1
|
Luan H, Liao W, Song Y, Niu H, Hu T, Zhi H. Transgenic plant generated by RNAi-mediated knocking down of soybean Vma12 and soybean mosaic virus resistance evaluation. AMB Express 2020; 10:62. [PMID: 32253532 PMCID: PMC7136382 DOI: 10.1186/s13568-020-00997-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/21/2020] [Indexed: 12/31/2022] Open
Abstract
Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean and causes severe reduction of soybean yield and destroys the seed quality. However, the production of SMV resistant plants by transgenic is the most effective and economical means. Based on our previous yeast two-hybrid assay, the GmVma12 was selected as a strong candidate gene for further function characterization. Here we transformed soybean plants with a construct containing inverted repeat of-GmVma12 sequence to analyze the role of GmVma12 during SMV invasion. Totals of 33 T0 and 160 T1 plants were confirmed as positive transgenic plants through herbicide application, PCR detection and LibertyLink® strip screening. Based on the segregation ratio and Southern Blot data, T1 lines No. 3 and No. 7 were selected to generate T2 plants. After SMV-SC15 inoculation, 41 T1 and 38 T2 plants were identified as highly resistant, and their quantification disease levels were much lower than non-transformed plants. The transcript level of GmVma12 in T2 plants decreased to 70% of non-transformed plants. The expression level of SMV-CP transcript in T2 transgenic plants was lower than that in non-transformed plants and SMV CP protein in T2 plants could not be detected by Enzyme-linked Immunosorbent assay, which indicated that SMV production would be inhibited in transgenic plants. Moreover, coat mottles of T2 seeds were obliterated significantly. In conclusion, inverted repeat of the hairpin structure of GmVma12 interfered with the transcription of GmVma12, which can induce resistance to SMV in soybean. This research lays the foundation for the mechanism of SMV pathogenesis, and provides new ideas for SMV prevention and control.
Collapse
|
2
|
Galbraith DA, Yang X, Niño EL, Yi S, Grozinger C. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLoS Pathog 2015; 11:e1004713. [PMID: 25811620 PMCID: PMC4374888 DOI: 10.1371/journal.ppat.1004713] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/28/2015] [Indexed: 01/07/2023] Open
Abstract
Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.
Collapse
Affiliation(s)
- David A. Galbraith
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Xingyu Yang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Elina Lastro Niño
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Soojin Yi
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christina Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
3
|
Chaudhary A, Mukherjee SK. The role of small RNAs in vaccination. Methods Mol Biol 2014; 1184:479-501. [PMID: 25048141 DOI: 10.1007/978-1-4939-1115-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The concept of vaccination came to light following Edward Jenner's classical observation on milkmaids who were protected against smallpox. However, plants lack the cellular based immunity system and thus it was not appreciated earlier that plants can also be protected from their pathogens. But phenomena like cross-protection, pathogen derived resistance (PDR), viral recovery, etc. in plants suggested that plants have also evolved immunity against their pathogens. The further advances in the field revealed that an endogenous defense system could have multiple prongs. With the advent of RNAi, it was clear that the antiviral immune responses are related to the induction of specific small RNAs. The detection of virus specific small RNAs (vsiRNA) in immunized plants confirmed their roles in the immunity against pathogens. Although many issues related to antiviral mechanisms are yet to be addressed, the existing tools of RNAi can be efficiently used to control the invading viruses in transgenic plants. It is also possible that the microRNA(s) induced in infected plants impart immunity against viral pathogens. So the small RNA molecules play a vital role in defense system and these can be engineered to enhance the immunity against specific viral pathogens.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | | |
Collapse
|
4
|
Jiang Y, Sun L, Jiang M, Li K, Song Y, Zhu C. Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. J Biosci 2013; 38:573-81. [PMID: 23938389 DOI: 10.1007/s12038-013-9349-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A twin T-DNA system is a convenient strategy for creating selectable marker-free transgenic plants. The standard transformation plasmid, pCAMBIA 1300, was modified into a binary vector consisting of two separate T-DNAs, one of which contained the hygromycin phosphotransferase (hpt) marker gene. Using this binary vector, we constructed two vectors that expressed inverted-repeat (IR) structures targeting the rice stripe virus (RSV) coat protein (CP) gene and the special-disease protein (SP) gene. Transgenic rice lines were obtained via Agrobacterium-mediated transformation. Seven independent clones harbouring both the hpt marker gene and the target genes (RSV CP or SP) were obtained in the primary transformants of pDTRSVCP and pDTRSVSP, respectively. The segregation frequencies of the target gene and the marker gene in the T1 plants were 8.72 percent for pDTRSVCP and 12.33 percent for pDTRSVSP. Two of the pDTRSVCP lines and three pDTRSVSP lines harbouring the homozygous target gene, but not the hpt gene, were strongly resistant to RSV. A molecular analysis of the resistant transgenic plants confirmed the stable integration and expression of the target genes. The resistant transgenic plants displayed lower levels of the transgene transcripts and specific small interfering RNAs, suggesting that RNAi induced the viral resistance.
Collapse
Affiliation(s)
- Yayuan Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P.R. China, 271018
| | | | | | | | | | | |
Collapse
|
5
|
Post-transcriptional gene silencing by RNA interference in non-mammalian vertebrate systems: Where do we stand? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 728:158-71. [DOI: 10.1016/j.mrrev.2011.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
|
6
|
Zhang ZY, Yang L, Zhou SF, Wang HG, Li WC, Fu FL. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol 2011; 153:181-7. [DOI: 10.1016/j.jbiotec.2011.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 11/25/2022]
|
7
|
Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotechnol Lett 2011; 33:1249-55. [PMID: 21287228 DOI: 10.1007/s10529-011-0550-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
Lilium cv Acapulco was transformed with a defective cucumber mosaic virus (CMV) replicase gene (CMV2-GDD) construct using Agrobacterium tumefaciens. Four lines were analyzed for gene expression and resistance to CMV-O strain. Expression of the CMV2-GDD gene in the transgenic plants was confirmed by reverse transcription PCR (RT-PCR). When these four lines were mechanically inoculated with CMV-O, no signal of coat protein (CP) messages using RT-PCR was detected in newly produced leaves of two transgenic lines. Dot-immunobinding assay (DIBA) of CP was performed to examine the presence of the CMV in the newly produced leaves of challenged plants. Results, similar to those obtained with RT-PCR of the CP messages, were observed in DIBA. Therefore, our results imply that the two lines show increased levels of resistance to CMV, and CMV-GDD replicase gene is an effective construct that has protection against CMV in Lilium.
Collapse
|
8
|
Qu F. Plant viruses versus RNAi: simple pathogens reveal complex insights on plant antimicrobial defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:22-33. [PMID: 21956904 DOI: 10.1002/wrna.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) and related processes serve as a nucleic-acid-mediated surveillance system conserved in almost all eukaryotic organisms. This surveillance system detects various forms of double-stranded RNA (dsRNA) in cells and initiates a cascade of events that degrades dsRNAs into small interfering RNAs (siRNAs) or microRNAs (miRNAs). These small RNAs in turn serve as sequence-specific guides to interfere with the function of other nucleic acids through degradation or translational repression of homologous RNAs, or modification of homologous genome segments. One of the major roles of RNAi in plants and invertebrates is antiviral defense. Conversely, viruses have also evolved to encode suppressors of RNAi (VSRs), which disrupt RNAi at various steps. Research activities focusing on the relationship between plant viruses and RNAi have been essential to our current understanding of RNAi mechanisms.
Collapse
Affiliation(s)
- Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA.
| |
Collapse
|
9
|
|
10
|
Thompson JR, Tepfer M. Assessment of the Benefits and Risks for Engineered Virus Resistance. Adv Virus Res 2010; 76:33-56. [DOI: 10.1016/s0065-3527(10)76002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Hassani-Mehraban A, Brenkman AB, van den Broek NJF, Goldbach R, Kormelink R. RNAi-mediated transgenic Tospovirus resistance broken by intraspecies silencing suppressor protein complementation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1250-7. [PMID: 19737098 DOI: 10.1094/mpmi-22-10-1250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Extension of an inverted repeat transgene cassette, containing partial nucleoprotein (N) gene sequences from four different tomato-infecting Tospovirus spp. with a partial N gene sequence from the tomato strain of Tomato yellow ring virus (TYRV-t), renders transgenic Nicotiana benthamiana plants additionally resistant to this strain but not to the soybean strain of this Tospovirus sp. (TYRV-s), both strains exhibiting 14.4% nucleotide sequence divergence in their N genes. Surprisingly, coinoculation of the TYRV-t-resistant transgenic lines with both TYRV-t and TYRV-s resulted in rescue of the former. Mass-spectrometric analysis of the viral ribonucleocapsids accumulating in the transgenic plants showed the presence of the N proteins of both strains excluding hetero-encapsidation as rescue mechanism and indicating suppression of TYRV-t N gene transcript breakdown by RNA interference. Prior (Potato virus X [PVX]-vector-mediated) expression of the TYRV-s silencing suppressor (NS(s)) gene also allowed TYRV-t to break the resistance. This phenomenon was also observed when the homologous (TYRV-t) NS(s) gene was provided from a PVX replicon, demonstrating that TYRV can break RNA-mediated host resistance upon a priori expression of its NS(s) protein. Remarkably, mixed inoculation of TYRV-t with other Tospovirus spp. or nonrelated viruses did not result in resistance breaking, indicating that the rescuing activity of NS(s)-though based on suppressing RNA silencing-is species-dependent.
Collapse
Affiliation(s)
- Afshin Hassani-Mehraban
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Harries PA, Palanichelvam K, Bhat S, Nelson RS. Tobacco mosaic virus 126-kDa protein increases the susceptibility of Nicotiana tabacum to other viruses and its dosage affects virus-induced gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1539-48. [PMID: 18986250 DOI: 10.1094/mpmi-21-12-1539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Tobacco mosaic virus (TMV) 126-kDa protein is a suppressor of RNA silencing previously shown to delay the silencing of transgenes in Nicotiana tabacum and N. benthamiana. Here, we demonstrate that expression of a 126-kDa protein-green fluorescent protein (GFP) fusion (126-GFP) in N. tabacum increases susceptibility to a broad assortment of viruses, including Alfalfa mosaic virus, Brome mosaic virus, Tobacco rattle virus (TRV), and Potato virus X. Given its ability to enhance TRV infection in tobacco, we tested the effect of 126-GFP expression on TRV-mediated virus-induced gene silencing (VIGS) and demonstrate that this protein can enhance silencing phenotypes. To explain these results, we examined the poorly understood effect of suppressor dosage on the VIGS response and demonstrated that enhanced VIGS corresponds to the presence of low levels of suppressor protein. A mutant version of the 126-kDa protein, inhibited in its ability to suppress silencing, had a minimal effect on VIGS, suggesting that the suppressor activity of the 126-kDa protein is indeed responsible for the observed dosage effects. These findings illustrate the sensitivity of host plants to relatively small changes in suppressor dosage and have implications for those interested in enhancing silencing phenotypes in tobacco and other species through VIGS.
Collapse
Affiliation(s)
- Phillip A Harries
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | |
Collapse
|
13
|
Vasudevan A, Oh TK, Park JS, Lakshmi SV, Choi BK, Kim SH, Lee HJ, Ji J, Kim JH, Ganapathi A, Kim SC, Choi CW. Characterization of resistance mechanism in transgenic Nicotiana benthamiana containing Turnip crinkle virus coat protein. PLANT CELL REPORTS 2008; 27:1731-40. [PMID: 18704429 DOI: 10.1007/s00299-008-0595-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/30/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
Two transgenic lines, of Nicotiana benthamiana expressing Turnip crinkle virus (TCV)-coat protein (CP) gene with contrasting phenotype, the highest (#3) and the lowest (#18) CP expressers, were selected and challenged with the homologous TCV. The former, the highest expresser, showed nearly five times more CP expression than the latter. Progenies of #3 and #18 lines showed 30 and 100% infection rates, respectively. The infected progenies of #3 line showed mild and delayed symptom with TCV. This is a coat protein-mediated resistance (CP-MR), and its resistance level is directly proportional to CP transgene expression. However, CP-MR of the transgenic plants was specific only for TCV but not for heterologous viruses. Newly growing leaves of those infected progenies of #3 line did not show any visible symptoms at 4-week post-inoculation (wpi) with TCV, suggesting a reversal from infection. This was confirmed by RT-PCR analysis with the disappearance of the target at 4 wpi. This is a case of RNA-mediated resistance, and a threshold level of transgene expression may be needed to achieve the silent state. To confirm the RNA silencing, we infiltrated Agrobacterium carrying TCV-CP into leaves of progenies of #3 and performed RT-PCR analysis. The results indicate that TCV-CP's suppressor activity against RNA silencing itself can be silenced by the homologous expression of TCV-CP in the transgenic plants. The transgenic plants containing TCV-CP seem to be a model system to study viral protection mediated by a combination of protein and RNA silencing.
Collapse
Affiliation(s)
- Ayyappan Vasudevan
- Department of Biology and Medicinal Science, Pai Chai University, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Trevisan F, Mendes BMJ, Maciel SC, Vieira MLC, Meletti LMM, Rezende JAM. Resistance to Passion fruit woodiness virus in Transgenic Passionflower Expressing the Virus Coat Protein Gene. PLANT DISEASE 2006; 90:1026-1030. [PMID: 30781294 DOI: 10.1094/pd-90-1026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report the use of the coat protein (CP) gene from Passion fruit woodiness virus (PWV) to produce resistant transgenic plants of yellow passion fruit. A full-length CP gene from a severe PWV isolate from the state of São Paulo, Brazil (PWV-SP) was cloned into pCAMBIA 2300 binary vector, which was further introduced into Agrobacterium tumefaciens strain EHA 105. Leaf disks were used as explants for transformation assays, e.g., 2,700 and 2,730 disks excised from plants from the Brazilian cultivars IAC-275 and IAC-277, respectively. In vitro selection was performed in kanamycin. After transferring to the elongation medium, 119 and 109 plantlets of IAC-275 and IAC-277, respectively, were recovered. Integration of the PWV CP gene was confirmed in seven of eight plants evaluated by Southern blot analysis, showing different numbers of insertional events for the CP gene. Three transgenic plants (T3, T4, and T7) expressed the expected transcript, but the 32 kDa PWV CP was detected by Western blot in only two plants (T3 and T4). The results of three successive mechanical inoculations against the transgenic plants using three PWV isolates showed that the primary transformant T2 of IAC-277 was immune to all isolates.
Collapse
Affiliation(s)
- F Trevisan
- Laboratório de Biotecnologia Vegetal, CENA/USP, 13400-970 Piracicaba, SP, Brazil
| | - B M J Mendes
- Laboratório de Biotecnologia Vegetal, CENA/USP, 13400-970 Piracicaba, SP, Brazil
| | - S C Maciel
- Dept. de Entomologia, Fitopatologia e Zoologia Agrícola, ESALQ/USP, 13418-900 Piracicaba, SP, Brazil
| | - M L C Vieira
- Dept. de Genética, ESALQ/USP, 13418-900 Piracicaba, SP, Brazil
| | - L M M Meletti
- Centro de Fruticultura, Instituto Agronômico, 13020-902 Campinas, SP, Brazil
| | - J A M Rezende
- Dept. de Entomologia, Fitopatologia e Zoologia Agrícola, ESALQ/USP, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
15
|
Qian Y, Mugiira RB, Zhou X. A modified viral satellite DNA-based gene silencing vector is effective in association with heterologous begomoviruses. Virus Res 2006; 118:136-42. [PMID: 16417940 DOI: 10.1016/j.virusres.2005.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/07/2005] [Accepted: 12/07/2005] [Indexed: 11/21/2022]
Abstract
We have previously reported effective gene silencing of a transgene and endogenous plant genes in tobacco and tomato plants using a modified viral satellite DNA associated with Tomato yellow leaf curl China virus (TYLCCNV). In this study, we constructed a similar gene silencing vector (DNADeltaC12beta) based on the satellite DNAbeta associated with Tobacco curly shoot virus (TbCSV) by replacing its betaC1 gene with a multiple cloning site. Strong and stable silencing of cognate genes was achieved when this vector, carrying a fragment of the green fluorescent protein (GFP) transgene or a sulfur (Su) endogenous gene encoding one unit of the chloroplast enzyme magnesium chelatase required for chlorophyll II production, was co-agroinoculated with TbCSV used as a helper virus. GFP silenced transgenic Nicotiana benthamiana plants appear red under UV illumination due to loss of green fluorescence, while the Su silenced plants appear white as a result of failure to synthesize chlorophyll. Our results show that the efficiency of Su silencing is independent of the insert orientation in both N. benthamiana and N. glutinosa plants. Most significant however, is the observation that in association with heterologous begomoviruses, such as TYLCCNV or Malvastrum yellow vein virus, the DNADeltaC12beta vector could still effectively induce transgene and endogenous gene silencing in tobacco plants. These observations suggest that the modified viral satellite DNA vector can be applied as a reverse genetics tool for the study, analysis and discovery of gene function in more plants.
Collapse
Affiliation(s)
- Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310029, PR China
| | | | | |
Collapse
|
16
|
Germundsson A, Valkonen JPT. P1- and VPg-transgenic plants show similar resistance to Potato virus A and may compromise long distance movement of the virus in plant sections expressing RNA silencing-based resistance. Virus Res 2006; 116:208-13. [PMID: 16298007 DOI: 10.1016/j.virusres.2005.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/20/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
Nicotiana benthamiana was transformed with P1 or VPg cistron of Potato virus A (PVA, genus Potyvirus). For both transgenes, T1 progeny displayed (i) resistance to PVA infection, (ii) susceptibility, or (iii) systemic infection followed by recovery of new leaves from PVA infection (RC), regardless of the transgene. In RC plants, fully recovered leaves contained no detectable PVA RNA, were highly resistant to challenge inoculation with PVA, and had barely detectable steady-state levels of transgene mRNA; transgene-homologous siRNA was not detected, in contrast to leaves undergoing recovery. Tops in RC plants and PVA-susceptible transgenic plants were replaced with scions from wild-type plants; only scions on the latter became PVA-infected. These findings suggest that vascular movement of PVA from lower, infected parts of RC plants was compromised in the recovered section expressing RNA silencing-based resistance, which adds a novel dimension to the current models for potyvirus movement.
Collapse
Affiliation(s)
- Anna Germundsson
- Department of Plant Biology and Forest Genetics, SLU, Box 7080, SE-750 07 Uppsala, Sweden
| | | |
Collapse
|
17
|
Voloudakis AE, Aleman-Verdaguer ME, Padgett HS, Beachy RN. Characterization of resistance in transgenic Nicotiana benthamiana encoding N-terminal deletion and assembly mutants of the tobacco etch potyvirus coat protein. Arch Virol 2005; 150:2567-82. [PMID: 16086100 DOI: 10.1007/s00705-005-0577-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 05/06/2005] [Indexed: 11/30/2022]
Abstract
The resistance of transgenic Nicotiana benthamiana plants encoding wild type, truncated and point mutants of the tobacco etch virus (TEV) coat protein (CP) was analyzed. After R1 plants from 45 transgenic lines were challenged with TEV, six percent of the lines exhibited high resistance, 38% exhibited low resistance, and the remainder were susceptible. The phenomenon of recovery and delay in symptom development was observed in 65% and 56% of the resistant and susceptible lines, respectively. Plants containing genes that encode sequences of two assembly-deficient mutants of TEV-CPDelta1-63 exhibited resistance to infection, suggesting that self-assembly of the CP is not responsible for resistance. Highly resistant lines accumulated low levels of transgene mRNA and non-detectable amounts of protein, and tissues accumulated lower amounts of transgene mRNA following recovery than before infection. In addition, co-suppression of replication of a recombinant tobamovirus containing the TEV-CPDelta1-63 sequence was observed in several lines, suggesting homology-dependent degradation of RNA, most likely through induction of post-transcriptional gene silencing. Plants not exhibiting high resistance via gene silencing exhibited moderate levels of resistance that is attributed to and/or affected by the CP molecule.
Collapse
Affiliation(s)
- A E Voloudakis
- Laboratory of Plant Physiology, Department of Agricultural Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
18
|
Petsch KA, Mylne J, Botella JR. Cosuppression of eukaryotic release factor 1-1 in Arabidopsis affects cell elongation and radial cell division. PLANT PHYSIOLOGY 2005; 139:115-26. [PMID: 16113224 PMCID: PMC1203362 DOI: 10.1104/pp.105.062695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 05/30/2005] [Accepted: 05/30/2005] [Indexed: 05/04/2023]
Abstract
The role of the eukaryotic release factor 1 (eRF1) in translation termination has previously been established in yeast; however, only limited characterization has been performed on any plant homologs. Here, we demonstrate that cosuppression of eRF1-1 in Arabidopsis (Arabidopsis thaliana) has a profound effect on plant morphology, resulting in what we term the broomhead phenotype. These plants primarily exhibit a reduction in internode elongation causing the formation of a broomhead-like cluster of malformed siliques at the top of the inflorescence stem. Histological analysis of broomhead stems revealed that cells are reduced in height and display ectopic lignification of the phloem cap cells, some phloem sieve cells, and regions of the fascicular cambium, as well as enhanced lignification of the interfascicular fibers. We also show that cell division in the fascicular cambial regions is altered, with the majority of vascular bundles containing cambial cells that are disorganized and possess enlarged nuclei. This is the first attempt at functional characterization of a release factor in vivo in plants and demonstrates the importance of eRF1-1 function in Arabidopsis.
Collapse
Affiliation(s)
- Katherine Anne Petsch
- Plant Genetic Engineering Laboratory, Department of Botany, School of Integrative Biology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
19
|
Levin JS, Thompson WF, Csinos AS, Stephenson MG, Weissinger AK. Matrix attachment regions increase the efficiency and stability of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco. Transgenic Res 2005; 14:193-206. [PMID: 16022390 DOI: 10.1007/s11248-004-5413-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Matrix attachment regions (MARs) are DNA elements that can increase and stabilize transgene expression. We investigated the effect of the RB7 MAR on transgenic virus resistance. Constructs for resistance to tomato spotted wilt virus (TSWV) with and without flanking RB7 MARs were used to transform tobacco and produce homozygous lines. The population with the MAR construct had a significantly higher percentage of TSWV resistant plants in the R1 generation than the nonMAR population. Each resistant line was advanced to the R4 generation, and significantly fewer MAR lines lost resistance over generations compared to the nonMAR population. Lines with TSWV resistance in growth chamber tests were also resistant in field trials. Two lines that were resistant in the R1 generation and susceptible in the R4 were examined in more detail in order to determine if transcriptional silencing of the transgene was occurring in the later generation. Short interfering 21-25 nt RNAs from the transgene that are characteristic of post-transcriptional gene silencing (PTGS) were present in the resistant R1 plants, but not the susceptible R4 plants, indicating that virus resistance was associated with PTGS of the transgene. Loss of resistance was accompanied by an increase in promoter methylation in both lines. In line M41, the transgene was fully silenced at the transcriptional level in the R4 as shown by nuclear run-on assays. In line NM13, transgene transcription and RNA accumulation was still present in the R4 generation, but the level of transcription was not sufficient to trigger PTGS, suggesting that this line may have partial transcriptional silencing. These results are consistent with the concept that MARs may prevent transcriptional silencing.
Collapse
Affiliation(s)
- Jennifer S Levin
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620, USA.
| | | | | | | | | |
Collapse
|
20
|
Andika IB, Kondo H, Tamada T. Evidence that RNA silencing-mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:194-204. [PMID: 15782633 DOI: 10.1094/mpmi-18-0194] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, RNA silencing is part of a defense mechanism against virus infection but there is little information as to whether RNA silencing-mediated resistance functions similarly in roots and leaves. We have obtained transgenic Nicotiana benthamiana plants encoding the coat protein readthrough domain open reading frame (54 kDa) of Beet necrotic yellow vein virus (BNYVV), which either showed a highly resistant or a recovery phenotype following foliar rub-inoculation with BNYVV. These phenotypes were associated with an RNA silencing mechanism. Roots of the resistant plants that were immune to foliar rub-inoculation with BNYVV could be infected by viruliferous zoospores of the vector fungus Polymyxa betae, although virus multiplication was greatly limited. In addition, virus titer was reduced in symptomless leaves of the plants showing the recovery phenotype, but it was high in roots of the same plants. Compared with leaves of silenced plants, higher levels of transgene mRNAs and lower levels of transgene-derived small interfering RNAs (siRNAs) accumulated in roots. Similarly, in nontransgenic plants inoculated with BNYVV, accumulation level of viral RNA-derived siRNAs in roots was lower than in leaves. These results indicate that the RNA silencing-mediated resistance to BNYVV is less effective in roots than in leaves.
Collapse
Affiliation(s)
- Ida Bagus Andika
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | | | | |
Collapse
|
21
|
Kamo K, Gera A, Cohen J, Hammond J, Blowers A, Smith F, Van Eck J. Transgenic Gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. PLANT CELL REPORTS 2005; 23:654-63. [PMID: 15480682 DOI: 10.1007/s00299-004-0888-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 08/24/2004] [Accepted: 08/26/2004] [Indexed: 05/02/2023]
Abstract
Transgenic Gladiolus plants transformed with the bean yellow mosaic virus (BYMV) coat-protein (CP) gene in either sense or antisense (AS) orientation were developed using biolistics. Four of the plants were confirmed to carry the CP gene in the sense orientation of the gene and seven plants in the AS orientation. Two of the CP plant lines and all of the AS lines showed DNA rearrangements of the transgene in addition to an intact copy of the transgene. The copy number ranged from one to nine. Of the 11 lines, eight had only one to four copies of the transgene. Transcription of the transgene occurred for three of the CP lines and five of the AS lines as determined by Northern hybridization. All 11 plant lines were challenged with BYMV using controlled aphid transmission. One month following aphid transmission, the transgenic plants were examined by immunoelectron microscopy for presence of the virus. Several transgenic plant lines containing either antiviral transgene showed a lower incidence of infection (percentage of plants infected as detected by immunoelectron microscopy) than the non-transformed plants. Most of the CP- and AS-transgenic plants that did not contain BYMV 1 month after challenge were found to contain BYMV the next season. It appeared that BYMV infection was delayed in the CP- and AS-transgenic lines but that the transgenes did not prevent eventual infection of BYMV. This is the first report of developing a floral bulb crop with antiviral genes to BYMV.
Collapse
Affiliation(s)
- Kathryn Kamo
- Floral and Nursery Plants Research Unit, USDA, U.S. National Arboretum, Beltsville, MD 20705, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
This article describes the discovery of RNA-activated sequence-specific RNA degradation, a phenomenon now referred to as RNA silencing or RNA interference (RNAi). From 1992 to 1996, a series of articles were published on virus resistant transgenic plants expressing either translatable or nontranslatable versions of the coat protein gene of Tobacco etch virus (TEV). Certain transgenic plant lines were resistant to TEV but not to closely related viruses. In these plants a surprising correlation was observed: Transgenic plant lines with the highest degree of TEV resistance had actively transcribed transgenes but low steady-state levels of transgene RNA. Molecular analysis of these transgenic plants demonstrated the existence of a cellular-based, sequence-specific, posttranscriptional RNA-degradation system that was programmed by the transgene-encoded RNA sequence. This RNA-degradation activity specifically targeted both the transgene RNA and TEV (viral) RNA for degradation and was the first description of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- John A Lindbo
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.
| | | |
Collapse
|
23
|
Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. PLANT MOLECULAR BIOLOGY 2004; 56:601-11. [PMID: 15630623 DOI: 10.1007/s11103-004-0147-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 04/13/2004] [Indexed: 05/21/2023]
Abstract
Geminiviruses are ssDNA viruses that infect a range of economically important crop species. We have developed a pathogen-derived transgenic approach to generate high levels of resistance against these pathogens in a susceptible cultivar of cassava (Manihot esculenta). Integration of the AC1 gene (which encodes the replication-associated protein) from African cassava mosaic virus imparted resistance against the homologous virus and provided strong cross-protection against two heterologous species of cassava-infecting geminiviruses. Short-interfering RNAs specific to the AC1 transgene were identified in the two most resistant transgenic plant lines prior to virus challenge. Levels of AC1 mRNA were suppressed in these plants. When challenged with geminiviruses, accumulation of viral DNA was reduced by up to 98% compared to controls, providing evidence that integration of AC1 initiates protection against viral infection via a post-transcriptional gene silencing mechanism. The robust cross-resistance reported has important implications for field deployment of transgenic strategies to control geminiviruses.
Collapse
|
24
|
Morino K, Olsen OA, Shimamoto K. Silencing of the Aleurone-specific Ltp2-gus Gene in Transgenic Rice is Reversed by Transgene Rearrangements and Loss of Aberrant Transcripts. ACTA ACUST UNITED AC 2004; 45:1500-8. [PMID: 15564533 DOI: 10.1093/pcp/pch172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An Ltp2 promoter was isolated from barley as an aleurone-specific promoter, and its tissue specificity was maintained in transgenic rice. Expression of the Ltp2-gus gene in rice could be detected by X-gluc staining of the seeds. Previously, we reported the isolation of silenced plants in the R2 generation and the involvement of antisense gus transcripts in aleurone-specific Ltp2-gus gene silencing in transgenic rice, the L3.3 line. In the current study, we analyzed the L0.1 line, a sibling of the L3.3 line, and the partially revertant line from the L0.1 line accompanied by a transgene structural change. Strong silencing of the Ltp2-gus gene was detected over five generations in the L0.1 line. DNA and RNA analysis revealed that there were incomplete transgenes and that several aberrant RNAs that carried an antisense gus region were expressed in the L0.1 line. Determination of the transgene structure in the L0.1 line revealed that the partial antisense gus gene and the partial Ltp2 promoter region fused to the Ltp2 promoter were lacking in the revertants. RNA analysis demonstrated that the antisense gus and the promoter transcripts were produced and found in the poly(A)- fraction. Results of these analyses suggested that the observed aberrant transcripts, including antisense and promoter transcripts, were associated with Ltp2-gus silencing in the L0.1 line.
Collapse
Affiliation(s)
- Kazuko Morino
- Rice Genetic Engineering Team, National Agricultural Research Center, 1-2-1 Inada, Joetsu Niigata, 943-0193 Japan.
| | | | | |
Collapse
|
25
|
Nomura K, Ohshima K, Anai T, Uekusa H, Kita N. RNA Silencing of the Introduced Coat Protein Gene of Turnip mosaic virus Confers Broad-Spectrum Resistance in Transgenic Arabidopsis. PHYTOPATHOLOGY 2004; 94:730-6. [PMID: 18943905 DOI: 10.1094/phyto.2004.94.7.730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
ABSTRACT The coat protein (CP) gene derived from Turnip mosaic virus (TuMV) isolate JO was introduced into Arabidopsis thaliana and the resulting transgenic progenies were analyzed for resistance to TuMV. Transgenic Arabidopsis plants with no detectable transcripts of the introduced CP gene exhibited complete resistance to TuMV. There was no significant correlation between the resistance and the copy number of the transgene. Instead, small interfering RNAs (siRNAs) were detected in these resistant plants, indicating that the resistance is attributed to RNA silencing. The RNA-mediated resistance was not only inherited over successive generations but also effective against 17 worldwide TuMV isolates with different pathogenicity. Comparative analysis of the CP genes among the 17 TuMV isolates revealed that the 380-nt in the 3' region is highly conserved, suggesting the importance of the 3' conserved region for broad-spectrum resistance. These results indicate that introduction of the TuMV-CP gene into the target Brassicaceae plants followed by selecting transformants that show RNA silencing for the transgenes can be an effective and reliable strategy for developing crucifer crops with a broad spectrum of resistance to TuMV.
Collapse
|
26
|
Han Y, Griffiths A, Li H, Grierson D. The effect of endogenous mRNA levels on co-suppression in tomato. FEBS Lett 2004; 563:123-8. [PMID: 15063735 DOI: 10.1016/s0014-5793(04)00280-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 11/25/2022]
Abstract
Introduction of truncated polygalacturonase (PG) transgenes into tomato plants caused the production of small interfering RNAs (siRNAs) and co-suppression of both the endogenous and PG transgenes in ripening fruits by post-transcriptional gene silencing. In order to test the possible effect on co-suppression of the endogenous PG mRNA level, we transferred the PG transgenes from a PG-silenced line (wild type background) by crossing to two ripening regulatory mutants with reduced PG: Never-ripe (Nr, approximately 10% endogenous PG mRNA compared to wild type) and ripening-inhibitor (rin, approximately 1% endogenous PG mRNA) and to wild type (as a control). The PG transgenes caused strong co-suppression of the transgenes and the endogenous PG gene in cells with high PG mRNA background (wild type) and silencing appeared to be linked with higher transgene copy number and/or a particular transgene locus. In cells with low endogenous PG mRNA accumulation (Nr), the endogenous PG gene was preferentially suppressed compared to the transgenes, whose expression was not reduced significantly. The expression of the transgenes was also not reduced in the very low PG background (rin), in which endogenous PG was barely detectable. In all the analysed lines with all three PG background levels, siRNAs accumulated in leaves and green fruits, in which the endogenous PG gene is not transcribed. The relatively abundant production of siRNAs in most of the lines was linked with a particular transgene insert. These results suggest that a certain threshold level of endogenous PG mRNA is required for the co-suppression of the truncated PG transgenes and the endogenous PG gene or for extensive silencing of the transgenes.
Collapse
MESH Headings
- Crosses, Genetic
- Gene Dosage
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant
- Solanum lycopersicum/genetics
- Mutagenesis, Insertional
- Plants, Genetically Modified
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/biosynthesis
- Suppression, Genetic
- Transgenes
Collapse
Affiliation(s)
- Yuanhuai Han
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | | | |
Collapse
|
27
|
García-Pérez RD, Houdt HV, Depicker A. Spreading of post-transcriptional gene silencing along the target gene promotes systemic silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:594-602. [PMID: 15125766 DOI: 10.1111/j.1365-313x.2004.02067.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Transitive silencing and grafting-induced gene silencing phenomena were combined to investigate whether a primary target beta-glucuronidase (gus) gene could promote the generation of systemic transitive silencing signals. Tobacco plants with hemizygous or homozygous silencer locus and in trans silenced primary target were used as a source of post-transcriptionally silenced rootstocks and tobacco plants with or without a secondary target locus as scion source. The silencer locus harbored two identical neomycin phosphotransferase II (nptII)-containing T-DNAs, integrated as an inverted repeat. The primary target locus carried a gus gene with homology to the transcribed region of the nptII gene only in the 3' untranslated region, whereas the secondary target locus had two or more copies of a gus gene without homology to transcribed sequences of the silencer locus. The upstream region of the initially targeted sequences of the in trans silenced gus gene could induce the production of a systemic signal. This signal was capable of triggering post-transcriptional gene silencing (PTGS) of the secondary target gus genes in the scion. In addition, the induction of systemic silencing was strikingly dosage dependent for the silencer as well as the primary target loci in the rootstock. Moreover, in the scions, the secondary target gus genes had to be present to generate detectable amounts of short interfering RNAs.
Collapse
Affiliation(s)
- Rubén Darío García-Pérez
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | |
Collapse
|
28
|
Pal-Bhadra M, Bhadra U, Birchler JA. Interrelationship of RNA interference and transcriptional gene silencing in Drosophila. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:433-8. [PMID: 16117678 DOI: 10.1101/sqb.2004.69.433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- M Pal-Bhadra
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
29
|
Abstract
The discovery that plants recognize and degrade invading viral RNA caused a paradigm shift in our understanding of viral/host interactions. Combined with the discovery that plants cosuppress their own genes if they are transformed with homologous transgenes, new models for both plant intercellular communication and viral defense have emerged. Plant biologists adapted homology-based defense mechanisms triggered by incoming viruses to target individual genes for silencing in a process called virus-induced gene silencing (VIGS). Both VIGS- and dsRNA-containing transformation cassettes are increasingly being used for reverse genetics as part of an integrated approach to determining gene function. Virus-derived vectors silence gene expression without transformation and selection. However, because viruses also alter gene expression in their host, the process of VIGS must be understood. This review examines how DNA and RNA viruses have been modified to silence plant gene expression. I discuss advantages and disadvantages of VIGS in determining gene function and guidelines for the safe use of viral vectors.
Collapse
Affiliation(s)
- Dominique Robertson
- Department of Botany, North Carolina State University, Raleigh, North Carolina 27695-7612, USA.
| |
Collapse
|
30
|
Lechtenberg B, Schubert D, Forsbach A, Gils M, Schmidt R. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:507-517. [PMID: 12753589 DOI: 10.1046/j.1365-313x.2003.01746.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transgene expression was analysed in Arabidopsis T-DNA transformants carrying defined numbers and arrangement of different reporter genes. All transgenes were placed under the control of the strong constitutive CaMV 35S promoter. High, stable transgene expression was observed in plants containing two copies of the beta-glucuronidase (GUS) gene, two or four copies of the green fluorescent protein (GFP) gene and two, four or six copies of the streptomycin phosphotransferase (SPT) gene. Thus, the mere presence of multiple promoter and/or transgene sequences did not result in gene silencing. In none of the cases analysed were tandem repeat arrangements of transgenes and/or inverted repeat (IR) T-DNA structures sufficient to trigger silencing of the different reporter genes. Instead, post-transcriptional gene silencing (PTGS) correlated with the copy number of the highly expressed transgenes. Twelve copies of the SPT and four copies of the GUS gene triggered silencing. Silencing is frequently associated with repetitive T-DNA structures. We favour the idea that in many cases this may be attributed to the high transgene doses rather than the repeat arrangements themselves.
Collapse
Affiliation(s)
- Berthold Lechtenberg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
Gene silencing has evolved in a broad range of organisms probably as defense mechanisms against invasive nucleic acids. Two major strategies are utilized. Transcriptional gene silencing (TGS) acts to prevent RNA synthesis and posttranscriptional gene silencing (PTGS) acts to degrade existing RNA. Although the final effects are similar, the mechanisms of TGS and PTGS are species specific. In most eukaryotes, gene silencing is associated with de novo DNA methylation. However, Caenorhabditis elegans shows an efficient PTGS-like mechanism but lacks a DNA methylation system. Additionally, key enzymes involved in plant and nematode PTGS, the cellular RNA-directed RNA polymerases, appear to be missing in Drosophila melanogaster. In this review, we discuss common features of TGS and PTGS that have been identified across species but for TGS we will concentrate only on methylation-mediated gene inactivation. This effort is complicated by the vague borders between gene silencing and normal gene regulation. Mechanisms that are involved in gene silencing are also used to regulate controlled expression of endogenous genes. To outline the general aspects, gene silencing will be defined as narrowly as possible. The intention behind this review is to stimulate discussion and we seek to facilitate this by introducing speculative concepts that could lead to some reappraisal of the literature.
Collapse
Affiliation(s)
- Michael Wassenegger
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Martinsried, Germany
| |
Collapse
|
32
|
Bau HJ, Cheng YH, Yu TA, Yang JS, Yeh SD. Broad-Spectrum Resistance to Different Geographic Strains of Papaya ringspot virus in Coat Protein Gene Transgenic Papaya. PHYTOPATHOLOGY 2003; 93:112-20. [PMID: 18944164 DOI: 10.1094/phyto.2003.93.1.112] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT Papaya ringspot virus (PRSV) is a major limiting factor for cultivation of papaya (Carica papaya) in tropical and subtropical areas throughout the world. Although the coat protein (CP) gene of PRSV has been transferred into papaya by particle bombardment and transgenic lines with high resistance to Hawaii strains have been obtained, they are susceptible to PRSV isolates outside of Hawaii. This strain-specific resistance limits the application of the transgenic lines in other areas of the world. In this investigation, the CP gene of a local strain isolated from Taiwan, designated PRSV YK, was transferred into papaya via Agrobacterium-mediated transformation. A total of 45 putative transgenic lines were obtained and the presence of the transgene in papaya was confirmed by polymerase chain reaction amplification. When the plants of transgenic lines were challenged with PRSV YK by mechanical inoculation, they showed different levels of resistance ranging from delay of symptom development to complete immunity. Molecular analysis of nine selected lines that exhibited different levels of resistance revealed that the expression level of the transgene is negatively correlated with the degree of resistance, suggesting that the resistance is manifested by a RNA-mediated mechanism. The segregation analysis showed that the transgene in the immune line 18-0-9 has an inheritance of two dominant loci and the other four highly resistant lines have a single dominant locus. Seven selected lines were tested further for resistance to three PRSV heterologous strains that originated in Hawaii, Thailand, and Mexico. Six of the seven lines showed varying degrees of resistance to the heterologous strains, and one line, 19-0-1, was immune not only to the homologous YK strain but also to the three heterologous strains. Thus, these CP-transgenic papaya lines with broad-spectrum resistance have great potential for use in Taiwan and other geographic areas to control PRSV.
Collapse
|
33
|
Rodman MK, Yadav NS, Artus NN. Progression of geminivirus-induced transgene silencing is associated with transgene methylation. THE NEW PHYTOLOGIST 2002; 155:461-468. [PMID: 33873315 DOI: 10.1046/j.1469-8137.2002.00467.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The association of viral-induced gene silencing (VIGS) elicited by a DNA virus with DNA methylation of the silenced transgene was studied. • 35S-Green fluorescent protein (GFP) transgenic Nicotiana benthamiana were treated with an inhibitor of DNA methylation, 5-azacytidine (5-Aza-C), and VIGS of the transgene was observed upon inoculation with tomato golden mosaic virus carrying the GFP coding sequence. • The onset of VIGS of the 35S-GFP transgene occurred 14-16 d after inoculation in both control and 5-Aza-C-treated plants. At this stage, the silencing was observed in localized regions. Silencing was uniform by 30 d after inoculation in plants that had methylated GFP-DNA, whereas plants that continued to display the same phenotype as seen at 14-15 d after inoculation had hypomethylated GFP-DNA. Viral expression of GFP persisted in pockets throughout the life of infected plants. • This is the first demonstration of a correlation between post transcriptional gene silencing induced by a DNA virus, and transgene methylation. The results suggest that, while DNA methylation is not necessary for the initiation of silencing, the progression of silencing is affected by inhibition of DNA methylation.
Collapse
Affiliation(s)
- Michele K Rodman
- BCS & E, Central R & D, DuPont Experimental Station, Wilmington, DE 19880, USA
| | - Narendra S Yadav
- BCS & E, Central R & D, DuPont Experimental Station, Wilmington, DE 19880, USA
| | - Nancy N Artus
- Biology Department, West Chester University, West Chester, PA 19383, USA
| |
Collapse
|
34
|
Brault V, Pfeffer S, Erdinger M, Mutterer J, Ziegler-Graff V. Virus-induced gene silencing in transgenic plants expressing the minor capsid protein of Beet western yellows virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:799-807. [PMID: 12182337 DOI: 10.1094/mpmi.2002.15.8.799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transgenic Nicotiana benthamiana expressing the minor coat protein P74 of the phloem-limited Beet western yellows virus (BWYV) exhibited an unusual spatial pattern of post-transcriptional gene silencing (PTGS) when infected with BWYV or related viruses. Following infection, transgenic P74 and its mRNA accumulated to only low levels, 21 to 23 nucleotide RNAs homologous to the transgene appeared, and the transgene DNA underwent methylation. The infecting viral RNA, however, was not subject to significant silencing but multiplied readily and produced P74 in the phloem tissues, although the P74 encoded by the transgene disappeared from the phloem as well as the nonvascular tissues.
Collapse
|
35
|
Balmori-Melian E, MacDiarmid RM, Beck DL, Gardner RC, Forster RLS. Sequence-, tissue-, and delivery-specific targeting of RNA during post-transcriptional gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:753-63. [PMID: 12182332 DOI: 10.1094/mpmi.2002.15.8.753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transgenic Nicotiana benthamiana plants expressing an untranslatable version of the coat protein (CP) gene from the Tamarillo mosaic virus (TaMV) were either resistant to TaMV infection or recovered from infection. These phenotypes were the result of a post-transcriptional gene silencing (PTGS) mechanism that targeted TaMV-CP sequences for degradation. The TaMV-CP sequences were degraded when present in the wild-type TaMV potyvirus, in transgene mRNA, or in chimeric viral vectors based on White clover mosaic virus. The more efficiently targeted region was mapped to a 134-nt segment. Differences were observed in the efficiency of targeting during cell-to-cell and long-distance movement of the chimeric viruses. However, the TaMV-CP sequences do not appear to be targeted for degradation when delivered by biolistics.
Collapse
|
36
|
Abstract
RNA silencing in plants is a form of antiviral defense that was originally discovered from the anomalous effects of transgenes. The process is associated with a systemic signal, presumed to be RNA, and is suppressed by plant virus-encoded proteins. One of these proteins, the 2b protein of cucumber mosaic virus, prevents systemic spread of the signal molecule but, curiously, is located in the nucleus of infected cells. The antiviral role of silencing might also apply in animals because a suppressor of silencing encoded by an insect virus was identified recently.
Collapse
Affiliation(s)
- David Baulcombe
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| |
Collapse
|
37
|
Valkonen JPT, Rajamäki ML, Kekarainen T. Mapping of viral genomic regions important in cross-protection between strains of a potyvirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:683-92. [PMID: 12118884 DOI: 10.1094/mpmi.2002.15.7.683] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cross-protection was tested between potato and tobacco strains of Potato virus A, a member of the genus Potyvirus (PVA), in tobacco plants. Cross-protection was effective only at the initiation of infection. The potato strains provided only weak cross-protection against the tobacco strain, whereas the tobacco strain provided strong cross-protection against potato strains. The tamarillo strain (TamMV) showed cross-protection phenotypes mostly resembling those of the potato strains. Chimera of the PVA strains were utilized to map viral genomic regions important for cross-protection. The coat protein (CP) encoding region and the helper component proteinase (HCpro) affected cross-protection and virus accumulation. An amino acid substitution at the CP N-terminus reduced virus accumulation and the ability to overcome cross-protection, whereas amino acid substitutions introduced to the HCpro increased virus accumulation and the ability to overcome cross-protection. Closer sequence relatedness between the protector and challenger isolate, as determined by the CP-encoding sequence, was correlated with an increased cross-protection ability. Cross-protection was not overcome by inoculation with nonencapsidated viral RNA. Thus, the differences in cross-protection abilities between PVA strains and chimera were not explained with the "re-encapsidation model" described for strains of Tobacco mosaic tobamovirus but may be associated with a virus infection-induced RNA silencing mechanism.
Collapse
|
38
|
Sivamani E, Brey CW, Talbert LE, Young MA, Dyer WE, Kaniewski WK, Qu R. Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgenic Res 2002; 11:31-41. [PMID: 11874101 DOI: 10.1023/a:1013944011049] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Wheat (Triticum aestivum) plants were stably transformed with the coat protein (CP) gene of wheat streak mosaic virus (WSMV) by the biolistic method. Eleven independently transformed plant lines were obtained and five were analyzed for gene expression and resistance to WSMV. One line showed high resistance to inoculations of two WSMV strains. This line had milder symptoms and lower virus titer than control plants after inoculation. After infection, new growth did not show symptoms. The observed resistance was similar to the 'recovery' type resistance described previously using WSMV NIb transgene and in other systems. This line looked morphologically normal but had an unusually high transgene copy number (approximately 90 copies per 2C homozygous genome). Northern hybridization analysis indicated a high level of degraded CP mRNA expression. However, no coat protein expression was detected.
Collapse
Affiliation(s)
- Elumalai Sivamani
- Department of Plant Sciences, Montana State University, Bozeman 59717-3140, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Han Y, Grierson D. Relationship between small antisense RNAs and aberrant RNAs associated with sense transgene mediated gene silencing in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:509-519. [PMID: 11846883 DOI: 10.1046/j.1365-313x.2002.01236.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We investigated the occurrence and properties of small sense and antisense RNAs and aberrant transcripts in transgenic tomato plants exhibiting post-transcriptional silencing of the endogenous polygalacturonase (PG) sense gene and a truncated homologous transgene. Small antisense RNAs, about 23 nucleotides in size, were present in the leaves and immature green fruit where the transgene was transcribed in the absence of transcripts from the fruit ripening-specific endogenous PG gene. This suggests that the small antisense RNAs were produced from the transgene, which was supported by their failure to hybridise with the 3' half of the endogenous PG gene, the region that was excluded from the transgene. The features of two aberrant RNAs, corresponding to the 5' and 3' halves of the endogenous gene, strongly suggest that they arise by endonucleolytic cleavage of endogenous PG mRNA. The region where cleavage occurs is associated with the preferential production of small RNAs from the 3' end of the transgene. These results suggest a model where small antisense RNAs generated from the 3' end of the transgene anneal to the endogenous mRNA, resulting in cleavage at or near the annealing regions.
Collapse
MESH Headings
- Blotting, Northern
- Fruit/genetics
- Gene Expression Regulation, Plant
- Gene Silencing
- Solanum lycopersicum/genetics
- Mutation
- Plants, Genetically Modified
- Polygalacturonase/genetics
- Polygalacturonase/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Transgenes/genetics
Collapse
Affiliation(s)
- Yuanhuai Han
- Plant Science Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | |
Collapse
|
40
|
Jones L, Ratcliff F, Baulcombe DC. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 2001; 11:747-57. [PMID: 11378384 DOI: 10.1016/s0960-9822(01)00226-3] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The association between DNA methylation and gene silencing has long been recognized; however, signals that initiate de novo methylation are largely unknown. In plants, recognition of RNAs that are inducers of posttranscriptional gene silencing (PTGS) can result in sequence-specific DNA methylation, and the aim of this work was to investigate whether heritable epigenetic changes can occur by this mechanism and if the Met1 methyltransferase is required. RESULTS RNA-directed DNA methylation (RdDM) was initiated in 35S-GFP transgenic plants following infection with plant RNA viruses modified to carry portions of either the 35S promoter or the GFP coding region. Targeting of the promoter sequence resulted in both methylation and transcriptional gene silencing (TGS) that was inherited independently of the RNA trigger. Targeting the coding region also resulted in methylation; however, this was not inherited. Expression of Met1 was suppressed in order to investigate its role in initiation and maintenance of RdDM. Initiation of RdDM was found to be Met1-independent, whereas maintenance of methylation and TGS in the subsequent generations in the absence of the RNA trigger was Met1-dependent. Maintenance of methylation associated with systemic PTGS was also found to be Met1-independent. CONCLUSIONS RNA-triggered events can lead to heritable changes in gene expression, and it is possible that initiation of other epigenetic phenomena such as trans-silencing and paramutation may have an RNA component.
Collapse
Affiliation(s)
- L Jones
- Sainsbury Laboratory, John Innes Centre, Colney Lane, NR4 7UH, Norwich, United Kingdom
| | | | | |
Collapse
|
41
|
van den Boogaart T, Wen F, Davies JW, Lomonossoff GP. Replicase-derived resistance against pea early browning virus in Nicotiana benthamiana is an unstable resistance based upon posttranscriptional gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:196-203. [PMID: 11204783 DOI: 10.1094/mpmi.2001.14.2.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Virus resistance in Nicotiana benthamiana plants containing a translatable Pea early browning virus (PEBV) 54K sequence from the 201K replicase gene has been reported previously. Resistant plants contain multiple transgene copies divided between two loci. Analysis of a genetic series containing the two loci in separate homozygous or heterozygous condition suggest that only one of the loci is necessary to induce the resistance. The resistance observed in R2 and R3 generations of lines containing both transgene loci in homozygous condition became less consistent in R4 and R5 generations. This inversely correlated with steady-state transgene transcript levels of the segregating populations. The use of recombinant Potato virus X vectors carrying PEBV 54K sequences showed that the resistance is based upon posttranscriptional gene silencing, is non-strand specific, and recognizes 3' located sequences within the PEBV 54K sequence.
Collapse
|
42
|
Iyer LM, Kumpatla SP, Chandrasekharan MB, Hall TC. Transgene silencing in monocots. PLANT MOLECULAR BIOLOGY 2000; 43:323-46. [PMID: 10999414 DOI: 10.1023/a:1006412318311] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant gene silencing was originally thought to be a quirk of transformation procedures, but is now recognized to be a facet of vitally important gene regulatory systems, present in all organisms. Monocot plants, especially the grasses, play a foremost role in the agricultural economy of all nations, and their biotechnological manipulation offers great potential for both developed and developing countries. Here, we review reported instances of transgene silencing in monocots and relate the processes of transcriptional and post-transcriptional gene silencing (TGS, PTGS) in perspective to the rapidly burgeoning knowledge of these phenomena in many organisms. Recent findings include the involvement of an RNA-dependent RNA polymerase and a nuclease in PTGS systems and the close relationship between methylation and chromatin structure in TGS events.
Collapse
Affiliation(s)
- L M Iyer
- Institute of Developmental and Molecular Biology, Texas A&M University, College Station 77843-3155, USA
| | | | | | | |
Collapse
|
43
|
Muskens MW, Vissers AP, Mol JN, Kooter JM. Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. PLANT MOLECULAR BIOLOGY 2000; 43:243-260. [PMID: 10999408 DOI: 10.1023/a:1006491613768] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transgenes and endogenous genes are sensitive to silencing, in particular when the genes are tandemly repeated. Their expression can be transcriptionally or post-transcriptionally repressed, or both. It is remarkable that very often, two or more genes or parts of the genes are arranged as inverted repeats (IR). Many of such IRs are dominant silencing loci. They can repress the expression of homologous genes elsewhere in the genome in trans which is usually associated with an increase in the level of DNA methylation. Trans-silencing has been explained by DNA-DNA pairing between a repetitive silencing locus and a homologous target locus. However, there is accumulating evidence that the trans effect might be mediated by dsRNA transcribed from the IR (trans)genes. Besides dsRNA-directed DNA methylation, dsRNA in plants as well as in other systems also induces the degradation of homologous RNAs and silence genes post-transcriptionally. These findings indicate that several features associated with gene silencing can be attributed to the activities of dsRNA, which would explain why inverted transgene repeats are such efficient silencing loci.
Collapse
Affiliation(s)
- M W Muskens
- Department of Developmental Genetics, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, Netherlands
| | | | | | | |
Collapse
|
44
|
Marathe R, Anandalakshmi R, Smith TH, Pruss GJ, Vance VB. RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. PLANT MOLECULAR BIOLOGY 2000; 43:295-306. [PMID: 10999412 DOI: 10.1023/a:1006456000564] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Post-transcriptional gene silencing (PTGS) is a fundamental regulatory mechanism operating in diverse types of organisms, but the cellular components of the gene silencing machinery and the regulation of the process are not understood. Recent findings that cytoplasmically replicating RNA viruses act as both targets and inducers of PTGS has led to the idea that PTGS may have evolved as an anti-viral defense mechanism in plants. Consistent with this hypothesis, it has been found that certain plant viruses encode proteins that suppress PTGS. From a practical standpoint, an understanding of the mechanisms by which viruses regulate PTGS may well lead to better ways to control gene expression in plants. It is often desirable to overexpress selected beneficial genes or to silence detrimental ones in order to confer a particular phenotype. Induction of PTGS using RNA viruses as vectors or as transgenes provides a reliable and efficient way to interfere with the expression of a specific gene or with a family of genes. Conversely, expression of viral suppressors has significant potential to improve yields in technologies that use plants to express beneficial gene products. Given the antiviral nature of gene silencing in plants and the indications that PTGS is an ancient mechanism in eukaryotic organisms, understanding the phenomenon in plants could well lead to the development of anti-viral strategies in both plants and animals.
Collapse
Affiliation(s)
- R Marathe
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Post-transcriptional gene-silencing (PTGS) was first discovered in plants and results from the sequence-specific degradation of RNA. Degradation can be activated by introducing transgenes, RNA viruses or DNA sequences that are homologous to expressed genes. A similar RNA degradation mechanism which is inducible by double-stranded RNA (dsRNAs), has been discovered recently in vertebrates, invertebrates and protozoa. dsRNAs may also be potent activators of PTGS in plants. PTGS is not cell autonomous, suggesting the synthesis of sequence-specific silencing signals which are not only moving through the plant but are also amplified and an RNA-directed RNA Polymerase which has recently been cloned from various plant species is a candidate enzyme for amplifying silencing signals. The natural role of PTGS seems to be as a defence against plant viruses, so what first appeared to be RNAs on the attack may now be considered RNAs on the defense. BioEssays 22:520-531, 2000.
Collapse
Affiliation(s)
- T Sijen
- Department of Developmental Genetics, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, HV Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Király L. The silencing of (trans)gens – A mechanism of virus resistance in plants. ACTA ACUST UNITED AC 2000. [DOI: 10.1556/aphyt.34.1999.4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Iyer LM, Hall TC. Virus recovery is induced in Brome mosaic virus p2 transgenic plants showing synchronous complementation and RNA-2-specific silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:247-58. [PMID: 10707350 DOI: 10.1094/mpmi.2000.13.3.247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nicotiana benthamiana plants expressing Brome mosaic virus (BMV) p2 protein complemented replication of RNAs1 + 3 but, surprisingly, supported little or no replication of RNA-2. Despite this, the p2 transgenic plants were able to support systemic migration of RNAs-1 and -3. Kinetic analyses showed identical degradation rates for RNAs-2 and -3, greatly detracting from the concept of an induction of an RNA-2-specific degradation system. Deletion analysis identified a 200-nucleotide sequence that may contribute to silencing in a context-specific manner. When R1 progeny of a severely silencing p2 transgenic line were tested for virus resistance, three different classes of reactions were observed. In class 1 and class 3 plants, the virus moved systemically and showed various extents of RNA-2 silencing. However, in class 2 plants, there was a stochastic onset of post-transcriptional silencing in the systemic leaves that was reminiscent of virus recovery. Plants showing recovery tended to have a greater number of transgene loci than did those exhibiting component-specific silencing. The induction of silencing did not appear to be dependent solely on the combined steady state levels of the transgene and viral RNA. Some plants transformed with a p2 frameshift construct showed a complete silencing phenotype, but none showed RNA-2-specific silencing. While the relationship between the two types of silencing remains unclear, we speculate that our observations reflect early events in the induction of virus recovery.
Collapse
Affiliation(s)
- L M Iyer
- Institute of Developmental and Molecular Biology, Texas A&M University, College Station 77843-3155, USA
| | | |
Collapse
|
48
|
Dalmay T, Hamilton A, Mueller E, Baulcombe DC. Potato virus X amplicons in arabidopsis mediate genetic and epigenetic gene silencing. THE PLANT CELL 2000; 12:369-79. [PMID: 10715323 PMCID: PMC139837 DOI: 10.1105/tpc.12.3.369] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/1999] [Accepted: 01/26/2000] [Indexed: 05/18/2023]
Abstract
Amplicon transgenes from potato virus X (PVX) are based on a modified version of the viral genome and are efficient activators of post-transcriptional gene silencing (PTGS). To determine whether PVX amplicons activate PTGS in Arabidopsis, we used constructs based on the genome of PVX carrying a green fluorescent protein (GFP) reporter gene. Our analysis of the transgene phenotype exploited previous observations indicating that PTGS is associated with short 25-nucleotide RNA species, transgene methylation, and homology-dependent virus resistance. We also used the ability of turnip mosaic virus to suppress gene silencing as a means of dissecting stages of the mechanism. The results showed that a PVX:GFP amplicon induces weak PTGS and that this PTGS was enhanced in the presence of a GFP reporter gene. Our interpretation of these data is that the PTGS induced by the amplicon was genetically determined and equivalent to the initiation stage of the PTGS mechanism. The PTGS induced by the combined amplicon and reporter gene was equivalent to the maintenance stage and was associated with an epigenetic conversion of the transgene. The distinction between genetic and epigenetic PTGS explains the well-characterized effects of transgene dosage on PTGS that have been previously interpreted in terms of RNA expression thresholds.
Collapse
Affiliation(s)
- T Dalmay
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
49
|
Kovarík A, Van Houdt H, Holý A, Depicker A. Drug-induced hypomethylation of a posttranscriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS Lett 2000; 467:47-51. [PMID: 10664454 DOI: 10.1016/s0014-5793(00)01077-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of DNA methylation upon posttranscriptional gene silencing (PTGS) has been investigated in transgenic tobacco lines showing PTGS and methylation of the neomycin phosphotransferase II (nptII) reporter genes. Application of the hypomethylation drugs dihydroxypropyladenine or 5-azacytidine resulted in approximately 30% reduced methylation of cytosines located in a non-symmetrical context in the 3' untranslated region of the nptII transgenes. The hypomethylation was accompanied by up to 12-fold increase in NPTII protein levels, suggesting that methylation of non-symmetrical motifs may account for an increased degree of PTGS. Models for the possible role of DNA methylation in PTGS are discussed.
Collapse
Affiliation(s)
- A Kovarík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic.
| | | | | | | |
Collapse
|
50
|
Pélissier T, Wassenegger M. A DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA (NEW YORK, N.Y.) 2000; 6:55-65. [PMID: 10668798 PMCID: PMC1369893 DOI: 10.1017/s135583820099201x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In higher plants, RNA-DNA interactions can trigger de novo methylation of genomic sequences via a process that is termed RNA-directed DNA methylation (RdDM). In potato spindle tuber viroid (PSTVd)-infected tobacco plants, this process can potentially lead to methylation of all C residues at symmetrical and nonsymmetrical sites within chromosomal inserts that consist of multimers of the 359-bp-long PSTVd cDNA. Using PSTVd cDNA subfragments, we found that genomic targets with as few as 30 nt of sequence complementarity to the viroid RNA are detected and methylated. Genomic sequencing analyses of genome-integrated 30- and 60-bp-long PSTVd subfragments demonstrated that de novo cytosine methylation is not limited to the canonical CpG, CpNpG sites. Sixty-base-pair-long PSTVd cDNA constructs appeared to be densely methylated in nearly all tobacco leaf cells. With the 30-bp-long PSTVd-specific construct, the proportion of cells displaying dense transgene methylation was significantly reduced, suggesting that a minimal target size of about 30 bp is necessary for RdDM. The methylation patterns observed for two different 60-bp constructs further suggested that the sequence identity of the target may influence the methylation mechanism. Finally, a link between viroid pathogenicity and PSTVd RNA-directed methylation of host sequences is proposed.
Collapse
Affiliation(s)
- T Pélissier
- Fraunhofer IUCT, Abteilung für Molekulare Biotechnologie, Grafschaft, Schmallenberg, Germany
| | | |
Collapse
|