatible (Momo/TD1 and Momo/Momo) and incompatible (Momo/GF) grafted lines, the incompatible line reduced gene expression associated with phytohormones but increased in wounding and starvation stress-response genes. These results conclude that grafting generates drought stress tolerance through several gene expression changes in the apical meristem.
Collapse
Affiliation(s)
| | | | | | - Atsushi Higashitani
- Correspondence: (M.I.F.-M.); (A.H.); Tel.: +81-22-217-5715 (A.H.); Fax: +81-22-217-5691 (A.H.)
| |
Collapse
|
32
|
Zheng X, Lan J, Yu H, Zhang J, Zhang Y, Qin Y, Su XD, Qin G. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. PLANT COMMUNICATIONS 2022; 3:100309. [PMID: 35605201 PMCID: PMC9284284 DOI: 10.1016/j.xplc.2022.100309] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
Green petals pose a challenge for pollinators to distinguish flowers from leaves, but they are valuable as a specialty flower trait. However, little is understood about the molecular mechanisms that underlie the development of green petals. Here, we report that CINCINNATA (CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) proteins play key roles in the control of petal color. The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation. Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17. We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development, whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals. TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions, consistent with the green-white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals. RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals, but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals. We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE (PORB), DIVINYL REDUCTASE (DVR), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), which are known to promote petal greening. We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species. Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.
Collapse
Affiliation(s)
- Xinhui Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yongmei Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
33
|
Weeraratne G, Wang H, Weeraratne TP, Sabharwal T, Jiang HW, Cantero A, Clark G, Roux SJ. APYRASE1/2 mediate red light-induced de-etiolation growth in Arabidopsis seedlings. PLANT PHYSIOLOGY 2022; 189:1728-1740. [PMID: 35357495 PMCID: PMC9237676 DOI: 10.1093/plphys/kiac150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 05/09/2023]
Abstract
In etiolated seedlings, red light (R) activates phytochrome and initiates signals that generate major changes at molecular and physiological levels. These changes include inhibition of hypocotyl growth and promotion of the growth of primary roots, apical hooks, and cotyledons. An earlier report showed that the sharp decrease in hypocotyl growth rapidly induced by R was accompanied by an equally rapid decrease in the transcript and protein levels of two closely related apyrases (APYs; nucleoside triphosphate-diphosphohydrolases) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, enzymes whose expression alters auxin transport and growth in seedlings. Here, we report that single knockouts of either APY inhibit R-induced promotion of the growth of primary roots, apical hooks, and cotyledons, and RNAi-induced suppression of APY1 expression in the background of apy2 inhibits R-induced apical hook opening. When R-irradiated primary roots and apical hook-cotyledons began to show a gradual increase in their growth relative to dark controls, they concurrently showed increased levels of APY protein, but in hook-cotyledon tissue, this occurred without parallel increases in their transcripts. In wild-type seedlings whose root growth is suppressed by the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the R-induced increased APY expression in roots was also inhibited. In unirradiated plants, the constitutive expression of APY2 promoted both hook opening and changes in the transcript abundance of Small Auxin Upregulated RNA (SAUR), SAUR17 and SAUR50 that help mediate de-etiolation. These results provide evidence that the expression of APY1/APY2 is regulated by R and that APY1/APY2 participate in the signaling pathway by which phytochrome induces differential growth changes in different tissues of etiolated seedlings.
Collapse
Affiliation(s)
- Gayani Weeraratne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Huan Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tharindu P Weeraratne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tanya Sabharwal
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Han-Wei Jiang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Araceli Cantero
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
34
|
Yu Z, Hong L, Li QQ. Signatures of mRNA Alternative Polyadenylation in Arabidopsis Leaf Development. Front Genet 2022; 13:863253. [PMID: 35559042 PMCID: PMC9086830 DOI: 10.3389/fgene.2022.863253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative polyadenylation (APA) of pre-mRNA is an important co-transcriptional mechanism that modulates gene expression, leading to transcriptomic and functional diversities. The role of APA in Arabidopsis leaf development, however, remains elusive. We applied a poly(A)-tag sequencing (PAT-seq) technique to characterize APA-mediated regulation events in cotyledon and in five stages of true leaf development. Over 60% APA was identified in genes expressed in leaves, consistent with the results in previous publications. However, a reduced APA level was detected in younger leaves, reaching 44% in the 18th true leaf. Importantly, we also found that >70% of the poly(A) site usages were altered in the second true leaf relative to the cotyledon. Compared with the cotyledon, more genes in the second true leaf tended to use the distal site of 3′UTR, but this was not found in pairwise comparison among other true leaves. In addition, a significant APA gene was found to be decreased in a pairwise comparison among true leaves, including differentially expressed genes. The APA genes identified herein were associated with specific biological processes, including metabolic and cellular processes and response to stimuli and hormones. These results provide a new insight into the regulation of Arabidopsis leaf development through APA.
Collapse
Affiliation(s)
- Zhibo Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
35
|
Alem AL, Ariel FD, Cho Y, Hong JC, Gonzalez DH, Viola IL. TCP15 interacts with GOLDEN2-LIKE 1 to control cotyledon opening in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:748-763. [PMID: 35132717 DOI: 10.1111/tpj.15701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
After germination, exposure to light promotes the opening and expansion of the cotyledons and the development of the photosynthetic apparatus in a process called de-etiolation. This process is crucial for seedling establishment and photoautotrophic growth. TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors are important developmental regulators of plant responses to internal and external signals that are grouped into two main classes. In this study, we identified GOLDEN2-LIKE 1 (GLK1), a key transcriptional regulator of photomorphogenesis, as a protein partner of class I TCPs during light-induced cotyledon opening and expansion in Arabidopsis. The class I TCP TCP15 and GLK1 are mutually required for cotyledon opening and the induction of SAUR and EXPANSIN genes, involved in cell expansion. TCP15 also participates in the expression of photosynthesis-associated genes regulated by GLK1, like LHCB1.4 and LHCB2.2. Furthermore, GLK1 and TCP15 bind to the same promoter regions of different target genes containing either GLK or TCP binding motifs and binding of TCP15 is affected in a GLK1-deficient background, suggesting that a complex between TCP15 and GLK1 participates in the induction of these genes. We postulate that GLK1 helps to recruit TCP15 for the modulation of cell expansion genes in cotyledons and that the functional interaction between these transcription factors may serve to coordinate the expression of cell expansion genes with that of genes involved in the development of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Antonela L Alem
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Federico D Ariel
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Yuhan Cho
- Division of Life Science and Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Daniel H Gonzalez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Ivana L Viola
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
36
|
Li K, Tian H, Tahir MM, Li S, Chen S, Fan L, Liu Z, Mao J, Zhang D. Transcriptome analysis reveals that cytokinins inhibit adventitious root formation through the MdRR12-MdCRF8 module in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111220. [PMID: 35351311 DOI: 10.1016/j.plantsci.2022.111220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Adventitious root (AR) formation is great significance for apple rootstock breeding. Transcriptome analyses were performed with cytokinins (CTKs) signal treatments to analyze the mechanism of AR formation. The results showed that 6-benzyadenine (6-BA) treatment inhibited AR formation. Histological analysis also observed that AR primordium cell formation was significantly suppressed by 6-BA treatment; the ratio of auxin/cytokinins exhibited the lowest values at 1 and 3 day (d) in the 6-BA treatment group. Furthermore, the differentially expressed genes were divided into five categories, including auxin, cytokinins, other hormones, cell cycle, and carbohydrate metabolism pathways. Due to the study of cytokinins signal treatment, it is important to understand the particular module mediated by the cytokinins pathway. The expression level of MdRR12 (a family member of B-type cytokinins-responsive factors) was significantly upregulated at 3 d by 6-BA treatment. Compared to the wild type, the 35S::MdRR12 transgenic tobaccos suppressed AR formation. The promoter sequence of MdCRF8 contains AGATT motif elements that respond to MdRR12. RNA-seq and RT-qPCR assays predicted cytokinins response factor (MdCRF8) to be a downstream gene regulated by MdRR12. The activity of the pro-MdCRF8-GUS promoter was obviously induced by 6-BA treatment and inhibited by lovastatin (Lov) treatment. Yeast one-hybrid, dual-luciferase reporter, and GUS coexpression assays revealed that MdRR12 could directly bind to the MdCRF8 promoter. Additionally, 35S::MdCRF8 transgenic tobaccos also blocked AR growth. Compared to the wild type, 35S::MdRR12 and 35S::MdCRF8 transgenic tobaccos enhanced sensitivity to cytokinins. Thus, we describe that MdRR12 and MdCRF8 function as integrators of cytokinins signals that affect cell cycle- and carbohydrate metabolism-related genes to regulate cell fate transition during AR formation. On the basis of these results, we concluded that the MdRR12-MdCRF8 module is involved in the negative regulation of AR formation in apple rootstock and can potentially be applied in agriculture using genetic approaches.
Collapse
Affiliation(s)
- Ke Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Huiyue Tian
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Shaohuan Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Shiyue Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Li Fan
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Zhimin Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| |
Collapse
|
37
|
Liu Y, Xiao L, Chi J, Li R, Han Y, Cui F, Peng Z, Wan S, Li G. Genome-wide identification and expression of SAUR gene family in peanut (Arachis hypogaea L.) and functional identification of AhSAUR3 in drought tolerance. BMC PLANT BIOLOGY 2022; 22:178. [PMID: 35387613 PMCID: PMC8988358 DOI: 10.1186/s12870-022-03564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Small auxin-upregulated RNAs (SAURs) gene family plays important roles in plant growth, development, and stress responses. However, the function of few SAUR genes is known in the peanut (Arachis hypogaea L.), one of the world's major food legume crops. This study aimed to perform a comprehensive identification of the SAUR gene family from the peanut genome. RESULTS The genome-wide analysis revealed that a total of 162 SAUR genes were identified in the peanut genome. The phylogenetic analysis indicated that the SAUR proteins were classified into eight subfamilies. The SAUR gene family experienced a remarkable expansion after tetraploidization, which contributed to the tandem duplication events first occurring in subgenome A and then segmental duplication events occurring between A and B subgenomes. The expression profiles based on transcriptomic data showed that SAUR genes were dominantly expressed in the leaves, pistils, perianth, and peg tips, and were widely involved in tolerance against abiotic stresses. A total of 18 AhSAUR genes selected from different subfamilies randomly presented 4 major expression patterns according to their expression characteristics in response to indole-3-acetic acid. The members from the same subfamily showed a similar expression pattern. Furthermore, the functional analysis revealed that AhSAUR3 played a negative role in response to drought tolerance. CONCLUSIONS This study provided insights into the evolution and function of the SAUR gene family and may serve as a resource for further functional research on AhSAUR genes.
Collapse
Affiliation(s)
- Yiyang Liu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Lina Xiao
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Jingxian Chi
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| | - Rongchong Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Yan Han
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Feng Cui
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Zhenying Peng
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Shubo Wan
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Guowei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| |
Collapse
|
38
|
Ren L, Zhang T, Wu H, Ge X, Wan H, Chen S, Li Z, Ma D, Wang A. Blocking IbmiR319a Impacts Plant Architecture and Reduces Drought Tolerance in Sweet Potato. Genes (Basel) 2022; 13:genes13030404. [PMID: 35327958 PMCID: PMC8953241 DOI: 10.3390/genes13030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
MicroRNA319 (miR319) plays a key role in plant growth, development, and multiple resistance by repressing the expression of targeted TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) genes. Two members, IbmiR319a and IbmiR319c, were discovered in the miR319 gene family in sweet potato (Ipomoea batatas [L.] Lam). Here, we focused on the biological function and potential molecular mechanism of the response of IbmiR319a to drought stress in sweet potato. Blocking IbmiR319a in transgenic sweet potato (MIM319) resulted in a slim and tender phenotype and greater sensitivity to drought stress. Microscopic observations revealed that blocking IbmiR319a decreased the cell width and increased the stomatal distribution in the adaxial leaf epidermis, and also increased the intercellular space in the leaf and petiole. We also found that the lignin content was reduced, which led to increased brittleness in MIM319. Quantitative real-time PCR showed that the expression levels of key genes in the lignin biosynthesis pathway were much lower in the MIM319 lines than in the wild type. Ectopic expression of IbmiR319a-targeted genes IbTCP11 and IbTCP17 in Arabidopsis resulted in similar phenotypes to MIM319. We also showed that the expression of IbTCP11 and IbTCP17 was largely induced by drought stress. Transcriptome analysis indicated that cell growth-related pathways, such as plant hormonal signaling, were significantly downregulated with the blocking of IbmiR319a. Taken together, our findings suggest that IbmiR319a affects plant architecture by targeting IbTCP11/17 to control the response to drought stress in sweet potato.
Collapse
Affiliation(s)
- Lei Ren
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Tingting Zhang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Haixia Wu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinyu Ge
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Huihui Wan
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shengyong Chen
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang 524094, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Daifu Ma
- Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou), Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221131, China
- Correspondence: (D.M.); (A.W.); Tel.: +86-516-82189200 (D.M.); +86-516-83400033 (A.W.)
| | - Aimin Wang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence: (D.M.); (A.W.); Tel.: +86-516-82189200 (D.M.); +86-516-83400033 (A.W.)
| |
Collapse
|
39
|
PIF7 controls leaf cell proliferation through an AN3 substitution repression mechanism. Proc Natl Acad Sci U S A 2022; 119:2115682119. [PMID: 35086930 PMCID: PMC8812563 DOI: 10.1073/pnas.2115682119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Phytochrome photoreceptors can markedly alter leaf blade growth in response to far-red (FR) rich neighbor shade, yet we have a limited understanding of how this is accomplished. This study identifies ANGUSTIFOLIA3 (AN3) as a central component in phytochrome promotion of leaf cell proliferation and PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) as a potent repressor. AN3 and PIF7 impose opposing regulation on a shared suite of genes through common cis-acting promoter elements. In response to FR light, activated PIF7 blocks AN3 action by evicting and substituting for AN3 at target promoters. This molecular switch module provides a mechanism through which changes in external light quality can dynamically manipulate gene expression, cell division, and leaf size. Plants are agile, plastic organisms able to adapt to everchanging circumstances. Responding to far-red (FR) wavelengths from nearby vegetation, shade-intolerant species elicit the adaptive shade-avoidance syndrome (SAS), characterized by elongated petioles, leaf hyponasty, and smaller leaves. We utilized end-of-day FR (EODFR) treatments to interrogate molecular processes that underlie the SAS leaf response. Genetic analysis established that PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) is required for EODFR-mediated constraint of leaf blade cell division, while EODFR messenger RNA sequencing data identified ANGUSTIFOLIA3 (AN3) as a potential PIF7 target. We show that PIF7 can suppress AN3 transcription by directly interacting with and sequestering AN3. We also establish that PIF7 and AN3 impose antagonistic control of gene expression via common cis-acting promoter motifs in several cell-cycle regulator genes. EODFR triggers the molecular substitution of AN3 to PIF7 at G-box/PBE-box promoter regions and a switch from promotion to repression of gene expression.
Collapse
|
40
|
Rath M, Challa KR, Sarvepalli K, Nath U. CINCINNATA-Like TCP Transcription Factors in Cell Growth - An Expanding Portfolio. FRONTIERS IN PLANT SCIENCE 2022; 13:825341. [PMID: 35273626 PMCID: PMC8902296 DOI: 10.3389/fpls.2022.825341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Post-mitotic cell growth is a key process in plant growth and development. Cell expansion drives major growth during morphogenesis and is influenced by both endogenous factors and environmental stimuli. Though both isotropic and anisotropic cell growth can contribute to organ size and shape at different degrees, anisotropic cell growth is more likely to contribute to shape change. While much is known about the mechanisms that increase cellular turgor and cell-wall biomass during expansion, the genetic factors that regulate these processes are less studied. In the past quarter of a century, the role of the CINCINNATA-like TCP (CIN-TCP) transcription factors has been well documented in regulating diverse aspects of plant growth and development including flower asymmetry, plant architecture, leaf morphogenesis, and plant maturation. The molecular activity of the CIN-TCP proteins common to these biological processes has been identified as their ability to suppress cell proliferation. However, reports on their role regulating post-mitotic cell growth have been scanty, partly because of functional redundancy among them. In addition, it is difficult to tease out the effect of gene activity on cell division and expansion since these two processes are linked by compensation, a phenomenon where perturbation in proliferation is compensated by an opposite effect on cell growth to keep the final organ size relatively unaltered. Despite these technical limitations, recent genetic and growth kinematic studies have shown a distinct role of CIN-TCPs in promoting cellular growth in cotyledons and hypocotyls, the embryonic organs that grow solely by cell expansion. In this review, we highlight these recent advances in our understanding of how CIN-TCPs promote cell growth.
Collapse
Affiliation(s)
- Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- *Correspondence: Utpal Nath,
| |
Collapse
|
41
|
Shen Z, Chen M. Deciphering Novel Transcriptional Regulators of Soybean Hypocotyl Elongation Based on Gene Co-expression Network Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:837130. [PMID: 35273629 PMCID: PMC8902393 DOI: 10.3389/fpls.2022.837130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 05/12/2023]
Abstract
Hypocotyl elongation is the key step of soybean seed germination, as well an important symbol of seedling vitality, but the regulatory mechanisms remain largely elusive. To address the problem, bioinformatics approaches along with the weighted gene co-expression network analysis (WGCNA) were carried out to elucidate the regulatory networks and identify key regulators underlying soybean hypocotyl elongation at transcriptional level. Combining results from WGCNA, yeast one hybridization, and phenotypic analysis of transgenic plants, a cyan module significantly associated with hypocotyl elongation was discerned, from which two novel regulatory submodules were identified as key candidates underpinning soybean hypocotyl elongation by modulating auxin and light responsive signaling pathways. Taken together, our results constructed the regulatory network and identified novel transcriptional regulators of soybean hypocotyl elongation based on WGCNA, which provide new insights into the global regulatory basis of soybean hypocotyl elongation and offer potential targets for soybean improvement to acquire cultivars with well-tuned hypocotyl elongation and seed germination vigor.
Collapse
Affiliation(s)
- Zhikang Shen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Min Chen
| |
Collapse
|
42
|
Ravindran N, Ramachandran H, Job N, Yadav A, Vaishak K, Datta S. B-box protein BBX32 integrates light and brassinosteroid signals to inhibit cotyledon opening. PLANT PHYSIOLOGY 2021; 187:446-461. [PMID: 34618149 PMCID: PMC8418414 DOI: 10.1093/plphys/kiab304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/31/2021] [Indexed: 05/20/2023]
Abstract
Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.
Collapse
Affiliation(s)
- Nevedha Ravindran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Harshil Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - K.P. Vaishak
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
- Author for communication:
| |
Collapse
|
43
|
Liu B, Zhang B, Yang Z, Liu Y, Yang S, Shi Y, Jiang C, Qin F. Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. THE PLANT CELL 2021; 33:2058-2071. [PMID: 33730156 PMCID: PMC8290287 DOI: 10.1093/plcell/koab083] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/10/2021] [Indexed: 05/21/2023]
Abstract
Drought poses a major environmental threat to maize (Zea mays) production worldwide. Since maize is a monoecious plant, maize grain yield is dependent on the synchronous development of male and female inflorescences. When a drought episode occurs during flowering, however, an asynchronism occurs in the anthesis and silking interval (ASI) that results in significant yield losses. The underlying mechanism responsible for this asynchronism is still unclear. Here, we obtained a comprehensive development-drought transcriptome atlas of maize ears. Genes that function in cell expansion and growth were highly repressed by drought in 50 mm ears. Notably, an association study using a natural-variation population of maize revealed a significant relationship between the level of α-expansin4 (ZmEXPA4) expression and drought-induced increases in ASI. Furthermore, genetic manipulation of ZmEXPA4 expression using a drought-inducible promoter in developing maize ears reduced the ASI under drought conditions. These findings provide important insights into the molecular mechanism underlying the increase in ASI in maize ears subjected to drought and provide a promising strategy that can be used for trait improvement.
Collapse
Affiliation(s)
- Boxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bin Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Zhirui Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunlu Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
- Author for correspondence:
| |
Collapse
|
44
|
Abstract
The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Inyup Paik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
45
|
Lan J, Zhang J, Yuan R, Yu H, An F, Sun L, Chen H, Zhou Y, Qian W, He H, Qin G. TCP transcription factors suppress cotyledon trichomes by impeding a cell differentiation-regulating complex. PLANT PHYSIOLOGY 2021; 186:434-451. [PMID: 33576799 PMCID: PMC8154074 DOI: 10.1093/plphys/kiab053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 05/04/2023]
Abstract
Trichomes are specialized epidermal cells that act as barriers against biotic and abiotic stresses. Although the formation of trichomes on hairy organs is well studied, the molecular mechanisms of trichome inhibition on smooth organs are still largely unknown. Here, we demonstrate that the CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors inhibit the formation of trichomes on cotyledons in Arabidopsis (Arabidopsis thaliana). The tcp2/3/4/5/10/13/17 septuple mutant produces cotyledons with ectopic trichomes on the adaxial sides. The expression patterns of TCP genes are developmentally regulated during cotyledon development. TCP proteins directly interact with GLABRA3 (GL3), a key component of the MYB transcription factor/basic helix-loop-helix domain protein/WD40-repeat proteins (MYB-bHLH-WD40, MBW) complex essential for trichome formation, to interfere with the transactivation activity of the MBW complex in cotyledons. TCPs also disrupt the MBW complex-R3 MYB negative feedback loop by directly promoting the expression of R3 MYB genes, which enhance the repression of the MBW complex. Our findings reveal a molecular framework in which TCPs suppress trichome formation on adaxial sides of cotyledons by repressing the activity of the MBW complex at the protein level and the transcripts of R3 MYB genes at the transcriptional level.
Collapse
Affiliation(s)
- Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Fengying An
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Yue Zhou
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hang He
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
46
|
Martín G, Duque P. Tailoring photomorphogenic markers to organ growth dynamics. PLANT PHYSIOLOGY 2021; 186:239-249. [PMID: 33620489 PMCID: PMC8154095 DOI: 10.1093/plphys/kiab083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
When a dark-germinated seedling reaches the soil surface and perceives sunlight for the first time, light signaling is activated to adapt the plant's development and transition to autotrophism. During this process, functional chloroplasts assemble in the cotyledons and the seedling's cell expansion pattern is rearranged to enhance light perception. Hypocotyl cells expand rapidly in the dark, while cotyledon cell expansion is suppressed. However, light reverses this pattern by activating cell expansion in cotyledons and repressing it in hypocotyls. The fact that light-regulated developmental responses, as well as the transcriptional mechanisms controlling them, are organ-specific has been largely overlooked in previous studies of seedling de-etiolation. To analyze the expansion pattern of the hypocotyl and cotyledons separately in a given Arabidopsis (Arabidopsis thaliana) seedling, we define an organ ratio, the morphogenic index (MI), which integrates either phenotypic or transcriptomic data for each tissue and provides an important resource for functional analyses. Moreover, based on this index, we identified organ-specific molecular markers to independently quantify cotyledon and hypocotyl growth dynamics in whole-seedling samples. The combination of these marker genes with those of other developmental processes occurring during de-etiolation will allow improved molecular dissection of photomorphogenesis. Along with organ growth markers, this MI contributes a key toolset to unveil and accurately characterize the molecular mechanisms controlling seedling growth.
Collapse
Affiliation(s)
- Guiomar Martín
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
47
|
Li C, Wang G, Li H, Wang G, Ma J, Zhao X, Huo L, Zhang L, Jiang Y, Zhang J, Liu G, Liu G, Cheng R, Wei J, Yao L. High-depth resequencing of 312 accessions reveals the local adaptation of foxtail millet. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1303-1317. [PMID: 33566123 DOI: 10.1007/s00122-020-03760-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 05/20/2023]
Abstract
Based on the high-density variation map, we identified genome-level evidence for local adaptation and demonstrated that Siprr37 with transposon insertion contributes to the fitness of foxtail millet in the northeastern ecoregion. Adaptation is a robust way through which plants are able to overcome environmental constraints. The mechanisms of adaptation in heterogeneous natural environments are largely unknown. Deciphering the genomic basis of local adaptation will contribute to further improvement in domesticated plants. To this end, we describe a high-depth (19.4 ×) haplotype map of 3.02 million single nucleotide polymorphisms in foxtail millet (Setaria italica) from whole-genome resequencing of 312 accessions. In the genome-wide scan, we identified a set of improvement signals (including the homologous gene of OsIPA1, a key gene controlling ideal plant architecture) related to the geographical adaptation to four ecoregions in China. In particular, based on the genome-wide association analysis results, we identified the contribution of a pseudo-response regulator gene, SiPRR37, to heading date adaptation in foxtail millet. We observed the expression changes of SiPRR37 resulted from a key Tc1-Mariner transposon insertion in the first intron. Positive selection analyses revealed that SiPRR37 mainly contributed to the adaptation of northeastern ecoregions. Taken together, foxtail millet adapted to the northeastern region by regulating the function of SiPRR37, which sheds lights on genome-level evidence for adaptive geographical divergence. Besides, our data provide a nearly complete catalog of genomic variation aiding the identification of functionally important variants.
Collapse
Affiliation(s)
- Congcong Li
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Genping Wang
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Haiquan Li
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Guoliang Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Ma
- Beijing Vegetable Research Center, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xin Zhao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Linhe Huo
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Liquan Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Jiewei Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guiming Liu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoqing Liu
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Ruhong Cheng
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lei Yao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
48
|
Dvořák Tomaštíková E, Hafrén A, Trejo-Arellano MS, Rasmussen SR, Sato H, Santos-González J, Köhler C, Hennig L, Hofius D. Polycomb Repressive Complex 2 and KRYPTONITE regulate pathogen-induced programmed cell death in Arabidopsis. PLANT PHYSIOLOGY 2021; 185:2003-2021. [PMID: 33566101 PMCID: PMC8133635 DOI: 10.1093/plphys/kiab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/10/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is well-known for its role in controlling developmental transitions by suppressing the premature expression of key developmental regulators. Previous work revealed that PRC2 also controls the onset of senescence, a form of developmental programmed cell death (PCD) in plants. Whether the induction of PCD in response to stress is similarly suppressed by the PRC2 remained largely unknown. In this study, we explored whether PCD triggered in response to immunity- and disease-promoting pathogen effectors is associated with changes in the distribution of the PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) modification in Arabidopsis thaliana. We furthermore tested the distribution of the heterochromatic histone mark H3K9me2, which is established, to a large extent, by the H3K9 methyltransferase KRYPTONITE, and occupies chromatin regions generally not targeted by PRC2. We report that effector-induced PCD caused major changes in the distribution of both repressive epigenetic modifications and that both modifications have a regulatory role and impact on the onset of PCD during pathogen infection. Our work highlights that the transition to pathogen-induced PCD is epigenetically controlled, revealing striking similarities to developmental PCD.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Present address: Institute of Experimental Botany, Czech Academy of Sciences; Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Present address: Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Sheena Ricafranca Rasmussen
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Author for communication:
| |
Collapse
|
49
|
Wang Z, Yang L, Wu D, Zhang N, Hua J. Polymorphisms in cis-elements confer SAUR26 gene expression difference for thermo-response natural variation in Arabidopsis. THE NEW PHYTOLOGIST 2021; 229:2751-2764. [PMID: 33185314 DOI: 10.1111/nph.17078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 05/22/2023]
Abstract
The SAUR26 subfamily genes play an important role in conferring variations of thermo-responsiveness of growth architecture among natural accessions of Arabidopsis thaliana. The expression variations are critical for their activity variations, but how expression variations are generated is unknown. We identified genetic loci for gene expression variations through expression genome-wide association study (eGWAS) and investigated their mechanisms through molecular analyses. We found that cis elements are the major determinants for expression variations of SAUR26, SAUR27, and SAUR28. Polymorphisms in the promoter region likely impact PIF4 regulation while those at the 3'UTR affect mRNA stability to generate variations in SAUR26 expression levels. These polymorphisms also differentially affect the mRNA stability of SAUR26 at two temperatures. This study reveals two mechanisms involving cis elements in generating gene expression diversity, which is likely important for local adaptations in Arabidopsis natural accessions.
Collapse
Affiliation(s)
- Zhixue Wang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Leiyun Yang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Ning Zhang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
50
|
Fang Y, Zheng Y, Lu W, Li J, Duan Y, Zhang S, Wang Y. Roles of miR319-regulated TCPs in plant development and response to abiotic stress. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|