1
|
Zolkiewicz K, Ahmar S, Gruszka D. Genetic manipulations of brassinosteroid-related genes improve various agronomic traits and yield in cereals enabling new biotechnological revolution: Achievements and perspectives. Biotechnol Adv 2025; 81:108556. [PMID: 40081782 DOI: 10.1016/j.biotechadv.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Brassinosteroids (BRs) are steroid phytohormones which regulate various developmental and physiological processes throughout plant life cycle, from seed development and germination, up to modulation of reproduction and senescence. Importantly, mutants defective in the BR biosynthesis or response show various degree of plant height reduction (dwarfism or semi-dwarfism). This agronomic trait is of particular importance considering that in contrast to tall cereal varieties, semi-dwarf cereal plants are more tolerant to lodging which occurs during unfavorable weather conditions and constitutes a serious threat to plant reproduction and yield. Moreover, it was shown that the BR deficiency or insensitivity lead to erect stature of cereal plants what enables increase in planting density and yield. The valuable combinations of these traits make the BR-related mutants exceptional alternatives in breeding programs. Noteworthy, BRs play a noticeable role in regulation of grain/kernel shape and size. Therefore, these crucial agronomic traits may be manipulated specifically in BR-dependent manner. Importantly, the semi-dwarf mutants have been successfully introduced into cereal breeding programs in the past, and new semi-dwarf mutants developed through application of gene editing approach have been recently reported as promising alternatives for development of novel, high-yielding cereal cultivars. This review presents a comprehensive description of genetic manipulations of the BR-related genes aimed at improvements of various agronomic traits in the major cereal crops - rice, wheat, maize, and barley. These improvements may be achieved through application of panicle- or grain-specific promoters, overexpression or gain-of-function approaches, gene silencing, and targeted gene editing.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
2
|
Tenorio Berrío R, Verhelst E, Eekhout T, Grones C, De Veylder L, De Rybel B, Dubois M. Dual and spatially resolved drought responses in the Arabidopsis leaf mesophyll revealed by single-cell transcriptomics. THE NEW PHYTOLOGIST 2025; 246:840-858. [PMID: 40033544 PMCID: PMC11982798 DOI: 10.1111/nph.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
Drought stress imposes severe challenges on agriculture by impacting crop performance. Understanding drought responses in plants at a cellular level is a crucial first step toward engineering improved drought resilience. However, the molecular responses to drought are complex as they depend on multiple factors, including the severity of drought, the profiled organ, its developmental stage or even the cell types therein. Thus, deciphering the transcriptional responses to drought is especially challenging. In this study, we investigated tissue-specific responses to mild drought (MD) in young Arabidopsis thaliana (Arabidopsis) leaves using single-cell RNA sequencing (scRNA-seq). To preserve transcriptional integrity during cell isolation, we inhibited RNA synthesis using the transcription inhibitor actinomycin D, and demonstrated the benefits of transcriptome fixation for studying mild stress responses at a single-cell level. We present a curated and validated single-cell atlas, comprising 50 797 high-quality cells from almost all known cell types present in the leaf. All cell type annotations were validated with a new library of reporter lines. The curated data are available to the broad community in an intuitive tool and a browsable single-cell atlas (http://www.single-cell.be/plant/leaf-drought). We show that the mesophyll contains two spatially separated cell populations with distinct responses to drought: one enriched in canonical abscisic acid-related drought-responsive genes, and another one enriched in genes involved in iron starvation responses. Our study thus reveals a dual adaptive mechanism of the leaf mesophyll in response to MD and provides a valuable resource for future research on stress responses.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Eline Verhelst
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
- Single Cell Core Facility, VIBGhent9052Belgium
| | - Carolin Grones
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| |
Collapse
|
3
|
Gondalia N, Quiroz LF, Lai L, Singh AK, Khan M, Brychkova G, McKeown PC, Chatterjee M, Spillane C. Harnessing promoter elements to enhance gene editing in plants: perspectives and advances. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1375-1395. [PMID: 40013512 PMCID: PMC12018835 DOI: 10.1111/pbi.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 02/28/2025]
Abstract
Genome-edited plants, endowed with climate-smart traits, have been promoted as tools for strengthening resilience against climate change. Successful plant gene editing (GE) requires precise regulation of the GE machinery, a process controlled by the promoters, which drives its transcription through interactions with transcription factors (TFs) and RNA polymerase. While constitutive promoters are extensively used in GE constructs, their limitations highlight the need for alternative approaches. This review emphasizes the promise of tissue/organ specific as well as inducible promoters, which enable targeted GE in a spatiotemporal manner with no effects on other tissues. Advances in synthetic biology have paved the way for the creation of synthetic promoters, offering refined control over gene expression and augmenting the potential of plant GE. The integration of these novel promoters with synthetic systems presents significant opportunities for precise and conditional genome editing. Moreover, the advent of bioinformatic tools and artificial intelligence is revolutionizing the characterization of regulatory elements, enhancing our understanding of their roles in plants. Thus, this review provides novel insights into the strategic use of promoters and promoter editing to enhance the precision, efficiency and specificity of plant GE, setting the stage for innovative crop improvement strategies.
Collapse
Affiliation(s)
- Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Avinash Kumar Singh
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Peter C. McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Manash Chatterjee
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
- Viridian Seeds Ltd.CambridgeUK
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| |
Collapse
|
4
|
Blomme J, Arraiza Ribera J, De Clerck O, Jacobs TB. Consolidating Ulva functional genomics: gene editing and new selection systems. THE NEW PHYTOLOGIST 2025; 246:1710-1723. [PMID: 40088038 DOI: 10.1111/nph.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
The green seaweed Ulva compressa is a promising model for functional biology. In addition to historical research on growth and development, -omics data and molecular tools for stable transformation are available. However, more efficient tools are needed to study gene function. Here, we expand the molecular toolkit for Ulva. We screened the survival of Ulva and its mutualistic bacteria on 14 selective agents and established that Blasticidin deaminases (BSD or bsr) can be used as selectable markers to generate stable transgenic lines. We show that Cas9 and Cas12a RNPs are suitable for targeted mutagenesis and can generate genomic deletions of up to 20 kb using the marker gene ADENINE PHOSPHORIBOSYLTRANSFERASE (APT). We demonstrate that the targeted insertion of a selectable marker via homology-directed repair or co-editing with APT is possible for nonmarker genes. We evaluated 31 vector configurations and found that the bicistronic fusion of Cas9 to a resistance marker or the incorporation of introns in Cas9 led to the most mutants. We used this to generate mutants in three nonmarker genes using a co-editing strategy. This expanded molecular toolkit now enables us to reliably make gain- and loss-of-function mutants; additional optimizations will be necessary to allow for vector-based multiplex genome editing in Ulva.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Júlia Arraiza Ribera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9052, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
5
|
Vukašinović N, Hsu CW, Marconi M, Li S, Zachary C, Shahan R, Szekley P, Aardening Z, Vanhoutte I, Ma Q, Pinto L, Krupař P, German N, Zhang J, Simon-Vezo C, Perez-Sancho J, Quijada PC, Zhou Q, Lee LR, Cai J, Bayer EM, Fendrych M, Truernit E, Zhou Y, Savaldi-Goldstein S, Wabnik K, Nolan TM, Russinova E. Polarity-guided uneven mitotic divisions control brassinosteroid activity in proliferating plant root cells. Cell 2025; 188:2063-2080.e24. [PMID: 40068682 DOI: 10.1016/j.cell.2025.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 04/20/2025]
Abstract
Brassinosteroid hormones are positive regulators of plant organ growth, yet their function in proliferating tissues remains unclear. Here, through integrating single-cell RNA sequencing with long-term live-cell imaging of the Arabidopsis root, we reveal that brassinosteroid activity fluctuates throughout the cell cycle, decreasing during mitotic divisions and increasing during the G1 phase. The post-mitotic recovery of brassinosteroid activity is driven by the intrinsic polarity of the mother cell, resulting in one daughter cell with enhanced brassinosteroid signaling, while the other supports brassinosteroid biosynthesis. The coexistence of these distinct daughter cell states during the G1 phase circumvents a negative feedback loop to facilitate brassinosteroid production while signaling increases. Our findings uncover polarity-guided, uneven mitotic divisions in the meristem, which control brassinosteroid hormone activity to ensure optimal root growth.
Collapse
Affiliation(s)
- Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Marco Marconi
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Shaopeng Li
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Christopher Zachary
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pablo Szekley
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Ziv Aardening
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Lucrezia Pinto
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Pavel Krupař
- Department of Experimental Plant Biology, Charles University, Prague 12844, Czech Republic; Institute of Experimental Botany of the Czech Academy of Sciences, Prague 16502, Czech Republic
| | - Nathan German
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | | | - Claire Simon-Vezo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Jessica Perez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Pepe Cana Quijada
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Qianzi Zhou
- Department of Biology, Duke University, Durham, NC, USA
| | - Laura R Lee
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jianghua Cai
- Key Laboratory of Plant Hormone Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague 12844, Czech Republic; Institute of Experimental Botany of the Czech Academy of Sciences, Prague 16502, Czech Republic
| | - Elisabeth Truernit
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | | | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid 28040, Spain
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium.
| |
Collapse
|
6
|
Xiao Y, Zourelidou M, Bassukas AEL, Weller B, Janacek DP, Šimura J, Ljung K, Hammes UZ, Li J, Schwechheimer C. The protein kinases KIPK and KIPK-LIKE1 suppress overbending during negative hypocotyl gravitropic growth in Arabidopsis. THE PLANT CELL 2025; 37:koaf056. [PMID: 40261964 PMCID: PMC12013712 DOI: 10.1093/plcell/koaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 04/24/2025]
Abstract
Plants use environmental cues to orient organ and plant growth, such as the direction of gravity or the direction, quantity, and quality of light. During the germination of Arabidopsis thaliana seeds in soil, negative gravitropism responses direct hypocotyl elongation such that the seedling can reach the light for photosynthesis and autotrophic growth. Similarly, hypocotyl elongation in the soil also requires mechanisms to efficiently grow around obstacles such as soil particles. Here, we identify KIPK (KINESIN-LIKE CALMODULIN-BINDING PROTEIN-INTERACTING PROTEIN KINASE) and the paralogous KIPKL1 (KIPK-LIKE1) as genetically redundant regulators of gravitropic hypocotyl bending. Moreover, we demonstrate that the homologous KIPKL2 (KIPK-LIKE2), which shows strong sequence similarity, must be functionally distinct. KIPK and KIPKL1 are polarly localized plasma membrane-associated proteins that can activate PIN-FORMED auxin transporters. KIPK and KIPKL1 are required to efficiently align hypocotyl growth with the gravity vector when seedling hypocotyls are grown on media plates or in soil, where contact with soil particles and obstacle avoidance impede direct negative gravitropic growth. Therefore, the polar KIPK and KIPKL1 kinases have different biological functions from the related AGC1 family kinases D6PK (D6 PROTEIN KINASE) or PAX (PROTEIN KINASE ASSOCIATED WITH BRX).
Collapse
Affiliation(s)
- Yao Xiao
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Melina Zourelidou
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Alkistis E Lanassa Bassukas
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Benjamin Weller
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Dorina P Janacek
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| |
Collapse
|
7
|
Sasidharan Y, Suryavanshi V, Smit ME. A space for time. Exploring temporal regulation of plant development across spatial scales. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70130. [PMID: 40163327 PMCID: PMC11956849 DOI: 10.1111/tpj.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Plants continuously undergo change during their life cycle, experiencing dramatic phase transitions altering plant form, and regulating the assignment and progression of cell fates. The relative timing of developmental events is tightly controlled and involves integration of environmental, spatial, and relative age-related signals and actors. While plant phase transitions have been studied extensively and many of their regulators have been described, less is known about temporal regulation on a smaller, cell-level scale. Here, using examples from both plant and animal systems, we outline time-dependent changes. Looking at systemic scale changes, we discuss the timing of germination, juvenile-to-adult transition, flowering, and senescence, together with regeneration timing. Switching to temporal regulation on a cellular level, we discuss several instances from the animal field in which temporal control has been examined extensively at this scale. Then, we switch back to plants and summarize examples where plant cell-level changes are temporally regulated. As time cannot easily be separated from signaling derived from the environment and tissue context, we next discuss factors that have been implicated in controlling the timing of developmental events, reviewing temperature, photoperiod, nutrient availability, as well as tissue context and mechanical cues on the cellular scale. Afterwards, we provide an overview of mechanisms that have been shown or implicated in the temporal control of development, considering metabolism, division control, mobile signals, epigenetic regulation, and the action of transcription factors. Lastly, we look at remaining questions for the future study of developmental timing in plants and how recent technical advancement can enable these efforts.
Collapse
Affiliation(s)
- Yadhusankar Sasidharan
- Department of Developmental Genetics, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTuebingenD‐72076Germany
| | - Vijayalakshmi Suryavanshi
- Department of Developmental Genetics, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTuebingenD‐72076Germany
| | - Margot E. Smit
- Department of Developmental Genetics, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTuebingenD‐72076Germany
| |
Collapse
|
8
|
Coll NS, Moreno-Risueno M, Strader LC, Goodnight AV, Sozzani R. Advancing our understanding of root development: Technologies and insights from diverse studies. PLANT PHYSIOLOGY 2025; 197:kiae605. [PMID: 39688896 DOI: 10.1093/plphys/kiae605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024]
Abstract
Understanding root development is critical for enhancing plant growth and health, and advanced technologies are essential for unraveling the complexities of these processes. In this review, we highlight select technological innovations in the study of root development, with a focus on the transformative impact of single-cell gene expression analysis. We provide a high-level overview of recent advancements, illustrating how single-cell RNA sequencing (scRNA-seq) has become a pivotal tool in plant biology. scRNA-seq has revolutionized root biology by enabling detailed, cell-specific analysis of gene expression. This has allowed researchers to create comprehensive root atlases, predict cell development, and map gene regulatory networks (GRNs) with unprecedented precision. Complementary technologies, such as multimodal profiling and bioinformatics, further enrich our understanding of cellular dynamics and gene interactions. Innovations in imaging and modeling, combined with genetic tools like CRISPR, continue to deepen our knowledge of root formation and function. Moreover, the integration of these technologies with advanced biosensors and microfluidic devices has advanced our ability to study plant-microbe interactions and phytohormone signaling at high resolution. These tools collectively provide a more comprehensive understanding of root system architecture and its regulation by environmental factors. As these technologies evolve, they promise to drive further breakthroughs in plant science, with substantial implications for agriculture and sustainability.
Collapse
Affiliation(s)
- Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Department of Genetics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Miguel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA-CSIC)), 28223 Madrid, Spain
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Alexandra V Goodnight
- N.C. Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27607, USA
| | - Rosangela Sozzani
- N.C. Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27607, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
9
|
Sulis DB, Lavoine N, Sederoff H, Jiang X, Marques BM, Lan K, Cofre-Vega C, Barrangou R, Wang JP. Advances in lignocellulosic feedstocks for bioenergy and bioproducts. Nat Commun 2025; 16:1244. [PMID: 39893176 PMCID: PMC11787297 DOI: 10.1038/s41467-025-56472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Lignocellulose, an abundant renewable resource, presents a promising alternative for sustainable energy and industrial applications. However, large-scale adoption of lignocellulosic feedstocks faces considerable obstacles, including scalability, bioprocessing efficiency, and resilience to climate change. This Review examines current efforts and future opportunities for leveraging lignocellulosic feedstocks in bio-based energy and products, with a focus on enhancing conversion efficiency and scalability. It also explores emerging biotechnologies such as CRISPR-based genome editing informed by machine learning, aimed at improving feedstock traits and reducing the environmental impact of fossil fuel dependence.
Collapse
Affiliation(s)
- Daniel B Sulis
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Nathalie Lavoine
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Xiao Jiang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Barbara M Marques
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Kai Lan
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Carlos Cofre-Vega
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- TreeCo, Raleigh, NC, USA.
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Jack P Wang
- TreeCo, Raleigh, NC, USA.
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA.
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Hoengenaert L, Anders C, Van Doorsselaere J, Vanholme R, Boerjan W. Transgene-free genome editing in poplar. THE NEW PHYTOLOGIST 2025. [PMID: 39841625 DOI: 10.1111/nph.20415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety. Here, we describe an efficient method for generating gene-edited Populus tremula × P. alba (poplar) trees without incorporating foreign DNA into its genome. Using Agrobacterium tumefaciens, we expressed a base-editing construct targeting CCoAOMT1 along with the ALS genes for positive selection on a chlorsulfuron-containing medium. About 50% of the regenerated shoots were derived from transient transformation and were free of T-DNA. Overall, 7% of the chlorsulfuron-resistant shoots were T-DNA free, edited in the CCoAOMT1 gene and nonchimeric. Long-read whole-genome sequencing confirmed the absence of any foreign DNA in the tested gene-edited lines. Additionally, we evaluated the CodA gene as a negative selection marker to eliminate lines that stably incorporated the T-DNA into their genome. Although the latter negative selection is not essential for selecting transgene-free, gene-edited Populus tremula × P. alba shoots, it may prove valuable for other genotypes or varieties.
Collapse
Affiliation(s)
- Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | | | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| |
Collapse
|
11
|
Zheng S, Noack LC, Khammy O, De Meyer A, Khan GA, De Winne N, Eeckhout D, Van Damme D, Persson S. Pupylation-based proximity labeling reveals regulatory factors in cellulose biosynthesis in Arabidopsis. Nat Commun 2025; 16:872. [PMID: 39833163 PMCID: PMC11747095 DOI: 10.1038/s41467-025-56192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Knowledge about how and where proteins interact provides a pillar for cell biology. Protein proximity-labeling has emerged as an important tool to detect protein interactions. Biotin-related proximity labeling approaches are by far the most commonly used but may have labeling-related drawbacks. Here, we use pupylation-based proximity labeling (PUP-IT) as a tool for protein interaction detection in plants. We show that PUP-IT readily confirmed protein interactions for several known protein complexes across different types of plant hosts and that the approach increased detection of specific interactions as compared to biotin-based proximity labeling systems. To further demonstrate the power of PUP-IT, we used the system to identify protein interactions of the protein complex that underpin cellulose synthesis in plants. Apart from known complex components, we identified the ARF-GEF BEN1 (BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1). We show that BEN1 contributes to cellulose synthesis by regulating both clathrin-dependent and -independent endocytosis of the cellulose synthesis protein complex from the plasma membrane. Our results highlight PUP-IT as a powerful proximity labeling system to identify protein interactions in plant cells.
Collapse
Affiliation(s)
- Shuai Zheng
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lise C Noack
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ouda Khammy
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ghazanfar Abbas Khan
- School of Life and Environmental Sciences & Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC, Australia
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Wei H, Zhu H, Ying W, Janssens H, Kvasnica M, Winne JM, Gao Y, Friml J, Ma Q, Tan S, Liu X, Russinova E, Sun L. Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1. PLANT COMMUNICATIONS 2025; 6:101181. [PMID: 39497419 PMCID: PMC11784272 DOI: 10.1016/j.xplc.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
Brassinosteroids (BRs) are steroidal phytohormones indispensable for plant growth, development, and responses to environmental stresses. The export of bioactive BRs to the apoplast is essential for BR signaling initiation, which requires binding of a BR molecule to the extracellular domains of the plasma membrane-localized receptor complex. We have previously shown that the Arabidopsis thaliana ATP-binding cassette (ABC) transporter ABCB19 functions as a BR exporter and, together with its close homolog ABCB1, positively regulates BR signaling. Here, we demonstrate that ABCB1 is another BR transporter. The ATP hydrolysis activity of ABCB1 can be stimulated by bioactive BRs, and its transport activity was confirmed in proteoliposomes and protoplasts. Structures of ABCB1 were determined in substrate-unbound (apo), brassinolide (BL)-bound, and ATP plus BL-bound states. In the BL-bound structure, BL is bound to the hydrophobic cavity formed by the transmembrane domain and triggers local conformational changes. Together, our data provide additional insights into ABC transporter-mediated BR export.
Collapse
Affiliation(s)
- Hong Wei
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Heyuan Zhu
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wei Ying
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Qian Ma
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shutang Tan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xin Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Eugenia Russinova
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Linfeng Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
13
|
Kaushal C, Sachdev M, Parekh M, Gowrishankar H, Jain M, Sankaranarayanan S, Pathak B. Transcriptional engineering for value enhancement of oilseed crops: a forward perspective. Front Genome Ed 2025; 6:1488024. [PMID: 39840374 PMCID: PMC11747156 DOI: 10.3389/fgeed.2024.1488024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates. Recent genomic, transcriptomic, and metabolomics research has expanded our understanding of the genetic and physiological control of fatty acid biosynthesis and composition. Many oilseed species have inherent stress-combating mechanisms, including transcription factor regulation. Advances in genome editing tools like CRISPR/Cas9 offer precise genetic modifications, targeting transcription factors and binding sites to enhance desirable traits, such as the nutritional profile and chemical composition of fatty acids. This review explores the application of genome editing in oilseed improvement, covering recent progress, challenges, and future potential to boost yield and oil content. These advancements could play a transformative role in developing resilient, nutritious crop varieties essential for sustainable food security in a changing climate.
Collapse
Affiliation(s)
- Charli Kaushal
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Mahak Sachdev
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mansi Parekh
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Harini Gowrishankar
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Bhuvan Pathak
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Quiroz LF, Khan M, Gondalia N, Lai L, McKeown PC, Brychkova G, Spillane C. Tissue culture-independent approaches to revolutionizing plant transformation and gene editing. HORTICULTURE RESEARCH 2025; 12:uhae292. [PMID: 39906168 PMCID: PMC11789523 DOI: 10.1093/hr/uhae292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Despite the transformative power of gene editing for crop improvement, its widespread application across species and varieties is limited by the transformation bottleneck that exists for many crops. The genetic transformation of plants is hindered by a general reliance on in vitro regeneration through plant tissue culture. Tissue culture requires empirically determined conditions and aseptic techniques, and cannot easily be translated to recalcitrant species and genotypes. Both Agrobacterium-mediated and alternative transformation protocols are limited by a dependency on in vitro regeneration, which also limits their use by non-experts and hinders research into non-model species such as those of possible novel biopharmaceutical or nutraceutical use, as well as novel ornamental varieties. Hence, there is significant interest in developing tissue culture-independent plant transformation and gene editing approaches that can circumvent the bottlenecks associated with in vitro plant regeneration recalcitrance. Compared to tissue culture-based transformations, tissue culture-independent approaches offer advantages such as avoidance of somaclonal variation effects, with more streamlined and expeditious methodological processes. The ease of use, dependability, and accessibility of tissue culture-independent procedures can make them attractive to non-experts, outperforming classic tissue culture-dependent systems. This review explores the diversity of tissue culture-independent transformation approaches and compares them to traditional tissue culture-dependent transformation strategies. We highlight their simplicity and provide examples of recent successful transformations accomplished using these systems. Our review also addresses current limitations and explores future perspectives, highlighting the significance of these techniques for advancing plant research and crop improvement.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| |
Collapse
|
15
|
Glaus AN, Brechet M, Swinnen G, Lebeigle L, Iwaszkiewicz J, Ambrosini G, Julca I, Zhang J, Roberts R, Iseli C, Guex N, Jiménez-Gómez J, Glover N, Martin GB, Strickler S, Soyk S. Repairing a deleterious domestication variant in a floral regulator gene of tomato by base editing. Nat Genet 2025; 57:231-241. [PMID: 39747596 DOI: 10.1038/s41588-024-02026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
Crop genomes accumulate deleterious mutations-a phenomenon known as the cost of domestication. Precision genome editing has been proposed to eliminate such potentially harmful mutations; however, experimental demonstration is lacking. Here we identified a deleterious mutation in the tomato transcription factor SUPPRESSOR OF SP2 (SSP2), which became prevalent in the domesticated germplasm and diminished DNA binding to genome-wide targets. We found that the action of SSP2 is partially redundant with that of its paralog SSP in regulating shoot and inflorescence architecture. However, redundancy was compromised during tomato domestication and lost completely in the closely related species Physalis grisea, in which a single ortholog regulates shoot branching. We applied base editing to directly repair the deleterious mutation in cultivated tomato and obtained plants with compact growth that provide an early fruit yield. Our work shows how deleterious variants have sensitized modern genotypes for phenotypic tuning and illustrates how repairing deleterious mutations with genome editing may allow predictable crop improvement.
Collapse
Affiliation(s)
- Anna N Glaus
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Marion Brechet
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwen Swinnen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ludivine Lebeigle
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Irene Julca
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jing Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Christian Iseli
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Natasha Glover
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Susan Strickler
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
- Plant Science and Conservation Chicago Botanic Garden, Glencoe, IL, USA
- Plant Biology and Conservation Program Northwestern University, Evanston, IL, USA
| | - Sebastian Soyk
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Watson IJ, Maranas C, Nemhauser JL, Leydon AR. A Hot-Swappable Genetic Switch: Building an inducible and trackable functional assay for the essential gene MEDIATOR 21. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628800. [PMID: 39763940 PMCID: PMC11702731 DOI: 10.1101/2024.12.16.628800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Essential genes, estimated at approximately 20% of the Arabidopsis genome, are broadly expressed and required for reproductive success. They are difficult to study, as interfering with their function leads to premature death. Transcription is one of the essential functions of life, and the multi-protein Mediator complex coordinates the regulation of gene expression at nearly every eukaryotic promoter. In this study, we focused on a core Mediator component called MEDIATOR21 (MED21), which is required for activation of transcription. Our previous work has also shown a role for MED21 in repression of gene expression through its interaction with a corepressor protein. Here, we sought to differentiate the role MED21 plays in activation versus repression using the model plant Arabidopsis. As mutations in MED21 lead to embryo lethal phenotypes, we constructed a set of synthetic switches using PhiC31 serine integrases to create an "on-to-off" inducible loss of function MED21 in a non-essential tissue. Our technology, which we call Integrase Erasers, made it possible for med21 mutant plants to survive into adulthood by ablating protein expression selectively in lateral root primordia, allowing quantification and characterization of med21 mutant phenotypes in a post-embryonic context. In addition, we engineered chemical induction of the Integrase Eraser to ablate MED21 expression in whole seedlings at a user-specified timepoint. Finally, we extended this technology to build a hot swappable Integrase Isoform Switch where expression of the integrase toggled cells from expressing wildtype MED21 to expressing MED21 sequence variants. Our analysis of the entire set of new integrase-based tools demonstrates that this is a highly efficient and robust approach to the study of essential genes.
Collapse
Affiliation(s)
- Isabella J Watson
- Department of Biology, University of Washington, Seattle, WA 98195-1800 USA
| | - Cassandra Maranas
- Department of Biology, University of Washington, Seattle, WA 98195-1800 USA
| | | | - Alexander R Leydon
- Department of Biology, University of Washington, Seattle, WA 98195-1800 USA
| |
Collapse
|
17
|
He Y, Liu S, Chen L, Pu D, Zhong Z, Xu T, Ren Q, Dong C, Wang Y, Wang D, Zheng X, Guo F, Zhang T, Qi Y, Zhang Y. Versatile plant genome engineering using anti-CRISPR-Cas12a systems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2730-2745. [PMID: 39158766 DOI: 10.1007/s11427-024-2704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
CRISPR-Cas12a genome engineering systems have been widely used in plant research and crop breeding. To date, the performance and use of anti-CRISPR-Cas12a systems have not been fully established in plants. Here, we conduct in silico analysis to identify putative anti-CRISPR systems for Cas12a. These putative anti-CRISPR proteins, along with known anti-CRISPR proteins, are assessed for their ability to inhibit Cas12a cleavage activity in vivo and in planta. Among all anti-CRISPR proteins tested, AcrVA1 shows robust inhibition of Mb2Cas12a and LbCas12a in E. coli. Further tests show that AcrVA1 inhibits LbCas12a mediated genome editing in rice protoplasts and stable transgenic lines. Impressively, co-expression of AcrVA1 mitigates off-target effects by CRISPR-LbCas12a, as revealed by whole genome sequencing. In addition, transgenic plants expressing AcrVA1 exhibit different levels of inhibition to LbCas12a mediated genome editing, representing a novel way of fine-tuning genome editing efficiency. By controlling temporal and spatial expression of AcrVA1, we show that inducible and tissue specific genome editing can be achieved in plants. Furthermore, we demonstrate that AcrVA1 also inhibits LbCas12a-based CRISPR activation (CRISPRa) and based on this principle we build logic gates to turn on and off target genes in plant cells. Together, we have established an efficient anti-CRISPR-Cas12a system in plants and demonstrate its versatile applications in mitigating off-target effects, fine-tuning genome editing efficiency, achieving spatial-temporal control of genome editing, and generating synthetic logic gates for controlling target gene expression in plant cells.
Collapse
Affiliation(s)
- Yao He
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shishi Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Long Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Dongkai Pu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tang Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiurong Ren
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuan Dong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yawei Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Danning Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuelian Zheng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fengbiao Guo
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430017, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, 20850, USA.
| | - Yong Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
18
|
Gawande ND, Bhalla H, Watts A, Shelake RM, Sankaranarayanan S. Application of genome editing in plant reproductive biology: recent advances and challenges. PLANT REPRODUCTION 2024; 37:441-462. [PMID: 38954018 DOI: 10.1007/s00497-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Collapse
Affiliation(s)
- Nilesh D Gawande
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
19
|
Pennetti VJ, LaFayette PR, Parrott WA. MultiGreen: A multiplexing architecture for GreenGate cloning. PLoS One 2024; 19:e0306008. [PMID: 39292669 PMCID: PMC11410190 DOI: 10.1371/journal.pone.0306008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Genetic modification of plants fundamentally relies upon customized vector designs. The ever-increasing complexity of transgenic constructs has led to increased adoption of modular cloning systems for their ease of use, cost effectiveness, and rapid prototyping. GreenGate is a modular cloning system catered specifically to designing bespoke, single transcriptional unit vectors for plant transformation-which is also its greatest flaw. MultiGreen seeks to address GreenGate's limitations while maintaining the syntax of the original GreenGate kit. The primary limitations MultiGreen addresses are 1) multiplexing in series, 2) multiplexing in parallel, and 3) repeated cycling of transcriptional unit assembly through binary intermediates. MultiGreen efficiently concatenates bespoke transcriptional units using an additional suite of level 1acceptor vectors which serve as an assembly point for individual transcriptional units prior to final, level 2, condensation of multiple transcriptional units. Assembly with MultiGreen level 1 vectors scales at a maximal rate of 2*⌈log6n⌉+3 days per assembly, where n represents the number of transcriptional units. Further, MultiGreen level 1 acceptor vectors are binary vectors and can be used directly for plant transformation to further maximize prototyping speed. MultiGreen is a 1:1 expansion of the original GreenGate architecture's grammar and has been demonstrated to efficiently assemble plasmids with multiple transcriptional units. MultiGreen has been validated by using a truncated violacein operon from Chromobacterium violaceum in bacteria and by deconstructing the RUBY reporter for in planta functional validation. MultiGreen currently supports many of our in-house multi transcriptional unit assemblies and will be a valuable strategy for more complex cloning projects.
Collapse
Affiliation(s)
- Vincent J Pennetti
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, University of Georgia, Athens, Georgia, United States of America
| | - Peter R LaFayette
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| | - Wayne Allen Parrott
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, University of Georgia, Athens, Georgia, United States of America
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
20
|
Farkas P, Fitzpatrick TB. Two pyridoxal phosphate homeostasis proteins are essential for management of the coenzyme pyridoxal 5'-phosphate in Arabidopsis. THE PLANT CELL 2024; 36:3689-3708. [PMID: 38954500 PMCID: PMC11371154 DOI: 10.1093/plcell/koae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Coenzyme management is important for homeostasis of the pool of active metabolic enzymes. The coenzyme pyridoxal 5'-phosphate (PLP) is involved in diverse enzyme reactions including amino acid and hormone metabolism. Regulatory proteins that contribute to PLP homeostasis remain to be explored in plants. Here, we demonstrate the importance of proteins annotated as PLP homeostasis proteins (PLPHPs) for controlling PLP in Arabidopsis (Arabidopsis thaliana). A systematic analysis indicates that while most organisms across kingdoms have a single PLPHP homolog, Angiosperms have two. PLPHPs from Arabidopsis bind PLP and exist as monomers, in contrast to reported PLP-dependent enzymes, which exist as multimers. Disrupting the function of both PLPHP homologs perturbs vitamin B6 (pyridoxine) content, inducing a PLP deficit accompanied by light hypersensitive root growth, unlike PLP biosynthesis mutants. Micrografting studies show that the PLP deficit can be relieved distally between shoots and roots. Chemical treatments probing PLP-dependent reactions, notably those for auxin and ethylene, provide evidence that PLPHPs function in the dynamic management of PLP. Assays in vitro show that Arabidopsis PLPHP can coordinate PLP transfer and withdrawal from other enzymes. This study thus expands our knowledge of vitamin B6 biology and highlights the importance of PLP coenzyme homeostasis in plants.
Collapse
Affiliation(s)
- Peter Farkas
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
21
|
Yang S, Poretska O, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 sustains cellular differentiation by limiting HD-ZIP III transcription factor gene expression. PLANT PHYSIOLOGY 2024; 196:291-308. [PMID: 38781290 PMCID: PMC11376390 DOI: 10.1093/plphys/kiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Plants show remarkable developmental and regenerative plasticity through the sustained activity of stem cells in meristems. Under certain conditions, pluripotency can even be reestablished in cells that have already entered differentiation. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis (Arabidopsis thaliana) causes a set of hypertrophic phenotypes, indicating a defect in the suppression of pluripotency. A role of AMP1 in the miRNA-mediated inhibition of translation has previously been reported; however, how this activity is related to its developmental functions is unclear. Here, we examined the functional interaction between AMP1 and the Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors, which are miRNA-controlled determinants of shoot meristem specification. We found that the HD-ZIP III transcriptional output is enhanced in the amp1 mutant and that plant lines with increased HD-ZIP III activity not only developed amp1 mutant-like phenotypes but also showed a synergistic genetic interaction with the mutant. Conversely, the reduction of HD-ZIP III function suppressed the shoot hypertrophy defects of the amp1 mutant. We further provide evidence that the expression domains of HD-ZIP III family members are expanded in the amp1 mutant and that this misexpression occurs at the transcriptional level and does not involve the function of miRNA165/166. Finally, amp1 mutant-specific phenotypes cannot be mimicked by a general inhibition of miRNA function in the AMP1 expression domain. These findings lead us to a model in which AMP1 restricts cellular pluripotency upstream of HD-ZIP III proteins, and this control appears to be not directly mediated by the canonical miRNA pathway.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Brigitte Poppenberger
- Professorship Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| |
Collapse
|
22
|
Ding L, Fox AR, Chaumont F. Multifaceted role and regulation of aquaporins for efficient stomatal movements. PLANT, CELL & ENVIRONMENT 2024; 47:3330-3343. [PMID: 38742465 DOI: 10.1111/pce.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stomata are micropores on the leaf epidermis that allow carbon dioxide (CO2) uptake for photosynthesis at the expense of water loss through transpiration. Stomata coordinate the plant gas exchange of carbon and water with the atmosphere through their opening and closing dynamics. In the context of global climate change, it is essential to better understand the mechanism of stomatal movements under different environmental stimuli. Aquaporins (AQPs) are considered important regulators of stomatal movements by contributing to membrane diffusion of water, CO2 and hydrogen peroxide. This review compiles the most recent findings and discusses future directions to update our knowledge of the role of AQPs in stomatal movements. After highlighting the role of subsidiary cells (SCs), which contribute to the high water use efficiency of grass stomata, we explore the expression of AQP genes in guard cells and SCs. We then focus on the cellular regulation of AQP activity at the protein level in stomata. After introducing their post-translational modifications, we detail their trafficking as well as their physical interaction with various partners that regulate AQP subcellular dynamics towards and within specific regions of the cell membranes, such as microdomains and membrane contact sites.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ana Romina Fox
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
23
|
Wybouw B, Zhang X, Mähönen AP. Vascular cambium stem cells: past, present and future. THE NEW PHYTOLOGIST 2024; 243:851-865. [PMID: 38890801 DOI: 10.1111/nph.19897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.
Collapse
Affiliation(s)
- Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Xixi Zhang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
24
|
Choudry MW, Riaz R, Nawaz P, Ashraf M, Ijaz B, Bakhsh A. CRISPR-Cas9 mediated understanding of plants' abiotic stress-responsive genes to combat changing climatic patterns. Funct Integr Genomics 2024; 24:132. [PMID: 39078500 DOI: 10.1007/s10142-024-01405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Multiple abiotic stresses like extreme temperatures, water shortage, flooding, salinity, and exposure to heavy metals are confronted by crop plants with changing climatic patterns. Prolonged exposure to these adverse environmental conditions leads to stunted plant growth and development with significant yield loss in crops. CRISPR-Cas9 genome editing tool is being frequently employed to understand abiotic stress-responsive genes. Noteworthy improvements in CRISPR-Cas technology have been made over the years, including upgradation of Cas proteins fidelity and efficiency, optimization of transformation protocols for different crop species, base and prime editing, multiplex gene-targeting, transgene-free editing, and graft-based heritable CRISPR-Cas9 approaches. These developments helped to improve the knowledge of abiotic stress tolerance in crops that could potentially be utilized to develop knock-out varieties and over-expressed lines to tackle the adverse effects of altered climatic patterns. This review summarizes the mechanistic understanding of heat, drought, salinity, and metal stress-responsive genes characterized so far using CRISPR-Cas9 and provides data on potential candidate genes that can be exploited by modern-day biotechnological tools to develop transgene-free genome-edited crops with better climate adaptability. Furthermore, the importance of early-maturing crop varieties to withstand abiotic stresses is also discussed in this review.
Collapse
Affiliation(s)
| | - Rabia Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Pashma Nawaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Ashraf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
25
|
Galindo-Trigo S, Khandare V, Roosjen M, Adams J, Wangler AM, Bayer M, Borst JW, Smakowska-Luzan E, Butenko MA. A multifaceted kinase axis regulates plant organ abscission through conserved signaling mechanisms. Curr Biol 2024; 34:3020-3030.e7. [PMID: 38917797 DOI: 10.1016/j.cub.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Plants have evolved mechanisms to abscise organs as they develop or when exposed to unfavorable conditions.1 Uncontrolled abscission of petals, fruits, or leaves can impair agricultural productivity.2,3,4,5 Despite its importance for abscission progression, our understanding of the IDA signaling pathway and its regulation remains incomplete. IDA is secreted to the apoplast, where it is perceived by the receptors HAESA (HAE) and HAESA-LIKE2 (HSL2) and somatic embryogenesis receptor kinase (SERK) co-receptors.6,7,8,9 These plasma membrane receptors activate an intracellular cascade of mitogen-activated protein kinases (MAPKs) by an unknown mechanism.10,11,12 Here, we characterize brassinosteroid signaling kinases (BSKs) as regulators of floral organ abscission in Arabidopsis. BSK1 localizes to the plasma membrane of abscission zone cells, where it interacts with HAESA receptors to regulate abscission. Furthermore, we demonstrate that YODA (YDA) has a leading role among other MAPKKKs in controlling abscission downstream of the HAESA/BSK complex. This kinase axis, comprising a leucine-rich repeat receptor kinase, a BSK, and an MAPKKK, is known to regulate stomatal patterning, early embryo development, and immunity.10,13,14,15,16 How specific cellular responses are obtained despite signaling through common effectors is not well understood. We show that the identified abscission-promoting allele of BSK1 also enhances receptor signaling in other BSK-mediated pathways, suggesting conservation of signaling mechanisms. Furthermore, we provide genetic evidence supporting independence of BSK1 function from its kinase activity in several developmental processes. Together, our findings suggest that BSK1 facilitates signaling between plasma membrane receptor kinases and MAPKKKs via conserved mechanisms across multiple facets of plant development.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Virendrasinh Khandare
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Mark Roosjen
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Alexa-Maria Wangler
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Martin Bayer
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Jan Willem Borst
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Elwira Smakowska-Luzan
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
26
|
Li ZP, Huard J, Bayer EM, Wattelet-Boyer V. Versatile Cloning Strategy for Efficient Multigene Editing in Arabidopsis. Bio Protoc 2024; 14:e5029. [PMID: 39007160 PMCID: PMC11237983 DOI: 10.21769/bioprotoc.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
CRISPR-Cas9 technology has become an essential tool for plant genome editing. Recent advancements have significantly improved the ability to target multiple genes simultaneously within the same genetic background through various strategies. Additionally, there has been significant progress in developing methods for inducible or tissue-specific editing. These advancements offer numerous possibilities for tailored genome modifications. Building upon existing research, we have developed an optimized and modular strategy allowing the targeting of several genes simultaneously in combination with the synchronized expression of the Cas9 endonuclease in the egg cell. This system allows significant editing efficiency while avoiding mosaicism. In addition, the versatile system we propose allows adaptation to inducible and/or tissue-specific edition according to the promoter chosen to drive the expression of the Cas9 gene. Here, we describe a step-by-step protocol for generating the binary vector necessary for establishing Arabidopsis edited lines using a versatile cloning strategy that combines Gateway® and Golden Gate technologies. We describe a versatile system that allows the cloning of as many guides as needed to target DNA, which can be multiplexed into a polycistronic gene and combined in the same construct with sequences for the expression of the Cas9 endonuclease. The expression of Cas9 is controlled by selecting from among a collection of promoters, including constitutive, inducible, ubiquitous, or tissue-specific promoters. Only one vector containing the polycistronic gene (tRNA-sgRNA) needs to be constructed. For that, sgRNA (composed of protospacers chosen to target the gene of interest and sgRNA scaffold) is cloned in tandem with the pre-tRNA sequence. Then, a single recombination reaction is required to assemble the promoter, the zCas9 coding sequence, and the tRNA-gRNA polycistronic gene. Each element is cloned in an entry vector and finally assembled according to the Multisite Gateway® Technology. Here, we detail the process to express zCas9 under the control of egg cell promoter fused to enhancer sequence (EC1.2en-EC1.1p) and to simultaneously target two multiple C2 domains and transmembrane region protein genes (MCTP3 and MCTP4, respectively at3g57880 and at1g51570), using one or two sgRNA per gene. Key features • A simple method for Arabidopsis edited lines establishment using CRISPR-Cas9 technology • Versatile cloning strategy combining various technologies for convenient cloning (Gateway®, Golden Gate) • Multigene targeting with high efficiency.
Collapse
Affiliation(s)
- Ziqiang P. Li
- UMR 5200 Laboratoire de Biogenèse Membranaire, CNRS-University of Bordeaux, Villenave d’Ornon, France
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jennifer Huard
- UMR 5200 Laboratoire de Biogenèse Membranaire, CNRS-University of Bordeaux, Villenave d’Ornon, France
| | - Emmanuelle M. Bayer
- UMR 5200 Laboratoire de Biogenèse Membranaire, CNRS-University of Bordeaux, Villenave d’Ornon, France
| | - Valérie Wattelet-Boyer
- UMR 5200 Laboratoire de Biogenèse Membranaire, CNRS-University of Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
27
|
Develtere W, Decaestecker W, Rombaut D, Anders C, Clicque E, Vuylsteke M, Jacobs TB. Continual improvement of CRISPR-induced multiplex mutagenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1158-1172. [PMID: 38713824 DOI: 10.1111/tpj.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
CRISPR/Cas9 is currently the most powerful tool to generate mutations in plant genomes and more efficient tools are needed as the scale of experiments increases. In the model plant Arabidopsis, the choice of the promoter driving Cas9 expression is critical to generate germline mutations. Several optimal promoters have been reported. However, it is unclear which promoter is ideal as they have not been thoroughly tested side by side. Furthermore, most plant vectors still use one of the two Cas9 nuclear localization sequence (NLS) configurations initially reported. We genotyped more than 6000 Arabidopsis T2 plants to test seven promoters and six types of NLSs across 14 targets to systematically improve the generation of single and multiplex inheritable mutations. We found that the RPS5A promoter and bipartite NLS were individually the most efficient components. When combined, 99% of T2 plants contained at least one knockout (KO) mutation and 84% contained 4- to 7-plex KOs, the highest multiplexing KO rate in Arabidopsis to date. These optimizations will be useful to generate higher-order KOs in the germline of Arabidopsis and will likely be applicable to other CRISPR systems as well.
Collapse
Affiliation(s)
- Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Elke Clicque
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | | | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
28
|
Liu P, Panda K, Edwards SA, Swanson R, Yi H, Pandesha P, Hung YH, Klaas G, Ye X, Collins MV, Renken KN, Gilbertson LA, Veena V, Hancock CN, Slotkin RK. Transposase-assisted target-site integration for efficient plant genome engineering. Nature 2024; 631:593-600. [PMID: 38926583 PMCID: PMC11254759 DOI: 10.1038/s41586-024-07613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The current technologies to place new DNA into specific locations in plant genomes are low frequency and error-prone, and this inefficiency hampers genome-editing approaches to develop improved crops1,2. Often considered to be genome 'parasites', transposable elements (TEs) evolved to insert their DNA seamlessly into genomes3-5. Eukaryotic TEs select their site of insertion based on preferences for chromatin contexts, which differ for each TE type6-9. Here we developed a genome engineering tool that controls the TE insertion site and cargo delivered, taking advantage of the natural ability of the TE to precisely excise and insert into the genome. Inspired by CRISPR-associated transposases that target transposition in a programmable manner in bacteria10-12, we fused the rice Pong transposase protein to the Cas9 or Cas12a programmable nucleases. We demonstrated sequence-specific targeted insertion (guided by the CRISPR gRNA) of enhancer elements, an open reading frame and a gene expression cassette into the genome of the model plant Arabidopsis. We then translated this system into soybean-a major global crop in need of targeted insertion technology. We have engineered a TE 'parasite' into a usable and accessible toolkit that enables the sequence-specific targeting of custom DNA into plant genomes.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Seth A Edwards
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Ryan Swanson
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Hochul Yi
- Plant Transformation Facility, Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Pratheek Pandesha
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University, St Louis, MO, USA
| | - Yu-Hung Hung
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Gerald Klaas
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Xudong Ye
- Bayer Crop Science, St Louis, MO, USA
| | | | | | | | - Veena Veena
- Plant Transformation Facility, Donald Danforth Plant Science Center, St Louis, MO, USA
| | | | - R Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
29
|
Aparicio Chacón MV, Hernández Luelmo S, Devlieghere V, Robichez L, Leroy T, Stuer N, De Keyser A, Ceulemans E, Goossens A, Goormachtig S, Van Dingenen J. Exploring the potential role of four Rhizophagus irregularis nuclear effectors: opportunities and technical limitations. FRONTIERS IN PLANT SCIENCE 2024; 15:1384496. [PMID: 38736443 PMCID: PMC11085264 DOI: 10.3389/fpls.2024.1384496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.
Collapse
Affiliation(s)
- María Victoria Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofía Hernández Luelmo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Viktor Devlieghere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Louis Robichez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Toon Leroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
30
|
Wang J, Bollier N, Buono RA, Vahldick H, Lin Z, Feng Q, Hudecek R, Jiang Q, Mylle E, Van Damme D, Nowack MK. A developmentally controlled cellular decompartmentalization process executes programmed cell death in the Arabidopsis root cap. THE PLANT CELL 2024; 36:941-962. [PMID: 38085063 PMCID: PMC7615778 DOI: 10.1093/plcell/koad308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Programmed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here, we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD. We identify a succession of selective decompartmentalization events and ion fluxes as part of the terminal differentiation program that is orchestrated by the NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON (NAC) transcription factor SOMBRERO. Surprisingly, the breakdown of the large central vacuole is a relatively late and variable event, preceded by an increase of intracellular calcium levels and acidification, release of mitochondrial matrix proteins, leakage of nuclear and endoplasmic reticulum lumina, and release of fluorescent membrane reporters into the cytosol. In analogy to animal apoptosis, the plasma membrane remains impermeable for proteins during and after PCD execution. Elevated intracellular calcium levels and acidification are sufficient to trigger cell death execution specifically in terminally differentiated root cap cells, suggesting that these ion fluxes act as PCD-triggering signals. This detailed information on the cellular processes occurring during developmental PCD in plants is a pivotal prerequisite for future research into the molecular mechanisms of cell death execution.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Norbert Bollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
31
|
Ying W, Wang Y, Wei H, Luo Y, Ma Q, Zhu H, Janssens H, Vukašinović N, Kvasnica M, Winne JM, Gao Y, Tan S, Friml J, Liu X, Russinova E, Sun L. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 2024; 383:eadj4591. [PMID: 38513023 DOI: 10.1126/science.adj4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.
Collapse
Affiliation(s)
- Wei Ying
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Heyuan Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Xin Liu
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Linfeng Sun
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
32
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
33
|
Islam MT, Liu Y, Hassan MM, Abraham PE, Merlet J, Townsend A, Jacobson D, Buell CR, Tuskan GA, Yang X. Advances in the Application of Single-Cell Transcriptomics in Plant Systems and Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0029. [PMID: 38435807 PMCID: PMC10905259 DOI: 10.34133/bdr.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
Plants are complex systems hierarchically organized and composed of various cell types. To understand the molecular underpinnings of complex plant systems, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for revealing high resolution of gene expression patterns at the cellular level and investigating the cell-type heterogeneity. Furthermore, scRNA-seq analysis of plant biosystems has great potential for generating new knowledge to inform plant biosystems design and synthetic biology, which aims to modify plants genetically/epigenetically through genome editing, engineering, or re-writing based on rational design for increasing crop yield and quality, promoting the bioeconomy and enhancing environmental sustainability. In particular, data from scRNA-seq studies can be utilized to facilitate the development of high-precision Build-Design-Test-Learn capabilities for maximizing the targeted performance of engineered plant biosystems while minimizing unintended side effects. To date, scRNA-seq has been demonstrated in a limited number of plant species, including model plants (e.g., Arabidopsis thaliana), agricultural crops (e.g., Oryza sativa), and bioenergy crops (e.g., Populus spp.). It is expected that future technical advancements will reduce the cost of scRNA-seq and consequently accelerate the application of this emerging technology in plants. In this review, we summarize current technical advancements in plant scRNA-seq, including sample preparation, sequencing, and data analysis, to provide guidance on how to choose the appropriate scRNA-seq methods for different types of plant samples. We then highlight various applications of scRNA-seq in both plant systems biology and plant synthetic biology research. Finally, we discuss the challenges and opportunities for the application of scRNA-seq in plants.
Collapse
Affiliation(s)
- Md Torikul Islam
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding,
Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jean Merlet
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education,
University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Alice Townsend
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education,
University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C. Robin Buell
- Center for Applied Genetic Technologies,
University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences,
University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics, and Genomics,
University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
34
|
Konstantinova N, Mor E, Verhelst E, Nolf J, Vereecken K, Wang F, Van Damme D, De Rybel B, Glanc M. A precise balance of TETRASPANIN1/TORNADO2 activity is required for vascular proliferation and ground tissue patterning in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14182. [PMID: 38618986 DOI: 10.1111/ppl.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 04/16/2024]
Abstract
The molecular mechanisms guiding oriented cell divisions in the root vascular tissues of Arabidopsis thaliana are still poorly characterised. By overlapping bulk and single-cell transcriptomic datasets, we unveiled TETRASPANIN1 (TET1) as a putative regulator in this process. TET1 is expressed in root vascular cells, and loss-of-function mutants contain fewer vascular cell files. We further generated and characterised a CRISPR deletion mutant and showed, unlike previously described mutants, that the full knock out is additionally missing endodermal cells in a stochastic way. Finally, we show that HA-tagged versions of TET1 are functional in contrast to fluorescent TET1 translational fusions. Immunostaining using HA-TET1 lines complementing the mutant phenotype suggested a dual plasma membrane and intracellular localisation in the root vasculature and a polar membrane localisation in the young cortex, endodermal and initial cells. Taken together, we show that TET1 is involved in both vascular proliferation and ground tissue patterning. Our initial results pave the way for future work to decipher its precise mode of action.
Collapse
Affiliation(s)
- Nataliia Konstantinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Eliana Mor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Eline Verhelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Kenzo Vereecken
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Feng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
35
|
Zhu S, Pan L, Vu LD, Xu X, Orosa-Puente B, Zhu T, Neyt P, van de Cotte B, Jacobs TB, Gendron JM, Spoel SH, Gevaert K, De Smet I. Phosphoproteome analyses pinpoint the F-box protein SLOW MOTION as a regulator of warm temperature-mediated hypocotyl growth in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:687-702. [PMID: 37950543 PMCID: PMC11091872 DOI: 10.1111/nph.19383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023]
Abstract
Hypocotyl elongation is controlled by several signals and is a major characteristic of plants growing in darkness or under warm temperature. While already several molecular mechanisms associated with this process are known, protein degradation and associated E3 ligases have hardly been studied in the context of warm temperature. In a time-course phosphoproteome analysis on Arabidopsis seedlings exposed to control or warm ambient temperature, we observed reduced levels of diverse proteins over time, which could be due to transcription, translation, and/or degradation. In addition, we observed differential phosphorylation of the LRR F-box protein SLOMO MOTION (SLOMO) at two serine residues. We demonstrate that SLOMO is a negative regulator of hypocotyl growth, also under warm temperature conditions, and protein-protein interaction studies revealed possible interactors of SLOMO, such as MKK5, DWF1, and NCED4. We identified DWF1 as a likely SLOMO substrate and a regulator of warm temperature-mediated hypocotyl growth. We propose that warm temperature-mediated regulation of SLOMO activity controls the abundance of hypocotyl growth regulators, such as DWF1, through ubiquitin-mediated degradation.
Collapse
Affiliation(s)
- Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Beatriz Orosa-Puente
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Pia Neyt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Thomas B. Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| |
Collapse
|
36
|
Han X, Zhang Y, Lou Z, Li J, Wang Z, Gao C, Liu Y, Ren Z, Liu W, Li B, Pan W, Zhang H, Sang Q, Wan M, He H, Deng XW. Time series single-cell transcriptional atlases reveal cell fate differentiation driven by light in Arabidopsis seedlings. NATURE PLANTS 2023; 9:2095-2109. [PMID: 37903986 PMCID: PMC10724060 DOI: 10.1038/s41477-023-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/19/2023] [Indexed: 11/01/2023]
Abstract
Light serves as the energy source for plants as well as a signal for growth and development during their whole life cycle. Seedling de-etiolation is the most dramatic manifestation of light-regulated plant development processes, as massive reprogramming of the plant transcriptome occurs at this time. Although several studies have reported about organ-specific development and expression induced by light, a systematic analysis of cell-type-specific differentiation and the associated transcriptional regulation is still lacking. Here we obtained single-cell transcriptional atlases for etiolated, de-etiolating and light-grown Arabidopsis thaliana seedlings. Informative cells from shoot and root tissues were grouped into 48 different cell clusters and finely annotated using multiple markers. With the determination of comprehensive developmental trajectories, we demonstrate light modulation of cell fate determination during guard cell specialization and vasculature development. Comparison of expression atlases between wild type and the pifq mutant indicates that phytochrome-interacting factors (PIFs) are involved in distinct developmental processes in endodermal and stomatal lineage cells via controlling cell-type-specific expression of target genes. These results provide information concerning the light signalling networks at the cell-type resolution, improving our understanding of how light regulates plant development at the cell-type and genome-wide levels. The obtained information could serve as a valuable resource for comprehensively investigating the molecular mechanism of cell development and differentiation in response to light.
Collapse
Affiliation(s)
- Xue Han
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Yilin Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Zhiying Lou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Jian Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Zheng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Chunlei Gao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Yi Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Zizheng Ren
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Weimin Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Bosheng Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Wenbo Pan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Qing Sang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Miaomiao Wan
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Hang He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China.
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
37
|
Jhu MY, Ellison EE, Sinha NR. CRISPR gene editing to improve crop resistance to parasitic plants. Front Genome Ed 2023; 5:1289416. [PMID: 37965302 PMCID: PMC10642197 DOI: 10.3389/fgeed.2023.1289416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Parasitic plants pose a significant threat to global agriculture, causing substantial crop losses and hampering food security. In recent years, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology has emerged as a promising tool for developing resistance against various plant pathogens. Its application in combating parasitic plants, however, remains largely unexplored. This review aims to summarise current knowledge and research gaps in utilising CRISPR to develop resistance against parasitic plants. First, we outline recent improvements in CRISPR gene editing tools, and what has been used to combat various plant pathogens. To realise the immense potential of CRISPR, a greater understanding of the genetic basis underlying parasitic plant-host interactions is critical to identify suitable target genes for modification. Therefore, we discuss the intricate interactions between parasitic plants and their hosts, highlighting essential genes and molecular mechanisms involved in defence response and multilayer resistance. These include host resistance responses directly repressing parasitic plant germination or growth and indirectly influencing parasitic plant development via manipulating environmental factors. Finally, we evaluate CRISPR-mediated effectiveness and long-term implications for host resistance and crop improvement, including inducible resistance response and tissue-specific activity. In conclusion, this review highlights the challenges and opportunities CRISPR technology provides to combat parasitic plants and provides insights for future research directions to safeguard global agricultural productivity.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Evan E. Ellison
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
38
|
Morales-Herrera S, Jourquin J, Coppé F, Lopez-Galvis L, De Smet T, Safi A, Njo M, Griffiths CA, Sidda JD, Mccullagh JSO, Xue X, Davis BG, Van der Eycken J, Paul MJ, Van Dijck P, Beeckman T. Trehalose-6-phosphate signaling regulates lateral root formation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2023; 120:e2302996120. [PMID: 37748053 PMCID: PMC10556606 DOI: 10.1073/pnas.2302996120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.
Collapse
Affiliation(s)
- Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Frederic Coppé
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Lorena Lopez-Galvis
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
| | - Tom De Smet
- Department of Organic and Macromolecular Chemistry, Laboratory for Organic and Bio-Organic Synthesis, Ghent University, GhentB-9000, Belgium
| | - Alaeddine Safi
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Cara A. Griffiths
- Department of Sustainable Soils and Crops, Rothamsted Research, HarpendenAL5 2JQ, United Kingdom
| | - John D. Sidda
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - James S. O. Mccullagh
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Xiaochao Xue
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
- Next Generation Chemistry, The Rosalind Franklin Institute, DidcotOX1 3TA, United Kingdom
- Department of Pharmacology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Johan Van der Eycken
- Department of Organic and Macromolecular Chemistry, Laboratory for Organic and Bio-Organic Synthesis, Ghent University, GhentB-9000, Belgium
| | - Matthew J. Paul
- Department of Sustainable Soils and Crops, Rothamsted Research, HarpendenAL5 2JQ, United Kingdom
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
- Katholieke Universiteit Leuven Plant Institute, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| |
Collapse
|
39
|
Pinski A, Betekhtin A. Efficient Agrobacterium-mediated transformation and genome editing of Fagopyrum tataricum. FRONTIERS IN PLANT SCIENCE 2023; 14:1270150. [PMID: 37746024 PMCID: PMC10515086 DOI: 10.3389/fpls.2023.1270150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Fagopyrum tataricum (L.) Gaertn. is an exceptional crop known for its remarkable health benefits, high levels of beneficial polyphenols and gluten-free properties, making it highly sought-after as a functional food. Its self-fertilisation capability and adaptability to challenging environments further contribute to its potential as a sustainable agricultural option. To harness its unique traits, genetic transformation in F. tataricum is crucial. In this study, we optimised the Agrobacterium-mediated transformation protocol for F. tataricum callus, resulting in a transformation rate of regenerated plants of approximately 20%. The protocol's effectiveness was confirmed through successful GUS staining, GFP expression, and the generation of albino plants via FtPDS gene inactivation. These results validate the feasibility of genetic manipulation and highlight the potential for trait enhancement in F. tataricum.
Collapse
Affiliation(s)
- Artur Pinski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
40
|
Kim EJ, Zhang C, Guo B, Eekhout T, Houbaert A, Wendrich JR, Vandamme N, Tiwari M, Simon--Vezo C, Vanhoutte I, Saeys Y, Wang K, Zhu Y, De Rybel B, Russinova E. Cell type-specific attenuation of brassinosteroid signaling precedes stomatal asymmetric cell division. Proc Natl Acad Sci U S A 2023; 120:e2303758120. [PMID: 37639582 PMCID: PMC10483622 DOI: 10.1073/pnas.2303758120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023] Open
Abstract
In Arabidopsis thaliana, brassinosteroid (BR) signaling and stomatal development are connected through the SHAGGY/GSK3-like kinase BR INSENSITIVE2 (BIN2). BIN2 is a key negative regulator of BR signaling but it plays a dual role in stomatal development. BIN2 promotes or restricts stomatal asymmetric cell division (ACD) depending on its subcellular localization, which is regulated by the stomatal lineage-specific scaffold protein POLAR. BRs inactivate BIN2, but how they govern stomatal development remains unclear. Mapping the single-cell transcriptome of stomatal lineages after triggering BR signaling with either exogenous BRs or the specific BIN2 inhibitor, bikinin, revealed that the two modes of BR signaling activation generate spatiotemporally distinct transcriptional responses. We established that BIN2 is always sensitive to the inhibitor but, when in a complex with POLAR and its closest homolog POLAR-LIKE1, it becomes protected from BR-mediated inactivation. Subsequently, BR signaling in ACD precursors is attenuated, while it remains active in epidermal cells devoid of scaffolds and undergoing differentiation. Our study demonstrates how scaffold proteins contribute to cellular signal specificity of hormonal responses in plants.
Collapse
Affiliation(s)
- Eun-Ji Kim
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Cheng Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Boyu Guo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
- VIB Single Cell Core, VIB, Ghent9052, Belgium
| | - Anaxi Houbaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Jos R. Wendrich
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | | | - Manish Tiwari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Claire Simon--Vezo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent9000, Belgium
- Data Mining and Modeling for Biomedicine, Center for Inflammation Research, VIB, Ghent9052, Belgium
| | - Kun Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent9052, Belgium
| |
Collapse
|
41
|
Siao W, Wang P, Zhao X, Vu LD, De Smet I, Russinova E. Phosphorylation of ADAPTOR PROTEIN-2 μ-adaptin by ADAPTOR-ASSOCIATED KINASE1 regulates the tropic growth of Arabidopsis roots. THE PLANT CELL 2023; 35:3504-3521. [PMID: 37440281 PMCID: PMC10473204 DOI: 10.1093/plcell/koad141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/21/2023] [Indexed: 07/14/2023]
Abstract
ADAPTOR-ASSOCIATED PROTEIN KINASE1 (AAK1) is a known regulator of clathrin-mediated endocytosis in mammals. Human AAK1 phosphorylates the μ2 subunit of the ADAPTOR PROTEIN-2 (AP-2) complex (AP2M) and plays important roles in cell differentiation and development. Previous interactome studies discovered the association of AAK1 with AP-2 in Arabidopsis (Arabidopsis thaliana), but its function was unclear. Here, genetic analysis revealed that the Arabidopsis aak1 and ap2m mutants both displayed altered root tropic growth, including impaired touch- and gravity-sensing responses. In Arabidopsis, AAK1-phosphorylated AP2M on Thr-163, and expression of the phospho-null version of AP2M in the ap2m mutant led to an aak1-like phenotype, whereas the phospho-mimic forms of AP2M rescued the aak1 mutant. In addition, we found that the AAK1-dependent phosphorylation state of AP2M modulates the frequency distribution of endocytosis. Our data indicate that the phosphorylation of AP2M on Thr-163 by AAK1 fine-tunes endocytosis in the Arabidopsis root to control its tropic growth.
Collapse
Affiliation(s)
- Wei Siao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Peng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Xiuyang Zhao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
42
|
Wouters M, Bastiaanse H, Rombauts S, de Vries L, De Pooter T, Strazisar M, Neutelings G, Vanholme R, Boerjan W. Suppression of the Arabidopsis cinnamoyl-CoA reductase 1-6 intronic T-DNA mutation by epigenetic modification. PLANT PHYSIOLOGY 2023; 192:3001-3016. [PMID: 37139862 PMCID: PMC7614886 DOI: 10.1093/plphys/kiad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion collections are popular resources for fundamental plant research. Cinnamoyl-CoA reductase 1 (CCR1) catalyzes an essential step in the biosynthesis of the cell wall polymer lignin. Accordingly, the intronic T-DNA insertion mutant ccr1-6 has reduced lignin levels and shows a stunted growth phenotype. Here, we report restoration of the ccr1-6 mutant phenotype and CCR1 expression levels after a genetic cross with a UDP-glucosyltransferase 72e1 (ugt72e1),-e2,-e3 T-DNA mutant. We discovered that the phenotypic recovery was not dependent on the UGT72E family loss of function but due to an epigenetic phenomenon called trans T-DNA suppression. Via trans T-DNA suppression, the gene function of an intronic T-DNA mutant was restored after the introduction of an additional T-DNA sharing identical sequences, leading to heterochromatinization and splicing out of the T-DNA-containing intron. Consequently, the suppressed ccr1-6 allele was named epiccr1-6. Long-read sequencing revealed that epiccr1-6, not ccr1-6, carries dense cytosine methylation over the full length of the T-DNA. We showed that the SAIL T-DNA in the UGT72E3 locus could trigger the trans T-DNA suppression of the GABI-Kat T-DNA in the CCR1 locus. Furthermore, we scanned the literature for other potential cases of trans T-DNA suppression in Arabidopsis and found that 22% of the publications matching our query report on double or higher-order T-DNA mutants that meet the minimal requirements for trans T-DNA suppression. These combined observations indicate that intronic T-DNA mutants need to be used with caution since methylation of intronic T-DNA might derepress gene expression and can thereby confound results.
Collapse
Affiliation(s)
- Marlies Wouters
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Héloïse Bastiaanse
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stéphane Rombauts
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lisanne de Vries
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Godfrey Neutelings
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576, CNRS, Université de Lille, Lille, France
| | - Ruben Vanholme
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Wout Boerjan
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Winter Z, Bellande K, Vermeer JEM. Divided by fate: The interplay between division orientation and cell shape underlying lateral root initiation in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102370. [PMID: 37121154 DOI: 10.1016/j.pbi.2023.102370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The development of lateral roots starts with a round of anticlinal, asymmetric cell divisions in lateral root founder cells in the pericycle, deep within the root. The reorientation of the cell division plane occurs in parallel with changes in cell shape and needs to be coordinated with its direct neighbor, the endodermis. This accommodation response requires the integration of biochemical and mechanical signals in both cell types. Recently, it was reported that dynamic changes in the cytoskeleton and possibly the cell wall are part of the molecular mechanism required to correctly orient and position the cell division plane. Here we discuss the latest progress made towards our understanding of the regulation of cell shape and division plane orientation underlying lateral root initiation in Arabidopsis.
Collapse
Affiliation(s)
- Zsófia Winter
- Laboratory of Molecular and Cellular Biology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Kevin Bellande
- Laboratory of Molecular and Cellular Biology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Joop E M Vermeer
- Laboratory of Molecular and Cellular Biology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
44
|
Nobori T, Ecker JR. Yet uninfected? Resolving cell states of plants under pathogen attack. CELL REPORTS METHODS 2023; 3:100538. [PMID: 37533641 PMCID: PMC10391557 DOI: 10.1016/j.crmeth.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Although we have made significant strides in unraveling plant responses to pathogen attacks at the tissue or major cell type scale, a comprehensive understanding of individual cell responses still needs to be achieved. Addressing this gap, Zhu et al. employed single-cell transcriptome analysis to unveil the heterogeneous responses of plant cells when confronted with bacterial pathogens.
Collapse
Affiliation(s)
- Tatsuya Nobori
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
45
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
46
|
Dubois M, Achon I, Brench RA, Polyn S, Tenorio Berrío R, Vercauteren I, Gray JE, Inzé D, De Veylder L. SIAMESE-RELATED1 imposes differentiation of stomatal lineage ground cells into pavement cells. NATURE PLANTS 2023:10.1038/s41477-023-01452-7. [PMID: 37386150 DOI: 10.1038/s41477-023-01452-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
The leaf epidermis represents a multifunctional tissue consisting of trichomes, pavement cells and stomata, the specialized cellular pores of the leaf. Pavement cells and stomata both originate from regulated divisions of stomatal lineage ground cells (SLGCs), but whereas the ontogeny of the stomata is well characterized, the genetic pathways activating pavement cell differentiation remain relatively unexplored. Here, we reveal that the cell cycle inhibitor SIAMESE-RELATED1 (SMR1) is essential for timely differentiation of SLGCs into pavement cells by terminating SLGC self-renewal potency, which depends on CYCLIN A proteins and CYCLIN-DEPENDENT KINASE B1. By controlling SLGC-to-pavement cell differentiation, SMR1 determines the ratio of pavement cells to stomata and adjusts epidermal development to suit environmental conditions. We therefore propose SMR1 as an attractive target for engineering climate-resilient plants.
Collapse
Affiliation(s)
- Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Robert A Brench
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Julie E Gray
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
47
|
Li M, Niu X, Li S, Fu S, Li Q, Xu M, Wang C, Wu S. CRISPR/Cas9 Based Cell-Type Specific Gene Knock-Out in Arabidopsis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2365. [PMID: 37375990 DOI: 10.3390/plants12122365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
CRISPR/Cas9 (hereafter Cas9)-mediated gene knockout is one of the most important tools for studying gene function. However, many genes in plants play distinct roles in different cell types. Engineering the currently used Cas9 system to achieve cell-type-specific knockout of functional genes is useful for addressing the cell-specific functions of genes. Here we employed the cell-specific promoters of the WUSCHEL RELATED HOMEOBOX 5 (WOX5), CYCLIND6;1 (CYCD6;1), and ENDODERMIS7 (EN7) genes to drive the Cas9 element, allowing tissue-specific targeting of the genes of interest. We designed the reporters to verify the tissue-specific gene knockout in vivo. Our observation of the developmental phenotypes provides strong evidence for the involvement of SCARECROW (SCR) and GIBBERELLIC ACID INSENSITIVE (GAI) in the development of quiescent center (QC) and endodermal cells. This system overcomes the limitations of traditional plant mutagenesis techniques, which often result in embryonic lethality or pleiotropic phenotypes. By allowing cell-type-specific manipulation, this system has great potential to help us better understand the spatiotemporal functions of genes during plant development.
Collapse
Affiliation(s)
- Meng Li
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Li
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shasha Fu
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianfang Li
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meizhi Xu
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunhua Wang
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
48
|
Giehl RFH, Flis P, Fuchs J, Gao Y, Salt DE, von Wirén N. Cell type-specific mapping of ion distribution in Arabidopsis thaliana roots. Nat Commun 2023; 14:3351. [PMID: 37311779 DOI: 10.1038/s41467-023-38880-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Cell type-specific mapping of element distribution is critical to fully understand how roots partition nutrients and toxic elements with aboveground parts. In this study, we developed a method that combines fluorescence-activated cell sorting (FACS) with inductively coupled plasma mass spectrometry (ICP-MS) to assess the ionome of different cell populations within Arabidopsis thaliana roots. The method reveals that most elements exhibit a radial concentration gradient increasing from the rhizodermis to inner cell layers, and detected previously unknown ionomic changes resulting from perturbed xylem loading processes. With this approach, we also identify a strong accumulation of manganese in trichoblasts of iron-deficient roots. We demonstrate that confining manganese sequestration in trichoblasts but not in endodermal cells efficiently retains manganese in roots, therefore preventing toxicity in shoots. These results indicate the existence of cell type-specific constraints for efficient metal sequestration in roots. Thus, our approach opens an avenue to investigate element compartmentation and transport pathways in plants.
Collapse
Affiliation(s)
- Ricardo F H Giehl
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, 06466, Seeland, Germany.
| | - Paulina Flis
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Jörg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, 06466, Seeland, Germany
| | - Yiqun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - David E Salt
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Nicolaus von Wirén
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
49
|
Nguyen TH, Thiers L, Van Moerkercke A, Bai Y, Fernández-Calvo P, Minne M, Depuydt T, Colinas M, Verstaen K, Van Isterdael G, Nützmann HW, Osbourn A, Saeys Y, De Rybel B, Vandepoele K, Ritter A, Goossens A. A redundant transcription factor network steers spatiotemporal Arabidopsis triterpene synthesis. NATURE PLANTS 2023; 9:926-937. [PMID: 37188853 DOI: 10.1038/s41477-023-01419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Plant specialized metabolites modulate developmental and ecological functions and comprise many therapeutic and other high-value compounds. However, the mechanisms determining their cell-specific expression remain unknown. Here we describe the transcriptional regulatory network that underlies cell-specific biosynthesis of triterpenes in Arabidopsis thaliana root tips. Expression of thalianol and marneral biosynthesis pathway genes depends on the phytohormone jasmonate and is limited to outer tissues. We show that this is promoted by the activity of redundant bHLH-type transcription factors from two distinct clades and coactivated by homeodomain factors. Conversely, the DOF-type transcription factor DAG1 and other regulators prevent expression of the triterpene pathway genes in inner tissues. We thus show how precise expression of triterpene biosynthesis genes is determined by a robust network of transactivators, coactivators and counteracting repressors.
Collapse
Affiliation(s)
- Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Louis Thiers
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Alex Van Moerkercke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Misión Biolóxica de Galicia, CSIC, Pontevedra, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain
| | - Max Minne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Maite Colinas
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kevin Verstaen
- VIB Single Cell Core, Ghent-Leuven, Belgium
- VIB Center for Inflammation Research, Data Mining and Modelling for Biomedicine, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hans-Wilhelm Nützmann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Yvan Saeys
- VIB Center for Inflammation Research, Data Mining and Modelling for Biomedicine, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
50
|
Feng Q, Cubría-Radío M, Vavrdová T, De Winter F, Schilling N, Huysmans M, Nanda AK, Melnyk CW, Nowack MK. Repressive ZINC FINGER OF ARABIDOPSIS THALIANA proteins promote programmed cell death in the Arabidopsis columella root cap. PLANT PHYSIOLOGY 2023; 192:1151-1167. [PMID: 36852889 PMCID: PMC10231456 DOI: 10.1093/plphys/kiad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Developmental programmed cell death (dPCD) controls a plethora of functions in plant growth and reproduction. In the root cap of Arabidopsis (Arabidopsis thaliana), dPCD functions to control organ size in balance with the continuous stem cell activity in the root meristem. Key regulators of root cap dPCD including SOMBRERO/ANAC033 (SMB) belong to the NAC family of transcription factors. Here, we identify the C2H2 zinc finger protein ZINC FINGER OF ARABIDOPSIS THALIANA 14 ZAT14 as part of the gene regulatory network of root cap dPCD acting downstream of SMB. Similar to SMB, ZAT14-inducible misexpression leads to extensive ectopic cell death. Both the canonical EAR motif and a conserved L-box motif of ZAT14 act as transcriptional repression motifs and are required to trigger cell death. While a single zat14 mutant does not show a cell death-related phenotype, a quintuple mutant knocking out 5 related ZAT paralogs shows a delayed onset of dPCD execution in the columella and the adjacent lateral root cap. While ZAT14 is co-expressed with established dPCD-associated genes, it does not activate their expression. Our results suggest that ZAT14 acts as a transcriptional repressor controlling a so far uncharacterized subsection of the dPCD gene regulatory network active in specific root cap tissues.
Collapse
Affiliation(s)
- Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Marta Cubría-Radío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tereza Vavrdová
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Neeltje Schilling
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam OT Golm, Germany
| | - Marlies Huysmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Amrit K Nanda
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|