1
|
Wei Z, Shang M, Jiang Z, Zhai H, Xing S, Wang Z, He S, Gao S, Zhao N, Zhang H, Liu Q. Natural allelic variation of basic helix-loop-helix transcription factor 25 regulates carotenoid biosynthesis in sweet potato. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40209028 DOI: 10.1111/pbi.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/02/2024] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
Carotenoid-rich orange-fleshed sweet potato (OFSP) is an important staple diet and source of nutrition in developing countries, including Africa and Asia. However, the regulation of carotenoid biosynthesis remains to be better understood. A natural allelic variation closely linked to carotenoid biosynthesis was identified in the promoter region of the IbbHLH25 gene that encodes a basic helix-loop-helix (bHLH) transcription factor, by transcriptome and haplotype analyses of different flesh colour sweet potato accessions. An 86-bp deletion reduced the transcription of the IbbHLH25 promoter in white- and yellow-fleshed sweet potatoes; however, the deletion was absent in OFSP. IbbHLH25 was highly expressed in the storage roots of carotenoid-rich sweet potato. The overexpression of IbbHLH25 significantly increased the carotenoid contents (by 2.5-fold-6.0-fold) and proportions, especially β-carotene and β-cryptoxanthin; their contents increased by 21.2-fold-55.7-fold and 4.6-fold-9.5-fold, respectively, and their proportions increased by 48.5% and 13.0%, respectively, and the silencing of IbbHLH25 had opposite effects. IbbHLH25 formed heterodimers with IbbHLH66 to directly and synergistically activate the transcription of carotenoid biosynthesis key genes IbGGPPS, IbLCYB and IbBCH. The overexpression of IbbHLH66 significantly increased the carotenoid contents (by 2.3-fold-3.8-fold) and proportions, especially β-carotene and β-cryptoxanthin; their contents increased by 15.2-fold-25.6-fold and 3.1-fold-5.1-fold, respectively, and their proportions increased by 31.1% and 9.6%, respectively. These findings expand our understanding of bHLHs in regulating carotenoid biosynthesis and suggest additional roles in affecting carotenoid component proportions, providing candidate genes for nutritional biofortification of agricultural products.
Collapse
Affiliation(s)
- Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Meiqi Shang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zhicheng Jiang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2025; 6:101195. [PMID: 39568207 PMCID: PMC11897464 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Xie S, Shi B, Miao M, Zhao C, Bai R, Yan F, Lei C. A B-Box (BBX) Transcription Factor from Cucumber, CsCOL9 Positively Regulates Resistance of Host Plant to Bemisia tabaci. Int J Mol Sci 2025; 26:324. [PMID: 39796180 PMCID: PMC11720035 DOI: 10.3390/ijms26010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, CsCOL9I, from cucumber and analyzed its role in the plant's defense against the feeding of Bemisia tabaci. CsCOL9 is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves. CsCOL9 is induced by B. tabaci feeding, salicylic acid (SA), methyl jasmonate (MeJA), and hydrogen peroxide (H2O2). Cucumber plants with CsCOL9 silence (TRV2-CsCOL9) and overexpression (1301-CsCOL9) were obtained and analyzed. After CsCOL9 silencing, survival rates and host selectivity for B. tabaci increased; however, the expression levels of genes encoding enzymes (CsSOD, CsRBOH, CsPOD), activities of superoxide dismutase (SOD) and peroxidase (POD), and content of H2O2 in plants were all reduced. CsCOL9 overexpression led to decreased survival rates and host selectivity for B. tabaci. Conversely, the expression levels of genes (CsSOD, CsRBOH and CsPOD), activities of SOD and POD, and content of H2O2 increased after CsCOL9 overexpression in plants. Collectively, our results demonstrate CsCOL9 positively regulates cucumber resistance to B. tabaci by activating reactive oxygen species bursts. This study lays a theoretical foundation for the application of CsCOL9 in cucumber resistance breeding and green pest control of B. tabaci.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caiyan Lei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (S.X.); (B.S.); (M.M.); (C.Z.); (R.B.); (F.Y.)
| |
Collapse
|
4
|
Hu M, Li Z, Lin X, Tang B, Xing M, Zhu H. Comparative analysis of the LEA gene family in seven Ipomoea species, focuses on sweet potato (Ipomoea batatas L.). BMC PLANT BIOLOGY 2024; 24:1256. [PMID: 39725899 DOI: 10.1186/s12870-024-05981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Late Embryogenesis Abundant (LEA) proteins are extensively distributed among higher plants and are crucial for regulating growth, development, and abiotic stress resistance. However, comprehensive data regarding the LEA gene family in Ipomoea species remains limited. In this study, we conducted a genome-wide comparative analysis across seven Ipomoea species, including sweet potato (I. batatas), I. trifida, I. triloba, I. nil, I. purpurea, I. cairica, and I. aquatica, identifying 73, 64, 77, 62, 70, 70, and 74 LEA genes, respectively. The LEA genes were divided into eight subgroups: LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, LEA_6, SMP, and Dehydrin according to the classification of the LEA family in Arabidopsis. Gene structure and protein motif analyses revealed that genes within the same phylogenetic group exhibited comparable exon/intron structures and motif patterns. The distribution of LEA genes across chromosomes varied among the different Ipomoea species. Duplication analysis indicated that segmental and tandem duplications significantly contributed to the expansion of the LEA gene family, with segmental duplications being the predominant mechanism. The analysis of the non-synonymous (Ka) to synonymous (Ks) ratio (Ka/Ks) indicated that the duplicated Ipomoea LEA genes predominantly underwent purifying selection. Extensive cis-regulatory elements associated with stress responses were identified in the promoters of LEA genes. Expression analysis revealed that the LEA gene exhibited widespread expression across diverse tissues and showed responsive modulation to various abiotic stressors. Furthermore, we selected 15 LEA genes from sweet potatoes for RT-qPCR analysis, demonstrating that five genes responded to salt stress in roots, while three genes were responsive to drought stress in leaves. Additionally, expression changes of seven genes varied at different stages of sweet potato tuber development. These findings enhanced our understanding of the evolutionary dynamics of LEA genes within the Ipomoea genome and may inform future molecular breeding strategies for sweet potatoes.
Collapse
Affiliation(s)
- Mengqin Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhenqin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xiongjian Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Binquan Tang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Meng Xing
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
5
|
Li S, Li J, Li D, Hao J, Hua Z, Wang P, Zhu M, Ge H, Liu Y, Chen H. Genome-wide identification of the eggplant jasmonate ZIM-domain (JAZ) gene family and functional characterization of SmJAZ10 in modulating chlorophyll synthesis in leaves. Int J Biol Macromol 2024; 283:137804. [PMID: 39566784 DOI: 10.1016/j.ijbiomac.2024.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The jasmonate ZIM-domain (JAZ) plays a crucial role in regulating several economic traits in crops. Despite its importance, the characterization of the SmJAZ gene family in eggplant (Solanum melongena L.) has not been documented. In this study, we identified 13 SmJAZ distributed across 9 chromosomes, which were categorized into 5 subgroups based on phylogenetic analysis. Both of them possess TIFY-motif and CCT_2 domains with varying degrees of variation. Promoter cis-element analysis predicted 42 distributed cis-elements that respond to diverse signals. Gene expression analysis demonstrated that SmJAZ exhibited responsiveness to JA, ABA, NaCl, PEG, 4 °C, blue light, and UV-B treatments. Moreover, microRNA interaction predictions identified 150 potential miRNAs, among which ath-miR5021 was found to target 8 SmJAZ mRNAs. Yeast two-hybrid assays demonstrated that most of the SmJAZs were able to interact with SmMYC2 and SmNINJA and could form JAZ-JAZ complexes. Subcellular localization analysis unveiled a diverse array of intranuclear and extranuclear localization signals for SmJAZs. Overexpressing of SmJAZ10 could decrease the chlorophyll content of seedling leaves, and the transcriptome showed that genes related to chlorophyll synthesis, such as SmCHLH, SmPORA, and SmGLK2, underwent down-regulated expression. Overall, these findings serve as a valuable resource for leveraging JA signaling to enhance eggplant quality.
Collapse
Affiliation(s)
- Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianyong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangnan Hao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Hua
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengliang Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Xie SY, Fang B, Chen J, Zhao N, Lin S, Ma T, Huang L. Comparative analyses of RNA-seq and phytohormone data of sweetpotatoes inoculated with Dickeya dadantii causing bacterial stem and root rot of sweetpotato. BMC PLANT BIOLOGY 2024; 24:1082. [PMID: 39543491 PMCID: PMC11566469 DOI: 10.1186/s12870-024-05774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bacterial stem and root rot (BSRR) in sweetpotato caused by Dickeya dadantii is one of the ten major diseases of sweetpotatoes in China. However, the molecular mechanism underlying the resistance of sweetpotato to D. dadantii remains unclear. This study adopted a resistance identification assay that conformed Guangshu87 (GS87) as BSRR-resistant and Xinxiang (XX) as susceptible. Compared to XX, GS87 effectively prevented the invasion and dissemination of D. dadantii in planta. An RNA sequencing (RNA-seq) analysis identified 54,844 expressed unigenes between GS87 and XX at four different stages. Further, it revealed that GS87 was more able to regulate the expressions of more unigenes after the inoculation with D. dadantii, including resistance (R) and transcription factors (TF) genes. Moreover, content measurements of disease resistance-related phytohormones showed that both jasmonic acids (JAs) and salicylic acids (SAs) accumulated in D. dadantii-inoculated sweetpotatoes, and JAs may negatively regulate sweetpotato resistance against D. dadantii and accumulated faster than SAs. Meanwhile, determinations of ROS production rate and relevant enzymatic/non-enzymatic activity highlighted the vital roles of reactive oxygen species (ROS) and superoxide dismutase (SOD) in confering GS87 resistance against D. dadantii. Additionally, several hub genes with high connectivity were highlighted through Protein-Protein interaction (PPI) network analysis. In summary, the findings in this study contribute to the understanding of the different responses of resistant and susceptible sweetpotato cultivars to D. dadantii infection, and it also provide the first insight into the relevant candidate genes and phytohormones involved in the resistance of sweetpotato to D. dadantii.
Collapse
Affiliation(s)
- Shu-Yan Xie
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- Present address: Shu-Yan Xie, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences &Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Boping Fang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Jingyi Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Nan Zhao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Shuyun Lin
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Tingting Ma
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Lifei Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crops Genetics & Improvement of Guangdong Province, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Hu Y, Gong Z, Yan Y, Zhang J, Shao A, Li H, Wang P, Zhang S, Cheng C, Zhang J. ChBBX6 and ChBBX18 are positive regulators of anthocyanins biosynthesis and carotenoids degradation in Cerasus humilis. Int J Biol Macromol 2024; 282:137195. [PMID: 39489264 DOI: 10.1016/j.ijbiomac.2024.137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
B-box zinc-finger transcription factor (BBX) plays important regulatory roles in plant secondary metabolism. Here, we identified 21 BBXs that could be further categorized into five subfamilies from Cerasus humilis. Two segmentally duplicated Subfamily IV members, ChBBX6 and ChBBX18, were found to share high homology with reported anthocyanin-related BBXs and express highly in fruits with high anthocyanins but low carotenoids contents. Their transient overexpression in apple and C. humilis fruits both led to significantly increased anthocyanins accumulation and significantly upregulated expression of anthocyanins-related genes. However, their overexpression resulted in decreased carotenoids accumulation and greatly upregulated the expression of carotenoids-related genes especially degradation-related genes. Additionally, their overexpression both greatly improved the ABA content in C. humilis fruits. Through yeast one-hybrid and dual-luciferase reporter assays, we found that both ChBBX6 and ChBBX18 could bind to and activate the promoters of chalcone synthase (ChCHS), flavanone 3-hydroxylase (ChF3H), and 9-cis-epoxycarotenoid dioxygenase 5 (ChNCED5). Our study demonstrates that ChBBX6 and ChBBX18 are positive regulators of anthocyanins biosynthesis and carotenoids degradation and can provide basis for understanding the roles of BBX genes in C. humilis.
Collapse
Affiliation(s)
- Yang Hu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqian Gong
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Yiming Yan
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Jiating Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Anping Shao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Hao Li
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Shuai Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
8
|
Hao Y, Fan R, Zhao Y, Nie K, Wang L, Zhao T, Zhang Z, Tao X, Wu H, Pan J, Hao C, Guan X. Intra species dissection of phytophthora capsici resistance in black pepper. J Adv Res 2024:S2090-1232(24)00469-7. [PMID: 39442874 DOI: 10.1016/j.jare.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Black pepper, a financially significant tropical crop, assumes a pivotal role in global agriculture for the major source of specie flavor. Nonetheless, the growth and productivity of black pepper face severe impediments due to the destructive pathogen Phytophthora capsici, ultimately resulting in black pepper blight. The dissecting for the genetic source of pathogen resistance for black pepper is beneficial for its global production. The genetic sources include the variations on gene coding sequences, transcription capabilities and epigenetic modifications, which exerts hierarchy of influences on plant defense against pathogen. However, the understanding of genetic source of disease resistance in black pepper remains limited. METHODS The wild species Piper flaviflorum (P. flaviflorum, Pf) is known for blight resistance, while the cultivated species P. nigrum is susceptible. To dissecting the genetic sources of pathogen resistance for black pepper, the chromatin modification on H3K4me3 and transcriptome of black pepper species were profiled for genome wide comparative studies, applied with CUT&Tag and RNA sequencing technologies. RESULTS The intraspecies difference between P. flaviflorum and P. nigrum on gene body region led to coding variations on 5137 genes, including 359 gene with biotic stress responses and regulation. P. flaviflorum exhibited a more comprehensive resistance response to Phytophthora capsici in terms of transcriptome features. The pathogen responsive transcribing was significant associated with histone modification mark of H3K4me3 in black pepper. The collective data on variations of sequence, transcription activity and chromatin structure lead to an exclusive jasmonic acid-responsive pathway for disease resistance in P. flaviflorum was revealed. This research provides a comprehensive frame work to identify the fine genetic source for pathogen resistance from wild species of black pepper.
Collapse
Affiliation(s)
- Yupeng Hao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
| | - Yongyan Zhao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ke Nie
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Luyao Wang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Ting Zhao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Zhiyuan Zhang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | | | - Hongyu Wu
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaying Pan
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China.
| | - Xueying Guan
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China.
| |
Collapse
|
9
|
Jiang Z, Wei Z, Zhang J, Zheng C, Zhu H, Zhai H, He S, Gao S, Zhao N, Zhang H, Liu Q. Source-sink synergy is the key unlocking sweet potato starch yield potential. Nat Commun 2024; 15:7260. [PMID: 39179563 PMCID: PMC11343742 DOI: 10.1038/s41467-024-51727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Sweet potato starch is in high demand globally for food and industry. However, starch content is negatively correlated with fresh yield. It is urgent to uncover the genetic basis and molecular mechanisms underlying the starch yield of sweet potato. Here we systematically explore source-sink synergy-mediated sweet potato starch yield formation: the production, loading, and transport of photosynthates in leaves, as well as their unloading and allocation in storage roots, lead to starch content divergence between sweet potato varieties. Moreover, we find that six haplotypes of IbPMA1 encoding a plasma membrane H+-ATPase are significantly linked with starch accumulation. Overexpression of IbPMA1 in sweet potato results in significantly increased starch and sucrose contents, while its knockdown exhibits an opposing effect. Furthermore, a basic helix-loop-helix (bHLH) transcription factor IbbHLH49 directly targets IbPMA1 and activates its transcription. Overexpression of IbbHLH49 notably improves source-sink synergy-mediated fresh yield and starch accumulation in sweet potato. Both IbbHLH49 and IbPMA1 substantially influence sugar transport and starch biosynthesis in source and sink tissues. These findings expand our understanding of starch yield formation and provide strategies and candidate genes for high starch breeding in root and tuber crops.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jun Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Chenxing Zheng
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
He W, Liu H, Wu Z, Miao Q, Hu X, Yan X, Wen H, Zhang Y, Fu X, Ren L, Tang K, Li L. The AaBBX21-AaHY5 module mediates light-regulated artemisinin biosynthesis in Artemisia annua L. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1735-1751. [PMID: 38980203 DOI: 10.1111/jipb.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 07/10/2024]
Abstract
The sesquiterpene lactone artemisinin is an important anti-malarial component produced by the glandular secretory trichomes of sweet wormwood (Artemisia annua L.). Light was previously shown to promote artemisinin production, but the underlying regulatory mechanism remains elusive. In this study, we demonstrate that ELONGATED HYPOCOTYL 5 (HY5), a central transcription factor in the light signaling pathway, cannot promote artemisinin biosynthesis on its own, as the binding of AaHY5 to the promoters of artemisinin biosynthetic genes failed to activate their transcription. Transcriptome analysis and yeast two-hybrid screening revealed the B-box transcription factor AaBBX21 as a potential interactor with AaHY5. AaBBX21 showed a trichome-specific expression pattern. Additionally, the AaBBX21-AaHY5 complex cooperatively activated transcription from the promoters of the downstream genes AaGSW1, AaMYB108, and AaORA, encoding positive regulators of artemisinin biosynthesis. Moreover, AaHY5 and AaBBX21 physically interacted with the A. annua E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). In the dark, AaCOP1 decreased the accumulation of AaHY5 and AaBBX21 and repressed the activation of genes downstream of the AaHY5-AaBBX21 complex, explaining the enhanced production of artemisinin upon light exposure. Our study provides insights into the central regulatory mechanism by which light governs terpenoid biosynthesis in the plant kingdom.
Collapse
Affiliation(s)
- Weizhi He
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangkuanyu Wu
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Miao
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Hu
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hangyu Wen
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Ren
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Meng X, Dong T, Li Z, Zhu M. First systematic review of the last 30 years of research on sweetpotato: elucidating the frontiers and hotspots. FRONTIERS IN PLANT SCIENCE 2024; 15:1428975. [PMID: 39036362 PMCID: PMC11258629 DOI: 10.3389/fpls.2024.1428975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Sweetpotato is an economically important crop, and it has various advantages over other crops in addressing global food security and climate change. Although substantial articles have been published on the research of various aspects of sweetpotato biology, there are no specific reports to systematically crystallize the research achievements. The current review takes the lead in conducting a keyword-centric spatiotemporal dimensional bibliometric analysis of articles on sweetpotato research using CiteSpace software to comprehensively clarify the development status, research hotspot, and development trend in the past 30 years (1993-2022). Quantitative analysis was carried out on the publishing countries, institutions, disciplines, and scholars to understand the basic status of sweetpotato research; then, visual analysis was conducted on high-frequency keywords, burst keywords, and keyword clustering; the evolution of major research hotspots and the development trend in different periods were summarized. Finally, the three main development stages-preliminary stage (1993-2005), rapid stage (2006-2013), and diversified mature stage (2014-2022)-were reviewed and analyzed in detail. Particularly, the development needs of sweetpotato production in improving breeding efficiency, enhancing stress tolerance, coordinating high yield with high quality and high resistance, and promoting demand were discussed, which will help to comprehensively understand the development dynamics of sweetpotato research from different aspects of biological exploration.
Collapse
Affiliation(s)
| | | | | | - Mingku Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
12
|
Wu J, Chen Y, Xu Y, An Y, Hu Z, Xiong A, Wang G. Effects of Jasmonic Acid on Stress Response and Quality Formation in Vegetable Crops and Their Underlying Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:1557. [PMID: 38891365 PMCID: PMC11175075 DOI: 10.3390/plants13111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.
Collapse
Affiliation(s)
- Jiaqi Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yangyang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yujie Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yahong An
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Zhenzhu Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaian 223003, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanglong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaian 223003, China
| |
Collapse
|
13
|
Xue L, Wang Y, Fan Y, Jiang Z, Wei Z, Zhai H, He S, Zhang H, Yang Y, Zhao N, Gao S, Liu Q. IbNF-YA1 is a key factor in the storage root development of sweet potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1991-2002. [PMID: 38549549 DOI: 10.1111/tpj.16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 03/05/2024] [Indexed: 06/14/2024]
Abstract
As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.
Collapse
Affiliation(s)
- Luyao Xue
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuxin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yue Fan
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhicheng Jiang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yufeng Yang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Ahmed S, Khan MSS, Xue S, Islam F, Ikram AU, Abdullah M, Liu S, Tappiban P, Chen J. A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato. HORTICULTURE RESEARCH 2024; 11:uhae014. [PMID: 38464477 PMCID: PMC10923648 DOI: 10.1093/hr/uhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
Biotic and abiotic stresses negatively affect the yield and overall plant developmental process, thus causing substantial losses in global sweet potato production. To cope with stresses, sweet potato has evolved numerous strategies to tackle ever-changing surroundings and biological and environmental conditions. The invention of modern sequencing technology and the latest data processing and analysis instruments has paved the way to integrate biological information from different approaches and helps to understand plant system biology more precisely. The advancement in omics technologies has accumulated and provided a great source of information at all levels (genome, transcript, protein, and metabolite) under stressful conditions. These latest molecular tools facilitate us to understand better the plant's responses to stress signaling and help to process/integrate the biological information encoded within the biological system of plants. This review briefly addresses utilizing the latest omics strategies for deciphering the adaptive mechanisms for sweet potatoes' biotic and abiotic stress tolerance via functional genomics, transcriptomics, proteomics, and metabolomics. This information also provides a powerful reference to understand the complex, well-coordinated stress signaling genetic regulatory networks and better comprehend the plant phenotypic responses at the cellular/molecular level under various environmental stimuli, thus accelerating the design of stress-resilient sweet potato via the latest genetic engineering approaches.
Collapse
Affiliation(s)
- Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | | | - Songlei Xue
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224000, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, 200240, Shanghai, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Piengtawan Tappiban
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Hu Y, Zhao H, Xue L, Nie N, Zhang H, Zhao N, He S, Liu Q, Gao S, Zhai H. IbMYC2 Contributes to Salt and Drought Stress Tolerance via Modulating Anthocyanin Accumulation and ROS-Scavenging System in Sweet Potato. Int J Mol Sci 2024; 25:2096. [PMID: 38396773 PMCID: PMC10889443 DOI: 10.3390/ijms25042096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| |
Collapse
|
16
|
Wang Z, Li X, Gao XR, Dai ZR, Peng K, Jia LC, Wu YK, Liu QC, Zhai H, Gao SP, Zhao N, He SZ, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. PLANT PHYSIOLOGY 2024; 194:787-804. [PMID: 37815230 DOI: 10.1093/plphys/kiad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xu Li
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-Ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li-Cong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yin-Kui Wu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qing-Chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Zhen He
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Yang Y, Chen Y, Bo Y, Liu Q, Zhai H. Research Progress in the Mechanisms of Resistance to Biotic Stress in Sweet Potato. Genes (Basel) 2023; 14:2106. [PMID: 38003049 PMCID: PMC10671456 DOI: 10.3390/genes14112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important food, feed, industrial raw materials, and new energy crops, and is widely cultivated around the world. China is the largest sweet potato producer in the world, and the sweet potato industry plays an important role in China's agriculture. During the growth of sweet potato, it is often affected by biotic stresses, such as fungi, nematodes, insects, viruses, and bacteria. These stressors are widespread worldwide and have severely restricted the production of sweet potato. In recent years, with the rapid development and maturity of biotechnology, an increasing number of stress-related genes have been introduced into sweet potato, which improves its quality and resistance of sweet potato. This paper summarizes the discovery of biological stress-related genes in sweet potato and the related mechanisms of stress resistance from the perspectives of genomics analysis, transcriptomics analysis, genetic engineering, and physiological and biochemical indicators. The mechanisms of stress resistance provide a reference for analyzing the molecular breeding of disease resistance mechanisms and biotic stress resistance in sweet potato.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.Y.); (Y.C.); (Y.B.); (Q.L.)
| |
Collapse
|
18
|
Yang D, Bian X, Kim HS, Jin R, Gao F, Chen J, Ma J, Tang W, Zhang C, Sun H, Xie Y, Li Z, Kwak SS, Ma D. IbINV Positively Regulates Resistance to Black Rot Disease Caused by Ceratocystis fimbriata in Sweet Potato. Int J Mol Sci 2023; 24:16454. [PMID: 38003642 PMCID: PMC10671118 DOI: 10.3390/ijms242216454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.
Collapse
Affiliation(s)
- Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Xiaofeng Bian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Rong Jin
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Fangyuan Gao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Jingwei Chen
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Jukui Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Wei Tang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Chengling Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Yiping Xie
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Zongyun Li
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China;
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Daifu Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| |
Collapse
|
19
|
Lantican DV, Nocum JDL, Manohar ANC, Mendoza JVS, Gardoce RR, Lachica GC, Gueco LS, Dela Cueva FM. Comparative RNA-seq analysis of resistant and susceptible banana genotypes reveals molecular mechanisms in response to banana bunchy top virus (BBTV) infection. Sci Rep 2023; 13:18719. [PMID: 37907581 PMCID: PMC10618458 DOI: 10.1038/s41598-023-45937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Bananas hold significant economic importance as an agricultural commodity, serving as a primary livelihood source, a favorite fruit, and a staple crop in various regions across the world. However, Banana bunchy top disease (BBTD), which is caused by banana bunchy top virus (BBTV), poses a considerable threat to banana cultivation. To understand the resistance mechanism and the interplay of host suitability factors in the presence of BBTV, we conducted RNA-seq-based comparative transcriptomics analysis on mock-inoculated and BBTV-inoculated samples from resistant (wild Musa balbisiana) and susceptible (Musa acuminata 'Lakatan') genotypes. We observed common patterns of expression for 62 differentially expressed genes (DEGs) in both genotypes, which represent the typical defense response of bananas to BBTV. Furthermore, we identified 99 DEGs exclusive to the 'Lakatan' banana cultivar, offering insights into the host factors and susceptibility mechanisms that facilitate successful BBTV infection. In parallel, we identified 151 DEGs unique to the wild M. balbisiana, shedding light on the multifaceted mechanisms of BBTV resistance, involving processes such as secondary metabolite biosynthesis, cell wall modification, and pathogen perception. Notably, our validation efforts via RT-qPCR confirmed the up-regulation of the glucuronoxylan 4-O-methyltransferase gene (14.28 fold-change increase), implicated in xylan modification and degradation. Furthermore, our experiments highlighted the potential recruitment of host's substrate adaptor ADO (30.31 fold-change increase) by BBTV, which may play a role in enhancing banana susceptibility to the viral pathogen. The DEGs identified in this work can be used as basis in designing associated gene markers for the precise integration of resistance genes in marker-assisted breeding programs. Furthermore, the findings can be applied to develop genome-edited banana cultivars targeting the resistance and susceptibility genes, thus developing novel cultivars that are resilient to important diseases.
Collapse
Affiliation(s)
- Darlon V Lantican
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines.
| | - Jen Daine L Nocum
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Anand Noel C Manohar
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Jay-Vee S Mendoza
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Roanne R Gardoce
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Grace C Lachica
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries, Forestry, Office of the Vice Chancellor for Research and Extension, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Lavernee S Gueco
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Fe M Dela Cueva
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| |
Collapse
|
20
|
Buelbuel S, Sakuraba Y, Sedaghatmehr M, Watanabe M, Hoefgen R, Balazadeh S, Mueller-Roeber B. Arabidopsis BBX14 negatively regulates nitrogen starvation- and dark-induced leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:251-268. [PMID: 37382898 DOI: 10.1111/tpj.16374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Senescence is a highly regulated process driven by developmental age and environmental factors. Although leaf senescence is accelerated by nitrogen (N) deficiency, the underlying physiological and molecular mechanisms are largely unknown. Here, we reveal that BBX14, a previously uncharacterized BBX-type transcription factor in Arabidopsis, is crucial for N starvation-induced leaf senescence. We find that inhibiting BBX14 by artificial miRNA (amiRNA) accelerates senescence during N starvation and in darkness, while BBX14 overexpression (BBX14-OX) delays it, identifying BBX14 as a negative regulator of N starvation- and dark-induced senescence. During N starvation, nitrate and amino acids like glutamic acid, glutamine, aspartic acid, and asparagine were highly retained in BBX14-OX leaves compared to the wild type. Transcriptome analysis showed a large number of senescence-associated genes (SAGs) to be differentially expressed between BBX14-OX and wild-type plants, including ETHYLENE INSENSITIVE3 (EIN3) which regulates N signaling and leaf senescence. Chromatin immunoprecipitation (ChIP) showed that BBX14 directly regulates EIN3 transcription. Furthermore, we revealed the upstream transcriptional cascade of BBX14. By yeast one-hybrid screen and ChIP, we found that MYB44, a stress-responsive MYB transcription factor, directly binds to the promoter of BBX14 and activates its expression. In addition, Phytochrome Interacting Factor 4 (PIF4) binds to the promoter of BBX14 to repress BBX14 transcription. Thus, BBX14 functions as a negative regulator of N starvation-induced senescence through EIN3 and is directly regulated by PIF4 and MYB44.
Collapse
Affiliation(s)
- Selin Buelbuel
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| | - Yasuhito Sakuraba
- Graduate School of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Mastoureh Sedaghatmehr
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| | - Mutsumi Watanabe
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rainer Hoefgen
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Salma Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| | - Bernd Mueller-Roeber
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| |
Collapse
|
21
|
Jiang Z, Zhang H, Gao S, Zhai H, He S, Zhao N, Liu Q. Genome-Wide Identification and Expression Analysis of the Sucrose Synthase Gene Family in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2023; 24:12493. [PMID: 37569874 PMCID: PMC10420203 DOI: 10.3390/ijms241512493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Z.J.); (H.Z.); (S.G.); (H.Z.); (S.H.); (N.Z.)
| |
Collapse
|
22
|
Song H, Ding G, Zhao C, Li Y. Genome-Wide Identification of B-Box Gene Family and Expression Analysis Suggest Its Roles in Responses to Cercospora Leaf Spot in Sugar Beet ( Beta Vulgaris L.). Genes (Basel) 2023; 14:1248. [PMID: 37372426 DOI: 10.3390/genes14061248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The B-box (BBX) protein, which is a zinc-finger protein containing one or two B-box domains, plays a crucial role in the growth and development of plants. Plant B-box genes are generally involved in morphogenesis, the growth of floral organs, and various life activities in response to stress. In this study, the sugar beet B-box genes (hereafter referred to as BvBBXs) were identified by searching the homologous sequences of the Arabidopsis thaliana B-box gene family. The gene structure, protein physicochemical properties, and phylogenetic analysis of these genes were systematically analyzed. In this study, 17 B-box gene family members were identified from the sugar beet genome. A B-box domain can be found in all sugar beet BBX proteins. BvBBXs encode 135 to 517 amino acids with a theoretical isoelectric point of 4.12 to 6.70. Chromosome localization studies revealed that BvBBXs were dispersed across nine sugar beet chromosomes except chromosomes 5 and 7. The sugar beet BBX gene family was divided into five subfamilies using phylogenetic analysis. The gene architectures of subfamily members on the same evolutionary tree branch are quite similar. Light, hormonal, and stress-related cis-acting elements can be found in the promoter region of BvBBXs. The BvBBX gene family was differently expressed in sugar beet following Cercospora leaf spot infection, according to RT-qPCR data. It is shown that the BvBBX gene family may influence how the plant reacts to a pathogen infection.
Collapse
Affiliation(s)
- He Song
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Guangzhou Ding
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| | - Chunlei Zhao
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| | - Yanli Li
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| |
Collapse
|
23
|
Mathura SR. Deciphering the hormone regulatory mechanisms of storage root initiation in sweet potato: challenges and future prospects. AOB PLANTS 2023; 15:plad027. [PMID: 37292251 PMCID: PMC10244897 DOI: 10.1093/aobpla/plad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Sweet potato (Ipomoea batatas) is an economically important food crop that is grown primarily for its edible storage roots. Several researchers have consequently been conducting studies to increase sweet potato yield, and an important aspect of this research involves understanding how storage root initiation occurs. Although significant progress has been made, several challenges associated with studying this crop have resulted in lagging progress compared to other crops and thus sweet potato storage root initiation is not clearly understood. This article highlights the most important aspects of the hormone signalling processes during storage root initiation that needs to be investigated further and suggests candidate genes that should be prioritized for further study, based on their importance in storage organ formation in other crops. Lastly, ways of overcoming the challenges associated with studying this crop are suggested.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
24
|
Saura-Sánchez M, Chiriotto TS, Cascales J, Gómez-Ocampo G, Hernández-García J, Li Z, Pruneda-Paz JL, Blázquez MA, Botto JF. BBX24 Interacts with JAZ3 to Promote Growth by Reducing DELLA Activity in Shade Avoidance. PLANT & CELL PHYSIOLOGY 2023; 64:474-485. [PMID: 36715091 DOI: 10.1093/pcp/pcad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 05/17/2023]
Abstract
Shade avoidance syndrome (SAS) is a strategy of major adaptive significance and typically includes elongation of the stem and petiole, leaf hyponasty, reduced branching and phototropic orientation of the plant shoot toward canopy gaps. Both cryptochrome 1 and phytochrome B (phyB) are the major photoreceptors that sense the reduction in the blue light fluence rate and the low red:far-red ratio, respectively, and both light signals are associated with plant density and the resource reallocation when SAS responses are triggered. The B-box (BBX)-containing zinc finger transcription factor BBX24 has been implicated in the SAS as a regulator of DELLA activity, but this interaction does not explain all the observed BBX24-dependent regulation in shade light. Here, through a combination of transcriptional meta-analysis and large-scale identification of BBX24-interacting transcription factors, we found that JAZ3, a jasmonic acid signaling component, is a direct target of BBX24. Furthermore, we demonstrated that joint loss of BBX24 and JAZ3 function causes insensitivity to DELLA accumulation, and the defective shade-induced elongation in this mutant is rescued by loss of DELLA or phyB function. Therefore, we propose that JAZ3 is part of the regulatory network that controls the plant growth in response to shade, through a mechanism in which BBX24 and JAZ3 jointly regulate DELLA activity. Our results provide new insights into the participation of BBX24 and JA signaling in the hypocotyl shade avoidance response in Arabidopsis.
Collapse
Affiliation(s)
- Maite Saura-Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Tai Sabrina Chiriotto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jimena Cascales
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Gabriel Gómez-Ocampo
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Zheng Li
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0348, USA
| | - José Luis Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0348, USA
| | - Miguel Angel Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Javier Francisco Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| |
Collapse
|
25
|
Zhang Y, Lyu S, Hu Z, Yang X, Zhu H, Deng S. Identification and functional characterization of the SUMO system in sweet potato under salt and drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111645. [PMID: 36828141 DOI: 10.1016/j.plantsci.2023.111645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Sumoylation is a crucial post-translation modification (PTM) that is the covalent attachment of SUMO molecules to the substrate catalyzed by enzyme cascade. Sumoylation is essential in almost every physiological process of plants, particularly in response to abiotic stress. However, little is known about sumoylation in sweet potato (Ipomoea batatas), the world's seventh most important food crop. In this study, 17 sweet potato SUMO system genes have been cloned and functionally characterized. Multiple sequence alignment and phylogenetic analysis showed sweet potato SUMO system proteins had conserved domains and activity sites. IbSUMOs, IbSAE1, and IbSCE1 were localized in the cytoplasm and nucleus. E3 SUMO ligases showed nuclear or punctate localization. In vitro sumoylation assay confirmed the catalytic activity of sweet potato SUMO system components. Heterologous expression of IbSIZ1 genes in Arabidopsis atsiz1 mutant rescued the defective germination and growth phenotype. IbSCE1a/b and IbSIZ1a/b/c were salt and drought responsive genes. Heterologous expression of IbSCE1a/b/c improved the drought tolerance of Arabidopsis thaliana, while IbSIZ1a/b/c significantly enhanced the salt and drought tolerance. Our findings define that the SUMO system in sweet potato shared with conserved function but also possessed specific characterization. The resources presented here would facilitate uncovering the significance of sumoylation in sweet potato.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shanwu Lyu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhifang Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xuangang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shulin Deng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
26
|
Zhang C, Luo Q, Tang W, Ma J, Yang D, Chen J, Gao F, Sun H, Xie Y. Transcriptome Characterization and Gene Changes Induced by Fusarium solani in Sweetpotato Roots. Genes (Basel) 2023; 14:genes14050969. [PMID: 37239329 DOI: 10.3390/genes14050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Sweetpotato (Ipomoea batatas) is an important root crop that is infected by Fusarium solani in both seedling and root stages, causing irregular black or brown disease spots and root rot and canker. This study aims to use RNA sequencing technology to investigate the dynamic changes in root transcriptome profiles between control check and roots at 6 h, 24 h, 3 days, and 5 days post-inoculation (hpi/dpi) with F. solani. The results showed that the defense reaction of sweetpotato could be divided into an early step (6 and 24 hpi) without symptoms and a late step to respond to F. solani infection (3 and 5 dpi). The differentially expressed genes (DEGs) in response to F. solani infection were enriched in the cellular component, biological process, and molecular function, with more DEGs in the biological process and molecular function than in the cellular component. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the main pathways were metabolic pathways, the biosynthesis of secondary metabolites, and carbon metabolism. More downregulated genes were identified than upregulated genes in the plant-pathogen interaction and transcription factors, which might be related to the degree of host resistance to F. solani. The findings of this study provide an important basis to further characterize the complex mechanisms of sweetpotato resistance against biotic stress and identify new candidate genes for increasing the resistance of sweetpotato.
Collapse
Affiliation(s)
- Chengling Zhang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Qinchuan Luo
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Wei Tang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Jukui Ma
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Dongjing Yang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Jingwei Chen
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Fangyuan Gao
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Houjun Sun
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Yiping Xie
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| |
Collapse
|
27
|
Luo D, Sun W, Cai J, Hu G, Zhang D, Zhang X, Larkin RM, Zhang J, Yang C, Ye Z, Wang T. SlBBX20 attenuates JA signalling and regulates resistance to Botrytis cinerea by inhibiting SlMED25 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:792-805. [PMID: 36582069 PMCID: PMC10037119 DOI: 10.1111/pbi.13997] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Jasmonic acid (JA) plays an important role in regulating plant growth and defence responses. Here, we show that a transcription factor that belongs to the B-box (BBX) family named SlBBX20 regulates resistance to Botrytis cinerea in tomato by modulating JA signalling. The response to JA was significantly suppressed when SlBBX20 was overexpressed in tomato. By contrast, the JA response was enhanced in SlBBX20 knockout lines. RNA sequencing analysis provided more evidence that SlBBX20 modulates the expression of genes that are involved in JA signalling. We found that SlBBX20 interacts with SlMED25, a subunit of the Mediator transcriptional co-activator complex, and prevents the accumulation of the SlMED25 protein and transcription of JA-responsive genes. JA contributes to the defence response against necrotrophic pathogens. Knocking out SlBBX20 or overexpressing SlMED25 enhanced tomato resistance to B. cinerea. The resistance was impaired when SlBBX20 was overexpressed in plants that also overexpressed SlMED25. These data show that SlBBX20 attenuates JA signalling by regulating SlMED25. Interestingly, in addition to developing enhanced resistance to B. cinerea, SlBBX20-KO plants also produced higher fruit yields. SlBBX20 is a potential target gene for efforts that aim to develop elite crop varieties using gene editing technologies.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Wenhui Sun
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Jun Cai
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Guoyu Hu
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Danqiu Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Xiaoyan Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Junhong Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Changxian Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Zhibiao Ye
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| |
Collapse
|
28
|
Zhou Y, Li Y, Yu T, Li J, Qiu X, Zhu C, Liu J, Dang F, Yang Y. Characterization of the B-BOX gene family in pepper and the role of CaBBX14 in defense response against Phytophthora capsici infection. Int J Biol Macromol 2023; 237:124071. [PMID: 36958453 DOI: 10.1016/j.ijbiomac.2023.124071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/12/2023] [Accepted: 03/05/2023] [Indexed: 03/25/2023]
Abstract
The B-box (BBX) transcription factors are widely implicated in plant growth, development, and response to various biotic and abiotic stresses. However, their roles in the response of pepper to Phytophthora capsici infection (PCI) remain largely unexplored. Here, we report a total of 25 CaBBX genes with an uneven distribution were identified in pepper genome, and their characteristics, phylogenetic relationships, gene structures, conserved domains, and expression profiles were validated. CaBBXs were classified into five major clades (I to V) based on their phylogenetic relationships and conserved domains (presence of one or two B-box domains and a CCT domain). Gene duplication analysis demonstrated that there are two segmental duplication events but no tandem duplication event within pepper genome. Conserved motif and gene structure analysis revealed that the CaBBXs in the same clade have relatively similar motif arrangements and exon-intron patterns. Expression analysis revealed that the CaBBX genes have different expression levels in various tissues, and some of which were significantly induced during PCI and exogenous salicylic acid (SA) treatment. Among them, CaBBX14 displayed remarkable changed expression during PCI and SA treatment. The silencing of CaBBX14 increases pepper susceptibility to PCI, and also decreases in SA content and expression of pathogenesis-related (PR) and SA-related genes compared with control plants. Together, these findings advance our knowledge base on biological functions of CaBBXs in pepper during PCI through the SA signaling pathway, and we provide an example demonstrating that the potential of CaBBX14 to improve pepper resistance to PCI.
Collapse
Affiliation(s)
- Yong Zhou
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Li
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Yu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingwen Li
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuewen Qiu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuxia Zhu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Liu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fengfeng Dang
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
29
|
Lou Y, Jin X, Jia Z, Sun Y, Xu Y, Liu Z, Tan S, Yi F, Duan L. Coronatine-Based Gene Expression Changes Impart Partial Resistance to Fall Armyworm ( Spodoptera frugiperda) in Seedling Maize. Genes (Basel) 2023; 14:735. [PMID: 36981006 PMCID: PMC10048583 DOI: 10.3390/genes14030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, Spodoptera frugiperda (S. frugiperda, Smith) has invaded China, seriously threatening maize production. To explore an effective method to curb the further expansion of the harm of the S. frugiperda, this experiment used maize seedlings of the Zhengdan 958 three-leaf stage (V3) of maize as the material to study the effect of coronatine (COR) on the ability of maize to resist insects (S. frugiperda) at the seedling stage. The results showed that when maize was sprayed with 0.05 μM COR, the newly incubated larvae of S. frugiperda had the least leaf feeding. It was found that 0.05 μM COR significantly increased the contents of abscisic acid (ABA) and jasmonate (JA) in maize leaves through the determination of hormone content. Moreover, transcriptome sequencing revealed that the expression of six genes (ZmBX1, ZmBX2, ZmBX3, ZmBX4, ZmBX5 and ZmBX6), which are associated with the synthesis of benzoxazinoid, were upregulated. Nine genes (ZmZIM3, ZmZIM4, ZmZIM10, ZmZIM13, ZmZIM18, ZmZIM23, ZmZIM27, ZmZIM28 and ZmZIM38) of JA-Zim Domain (JAZ) protein in the JA signal pathway, and seven genes (ZmPRH19, ZmPRH18, Zm00001d024732, Zm00001d034109, Zm00001d026269, Zm00001d028574 and Zm00001d013220) of ABA downstream response protein Group A Type 2C Protein Phosphatase (PP2C) were downregulated. These results demonstrated that COR could induce anti-insect factors and significantly improve insect resistance in seedling maize, which laid a theoretical foundation for further study of the mechanism of COR improving insect resistance in seedling maize, and provided data references for the use of COR as an environmentally friendly pest control method.
Collapse
Affiliation(s)
- Yuxuan Lou
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoxiao Jin
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhiguo Jia
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuqi Sun
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yiming Xu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zihan Liu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shuqian Tan
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 100193, China
| |
Collapse
|
30
|
Xing S, Li R, Zhao H, Zhai H, He S, Zhang H, Zhou Y, Zhao N, Gao S, Liu Q. The transcription factor IbNAC29 positively regulates the carotenoid accumulation in sweet potato. HORTICULTURE RESEARCH 2023; 10:uhad010. [PMID: 36960431 PMCID: PMC10028406 DOI: 10.1093/hr/uhad010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Carotenoid is a tetraterpene pigment beneficial for human health. Although the carotenoid biosynthesis pathway has been extensively studied in plants, relatively little is known about their regulation in sweet potato. Previously, we conducted the transcriptome database of differentially expressed genes between the sweet potato (Ipomoea batatas) cultivar 'Weiduoli' and its high-carotenoid mutant 'HVB-3'. In this study, we selected one of these candidate genes, IbNAC29, for subsequent analyses. IbNAC29 belongs to the plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor family. Relative IbNAC29 mRNA level in the HVB-3 storage roots was ~1.71-fold higher than Weiduoli. Additional experiments showed that the contents of α-carotene, lutein, β-carotene, zeaxanthin, and capsanthin are obviously increased in the storage roots of transgenic sweet potato plants overexpressing IbNAC29. Moreover, the levels of carotenoid biosynthesis genes in transgenic plants were also up-regulated. Nevertheless, yeast one-hybrid assays indicated that IbNAC29 could not directly bind to the promoters of these carotenoid biosynthesis genes. Furthermore, the level of IbSGR1 was down-regulated, whose homologous genes in tomato can negatively regulate carotene accumulation. Yeast three-hybrid analysis revealed that the IbNAC29-IbMYB1R1-IbAITR5 could form a regulatory module. Yeast one-hybrid, electrophoretic mobility shift assay, quantitative PCR analysis of chromatin immunoprecipitation and dual-luciferase reporter assay showed that IbAITR5 directly binds to and inhibits the promoter activity of IbSGR1, up-regulating carotenoid biosynthesis gene IbPSY. Taken together, IbNAC29 is a potential candidate gene for the genetic improvement of nutritive value in sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruijie Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haoqiang Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
31
|
Sun S, Li X, Nie N, Chen Y, Gao S, Zhang H, He S, Liu Q, Zhai H. Sweet potato NAC transcription factor NAC43 negatively regulates plant growth by causing leaf curling and reducing photosynthetic efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1095977. [PMID: 36895881 PMCID: PMC9988925 DOI: 10.3389/fpls.2023.1095977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Leaves comprise one of the most important organs for plant growth and development. Although there have been some reports on leaf development and the establishment of leaf polarity, their regulatory mechanisms are not very clear. In this study, we isolated a NAC (NAM, ATAF, and CUC) transcription factor (TF), i.e., IbNAC43, from Ipomoea trifida, which is a wild ancestor of sweet potato. This TF was highly expressed in the leaves and encoded a nuclear localization protein. The overexpression of IbNAC43 caused leaf curling and inhibited the growth and development of transgenic sweet potato plants. The chlorophyll content and photosynthetic rate in transgenic sweet potato plants were significantly lower than those in wild-type (WT) plants. Scanning electron microscopy (SEM) and paraffin sections showed that the ratio of cells in the upper and lower epidermis of the transgenic plant leaves was unbalanced; moreover, the abaxial epidermal cells were irregular and uneven in transgenic plants. In addition, the xylem of transgenic plants was more developed than that of WT plants, while their lignin and cellulose contents were significantly higher than those of WT. Quantitative real-time PCR (qRT-PCR) analysis showed that the overexpression of IbNAC43 upregulated the genes involved in leaf polarity development and lignin biosynthesis in transgenic plants. Moreover, it was found that IbNAC43 could directly activate the expression of the leaf adaxial polarity-related genes IbREV and IbAS1 by binding to their promoters. These results indicate that IbNAC43 might play a critical role in plant growth by affecting the establishment of leaf adaxial polarity. This study provides new insights regarding leaf development.
Collapse
|
32
|
Medina-Fraga AL, Chinen LA, Demkura PV, Lichy MZ, Gershenzon J, Ballaré CL, Crocco CD. AtBBX29 integrates photomorphogenesis and defense responses in Arabidopsis. Photochem Photobiol Sci 2023:10.1007/s43630-023-00391-8. [PMID: 36807054 DOI: 10.1007/s43630-023-00391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
Light is an environmental signal that modulates plant defenses against attackers. Recent research has focused on the effects of light on defense hormone signaling; however, the connections between light signaling pathways and the biosynthesis of specialized metabolites involved in plant defense have been relatively unexplored. Here, we show that Arabidopsis BBX29, a protein that belongs to the B-Box transcription factor (TF) family, integrates photomorphogenic signaling with defense responses by promoting flavonoid, sinapate and glucosinolate accumulation in Arabidopsis leaves. AtBBX29 transcript levels were up regulated by light, through photoreceptor signaling pathways. Genetic evidence indicated that AtBBX29 up-regulates MYB12 gene expression, a TF known to induce genes related to flavonoid biosynthesis in a light-dependent manner, and MYB34 and MYB51, which encode TFs involved in the regulation of glucosinolate biosynthesis. Thus, bbx29 knockout mutants displayed low expression levels of key genes of the flavonoid biosynthetic pathway, and the opposite was true in BBX29 overexpression lines. In agreement with the transcriptomic data, bbx29 mutant plants accumulated lower levels of kaempferol glucosides, sinapoyl malate, indol-3-ylmethyl glucosinolate (I3M), 4-methylsulfinylbutyl glucosinolate (4MSOB) and 3-methylthiopropyl glucosinolate (3MSP) in rosette leaves compared to the wild-type, and showed increased susceptibility to the necrotrophic fungus Botrytis cinerea and to the herbivore Spodoptera frugiperda. In contrast, BBX29 overexpressing plants displayed increased resistance to both attackers. In addition, we found that AtBBX29 plays an important role in mediating the effects of ultraviolet-B (UV-B) radiation on plant defense against B. cinerea. Taken together, these results suggest that AtBBX29 orchestrates the accumulation of specific light-induced metabolites and regulates Arabidopsis resistance against pathogens and herbivores.
Collapse
Affiliation(s)
- Ana L Medina-Fraga
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas A Chinen
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia V Demkura
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Z Lichy
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Carlos L Ballaré
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- IIBIO, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos D Crocco
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
33
|
Nie N, Huo J, Sun S, Zuo Z, Chen Y, Liu Q, He S, Gao S, Zhang H, Zhao N, Zhai H. Genome-Wide Characterization of the PIFs Family in Sweet Potato and Functional Identification of IbPIF3.1 under Drought and Fusarium Wilt Stresses. Int J Mol Sci 2023; 24:ijms24044092. [PMID: 36835500 PMCID: PMC9965949 DOI: 10.3390/ijms24044092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Phytochrome-interacting factors (PIFs) are essential for plant growth, development, and defense responses. However, research on the PIFs in sweet potato has been insufficient to date. In this study, we identified PIF genes in the cultivated hexaploid sweet potato (Ipomoea batatas) and its two wild relatives, Ipomoea triloba, and Ipomoea trifida. Phylogenetic analysis revealed that IbPIFs could be divided into four groups, showing the closest relationship with tomato and potato. Subsequently, the PIFs protein properties, chromosome location, gene structure, and protein interaction network were systematically analyzed. RNA-Seq and qRT-PCR analyses showed that IbPIFs were mainly expressed in stem, as well as had different gene expression patterns in response to various stresses. Among them, the expression of IbPIF3.1 was strongly induced by salt, drought, H2O2, cold, heat, Fusarium oxysporum f. sp. batatas (Fob), and stem nematodes, indicating that IbPIF3.1 might play an important role in response to abiotic and biotic stresses in sweet potato. Further research revealed that overexpression of IbPIF3.1 significantly enhanced drought and Fusarium wilt tolerance in transgenic tobacco plants. This study provides new insights for understanding PIF-mediated stress responses and lays a foundation for future investigation of sweet potato PIFs.
Collapse
Affiliation(s)
- Nan Nie
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinxi Huo
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sifan Sun
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhidan Zuo
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanqi Chen
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62732559
| |
Collapse
|
34
|
Wu Z, Fu D, Gao X, Zeng Q, Chen X, Wu J, Zhang N. Characterization and expression profiles of the B-box gene family during plant growth and under low-nitrogen stress in Saccharum. BMC Genomics 2023; 24:79. [PMID: 36800937 PMCID: PMC9936747 DOI: 10.1186/s12864-023-09185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND B-box (BBX) zinc-finger transcription factors play crucial roles in plant growth, development, and abiotic stress responses. Nevertheless, little information is available on sugarcane (Saccharum spp.) BBX genes and their expression profiles. RESULTS In the present study, we characterized 25 SsBBX genes in the Saccharum spontaneum genome database. The phylogenetic relationships, gene structures, and expression patterns of these genes during plant growth and under low-nitrogen conditions were systematically analyzed. The SsBBXs were divided into five groups based on phylogenetic analysis. The evolutionary analysis further revealed that whole-genome duplications or segmental duplications were the main driving force for the expansion of the SsBBX gene family. The expression data suggested that many BBX genes (e.g., SsBBX1 and SsBBX13) may be helpful in both plant growth and low-nitrogen stress tolerance. CONCLUSIONS The results of this study offer new evolutionary insight into the BBX family members in how sugarcane grows and responds to stress, which will facilitate their utilization in cultivated sugarcane breeding.
Collapse
Affiliation(s)
- Zilin Wu
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Danwen Fu
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Xiaoning Gao
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China ,grid.464309.c0000 0004 6431 5677Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, 524300 Guangdong China
| | - Qiaoying Zeng
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Xinglong Chen
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Jiayun Wu
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, Guangdong, China.
| |
Collapse
|
35
|
Gao XR, Zhang H, Li X, Bai YW, Peng K, Wang Z, Dai ZR, Bian XF, Zhang Q, Jia LC, Li Y, Liu QC, Zhai H, Gao SP, Zhao N, He SZ. The B-box transcription factor IbBBX29 regulates leaf development and flavonoid biosynthesis in sweet potato. PLANT PHYSIOLOGY 2023; 191:496-514. [PMID: 36377782 PMCID: PMC9806656 DOI: 10.1093/plphys/kiac516] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 06/01/2023]
Abstract
Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.
Collapse
Affiliation(s)
- Xiao-ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Yi-wei Bai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-feng Bian
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Li-cong Jia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yan Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qing-chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-zhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| |
Collapse
|
36
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
37
|
Xue L, Wei Z, Zhai H, Xing S, Wang Y, He S, Gao S, Zhao N, Zhang H, Liu Q. The IbPYL8-IbbHLH66-IbbHLH118 complex mediates the abscisic acid-dependent drought response in sweet potato. THE NEW PHYTOLOGIST 2022; 236:2151-2171. [PMID: 36128653 DOI: 10.1111/nph.18502] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Drought limits crop development and yields. bHLH (basic helix-loop-helix) transcription factors play critical roles in regulating the drought response in many plants, but their roles in this process in sweet potato are unknown. Here, we report that two bHLH proteins, IbbHLH118 and IbbHLH66, play opposite roles in the ABA-mediated drought response in sweet potato. ABA treatment repressed IbbHLH118 expression but induced IbbHLH66 expression in the drought-tolerant sweet potato line Xushu55-2. Overexpressing IbbHLH118 reduced drought tolerance, whereas overexpressing IbbHLH66 enhanced drought tolerance, in sweet potato. IbbHLH118 directly binds to the E-boxes in the promoters of ABA-insensitive 5 (IbABI5), ABA-responsive element binding factor 2 (IbABF2) and tonoplast intrinsic protein 1 (IbTIP1) to suppress their transcription. IbbHLH118 forms homodimers with itself or heterodimers with IbbHLH66. Both of the IbbHLHs interact with the ABA receptor IbPYL8. ABA accumulates under drought stress, promoting the formation of the IbPYL8-IbbHLH66-IbbHLH118 complex. This complex interferes with IbbHLH118's repression of ABA-responsive genes, thereby activating ABA responses and enhancing drought tolerance. These findings shed light on the role of the IbPYL8-IbbHLH66-IbbHLH118 complex in the ABA-dependent drought response of sweet potato and identify candidate genes for developing elite crop varieties with enhanced drought tolerance.
Collapse
Affiliation(s)
- Luyao Xue
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuxin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
38
|
Liu X, Chen H, Li S, Lecourieux D, Duan W, Fan P, Liang Z, Wang L. Natural variations of HSFA2 enhance thermotolerance in grapevine. HORTICULTURE RESEARCH 2022; 10:uhac250. [PMID: 36643748 PMCID: PMC9832954 DOI: 10.1093/hr/uhac250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 06/02/2023]
Abstract
Heat stress limits growth and development of crops including grapevine which is a popular fruit in the world. Genetic variability in crops thermotolerance is not well understood. We identified and characterized heat stress transcription factor HSFA2 in heat sensitive Vitis vinifera 'Jingxiu' (named as VvHSFA2) and heat tolerant Vitis davidii 'Tangwei' (named as VdHSFA2). The transcriptional activation activities of VdHSFA2 are higher than VvHSFA2, the variation of single amino acid (Thr315Ile) in AHA1 motif leads to the difference of transcription activities between VdHSFA2 and VvHSFA2. Based on 41 Vitis germplasms, we found that HSFA2 is differentiated at coding region among heat sensitive V. vinifera, and heat tolerant Vitis davidii and Vitis quinquangularis. Genetic evidence demonstrates VdHSFA2 and VvHSFA2 are positive regulators in grape thermotolerance, and the former can confer higher thermotolerance than the latter. Moreover, VdHSFA2 can regulate more target genes than VvHSFA2. As a target gene of both VdHSFA2 and VvHSFA2, overexpression of MBF1c enhanced the grape thermotolerance whereas dysfunction of MBF1c resulted in thermosensitive phenotype. Together, our results revealed that VdHSFA2 confers higher thermotolerance than VvHSFA2, and MBF1c acts as their target gene to induce thermotolerance. The VdHSFA2 may be adopted for molecular breeding in grape thermotolerance.
Collapse
Affiliation(s)
- Xinna Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Chen
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenchang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Lecourieux
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Bordeaux University, Villenave d'Ornon F-33882, France
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | | |
Collapse
|
39
|
Zhou Y, Zhai H, Xing S, Wei Z, He S, Zhang H, Gao S, Zhao N, Liu Q. A novel small open reading frame gene, IbEGF, enhances drought tolerance in transgenic sweet potato. FRONTIERS IN PLANT SCIENCE 2022; 13:965069. [PMID: 36388596 PMCID: PMC9660231 DOI: 10.3389/fpls.2022.965069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Small open reading frames (sORFs) can encode functional polypeptides or act as cis-translational regulators in stress responses in eukaryotes. Their number and potential importance have only recently become clear in plants. In this study, we identified a novel sORF gene in sweet potato, IbEGF, which encoded the 83-amino acid polypeptide containing an EGF_CA domain. The expression of IbEGF was induced by PEG6000, H2O2, abscisic acid (ABA), methyl-jasmonate (MeJA) and brassinosteroid (BR). The IbEGF protein was localized to the nucleus and cell membrane. Under drought stress, overexpression of IbEGF enhanced drought tolerance, promoted the accumulation of ABA, MeJA, BR and proline and upregulated the genes encoding superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in transgenic sweet potato. The IbEGF protein was found to interact with IbCOP9-5α, a regulator in the phytohormone signalling pathways. These results suggest that IbEGF interacting with IbCOP9-5α enhances drought tolerance by regulating phytohormone signalling pathways, increasing proline accumulation and further activating reactive oxygen species (ROS) scavenging system in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Dong J, Zhang J, Liu X, Zhao C, He L, Tang R, Wang W, Li R, Jia X. RETRACTED: Genome-wide analysis of the B-box gene family in the sweetpotato wild ancestor Ipomoea trifida and determination of the function of IbBBX28 in the regulation of flowering time of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:109-122. [PMID: 36029691 DOI: 10.1016/j.plaphy.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of of the Editors-in-Chief. A large part of the article is highly similar to the paper previously published by Wenqian Hou, Lei Ren, Yang Zhang, Haoyun Sun, Tianye Shi, Yulan Gu, Aimin Wang, Daifu Ma, Zongyun Li and Lei Zhang in Scientia Horticulturae 288 (2021) 110374 https://doi.org/10.1016/j.scienta.2021.110374. In particular, a large part of the two articles shows a study on the same gene family in the same plant, with similar methodological approaches, resulting in a series of highly similar figures. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Jingjing Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xiayu Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Cailiang Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Ruimin Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Wenbin Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
41
|
Jing Y, Zhan M, Li C, Pei T, Wang Q, Li P, Ma F, Liu C. The apple FERONIA receptor-like kinase MdMRLK2 negatively regulates Valsa canker resistance by suppressing defence responses and hypersensitive reaction. MOLECULAR PLANT PATHOLOGY 2022; 23:1170-1186. [PMID: 35412700 PMCID: PMC9276949 DOI: 10.1111/mpp.13218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 05/05/2023]
Abstract
Valsa canker, caused by the fungus Valsa mali, is one of the most destructive diseases of apple trees in China and other East Asian countries. The plant receptor-like kinase FERONIA is involved in plant cell growth, development, and immunity. However, little is known about the function of FERONIA in apple defence against V. mali. In this study, we found that MdMRLK2 was highly induced by V. mali in twigs of V. mali-susceptible Malus mellana but not in those of the resistant species Malus yunnaensis. 35S:MdMRLK2 apple plants showed compromised resistance relative to wild-type (WT) plants. Further analyses indicated that 35S:MdMRLK2 apple plants had enhanced abscisic acid (ABA) levels and reduced salicylic acid (SA) levels relative to the WT on V. mali infection. MdMRLK2 overexpression also suppressed polyphenol accumulation and inhibited the activities of phenylalanine ammonia-lyase (PAL), β-1,3-glucanase (GLU), and chitinase (CHT) during V. mali infection. Moreover, MdMRLK2 interacted with MdHIR1, a hypersensitive-induced response protein, and suppressed the MdHIR1-mediated hypersensitive reaction (HR), probably by impairing MdHIR1 self-interaction. Collectively, these findings demonstrate that overexpression of MdMRLK2 compromises Valsa canker resistance, probably by (a) altering ABA and SA levels, (b) suppressing polyphenol accumulation, (c) inhibiting PAL, GLU, and CHT activities, and (d) blocking MdHIR1-mediated HR by disrupting MdHIR1 self-interaction.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
42
|
Comparative Transcriptome Profiling Reveals the Genes Involved in Storage Root Expansion in Sweetpotato (Ipomoea batatas (L.) Lam.). Genes (Basel) 2022; 13:genes13071156. [PMID: 35885939 PMCID: PMC9321896 DOI: 10.3390/genes13071156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) is recognized as one of the most important root crops in the world by the Food and Agriculture Organization of the United Nations. The yield of sweetpotato is closely correlated with the rate of storage root (SR) formation and expansion. At present, most of the studies on sweetpotato SR expansion are focused on the physiological mechanism. To explore the SR expansion mechanism of sweetpotato, we performed transcriptome sequencing of SR harvested at 60, 90, 120, and 150 days after planting (DAP) to analyze two sweetpotato lines, Xuzishu 8 and its crossing progenies named Xu 18-192, which were selected from an F1 segregation population of Xuzishu 8 and Meiguohong, in which SR expansion was delayed significantly. A total of 57,043 genes were produced using transcriptome sequencing, of which 1312 were differentially expressed genes (DEGs) in four SR growth periods of the sweetpotato lines. The combination of the KEGG and trend analysis revealed several key candidate genes involved in SR expansion. The SBEI gene involved in starch metabolism, and transcription factors ARF6, NF-YB3 and NF-YB10 were all significantly up-regulated during SR expansion. The data from this study provide insights into the complex mechanisms of SR formation and expansion in sweetpotato and identify new candidate genes for increasing the yield of sweetpotato.
Collapse
|
43
|
Li M, Chen L, Lang T, Qu H, Zhang C, Feng J, Pu Z, Peng M, Lin H. Genome-Wide Identification and Expression Analysis of Expansin Gene Family in the Storage Root Development of Diploid Wild Sweetpotato Ipomoea trifida. Genes (Basel) 2022; 13:genes13061043. [PMID: 35741805 PMCID: PMC9222398 DOI: 10.3390/genes13061043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Expansins play important roles in root growth and development, but investigation of the expansin gene family has not yet been reported in Ipomoea trifida, and little is known regarding storage root (SR) development. In this work, we identified a total of 37 expansins (ItrEXPs) in our previously reported SR-forming I. trifida strain Y22 genome, which included 23 ItrEXPAs, 4 ItrEXPBs, 2 ItrEXLAs and 8 ItrEXLBs. The phylogenetic relationship, genome localization, subcellular localization, gene and protein structure, promoter cis-regulating elements, and protein interaction network were systematically analyzed to reveal the possible roles of ItrEXPs in the SR development of I. trifida. The gene expression profiling in Y22 SR development revealed that ItrEXPAs and ItrEXLBs were down-regulated, and ItrEXPBs were up-regulated while ItrEXLAs were not obviously changed during the critical period of SR expansion, and might be beneficial to SR development. Combining the tissue-specific expression in young SR transverse sections of Y22 and sweetpotato tissue, we deduced that ItrEXLB05, ItrEXLB07 and ItrEXLB08 might be the key genes for initial SR formation and enlargement, and ItrEXLA02 might be the key gene for root growth and development. This work provides new insights into the functions of the expansin gene family members in I. trifida, especially for EXLA and EXLB subfamilies genes in SR development.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China; (T.L.); (H.Q.); (C.Z.); (J.F.); (Z.P.)
| | - Lianfu Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Tao Lang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China; (T.L.); (H.Q.); (C.Z.); (J.F.); (Z.P.)
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China; (T.L.); (H.Q.); (C.Z.); (J.F.); (Z.P.)
| | - Cong Zhang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China; (T.L.); (H.Q.); (C.Z.); (J.F.); (Z.P.)
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China; (T.L.); (H.Q.); (C.Z.); (J.F.); (Z.P.)
| | - Zhigang Pu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China; (T.L.); (H.Q.); (C.Z.); (J.F.); (Z.P.)
| | - Meifang Peng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China; (T.L.); (H.Q.); (C.Z.); (J.F.); (Z.P.)
- Correspondence: (M.P.); (H.L.)
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
- Correspondence: (M.P.); (H.L.)
| |
Collapse
|
44
|
Yang Y, Zhang X, Zou H, Chen J, Wang Z, Luo Z, Yao Z, Fang B, Huang L. Exploration of molecular mechanism of intraspecific cross-incompatibility in sweetpotato by transcriptome and metabolome analysis. PLANT MOLECULAR BIOLOGY 2022; 109:115-133. [PMID: 35338442 PMCID: PMC9072463 DOI: 10.1007/s11103-022-01259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Cross-incompatibility, frequently happening in intraspecific varieties, has seriously restricted sweetpotato breeding. However, the mechanism of sweetpotato intraspecific cross-incompatibility (ICI) remains largely unexplored, especially for molecular mechanism. Treatment by inducible reagent developed by our lab provides a method to generate material for mechanism study, which could promote incompatible pollen germination and tube growth in the ICI group. Based on the differential phenotypes between treated and untreated samples, transcriptome and metabolome were employed to explore the molecular mechanism of sweetpotato ICI in this study, taking varieties 'Guangshu 146' and 'Shangshu 19', a typical incompatible combination, as materials. The results from transcriptome analysis showed oxidation-reduction, cell wall metabolism, plant-pathogen interaction, and plant hormone signal transduction were the essential pathways for sweetpotato ICI regulation. The differentially expressed genes (DEGs) enriched in these pathways were the important candidate genes to response ICI. Metabolome analysis showed that multiple differential metabolites (DMs) involved oxidation-reduction were identified. The most significant DM identified in comparison between compatible and incompatible samples was vitexin-2-O-glucoside, a flavonoid metabolite. Corresponding to it, cytochrome P450s were the most DEGs identified in oxidation-reduction, which were implicated in flavonoid biosynthesis. It further suggested oxidation-reduction play an important role in sweetpotato ICI regulation. To validate function of oxidation-reduction, reactive oxygen species (ROS) was detected in compatible and incompatible samples. The green fluorescence was observed in incompatible but not in compatible samples. It indicated ROS regulated by oxidation-reduction is important pathway to response sweetpotato ICI. The results in this study would provide valuable insights into molecular mechanisms for sweetpotato ICI.
Collapse
Affiliation(s)
- Yiling Yang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiongjian Zhang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongda Zou
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingyi Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhongxia Luo
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhufang Yao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Boping Fang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lifei Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
45
|
Xing S, Zhu H, Zhou Y, Xue L, Wei Z, Wang Y, He S, Zhang H, Gao S, Zhao N, Zhai H, Liu Q. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111233. [PMID: 35351305 DOI: 10.1016/j.plantsci.2022.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 superfamily (CYP450) is one of the largest protein families in plants, and its members play diverse roles in primary and secondary metabolic biosynthesis. In this study, the CYP450 family gene IbCYP82D47 was cloned from the high carotenoid line HVB-3 of sweet potato (Ipomoea batatas). The IbCYP82D47 protein harbored two transmembrane domains and dynamically localized between plastid stroma and membrane. Overexpression of IbCYP82D47 not only increased total carotenoid, lutein, zeaxanthin and violaxanthin contents by 32.2-48.0%, 10.5-13.3%, 40.2-136% and 82.4-106%, respectively, but also increased the number of carotenoid globules in sweet potato storage roots. Furthermore, genes associated with the carotenoid biosynthesis (IbDXS, IbPSY, IbLCYE, IbBCH, IbZEP) were upregulated in transgenic sweet potato. In addition, IbCYP82D47 physically interacts with geranylgeranyl diphosphate synthase 12 (IbGGPPS12). Our findings suggest that IbCYP82D47 increases carotenoid contents by interacting with the carotenoid biosynthesis related protein IbGGPPS12, and influencing the expressions of carotenoid biosynthesis related genes in transgenic sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Luyao Xue
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuxin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int J Mol Sci 2022; 23:ijms23073945. [PMID: 35409303 PMCID: PMC8999811 DOI: 10.3390/ijms23073945] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid-derived jasmonates (JAs) play a crucial role in a variety of plant development and defense mechanisms. In recent years, significant progress has been made toward understanding the JA signaling pathway. In this review, we discuss JA biosynthesis, as well as its core signaling pathway, termination mechanisms, and the evolutionary origin of JA signaling. JA regulates not only plant regeneration, reproductive growth, and vegetative growth but also the responses of plants to stresses, including pathogen as well as virus infection, herbivore attack, and abiotic stresses. We also focus on the JA signaling pathway, considering its crosstalk with the gibberellin (GA), auxin, and phytochrome signaling pathways for mediation of the trade-offs between growth and defense. In summary, JA signals regulate multiple outputs of plant defense and growth and act to balance growth and defense in order to adapt to complex environments.
Collapse
Affiliation(s)
- Cong Li
- Correspondence: (C.L.); (D.C.)
| | | | | | | | | | | |
Collapse
|
47
|
Lv YQ, Li D, Wu LY, Zhu YM, Ye Y, Zheng XQ, Lu JL, Liang YR, Li QS, Ye JH. Sugar signal mediates flavonoid biosynthesis in tea leaves. HORTICULTURE RESEARCH 2022; 9:uhac049. [PMID: 35591928 PMCID: PMC9113228 DOI: 10.1093/hr/uhac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/11/2022] [Indexed: 06/15/2023]
Abstract
Sugar metabolism and flavonoid biosynthesis vary with the development of tea leaves. In order to understand the regulatory mechanisms underlying the associations between them, a comprehensive transcriptomic analysis of naturally growing tea leaves at different stages of maturity was carried out. Based on weighted gene coexpression network analysis, the key gene modules (Modules 2 and 3) related to the varying relationship between sugar metabolism and flavonoid biosynthesis as well as the corresponding hub genes were obtained. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that the transcription factors (TFs) in Modules 2 and 3 were mainly enriched in the pathway of plant hormone signal transduction. An in vitro study showed that the transcriptional levels of ERF1B-like TF for hexokinase inhibitor and sucrose treatments were upregulated, being respectively 28.1- and 30.2-fold higher than in the control, suggesting that ERF1B-like TFs participate in the sugar-induced regulation of flavonoid biosynthesis. The results of yeast one-hybrid and dual-luciferase assays demonstrated that CsF3'H, encoding flavonoid 3'-hydroxylase, was the target flavonoid biosynthetic gene for CsERF1B-like TF. Our study identified the potential key regulators participating in the metabolism of sugars and flavonoids, providing new insights into the crosstalk between sugar metabolism and flavonoid biosynthesis in tea plants.
Collapse
Affiliation(s)
- Yi-Qing Lv
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, 298 Deshengzhong Road, Hangzhou 310021, China
| | - Liang-Yu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350000, China
| | - Yu-Meng Zhu
- Ningbo Yinzhou District Agricultural Technical Extension Station, 55 Huifengxi Road, Ningbo 315100, China
| | - Ying Ye
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qing-Sheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, 298 Deshengzhong Road, Hangzhou 310021, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
48
|
Li X, Zhao L, Zhang H, Liu Q, Zhai H, Zhao N, Gao S, He S. Genome-Wide Identification and Characterization of CDPK Family Reveal Their Involvements in Growth and Development and Abiotic Stress in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2022; 23:ijms23063088. [PMID: 35328509 PMCID: PMC8952862 DOI: 10.3390/ijms23063088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium-dependent protein kinase (CDPKs) is one of the calcium-sensing proteins in plants. They are likely to play important roles in growth and development and abiotic stress responses. However, these functions have not been explored in sweet potato. In this study, we identified 39 CDPKs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), 35 CDPKs in diploid relative Ipomoea trifida (2n = 2x = 30), and 35 CDPKs in Ipomoea triloba (2n = 2x = 30) via genome structure analysis and phylogenetic characterization, respectively. The protein physiological property, chromosome localization, phylogenetic relationship, gene structure, promoter cis-acting regulatory elements, and protein interaction network were systematically investigated to explore the possible roles of homologous CDPKs in the growth and development and abiotic stress responses of sweet potato. The expression profiles of the identified CDPKs in different tissues and treatments revealed tissue specificity and various expression patterns in sweet potato and its two diploid relatives, supporting the difference in the evolutionary trajectories of hexaploid sweet potato. These results are a critical first step in understanding the functions of sweet potato CDPK genes and provide more candidate genes for improving yield and abiotic stress tolerance in cultivated sweet potato.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Limeng Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (X.L.); (L.Z.); (H.Z.); (Q.L.); (H.Z.); (N.Z.); (S.G.)
- Sanya Institute of China Agricultural University, Hainan 572025, China
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
49
|
Fernandes LB, Ghag SB. Molecular insights into the jasmonate signaling and associated defense responses against wilt caused by Fusarium oxysporum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:22-34. [PMID: 35121482 DOI: 10.1016/j.plaphy.2022.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Biotic and abiotic stress factors drastically limit plant growth and development as well as alter the physiological, biochemical and cellular processes. This negatively impacts plant productivity, ultimately leading to agricultural and economical loss. Plant defense mechanisms elicited in response to these stressors are crucially regulated by the intricate crosstalk between defense hormones such as jasmonic acid (JA), salicylic acid and ethylene. These hormones orchestrate adaptive responses by modulating the gene regulatory networks leading to sequential changes in the root architecture, cell wall composition, secondary metabolite production and expression of defense-related genes. Fusarium wilt is a widespread vascular disease in plants caused by the soil-borne ascomycete Fusarium oxysporum and is known to attack several economically important plant cultivars. JA along with its conjugated forms methyl jasmonate and jasmonic acid isoleucine critically tunes plant defense mechanisms by regulating the expression of JA-associated genes imparting resistance phenotype. However, it should be noted that some members of F. oxysporum utilize the JA signaling pathway for disease development leading to susceptibility in plants. Therefore, JA signaling pathway becomes one of the important targets amenable for modulation to develop resistance response against Fusarium wilt in plants. In this review, we have emphasized on the physiological and molecular aspects of JA and its significant role in mounting an early defense response against Fusarium wilt disease. Further, utilization of the inherent JA signaling pathway and/or exogenous application of JA in generating Fusarium wilt resistant plants is discussed.
Collapse
Affiliation(s)
- Lizelle B Fernandes
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz East, Mumbai, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz East, Mumbai, India.
| |
Collapse
|
50
|
Zhang H, Wang Z, Li X, Gao X, Dai Z, Cui Y, Zhi Y, Liu Q, Zhai H, Gao S, Zhao N, He S. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. THE NEW PHYTOLOGIST 2022; 233:1133-1152. [PMID: 34773641 DOI: 10.1111/nph.17860] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 05/15/2023]
Abstract
Soil salinity and drought limit sweet potato yield. Scavenging of reactive oxygen species (ROS) by peroxidases (PRXs) is essential during plant stress responses, but how PRX expression is regulated under abiotic stress is not well understood. Here, we report that the B-box (BBX) family transcription factor IbBBX24 activates the expression of the class III peroxidase gene IbPRX17 by binding to its promoter. Overexpression of IbBBX24 and IbPRX17 significantly improved the tolerance of sweet potato to salt and drought stresses, whereas reducing IbBBX24 expression increased their susceptibility. Under abiotic stress, IbBBX24- and IbPRX17-overexpression lines showed higher peroxidase activity and lower H2 O2 accumulation compared with the wild-type. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes encoding ROS scavenging enzymes, including PRXs. Moreover, interaction between IbBBX24 and the APETALA2 (AP2) protein IbTOE3 enhances the ability of IbBBX24 to activate IbPRX17 transcription. Overexpression of IbTOE3 improved the tolerance of tobacco plants to salt and drought stresses by scavenging ROS. Together, our findings elucidate the mechanism underlying the IbBBX24-IbTOE3-IbPRX17 module in response to abiotic stress in sweet potato and identify candidate genes for developing elite crop varieties with enhanced abiotic stress tolerance.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xiaoru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yufei Cui
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yuhai Zhi
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|