1
|
Kwon O, Ha S, Noh DY, Kang H, Iqbal M, Anwar MI, Kim S. Pump-probe reciprocal-space mapping using energy-resolved XFEL pink beam pulses. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:281-287. [PMID: 39937518 DOI: 10.1107/s1600577525000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
We present a 3D reciprocal-space mapping (RSM) method using a pink self-amplified spontaneous emission (SASE) X-ray free-electron laser beam. The energy of each specific pulse in a SASE beam can be determined using the diffraction pattern of a specimen excited by pumping itself as a spectroscopic reference. A thin slab of RSM, whose thickness corresponds to the energy bandwidth of the pink beam, is successfully reconstructed using the proposed method. By rocking a sample in a few steps, we obtained a 3D RSM covering both the diffuse scattering and the Bragg rod in NiO thin films during a pump-probe X-ray diffraction measurement.
Collapse
Affiliation(s)
- Ouyoung Kwon
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sungsoo Ha
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyonchol Kang
- Department of Materials Science and Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Mazhar Iqbal
- National Institute of Lasers & Optronics (NILOP), Islamabad 22869, Pakistan
| | | | - Sunam Kim
- PAL-XFEL Division, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Bergmann U. Stimulated X-ray emission spectroscopy. PHOTOSYNTHESIS RESEARCH 2024; 162:371-384. [PMID: 38619702 DOI: 10.1007/s11120-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 04/16/2024]
Abstract
We describe an emerging hard X-ray spectroscopy technique, stimulated X-ray emission spectroscopy (S-XES). S-XES has the potential to characterize the electronic structure of 3d transition metal complexes with spectral information currently not reachable and might lead to the development of new ultrafast X-ray sources with properties beyond the state of the art. S-XES has become possible with the emergence of X-ray free-electron lasers (XFELs) that provide intense femtosecond X-ray pulses that can be employed to generate a population inversion of core-hole excited states resulting in stimulated X-ray emission. We describe the instrumentation, the various types of S-XES, the potential applications, the experimental challenges, and the feasibility of applying S-XES to characterize dilute systems, including the Mn4Ca cluster in the oxygen evolving complex of photosystem II.
Collapse
Affiliation(s)
- Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Fan Q, Willson MC, Foell KA, Paley DW, Kotei PA, Schriber EA, Rosenberg DJ, Rani K, Tchoń DM, Zeller M, Melendrez C, Kang J, Inoue I, Owada S, Tono K, Sugahara M, Brewster AS, Hohman JN. Nucleophilic Displacement Reactions of Silver-Based Metal-Organic Chalcogenolates. J Am Chem Soc 2024; 146:30349-30360. [PMID: 39440654 DOI: 10.1021/jacs.4c10426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We report nucleophilic displacement reactions that can increase the dimensionality or coordination number of silver-based metal-organic chalcogenolates (MOChas). MOChas are crystalline ensembles containing one-dimensional (1D) or two-dimensional (2D) inorganic topologies with structures and properties defined by the choice of metal, chalcogen, and ligand. MOChas can be readily prepared from a variety of small-molecule ligands and metals or metal ions. Although MOChas offer ligand diversity, most reported examples use relatively small ligands, typically involving short alkyl chains, aryl rings, or molecular cages. This is because larger, more complex molecules often yield poor product morphologies with indeterminate structures. In this study, we overcame this limitation by employing a ligand exchange strategy whereby a 1D MOCha, silver(I) methyl 2-mercaptobenzoate (2MMB), is used as a silver source for preparing 2D examples. The reaction proceeds generally toward products composed of the stronger nucleophile. We show that the reaction prefers displacing 1D topologies to yield 2D ones and replacing thiolates with selenolates. We performed a study to characterize the mechanism by which organic chalcogenols and dichalcogenides exchange with MOChas. The collected data and product analysis support a proposed mechanism of nucleophilic substitution, explaining how both organic chalcogenols and dichalcogenides can displace ligands in MOChas. This work provides a new synthetic route that will enable the preparation of more elaborate MOChas and heterostructures thereof. This approach enabled the preparation of previously inaccessible oligophenyl MOChas, which were successfully solved via small-molecule serial femtosecond crystallography (smSFX) at the SPring-8 Ångström Compact Free Electron LAser (SACLA) facility.
Collapse
Affiliation(s)
- Qiaoling Fan
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Maggie C Willson
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kristen A Foell
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Daniel W Paley
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Patience A Kotei
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Elyse A Schriber
- Linac Coherent Light Source SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Daniel J Rosenberg
- Linac Coherent Light Source SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Komal Rani
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Daniel M Tchoń
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cynthia Melendrez
- Linac Coherent Light Source SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jungmin Kang
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Ichiro Inoue
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigeki Owada
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Michihiro Sugahara
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - J Nathan Hohman
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Takaba K, Maki-Yonekura S, Inoue I, Tono K, Fukuda Y, Shiratori Y, Peng Y, Morimoto J, Inoue S, Higashino T, Sando S, Hasegawa T, Yabashi M, Yonekura K. Comprehensive Application of XFEL Microcrystallography for Challenging Targets in Various Organic Compounds. J Am Chem Soc 2024; 146:5872-5882. [PMID: 38415585 DOI: 10.1021/jacs.3c11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
There is a growing demand for structure determination from small crystals, and the three-dimensional electron diffraction (3D ED) technique can be employed for this purpose. However, 3D ED has certain limitations related to the crystal thickness and data quality. We here present the application of serial X-ray crystallography (SX) with X-ray free electron lasers (XFELs) to small (a few μm or less) and thin (a few hundred nm or less) crystals of novel compounds dispersed on a substrate. For XFEL exposures, two-dimensional (2D) scanning of the substrate coupled with rotation enables highly efficient data collection. The recorded patterns can be successfully indexed using lattice parameters obtained through 3D ED. This approach is especially effective for challenging targets, including pharmaceuticals and organic materials that form preferentially oriented flat crystals in low-symmetry space groups. Some of these crystals have been difficult to solve or have yielded incomplete solutions using 3D ED. Our extensive analyses confirmed the superior quality of the SX data regardless of crystal orientations. Additionally, 2D scanning with XFEL pulses gives an overall distribution of the samples on the substrate, which can be useful for evaluating the properties of crystal grains and the quality of layered crystals. Therefore, this study demonstrates that XFEL crystallography has become a powerful tool for conducting structure studies of small crystals of organic compounds.
Collapse
Affiliation(s)
- Kiyofumi Takaba
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | - Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yasuhiro Fukuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yota Shiratori
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yiying Peng
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Inoue
- Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiki Higashino
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuo Hasegawa
- Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Koji Yonekura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Caprini L, Löwen H, Geilhufe RM. Ultrafast entropy production in pump-probe experiments. Nat Commun 2024; 15:94. [PMID: 38169471 PMCID: PMC10761836 DOI: 10.1038/s41467-023-44277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The ultrafast control of materials has opened the possibility to investigate non-equilibrium states of matter with striking properties, such as transient superconductivity and ferroelectricity, ultrafast magnetization and demagnetization, as well as Floquet engineering. The characterization of the ultrafast thermodynamic properties within the material is key for their control and design. Here, we develop the ultrafast stochastic thermodynamics for laser-excited phonons. We calculate the entropy production and heat absorbed from experimental data for single phonon modes of driven materials from time-resolved X-ray scattering experiments where the crystal is excited by a laser pulse. The spectral entropy production is calculated for SrTiO3 and KTaO3 for different temperatures and reveals a striking relation with the power spectrum of the displacement-displacement correlation function by inducing a broad peak beside the eigenmode-resonance.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - R Matthias Geilhufe
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| |
Collapse
|
6
|
Kotei PA, Paley DW, Oklejas V, Mittan-Moreau DW, Schriber EA, Aleksich M, Willson MC, Inoue I, Owada S, Tono K, Sugahara M, Inaba-Inoue S, Aquila A, Poitevin F, Blaschke JP, Lisova S, Hunter MS, Sierra RG, Gascón JA, Sauter NK, Brewster AS, Hohman JN. Engineering Supramolecular Hybrid Architectures with Directional Organofluorine Bonds. SMALL SCIENCE 2024; 4:2300110. [PMID: 39897162 PMCID: PMC11784642 DOI: 10.1002/smsc.202300110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Indexed: 02/04/2025] Open
Abstract
Understanding how chemical modifications alter the atomic-scale organization of materials is of fundamental importance in materials engineering and the target of considerable efforts in computational prediction. Incorporating covalent and non-covalent interactions in designing crystals while "piggybacking" on the driving force of molecular self-assembly has augmented our efforts to understand the emergence of complex structures using directed synthesis. Here, we prepared microcrystalline powders of the silver 2-, 3-, and 4-fluorobenzenethiolates and resolved their structures by small molecule serial femtosecond X-ray crystallography (smSFX). These three compounds enable us to examine the emergence and role of supramolecular synthons in the crystal structures of three-dimensional metal-organic chalcogenolates (MOChas). The unique divergence in their optoelectronic, morphological, and structural behavior was assessed. The extent of C-H···F interactions and their influence on the structure and the observed trends in the thermal stability of the crystals were quantified through theoretical calculations and thermogravimetric analysis.
Collapse
Affiliation(s)
- Patience A. Kotei
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Daniel W. Paley
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Vanessa Oklejas
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - David W. Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Elyse A. Schriber
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Mariya Aleksich
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Maggie C. Willson
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Ichiro Inoue
- Advanced Photon Technology DivisionRIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Shigeki Owada
- Advanced Photon Technology DivisionRIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- XFEL Utilization DivisionJapan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Kensuke Tono
- Advanced Photon Technology DivisionRIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- XFEL Utilization DivisionJapan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Michihiro Sugahara
- Advanced Photon Technology DivisionRIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Satomi Inaba-Inoue
- XFEL Utilization DivisionJapan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
- Structural Biology Research CenterPhoton FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research Organization1-1 OhoTsukubaIbaraki305-0801Japan
| | - Andrew Aquila
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Frédéric Poitevin
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Johannes P. Blaschke
- National Energy Research Scientific Computing CenterLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Stella Lisova
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Mark S. Hunter
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Raymond G. Sierra
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - José A. Gascón
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - James Nathan Hohman
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT06269USA
- Department of ChemistryUniversity of ConnecticutStorrsCT06269USA
| |
Collapse
|
7
|
Maestre-Reyna M, Wang PH, Nango E, Hosokawa Y, Saft M, Furrer A, Yang CH, Gusti Ngurah Putu EP, Wu WJ, Emmerich HJ, Caramello N, Franz-Badur S, Yang C, Engilberge S, Wranik M, Glover HL, Weinert T, Wu HY, Lee CC, Huang WC, Huang KF, Chang YK, Liao JH, Weng JH, Gad W, Chang CW, Pang AH, Yang KC, Lin WT, Chang YC, Gashi D, Beale E, Ozerov D, Nass K, Knopp G, Johnson PJM, Cirelli C, Milne C, Bacellar C, Sugahara M, Owada S, Joti Y, Yamashita A, Tanaka R, Tanaka T, Luo F, Tono K, Zarzycka W, Müller P, Alahmad MA, Bezold F, Fuchs V, Gnau P, Kiontke S, Korf L, Reithofer V, Rosner CJ, Seiler EM, Watad M, Werel L, Spadaccini R, Yamamoto J, Iwata S, Zhong D, Standfuss J, Royant A, Bessho Y, Essen LO, Tsai MD. Visualizing the DNA repair process by a photolyase at atomic resolution. Science 2023; 382:eadd7795. [PMID: 38033054 DOI: 10.1126/science.add7795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.
Collapse
Affiliation(s)
- Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Po-Hsun Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuhei Hosokawa
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Martin Saft
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Antonia Furrer
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | | | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hans-Joachim Emmerich
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Nicolas Caramello
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Sophie Franz-Badur
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Chao Yang
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Sylvain Engilberge
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Maximilian Wranik
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Tobias Weinert
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wael Gad
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Chiung-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Allan H Pang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Chun Yang
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Wei-Ting Lin
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Yu-Chen Chang
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Dardan Gashi
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Emma Beale
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Karol Nass
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Philip J M Johnson
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Chris Milne
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fangjia Luo
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Wiktoria Zarzycka
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pavel Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maisa Alkheder Alahmad
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Filipp Bezold
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Valerie Fuchs
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Petra Gnau
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Stephan Kiontke
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Lukas Korf
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Viktoria Reithofer
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Christian Joshua Rosner
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Elisa Marie Seiler
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Mohamed Watad
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Laura Werel
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Roberta Spadaccini
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
- Dipartimento di Scienze e tecnologie, Universita degli studi del Sannio, Benevento, Italy
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Dongping Zhong
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for Ultrafast Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jörg Standfuss
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Antoine Royant
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
8
|
Inoue I, Yamada J, Kapcia KJ, Stransky M, Tkachenko V, Jurek Z, Inoue T, Osaka T, Inubushi Y, Ito A, Tanaka Y, Matsuyama S, Yamauchi K, Yabashi M, Ziaja B. Femtosecond Reduction of Atomic Scattering Factors Triggered by Intense X-Ray Pulse. PHYSICAL REVIEW LETTERS 2023; 131:163201. [PMID: 37925726 DOI: 10.1103/physrevlett.131.163201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 11/07/2023]
Abstract
X-ray diffraction of silicon irradiated with tightly focused femtosecond x-ray pulses (photon energy, 11.5 keV; pulse duration, 6 fs) was measured at various x-ray intensities up to 4.6×10^{19} W/cm^{2}. The measurement reveals that the diffraction intensity is highly suppressed when the x-ray intensity reaches of the order of 10^{19} W/cm^{2}. With a dedicated simulation, we confirm that the observed reduction of the diffraction intensity can be attributed to the femtosecond change in individual atomic scattering factors due to the ultrafast creation of highly ionized atoms through photoionization, Auger decay, and subsequent collisional ionization. We anticipate that this ultrafast reduction of atomic scattering factor will be a basis for new x-ray nonlinear techniques, such as pulse shortening and contrast variation x-ray scattering.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jumpei Yamada
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Konrad J Kapcia
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, PL-61614 Poznań, Poland
- Center of Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michal Stransky
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Victor Tkachenko
- Center of Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Zoltan Jurek
- Center of Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Takato Inoue
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Atsuki Ito
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuto Tanaka
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Matsuyama
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazuto Yamauchi
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Beata Ziaja
- Center of Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| |
Collapse
|
9
|
Doyle MD, Halavanau A, Zhang Y, Michine Y, Everts J, Fuller F, Alonso-Mori R, Yabashi M, Inoue IC, Osaka T, Yamada J, Inubushi Y, Hara T, Kern J, Yano J, Yachandra VK, Rohringer N, Yoneda H, Kroll T, Pellegrini C, Bergmann U. Seeded stimulated X-ray emission at 5.9 keV. OPTICA 2023; 10:513-519. [PMID: 38239819 PMCID: PMC10795508 DOI: 10.1364/optica.485989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 01/22/2024]
Abstract
X-ray free-electron lasers (XFELs) provide intense pulses that can generate stimulated X-ray emission, a phenomenon that has been observed and studied in materials ranging from neon to copper. Two schemes have been employed: amplified spontaneous emission (ASE) and seeded stimulated emission (SSE), where a second color XFEL pulse provides the seed. Both phenomena are currently explored for coherent X-ray laser sources and spectroscopy. Here, we report measurements of ASE and SSE of the 5.9 keV Mn Kα1 fluorescence line from a 3.9 molar NaMnO4 solution, pumped with 7 femtosecond FWHM XFEL pulses at 6.6 keV. We observed ASE at a pump pulse intensity of 1.7 × 1019 W/cm2, consistent with earlier findings. We observed SSE at dramatically reduced pump pulse intensities down to 1.1 × 1017 W/cm2. These intensities are well within the range of many existing XFEL instruments, which supports the experimental feasibility of SSE as a tool to generate coherent X-ray pulses, spectroscopic studies of transition metal complexes, and other applications.
Collapse
Affiliation(s)
- Margaret D. Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Aliaksei Halavanau
- Accelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yu Zhang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yurina Michine
- Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Joshua Everts
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 9402, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Franklin Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - IChiro Inoue
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jumpei Yamada
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Toru Hara
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Nina Rohringer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Department of Physics, Universität Hamburg, Hamburg 20355, Germany
| | - Hitoki Yoneda
- Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 9402, USA
| | - Claudio Pellegrini
- Accelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Takaba K, Maki-Yonekura S, Inoue I, Tono K, Hamaguchi T, Kawakami K, Naitow H, Ishikawa T, Yabashi M, Yonekura K. Structural resolution of a small organic molecule by serial X-ray free-electron laser and electron crystallography. Nat Chem 2023; 15:491-497. [PMID: 36941396 PMCID: PMC10719108 DOI: 10.1038/s41557-023-01162-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
Structure analysis of small crystals is important in areas ranging from synthetic organic chemistry to pharmaceutical and material sciences, as many compounds do not yield large crystals. Here we present the detailed characterization of the structure of an organic molecule, rhodamine-6G, determined at a resolution of 0.82 Å by an X-ray free-electron laser (XFEL). Direct comparison of this structure with that obtained by electron crystallography from the same sample batch of microcrystals shows that both methods can accurately distinguish the position of some of the hydrogen atoms, depending on the type of chemical bond in which they are involved. Variations in the distances measured by XFEL and electron diffraction reflect the expected differences in X-ray and electron scatterings. The reliability for atomic coordinates was found to be better with XFEL, but the electron beam showed a higher sensitivity to charges.
Collapse
Affiliation(s)
| | | | | | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Tasuku Hamaguchi
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Aoba-ku, Japan
| | | | | | | | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Koji Yonekura
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, Sayo, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Aoba-ku, Japan.
| |
Collapse
|
11
|
He Z, Rödel M, Lütgert J, Bergermann A, Bethkenhagen M, Chekrygina D, Cowan TE, Descamps A, French M, Galtier E, Gleason AE, Glenn GD, Glenzer SH, Inubushi Y, Hartley NJ, Hernandez JA, Heuser B, Humphries OS, Kamimura N, Katagiri K, Khaghani D, Lee HJ, McBride EE, Miyanishi K, Nagler B, Ofori-Okai B, Ozaki N, Pandolfi S, Qu C, Ranjan D, Redmer R, Schoenwaelder C, Schuster AK, Stevenson MG, Sueda K, Togashi T, Vinci T, Voigt K, Vorberger J, Yabashi M, Yabuuchi T, Zinta LMV, Ravasio A, Kraus D. Diamond formation kinetics in shock-compressed C─H─O samples recorded by small-angle x-ray scattering and x-ray diffraction. SCIENCE ADVANCES 2022; 8:eabo0617. [PMID: 36054354 PMCID: PMC10848955 DOI: 10.1126/sciadv.abo0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and H2O systems, respectively. Here, we investigate a stoichiometric mixture of C and H2O by shock-compressing polyethylene terephthalate (PET) plastics and performing in situ x-ray probing. We observe diamond formation at pressures between 72 ± 7 and 125 ± 13 GPa at temperatures ranging from ~3500 to ~6000 K. Combining x-ray diffraction and small-angle x-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H2O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets' magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock compression of cheap PET plastics.
Collapse
Affiliation(s)
- Zhiyu He
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Shanghai Institute of Laser Plasma, 201800 Shanghai, China
| | - Melanie Rödel
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Julian Lütgert
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Armin Bergermann
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Mandy Bethkenhagen
- École Normale Supérieure de Lyon, Laboratoire de Géologie de Lyon, LGLTPE UMR 5276, Centre Blaise Pascal, 46 allée d’Italie, Lyon 69364, France
| | - Deniza Chekrygina
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thomas E. Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Adrien Descamps
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Martin French
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Griffin D. Glenn
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Stanford University, Stanford, CA 94305, USA
| | | | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | - Jean-Alexis Hernandez
- Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Benjamin Heuser
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oliver S. Humphries
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Nobuki Kamimura
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kento Katagiri
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Emma E. McBride
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Kohei Miyanishi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Silvia Pandolfi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Chongbing Qu
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Divyanshu Ranjan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Christopher Schoenwaelder
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen Nürnberg, Erwin-Rommel-Str 1, 91058 Erlangen, Germany
| | - Anja K. Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Michael G. Stevenson
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Keiichi Sueda
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tommaso Vinci
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique–Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Katja Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshinori Yabuuchi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Lisa M. V. Zinta
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Alessandra Ravasio
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique–Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Dominik Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
12
|
Inoue I, Tkachenko V, Kapcia KJ, Lipp V, Ziaja B, Inubushi Y, Hara T, Yabashi M, Nishibori E. Delayed Onset and Directionality of X-Ray-Induced Atomic Displacements Observed on Subatomic Length Scales. PHYSICAL REVIEW LETTERS 2022; 128:223203. [PMID: 35714226 DOI: 10.1103/physrevlett.128.223203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Transient structural changes of Al_{2}O_{3} on subatomic length scales following irradiation with an intense x-ray laser pulse (photon energy: 8.70 keV; pulse duration: 6 fs; fluence: 8×10^{2} J/cm^{2}) have been investigated by using an x-ray pump x-ray probe technique. The measurement reveals that aluminum and oxygen atoms remain in their original positions by ∼20 fs after the intensity maximum of the pump pulse, followed by directional atomic displacements at the fixed unit cell parameters. By comparing the experimental results and theoretical simulations, we interpret that electron excitation and relaxation triggered by the pump pulse modify the potential energy surface and drives the directional atomic displacements. Our results indicate that high-resolution x-ray structural analysis with the accuracy of 0.01 Å is feasible even with intense x-ray pulses by making the pulse duration shorter than the timescale needed to complete electron excitation and relaxation processes, which usually take up to a few tens of femtoseconds.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Victor Tkachenko
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Konrad J Kapcia
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, PL-61614 Poznań, Poland
| | - Vladimir Lipp
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Toru Hara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Eiji Nishibori
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
13
|
Determination of sub-ps lattice dynamics in FeRh thin films. Sci Rep 2022; 12:8584. [PMID: 35595862 PMCID: PMC9122986 DOI: 10.1038/s41598-022-12602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Understanding the ultrashort time scale structural dynamics of the FeRh metamagnetic phase transition is a key element in developing a complete explanation of the mechanism driving the evolution from an antiferromagnetic to ferromagnetic state. Using an X-ray free electron laser we determine, with sub-ps time resolution, the time evolution of the (-101) lattice diffraction peak following excitation using a 35 fs laser pulse. The dynamics at higher laser fluence indicates the existence of a transient lattice state distinct from the high temperature ferromagnetic phase. By extracting the lattice temperature and comparing it with values obtained in a quasi-static diffraction measurement, we estimate the electron-phonon coupling in FeRh thin films as a function of laser excitation fluence. A model is presented which demonstrates that the transient state is paramagnetic and can be reached by a subset of the phonon bands. A complete description of the FeRh structural dynamics requires consideration of coupling strength variation across the phonon frequencies.
Collapse
|
14
|
Inoue I, Iwai E, Hara T, Inubushi Y, Tono K, Yabashi M. Single-shot spectrometer using diamond microcrystals for X-ray free-electron laser pulses. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:862-865. [PMID: 35511018 PMCID: PMC9070727 DOI: 10.1107/s1600577522001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
A simple spectrometer using diffraction from diamond microcrystals has been developed to diagnose single-shot spectra of X-ray free-electron laser (XFEL) pulses. The large grain size and uniform lattice constant of the adopted crystals enable characterizing the XFEL spectrum at a resolution of a few eV from the peak shape of the powder diffraction profile. This single-shot spectrometer has been installed at beamline 3 of SACLA and is used for daily machine tuning.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Eito Iwai
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Toru Hara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
15
|
Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nat Chem 2022; 14:677-685. [PMID: 35393554 DOI: 10.1038/s41557-022-00922-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.
Collapse
|
16
|
Choi EH, Lee Y, Heo J, Ihee H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem Sci 2022; 13:8457-8490. [PMID: 35974755 PMCID: PMC9337737 DOI: 10.1039/d2sc00502f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses suitable for pump–probe time-resolved studies with a femtosecond time resolution. Since the advent of the first XFEL in 2009, recent years have witnessed a great number of applications with various pump–probe techniques at XFELs. Among these, time-resolved X-ray liquidography (TRXL) is a powerful method for visualizing structural dynamics in the liquid solution phase. Here, we classify various chemical and biological molecular systems studied via femtosecond TRXL (fs-TRXL) at XFELs, depending on the focus of the studied process, into (i) bond cleavage and formation, (ii) charge distribution and electron transfer, (iii) orientational dynamics, (iv) solvation dynamics, (v) coherent nuclear wavepacket dynamics, and (vi) protein structural dynamics, and provide a brief review on each category. We also lay out a plausible roadmap for future fs-TRXL studies for areas that have not been explored yet. Femtosecond X-ray liquidography using X-ray free-electron lasers (XFELs) visualizes various aspects of reaction dynamics.![]()
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jun Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
17
|
Inoue I, Inubushi Y, Osaka T, Yamada J, Tamasaku K, Yoneda H, Yabashi M. Shortening X-Ray Pulse Duration via Saturable Absorption. PHYSICAL REVIEW LETTERS 2021; 127:163903. [PMID: 34723578 DOI: 10.1103/physrevlett.127.163903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
To shorten the duration of x-ray pulses, we present a nonlinear optical technique using atoms with core-hole vacancies (core-hole atoms) generated by inner-shell photoionization. The weak Coulomb screening in the core-hole atoms results in decreased absorption at photon energies immediately above the absorption edge. By employing this phenomenon, referred to as saturable absorption, we successfully reduce the duration of x-ray free-electron laser pulses (photon energy: 9.000 keV, duration: 6-7 fs, fluence: 2.0-3.5×10^{5} J/cm^{2}) by ∼35%. This finding that core-hole atoms are applicable to nonlinear x-ray optics is an essential stepping stone for extending nonlinear technologies commonplace at optical wavelengths to the hard x-ray region.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jumpei Yamada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hitoki Yoneda
- University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
18
|
Hosaka Y, Yamamoto H, Ishino M, Dinh TH, Nishikino M, Kon A, Owada S, Inubushi Y, Kubota Y, Maekawa Y. Study on Irradiation Effects by Femtosecond-pulsed Extreme Ultraviolet in Resist Materials. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuji Hosaka
- Institute for Advanced Synchrotron Light Source, National Institutes for Quantum and Radiological Science and Technology (QST)
| | - Hiroki Yamamoto
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST)
| | - Masahiko Ishino
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST)
| | - Thanh-Hung Dinh
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST)
| | - Masaharu Nishikino
- Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST)
| | - Akira Kon
- Japan Synchrotron Radiation Research Institute (JASRI)
| | | | | | | | - Yasunari Maekawa
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST)
| |
Collapse
|
19
|
A self-referenced in-situ arrival time monitor for X-ray free-electron lasers. Sci Rep 2021; 11:3562. [PMID: 33574378 PMCID: PMC7878505 DOI: 10.1038/s41598-021-82597-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
Collapse
|
20
|
Hartley NJ, Grenzer J, Huang L, Inubushi Y, Kamimura N, Katagiri K, Kodama R, Kon A, Lu W, Makita M, Matsuoka T, Nakajima S, Ozaki N, Pikuz T, Rode AV, Sagae D, Schuster AK, Tono K, Voigt K, Vorberger J, Yabuuchi T, McBride EE, Kraus D. Using Diffuse Scattering to Observe X-Ray-Driven Nonthermal Melting. PHYSICAL REVIEW LETTERS 2021; 126:015703. [PMID: 33480771 DOI: 10.1103/physrevlett.126.015703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
We present results from the SPring-8 Angstrom Compact free electron LAser facility, where we used a high intensity (∼10^{20} W/cm^{2}) x-ray pump x-ray probe scheme to observe changes in the ionic structure of silicon induced by x-ray heating of the electrons. By avoiding Laue spots in the scattering signal from a single crystalline sample, we observe a rapid rise in diffuse scattering and a transition to a disordered, liquidlike state with a structure significantly different from liquid silicon. The disordering occurs within 100 fs of irradiation, a timescale that agrees well with first principles simulations, and is faster than that predicted by purely inertial behavior, suggesting that both the phase change and disordered state reached are dominated by Coulomb forces. This method is capable of observing liquid scattering without masking signal from the ambient solid, allowing the liquid structure to be measured throughout and beyond the phase change.
Collapse
Affiliation(s)
- N J Hartley
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - J Grenzer
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - L Huang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Y Inubushi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - N Kamimura
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0087, Japan
| | - K Katagiri
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0087, Japan
| | - R Kodama
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0087, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0087, Japan
| | - A Kon
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - W Lu
- European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - M Makita
- European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - T Matsuoka
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0087, Japan
| | - S Nakajima
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0087, Japan
| | - N Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0087, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0087, Japan
| | - T Pikuz
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0087, Japan
| | - A V Rode
- Laser Physics Centre, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - D Sagae
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0087, Japan
| | - A K Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - K Tono
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - K Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - T Yabuuchi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| |
Collapse
|
21
|
Sawada H, Trzaska J, Curry CB, Gauthier M, Fletcher LB, Jiang S, Lee HJ, Galtier EC, Cunningham E, Dyer G, Daykin TS, Chen L, Salinas C, Glenn GD, Frost M, Glenzer SH, Ping Y, Kemp AJ, Sentoku Y. 2D monochromatic x-ray imaging for beam monitoring of an x-ray free electron laser and a high-power femtosecond laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013510. [PMID: 33514225 DOI: 10.1063/5.0014329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In pump-probe experiments with an X-ray Free Electron Laser (XFEL) and a high-power optical laser, spatial overlap of the two beams must be ensured to probe a pumped area with the x-ray beam. A beam monitoring diagnostic is particularly important in short-pulse laser experiments where a tightly focused beam is required to achieve a relativistic laser intensity for generation of energetic particles. Here, we report the demonstration of on-shot beam pointing measurements of an XFEL and a terawatt class femtosecond laser using 2D monochromatic Kα imaging at the Matter in Extreme Conditions end-station of the Linac Coherent Light Source. A thin solid titanium foil was irradiated by a 25-TW laser for fast electron isochoric heating, while a 7.0 keV XFEL beam was used to probe the laser-heated region. Using a spherical crystal imager (SCI), the beam overlap was examined by measuring 4.51 keV Kα x rays produced by laser-accelerated fast electrons and the x-ray beam. Measurements were made for XFEL-only at various focus lens positions, laser-only, and two-beam shots. Successful beam overlapping was observed on ∼58% of all two-beam shots for 10 μm thick samples. It is found that large spatial offsets of laser-induced Kα spots are attributed to imprecise target positioning rather than shot-to-shot laser pointing variations. By applying the Kα measurements to x-ray Thomson scattering measurements, we found an optimum x-ray beam spot size that maximizes scattering signals. Monochromatic x-ray imaging with the SCI could be used as an on-shot beam pointing monitor for XFEL-laser or multiple short-pulse laser experiments.
Collapse
Affiliation(s)
- H Sawada
- Department of Physics, University of Nevada Reno, Reno, Nevada 89557, USA
| | - J Trzaska
- Department of Physics, University of Nevada Reno, Reno, Nevada 89557, USA
| | - C B Curry
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Gauthier
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Jiang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - H J Lee
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E C Galtier
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Cunningham
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G Dyer
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T S Daykin
- Department of Physics, University of Nevada Reno, Reno, Nevada 89557, USA
| | - L Chen
- Department of Physics, University of Nevada Reno, Reno, Nevada 89557, USA
| | - C Salinas
- Department of Physics, University of Nevada Reno, Reno, Nevada 89557, USA
| | - G D Glenn
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Frost
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A J Kemp
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Y Sentoku
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Inoue I, Osaka T, Hara T, Yabashi M. Two-color X-ray free-electron laser consisting of broadband and narrowband beams. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1720-1724. [PMID: 33147199 DOI: 10.1107/s1600577520011716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A simple scheme is proposed and experimentally confirmed to generate X-ray free-electron lasers (XFELs) consisting of broadband and narrowband beams with a controllable intensity ratio and a large photon-energy separation. This unique two-color XFEL beam will open new opportunities for investigation of nonlinear interactions between intense X-rays and matter.
Collapse
Affiliation(s)
- Ichiro Inoue
- XFEL Research and Development Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Taito Osaka
- XFEL Research and Development Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Toru Hara
- XFEL Research and Development Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Makina Yabashi
- XFEL Research and Development Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
23
|
Lehmkühler F, Hankiewicz B, Schroer MA, Müller L, Ruta B, Sheyfer D, Sprung M, Tono K, Katayama T, Yabashi M, Ishikawa T, Gutt C, Grübel G. Slowing down of dynamics and orientational order preceding crystallization in hard-sphere systems. SCIENCE ADVANCES 2020; 6:6/43/eabc5916. [PMID: 33087351 PMCID: PMC7577711 DOI: 10.1126/sciadv.abc5916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/04/2020] [Indexed: 05/27/2023]
Abstract
Despite intensive studies in the past decades, the local structure of disordered matter remains widely unknown. We show the results of a coherent x-ray scattering study revealing higher-order correlations in dense colloidal hard-sphere systems in the vicinity of their crystallization and glass transition. With increasing volume fraction, we observe a strong increase in correlations at both medium-range and next-neighbor distances in the supercooled state, both invisible to conventional scattering techniques. Next-neighbor correlations are indicative of ordered precursor clusters preceding crystallization. Furthermore, the increase in such correlations is accompanied by a marked slowing down of the dynamics, proving experimentally a direct relation between orientational order and sample dynamics in a soft matter system. In contrast, correlations continuously increase for nonequilibrated, glassy samples, suggesting that orientational order is reached before the sample slows down to reach (quasi-)equilibrium.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Hamburg University, Grindelallee 117, 20146 Hamburg, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Leonard Müller
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Beatrice Ruta
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
- ESRF-The European Synchrotron, 38043 Grenoble cedex, France
| | - Dina Sheyfer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Christian Gutt
- Department of Physics, University of Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
24
|
Bengtsson ÅUJ, Ekström JC, Wang X, Jurgilaitis A, Pham VT, Kroon D, Larsson J. Repetitive non-thermal melting as a timing monitor for femtosecond pump/probe X-ray experiments. Struct Dyn 2020; 7:054303. [PMID: 32984435 PMCID: PMC7511237 DOI: 10.1063/4.0000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/26/2020] [Indexed: 01/27/2023] Open
Abstract
Time-resolved optical pump/X-ray probe experiments are often used to study structural dynamics. To ensure high temporal resolution, it is necessary to monitor the timing between the X-ray pulses and the laser pulses. The transition from a crystalline solid material to a disordered state in a non-thermal melting process can be used as a reliable timing monitor. We have performed a study of the non-thermal melting of InSb in single-shot mode, where we varied the sample temperature in order to determine the conditions required for repetitive melting. We show how experimental conditions affect the feasibility of such a timing tool.
Collapse
Affiliation(s)
- Å. U. J. Bengtsson
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - J. C. Ekström
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Xiaocui Wang
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - A. Jurgilaitis
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Van-Thai Pham
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - D. Kroon
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - J. Larsson
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
25
|
Jang H, Kim HD, Kim M, Park SH, Kwon S, Lee JY, Park SY, Park G, Kim S, Hyun H, Hwang S, Lee CS, Lim CY, Gang W, Kim M, Heo S, Kim J, Jung G, Kim S, Park J, Kim J, Shin H, Park J, Koo TY, Shin HJ, Heo H, Kim C, Min CK, Han JH, Kang HS, Lee HS, Kim KS, Eom I, Rah S. Time-resolved resonant elastic soft x-ray scattering at Pohang Accelerator Laboratory X-ray Free Electron Laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:083904. [PMID: 32872965 DOI: 10.1063/5.0016414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Resonant elastic x-ray scattering has been widely employed for exploring complex electronic ordering phenomena, such as charge, spin, and orbital order, in particular, in strongly correlated electronic systems. In addition, recent developments in pump-probe x-ray scattering allow us to expand the investigation of the temporal dynamics of such orders. Here, we introduce a new time-resolved Resonant Soft X-ray Scattering (tr-RSXS) endstation developed at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This endstation has an optical laser (wavelength of 800 nm plus harmonics) as the pump source. Based on the commissioning results, the tr-RSXS at PAL-XFEL can deliver a soft x-ray probe (400 eV-1300 eV) with a time resolution of ∼100 fs without jitter correction. As an example, the temporal dynamics of a charge density wave on a high-temperature cuprate superconductor is demonstrated.
Collapse
Affiliation(s)
- Hoyoung Jang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Hyeong-Do Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Ju Yeop Lee
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Sang-Youn Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Gisu Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Seonghan Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - HyoJung Hyun
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Sunmin Hwang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Chae-Soon Lee
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Chae-Yong Lim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Wonup Gang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Myeongjin Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Seongbeom Heo
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jinhong Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Gigun Jung
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Seungnam Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jaeku Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jihwa Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Hocheol Shin
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jaehun Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Tae-Yeong Koo
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Hyun-Joon Shin
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Hoon Heo
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Changbum Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Changi-Ki Min
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Jang-Hui Han
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Heung-Sik Kang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Heung-Soo Lee
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Kyung Sook Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Intae Eom
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| | - Seungyu Rah
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
26
|
Synchrotron Radiation in Periodic Magnetic Fields of FEL Undulators—Theoretical Analysis for Experiments. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A theoretical study of the synchrotron radiation (SR) from electrons in periodic magnetic fields with non-periodic magnetic components is presented. It is applied to several free electron lasers (FELs) accounting for the real characteristics of their electron beams: finite sizes, energy spread, divergence etc. All the losses and off-axis effects are accounted analytically. Exact expressions for the harmonic radiation in multiperiodic magnetic fields with non-periodic components and off-axis effects are given in terms of the generalized Bessel and Airy-type functions. Their analytical forms clearly distinguish all contributions in each polarization of the undulator radiation (UR). The application to FELs is demonstrated with the help of the analytical model for FEL harmonic power evolution, which accounts for all major losses and has been verified with the results of well documented FEL experiments. The analysis of the off-axis effects for the odd and even harmonics is performed for SPRING8 Angstrom Compact free-electron LAser (SACLA) and Pohang Accelerator Laboratory (PAL-XFEL). The modelling describes theoretically the power levels of odd and even harmonics and the spectral line width and shape. The obtained theoretical results agree well with the available data for FEL experiments; where no data exist, we predict and explain the FEL radiation properties. The proposed theoretical approach is applicable to practically any FEL.
Collapse
|
27
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
28
|
Abstract
Under the JST-ERATO project in progress to develop X-ray and neutron phase-imaging methods together, recent achievements have been selected and reviewed after describing the merit and the principle of the phase imaging method. For X-ray phase imaging, recent developments of four-dimensional phase tomography and phase microscopy at SPring-8, Japan are mainly presented. For neutron phase imaging, an approach in combination with the time-of-flight method developed at J-PARC, Japan is described with the description of new Gd grating fabrication.
Collapse
|
29
|
Woodhouse J, Nass Kovacs G, Coquelle N, Uriarte LM, Adam V, Barends TRM, Byrdin M, de la Mora E, Bruce Doak R, Feliks M, Field M, Fieschi F, Guillon V, Jakobs S, Joti Y, Macheboeuf P, Motomura K, Nass K, Owada S, Roome CM, Ruckebusch C, Schirò G, Shoeman RL, Thepaut M, Togashi T, Tono K, Yabashi M, Cammarata M, Foucar L, Bourgeois D, Sliwa M, Colletier JP, Schlichting I, Weik M. Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nat Commun 2020; 11:741. [PMID: 32029745 PMCID: PMC7005145 DOI: 10.1038/s41467-020-14537-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Reversibly switchable fluorescent proteins (RSFPs) serve as markers in advanced fluorescence imaging. Photoswitching from a non-fluorescent off-state to a fluorescent on-state involves trans-to-cis chromophore isomerization and proton transfer. Whereas excited-state events on the ps timescale have been structurally characterized, conformational changes on slower timescales remain elusive. Here we describe the off-to-on photoswitching mechanism in the RSFP rsEGFP2 by using a combination of time-resolved serial crystallography at an X-ray free-electron laser and ns-resolved pump–probe UV-visible spectroscopy. Ten ns after photoexcitation, the crystal structure features a chromophore that isomerized from trans to cis but the surrounding pocket features conformational differences compared to the final on-state. Spectroscopy identifies the chromophore in this ground-state photo-intermediate as being protonated. Deprotonation then occurs on the μs timescale and correlates with a conformational change of the conserved neighbouring histidine. Together with a previous excited-state study, our data allow establishing a detailed mechanism of off-to-on photoswitching in rsEGFP2. rsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolution light microscopy. Here the authors present the structure of an rsEGFP2 ground-state intermediate after excited state-decay that was obtained by nanosecond time-resolved serial femtosecond crystallography at an X-ray free electron laser, and time-resolved absorption spectroscopy measurements complement their structural analysis.
Collapse
Affiliation(s)
- Joyce Woodhouse
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Nicolas Coquelle
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France.,Large-Scale Structures Group, Institut Laue Langevin, 71, avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000, Lille, France
| | - Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Byrdin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Eugenio de la Mora
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mikolaj Feliks
- Department of Chemistry, University of Southern California, Los Angeles, USA
| | - Martin Field
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France.,Laboratoire Chimie et Biologie des Métaux, BIG, CEA-Grenoble, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Virginia Guillon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Pauline Macheboeuf
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Karol Nass
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | | | - Christopher M Roome
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000, Lille, France
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Michel Thepaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | | | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes, France
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000, Lille, France.
| | | | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany.
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France.
| |
Collapse
|
30
|
Nakano M, Miyashita O, Tama F. Parameter optimization for 3D-reconstruction from XFEL diffraction patterns based on Fourier slice matching. Biophys Physicobiol 2020; 16:367-376. [PMID: 31984191 PMCID: PMC6975998 DOI: 10.2142/biophysico.16.0_367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/09/2019] [Indexed: 12/01/2022] Open
Abstract
Single-particle analysis (SPA) by X-ray free electron laser (XFEL) is a novel method that can observe biomolecules and living tissue that are difficult to crystallize in a state close to nature. To reconstruct three-dimensional (3D) molecular structure from two-dimensional (2D) XFEL diffraction patterns, we have to estimate the incident beam angle to the molecule for each pattern to assemble the 3D-diffraction intensity distribution using interpolation, and retrieve the phase information. In this study, we investigated the optimal parameter sets to assemble the 3D-diffraction intensity distribution from simulated 2D-diffraction patterns of ribosome. In particular, we examined how the parameters need to be adjusted for diffraction patterns with different binning sizes and beam intensities to obtain the highest resolution of molecular structure phase retrieved from the 3D-diffraction intensity. We found that resolution of restored molecular structure is sensitive to the interpolation parameters. Using the optimal parameter set, a linear oversampling ratio of around four is found to be sufficient for correct angle estimation and phase retrieval from the diffraction patterns of SPA by XFEL.
Collapse
Affiliation(s)
- Miki Nakano
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Florence Tama
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aich 464-8602, Japan
| |
Collapse
|
31
|
Inoue I, Tamasaku K, Osaka T, Inubushi Y, Yabashi M. Determination of X-ray pulse duration via intensity correlation measurements of X-ray fluorescence. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:2050-2054. [PMID: 31721750 DOI: 10.1107/s1600577519011202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
A simple method using X-ray fluorescence is proposed to diagnose the duration of an X-ray free-electron laser (XFEL) pulse. This work shows that the degree of intensity correlation of the X-ray fluorescence generated by irradiating an XFEL pulse on metal foil reflects the magnitude relation between the XFEL duration and the coherence time of the fluorescence. Through intensity correlation measurements of copper Kα fluorescence, the duration of 12 keV XFEL pulses from SACLA was evaluated to be ∼10 fs.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
32
|
Abstract
Until recently X-ray crystallography has been the standard technique for virus structure determinations. Available X-ray sources have continuously improved over the decades, leading to the realization of X-ray free-electron lasers (XFELs). They provide high-intensity femtosecond X-ray pulses, which allow for new kinds of experiments by making use of the diffraction-before-destruction principle. By overcoming classical dose constraints, they at least in principle allow researchers to perform X-ray virus structure determination for single particles at room temperature. Simultaneously, the availability of XFELs led to the development of the method of serial femtosecond crystallography, where a crystal structure is determined from the measurement of hundreds to thousands of microcrystals. In the case of virus crystallography this method does not require freezing of the crystals and allows researchers to perform experiments under non-equilibrium conditions (e.g., by laser-induced temperature jumps or rapid chemical mixing), which is currently not possible with electron microscopy.
Collapse
Affiliation(s)
- A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M.O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
33
|
Khakurel KP, Angelov B, Andreasson J. Macromolecular Nanocrystal Structural Analysis with Electron and X-Rays: A Comparative Review. Molecules 2019; 24:E3490. [PMID: 31561479 PMCID: PMC6804143 DOI: 10.3390/molecules24193490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023] Open
Abstract
Crystallography has long been the unrivaled method that can provide the atomistic structural models of macromolecules, using either X-rays or electrons as probes. The methodology has gone through several revolutionary periods, driven by the development of new sources, detectors, and other instrumentation. Novel sources of both X-ray and electrons are constantly emerging. The increase in brightness of these sources, complemented by the advanced detection techniques, has relaxed the traditionally strict need for large, high quality, crystals. Recent reports suggest high-quality diffraction datasets from crystals as small as a few hundreds of nanometers can be routinely obtained. This has resulted in the genesis of a new field of macromolecular nanocrystal crystallography. Here we will make a brief comparative review of this growing field focusing on the use of X-rays and electrons sources.
Collapse
Affiliation(s)
- Krishna P Khakurel
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
34
|
Obaid R, Schnorr K, Wolf TJA, Takanashi T, Kling NG, Kooser K, Nagaya K, Wada SI, Fang L, Augustin S, You D, Campbell EEB, Fukuzawa H, Schulz CP, Ueda K, Lablanquie P, Pfeifer T, Kukk E, Berrah N. Photo-ionization and fragmentation of Sc 3N@C 80 following excitation above the Sc K-edge. J Chem Phys 2019; 151:104308. [PMID: 31521092 DOI: 10.1063/1.5110297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have investigated the ionization and fragmentation of a metallo-endohedral fullerene, Sc3N@C80, using ultrashort (10 fs) x-ray pulses. Following selective ionization of a Sc (1s) electron (hν = 4.55 keV), an Auger cascade leads predominantly to either a vibrationally cold multiply charged parent molecule or multifragmentation of the carbon cage following a phase transition. In contrast to previous studies, no intermediate regime of C2 evaporation from the carbon cage is observed. A time-delayed, hard x-ray pulse (hν = 5.0 keV) was used to attempt to probe the electron transfer dynamics between the encapsulated Sc species and the carbon cage. A small but significant change in the intensity of Sc-containing fragment ions and coincidence counts for a delay of 100 fs compared to 0 fs, as well as an increase in the yield of small carbon fragment ions, may be indicative of incomplete charge transfer from the carbon cage on the sub-100 fs time scale.
Collapse
Affiliation(s)
- Razib Obaid
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | - Thomas J A Wolf
- SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025, USA
| | - Tsukasa Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Nora G Kling
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Kuno Kooser
- Deparment of Physics, University of Turku, Turku, Finland
| | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichi Wada
- Department of Physical Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Li Fang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sven Augustin
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Eleanor E B Campbell
- EastCHEM and School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Hironobu Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Pascal Lablanquie
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, CNRS, 4 place Jussieu, 75005 Paris, France
| | | | - Edwin Kukk
- Deparment of Physics, University of Turku, Turku, Finland
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
35
|
Seaberg M, Cojocaru R, Berujon S, Ziegler E, Jaggi A, Krempasky J, Seiboth F, Aquila A, Liu Y, Sakdinawat A, Lee HJ, Flechsig U, Patthey L, Koch F, Seniutinas G, David C, Zhu D, Mikeš L, Makita M, Koyama T, Mancuso AP, Chapman HN, Vagovič P. Wavefront sensing at X-ray free-electron lasers. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1115-1126. [PMID: 31274435 PMCID: PMC6613120 DOI: 10.1107/s1600577519005721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/26/2019] [Indexed: 05/12/2023]
Abstract
Here a direct comparison is made between various X-ray wavefront sensing methods with application to optics alignment and focus characterization at X-ray free-electron lasers (XFELs). Focus optimization at XFEL beamlines presents unique challenges due to high peak powers as well as beam pointing instability, meaning that techniques capable of single-shot measurement and that probe the wavefront at an out-of-focus location are desirable. The techniques chosen for the comparison include single-phase-grating Talbot interferometry (shearing interferometry), dual-grating Talbot interferometry (moiré deflectometry) and speckle tracking. All three methods were implemented during a single beam time at the Linac Coherent Light Source, at the X-ray Pump Probe beamline, in order to make a direct comparison. Each method was used to characterize the wavefront resulting from a stack of beryllium compound refractive lenses followed by a corrective phase plate. In addition, difference wavefront measurements with and without the phase plate agreed with its design to within λ/20, which enabled a direct quantitative comparison between methods. Finally, a path toward automated alignment at XFEL beamlines using a wavefront sensor to close the loop is presented.
Collapse
Affiliation(s)
- Matthew Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ruxandra Cojocaru
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Sebastien Berujon
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Eric Ziegler
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Andreas Jaggi
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Frank Seiboth
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yanwei Liu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Anne Sakdinawat
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Hae Ja Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Uwe Flechsig
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Luc Patthey
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Frieder Koch
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | | | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ladislav Mikeš
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Mikako Makita
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Takahisa Koyama
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Adrian P. Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Patrik Vagovič
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany
- Institute of Physics, Academy of Sciences of the Czech Republic v.v.i., Na Slovance 2, 182 21, Praha 8, Czech Republic
| |
Collapse
|
36
|
Kubota Y, Suzuki M, Katayama T, Yamamoto K, Tono K, Inubushi Y, Seki T, Takanashi K, Wadati H, Yabashi M. Polarization control with an X-ray phase retarder for high-time-resolution pump-probe experiments at SACLA. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1139-1143. [PMID: 31274437 PMCID: PMC6613128 DOI: 10.1107/s1600577519006222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Control of the polarization of an X-ray free-electron laser (XFEL) has been performed using an X-ray phase retarder (XPR) in combination with an arrival timing diagnostic on BL3 of the SPring-8 Angstrom Compact free-electron LAser (SACLA). To combine with the timing diagnostic, a pink beam was incident on the XPR crystal and then monochromated in the vicinity of samples. A high degree of circular polarization of ∼97% was obtained experimentally at 11.567 keV, which agreed with calculations based on the dynamical theory of X-ray diffraction. This system enables pump-probe experiments to be operated using circular polarization with a time resolution of 40 fs to investigate ultrafast magnetic phenomena.
Collapse
Affiliation(s)
- Y. Kubota
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - M. Suzuki
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - T. Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - K. Yamamoto
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - K. Tono
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Y. Inubushi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - T. Seki
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Center for Spintronics Research Network, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - K. Takanashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Center for Spintronics Research Network, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - H. Wadati
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - M. Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
37
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
38
|
Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M. Recent advances in ultrafast X-ray sources. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180384. [PMID: 30929633 DOI: 10.1098/rsta.2018.0384] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Over more than a century, X-rays have transformed our understanding of the fundamental structure of matter and have been an indispensable tool for chemistry, physics, biology, materials science and related fields. Recent advances in ultrafast X-ray sources operating in the femtosecond to attosecond regimes have opened an important new frontier in X-ray science. These advances now enable: (i) sensitive probing of structural dynamics in matter on the fundamental timescales of atomic motion, (ii) element-specific probing of electronic structure and charge dynamics on fundamental timescales of electronic motion, and (iii) powerful new approaches for unravelling the coupling between electronic and atomic structural dynamics that underpin the properties and function of matter. Most notable is the recent realization of X-ray free-electron lasers (XFELs) with numerous new XFEL facilities in operation or under development worldwide. Advances in XFELs are complemented by advances in synchrotron-based and table-top laser-plasma X-ray sources now operating in the femtosecond regime, and laser-based high-order harmonic XUV sources operating in the attosecond regime. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Robert Schoenlein
- 1 SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, CA 94025 , USA
| | - Thomas Elsaesser
- 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin , Germany
| | - Karsten Holldack
- 3 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15, 12489 Berlin , Germany
| | - Zhirong Huang
- 1 SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, CA 94025 , USA
| | - Henry Kapteyn
- 4 Department of Physics and JILA, University of Colorado , Boulder, CO 80309-0440 , USA
| | - Margaret Murnane
- 4 Department of Physics and JILA, University of Colorado , Boulder, CO 80309-0440 , USA
| | - Michael Woerner
- 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin , Germany
| |
Collapse
|
39
|
Céolin D, Liu JC, Vaz da Cruz V, Ågren H, Journel L, Guillemin R, Marchenko T, Kushawaha RK, Piancastelli MN, Püttner R, Simon M, Gel'mukhanov F. Recoil-induced ultrafast molecular rotation probed by dynamical rotational Doppler effect. Proc Natl Acad Sci U S A 2019; 116:4877-4882. [PMID: 30733297 PMCID: PMC6421426 DOI: 10.1073/pnas.1807812116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Observing and controlling molecular motion and in particular rotation are fundamental topics in physics and chemistry. To initiate ultrafast rotation, one needs a way to transfer a large angular momentum to the molecule. As a showcase, this was performed by hard X-ray C1s ionization of carbon monoxide accompanied by spinning up the molecule via the recoil "kick" of the emitted fast photoelectron. To visualize this molecular motion, we use the dynamical rotational Doppler effect and an X-ray "pump-probe" device offered by nature itself: the recoil-induced ultrafast rotation is probed by subsequent Auger electron emission. The time information in our experiment originates from the natural delay between the C1s photoionization initiating the rotation and the ejection of the Auger electron. From a more general point of view, time-resolved measurements can be performed in two ways: either to vary the "delay" time as in conventional time-resolved pump-probe spectroscopy and use the dynamics given by the system, or to keep constant delay time and manipulate the dynamics. Since in our experiment we cannot change the delay time given by the core-hole lifetime τ, we use the second option and control the rotational speed by changing the kinetic energy of the photoelectron. The recoil-induced rotational dynamics controlled in such a way is observed as a photon energy-dependent asymmetry of the Auger line shape, in full agreement with theory. This asymmetry is explained by a significant change of the molecular orientation during the core-hole lifetime, which is comparable with the rotational period.
Collapse
Affiliation(s)
- Denis Céolin
- Synchrotron SOLEIL, l'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France;
| | - Ji-Cai Liu
- Department of Mathematics and Physics, North China Electric Power University, 102206 Beijing, China;
| | - Vinícius Vaz da Cruz
- Theoretical Chemistry and Biology, Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Hans Ågren
- Theoretical Chemistry and Biology, Royal Institute of Technology, 10691 Stockholm, Sweden
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Loïc Journel
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR) F-75005 Paris, France
| | - Renaud Guillemin
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR) F-75005 Paris, France
| | - Tatiana Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR) F-75005 Paris, France
| | - Rajesh K Kushawaha
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR) F-75005 Paris, France
| | - Maria Novella Piancastelli
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR) F-75005 Paris, France
- Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Ralph Püttner
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR) F-75005 Paris, France
| | - Faris Gel'mukhanov
- Theoretical Chemistry and Biology, Royal Institute of Technology, 10691 Stockholm, Sweden
- Synchrotron SOLEIL, l'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
- Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
40
|
Kinetics of a Phonon-Mediated Laser-Driven Structural Phase Transition in Sn2P2Se6. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigate the structural dynamics of the incommensurately modulated phase of Sn 2P 2Se 6 by means of time-resolved X-ray diffraction following excitation by an optical pump. Tracking the incommensurable distortion in the time domain enables us to identify the transport effects leading to a complete disappearance of the incommensurate phase over the course of 100 ns. These observations suggest that a thin surface layer of the high-temperature phase forms quickly after photo-excitation and then propagates into the material with a constant velocity of 3.7 m/s. Complementary static structural measurements reveal previously unreported higher-order satellite reflection in the incommensurate phase. These higher-order reflections are attributed to cubic vibrational terms in the Hamiltonian.
Collapse
|
41
|
Grünbein ML, Nass Kovacs G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 2019; 75:178-191. [PMID: 30821706 PMCID: PMC6400261 DOI: 10.1107/s205979831801567x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
The high peak brilliance and femtosecond pulse duration of X-ray free-electron lasers (XFELs) provide new scientific opportunities for experiments in physics, chemistry and biology. In structural biology, one of the major applications is serial femtosecond crystallography. The intense XFEL pulse results in the destruction of any exposed microcrystal, making serial data collection mandatory. This requires a high-throughput serial approach to sample delivery. To this end, a number of such sample-delivery techniques have been developed, some of which have been ported to synchrotron sources, where they allow convenient low-dose data collection at room temperature. Here, the current sample-delivery techniques used at XFEL and synchrotron sources are reviewed, with an emphasis on liquid injection and high-viscosity extrusion, including their application for time-resolved experiments. The challenges associated with sample delivery at megahertz repetition-rate XFELs are also outlined.
Collapse
Affiliation(s)
- Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Yamaguchi K. Theoretical Elucidation of Geometrical Structures of the CaMn4O5 Cluster in Oxygen Evolving Complex of Photosystem II Scope and Applicability of Estimation Formulae of Structural Deformations via the Mixed-Valence and Jahn–Teller Effects. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Lehmkühler F, Valerio J, Sheyfer D, Roseker W, Schroer MA, Fischer B, Tono K, Yabashi M, Ishikawa T, Grübel G. Dynamics of soft nanoparticle suspensions at hard X-ray FEL sources below the radiation-damage threshold. IUCRJ 2018; 5:801-807. [PMID: 30443363 PMCID: PMC6211528 DOI: 10.1107/s2052252518013696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
The application of X-ray photon correlation spectroscopy (XPCS) at free-electron laser (FEL) facilities enables, for the first time, the study of dynamics on a (sub-)nanometre scale in an unreached time range between femtoseconds and seconds. For soft-matter materials, radiation damage is a major limitation when going beyond single-shot applications. Here, an XPCS study is presented at a hard X-ray FEL on radiation-sensitive polymeric poly(N-isopropylacrylamide) (PNIPAM) nanoparticles. The dynamics of aqueous suspensions of densely packed silica-PNIPAM core-shell particles and a PNIPAM nanogel below the radiation-damage threshold are determined. The XPCS data indicate non-diffusive behaviour, suggesting ballistic and stress-dominated heterogeneous particle motions. These results demonstrate the feasibility of XPCS experiments on radiation-sensitive soft-matter materials at FEL sources and pave the way for future applications at MHz repetition rates as well as ultrafast modes using split-pulse devices.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Joana Valerio
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Dina Sheyfer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin A. Schroer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Fischer
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
44
|
Wiedorn MO, Oberthür D, Bean R, Schubert R, Werner N, Abbey B, Aepfelbacher M, Adriano L, Allahgholi A, Al-Qudami N, Andreasson J, Aplin S, Awel S, Ayyer K, Bajt S, Barák I, Bari S, Bielecki J, Botha S, Boukhelef D, Brehm W, Brockhauser S, Cheviakov I, Coleman MA, Cruz-Mazo F, Danilevski C, Darmanin C, Doak RB, Domaracky M, Dörner K, Du Y, Fangohr H, Fleckenstein H, Frank M, Fromme P, Gañán-Calvo AM, Gevorkov Y, Giewekemeyer K, Ginn HM, Graafsma H, Graceffa R, Greiffenberg D, Gumprecht L, Göttlicher P, Hajdu J, Hauf S, Heymann M, Holmes S, Horke DA, Hunter MS, Imlau S, Kaukher A, Kim Y, Klyuev A, Knoška J, Kobe B, Kuhn M, Kupitz C, Küpper J, Lahey-Rudolph JM, Laurus T, Le Cong K, Letrun R, Xavier PL, Maia L, Maia FRNC, Mariani V, Messerschmidt M, Metz M, Mezza D, Michelat T, Mills G, Monteiro DCF, Morgan A, Mühlig K, Munke A, Münnich A, Nette J, Nugent KA, Nuguid T, Orville AM, Pandey S, Pena G, Villanueva-Perez P, Poehlsen J, Previtali G, Redecke L, Riekehr WM, Rohde H, Round A, Safenreiter T, Sarrou I, Sato T, Schmidt M, Schmitt B, Schönherr R, Schulz J, Sellberg JA, Seibert MM, Seuring C, et alWiedorn MO, Oberthür D, Bean R, Schubert R, Werner N, Abbey B, Aepfelbacher M, Adriano L, Allahgholi A, Al-Qudami N, Andreasson J, Aplin S, Awel S, Ayyer K, Bajt S, Barák I, Bari S, Bielecki J, Botha S, Boukhelef D, Brehm W, Brockhauser S, Cheviakov I, Coleman MA, Cruz-Mazo F, Danilevski C, Darmanin C, Doak RB, Domaracky M, Dörner K, Du Y, Fangohr H, Fleckenstein H, Frank M, Fromme P, Gañán-Calvo AM, Gevorkov Y, Giewekemeyer K, Ginn HM, Graafsma H, Graceffa R, Greiffenberg D, Gumprecht L, Göttlicher P, Hajdu J, Hauf S, Heymann M, Holmes S, Horke DA, Hunter MS, Imlau S, Kaukher A, Kim Y, Klyuev A, Knoška J, Kobe B, Kuhn M, Kupitz C, Küpper J, Lahey-Rudolph JM, Laurus T, Le Cong K, Letrun R, Xavier PL, Maia L, Maia FRNC, Mariani V, Messerschmidt M, Metz M, Mezza D, Michelat T, Mills G, Monteiro DCF, Morgan A, Mühlig K, Munke A, Münnich A, Nette J, Nugent KA, Nuguid T, Orville AM, Pandey S, Pena G, Villanueva-Perez P, Poehlsen J, Previtali G, Redecke L, Riekehr WM, Rohde H, Round A, Safenreiter T, Sarrou I, Sato T, Schmidt M, Schmitt B, Schönherr R, Schulz J, Sellberg JA, Seibert MM, Seuring C, Shelby ML, Shoeman RL, Sikorski M, Silenzi A, Stan CA, Shi X, Stern S, Sztuk-Dambietz J, Szuba J, Tolstikova A, Trebbin M, Trunk U, Vagovic P, Ve T, Weinhausen B, White TA, Wrona K, Xu C, Yefanov O, Zatsepin N, Zhang J, Perbandt M, Mancuso AP, Betzel C, Chapman H, Barty A. Megahertz serial crystallography. Nat Commun 2018; 9:4025. [PMID: 30279492 PMCID: PMC6168542 DOI: 10.1038/s41467-018-06156-7] [Show More Authors] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
Collapse
Grants
- Project oriented funds Helmholtz-Gemeinschaft (Helmholtz Gemeinschaft)
- DFG-EXC1074 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 GM117342 NIGMS NIH HHS
- R01 GM095583 NIGMS NIH HHS
- 609920 European Research Council
- Wellcome Trust
- : The Helmholtz organisation through program oriented funds; excellence cluster "The Hamburg Center for Ultrafast Imaging – Structure, Dynamics and Control of Matter at the Atomic Scale" of the Deutsche Forschungsgemeinschaft (CUI, DFG-EXC1074); the European Research Council, “Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy (AXSIS)”, ERC-2013-SyG 609920 (2014-2018); the Gottfried Wilhelm Leibniz Program of the DFG; the project “X-probe” funded by the European Union’s 2020 Research and Innovation Program under the Marie Sklodowska-Curie grant agreement 637295; the BMBF German-Russian Cooperation “SyncFELMed” grant 05K14CHA; European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Consolidator Grant COMOTION (ERC-614507-Küpper); the Helmholtz Gemeinschaft through the "Impuls und Vernetzungsfond"; Helmholtz Initiative and Networking Fund through the Young Investigators Program and by the Deutsche Forschungsgemeinschaft SFB755/B03; the Swedish Research Council; the Knut and Alice Wallenberg Foundation; the Röntgen-Angström Cluster; the BMBF via projects 05K13GU7 and 05E13GU1; the from Ministry of Education, Science, Research and Sport of the Slovak Republic; the Joachim Herz Stiftung; the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence “Inflammation at interfaces” (EXC 306); the Swedish Research Council; the Swedish Foundation for Strategic Research; the Australian Research Council Centre of Excellence in Advanced Molecular Imaging [CE140100011]; the Australian Nuclear Science and Technology Organisation (ANSTO); the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron, part of ANSTO, and funded by the Australian Government; The projects Structural dynamics of biomolecular systems (CZ.02.1.01/0.0/0.0/15_003/0000447) (ELIBIO) and Advanced research using high intensity laser produced photons and particles (CZ.02.1.01/0.0/0.0/16_019/0000789) (ADONIS) from European Regional Development Fund, the Ministry of Education, Youth and Sports as part of targeted support from the National Programme of Sustainability II; the Röntgen Ångström Cluster; the Chalmers Area of Advance, Material science; the Project DPI2016-78887-C3-1-R, Ministerio de Economía y Competitividad; the Wellcome Trust (studentship 075491/04); Rutgers University, Newark; the Max Planck Society; the NSF-STC “BioXFEL” through award STC-1231306; the Slovak Research and Development Agency under contract APVV-14-0181; the Wellcome Trust; Helmholtz Strategic Investment funds; Australian Research Council Centre of Excellence in Advanced Molecular Imaging [CE140100011], Australian Nuclear Science and Technology Organisation (ANSTO); The Swedish Research Council, the Knut and Alice Wallenberg Foundation, and the Röntgen-Angström Cluster, BMBF via projects 05K13GU7 and 05E13GU1, Ministry of Education, Science, Research and Sport of the Slovak Republic; BMBF grants 05K16GUA and 05K12GU3; the Joachim Herz Foundation through and Add-on Fellowship; NHMRC project grants 1107804 and 1108859, ARC Discovery Early Career Research Award (DE170100783); National Health and Medical Research Council (NHMRC grants 1107804, 1071659). BK is NHMRC Principal Research Fellow (1110971); National Science Foundation Grant # 1565180, "ABI Innovation: New Algorithms for Biological X-ray Free Electron Laser Data"; Diamond Light Source and from a Strategic Award from the Wellcome Trust and the Biotechnology and Biological Sciences Research Council (grant 102593); use of the XBI biological sample preparation laboratory, enabled by the XBI User Consortium. This work was performed, in part, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. MLS, MAC and MF were supported by NIH grant 1R01GM117342-01
Collapse
Affiliation(s)
- Max O Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robin Schubert
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
- Integrated Biology Infrastructure Life-Science Facility at the European XFEL (XBI), Holzkoppel 4, 22869, Schenefeld, Germany
| | - Nadine Werner
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
| | - Brian Abbey
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Luigi Adriano
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Aschkan Allahgholi
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Steve Aplin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Kartik Ayyer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Saša Bajt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Imrich Barák
- Institute of Molecular Biology, SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Sabine Botha
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Wolfgang Brehm
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Sandor Brockhauser
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Biological Research Centre (BRC), Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Igor Cheviakov
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Francisco Cruz-Mazo
- Depart. Ingeniería Aeroespacial y Mecánica de Fluidos ETSI, Universidad de Sevilla, 41092, Sevilla, Spain
| | | | - Connie Darmanin
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - R Bruce Doak
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Martin Domaracky
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Katerina Dörner
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Yang Du
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Hans Fangohr
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, UK
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Alfonso M Gañán-Calvo
- Depart. Ingeniería Aeroespacial y Mecánica de Fluidos ETSI, Universidad de Sevilla, 41092, Sevilla, Spain
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Hamburg University of Technology, Vision Systems E-2, Harburger Schloßstr. 20, 21079, Hamburg, Germany
| | | | - Helen Mary Ginn
- Division of Structural Biology, Headington, Oxford, OX3 7BN, UK
- Diamond Light Source, Research Complex at Harwell, and University of Oxford, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Heinz Graafsma
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Rita Graceffa
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Lars Gumprecht
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Peter Göttlicher
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Steffen Hauf
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Michael Heymann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Susannah Holmes
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Daniel A Horke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, 94025, CA, USA
| | - Siegfried Imlau
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Yoonhee Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexander Klyuev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Juraj Knoška
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Manuela Kuhn
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Christopher Kupitz
- Physics Department, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King Platz 6, 20146, Hamburg, Germany
| | - Janine Mia Lahey-Rudolph
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Torsten Laurus
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Karoline Le Cong
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - P Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Luis Maia
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Markus Metz
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Davide Mezza
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Thomas Michelat
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Grant Mills
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Diana C F Monteiro
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew Morgan
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Kerstin Mühlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
| | - Anna Munke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
| | - Astrid Münnich
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Julia Nette
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Keith A Nugent
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Theresa Nuguid
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
| | - Allen M Orville
- Diamond Light Source, Research Complex at Harwell, and University of Oxford, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Gisel Pena
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Pablo Villanueva-Perez
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jennifer Poehlsen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Lars Redecke
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Winnie Maria Riekehr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Adam Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tatiana Safenreiter
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Tokushi Sato
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Bernd Schmitt
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Jonas A Sellberg
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm, 106 91, Sweden
| | - M Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
| | - Carolin Seuring
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Megan L Shelby
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Robert L Shoeman
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Marcin Sikorski
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Claudiu A Stan
- Physics Department, Rutgers University Newark, Newark, NJ, 07102, USA
| | - Xintian Shi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Stephan Stern
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Janusz Szuba
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Aleksandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Martin Trebbin
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Chemistry, University at Buffalo, 359 Natural Sciences Complex, Buffalo, NY, 14260, USA
- Institute of Nanostructure and Solid State Physics, Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Ulrich Trunk
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Patrik Vagovic
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | | | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Krzysztof Wrona
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Chen Xu
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Nadia Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Jiaguo Zhang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Markus Perbandt
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | | | - Christian Betzel
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
- Integrated Biology Infrastructure Life-Science Facility at the European XFEL (XBI), Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| |
Collapse
|
45
|
Nakano M, Miyashita O, Jonic S, Tokuhisa A, Tama F. Single-particle XFEL 3D reconstruction of ribosome-size particles based on Fourier slice matching: requirements to reach subnanometer resolution. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1010-1021. [PMID: 29979162 DOI: 10.1107/s1600577518005568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Three-dimensional (3D) structures of biomolecules provide insight into their functions. Using X-ray free-electron laser (XFEL) scattering experiments, it was possible to observe biomolecules that are difficult to crystallize, under conditions that are similar to their natural environment. However, resolving 3D structure from XFEL data is not without its challenges. For example, strong beam intensity is required to obtain sufficient diffraction signal and the beam incidence angles to the molecule need to be estimated for diffraction patterns with significant noise. Therefore, it is important to quantitatively assess how the experimental conditions such as the amount of data and their quality affect the expected resolution of the resulting 3D models. In this study, as an example, the restoration of 3D structure of ribosome from two-dimensional diffraction patterns created by simulation is shown. Tests are performed using the diffraction patterns simulated for different beam intensities and using different numbers of these patterns. Guidelines for selecting parameters for slice-matching 3D reconstruction procedures are established. Also, the minimum requirements for XFEL experimental conditions to obtain diffraction patterns for reconstructing molecular structures to a high-resolution of a few nanometers are discussed.
Collapse
Affiliation(s)
- Miki Nakano
- Advanced Institute of Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- Advanced Institute of Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Slavica Jonic
- IMPMC, Sorbonne Universités - CNRS UMR 7590, UPMC Université Paris 6, MNHN, IRD UMR 206, Paris 75005, France
| | - Atsushi Tokuhisa
- Advanced Institute of Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Florence Tama
- Advanced Institute of Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
46
|
Inoue I, Osaka T, Tamasaku K, Ohashi H, Yamazaki H, Goto S, Yabashi M. An X-ray harmonic separator for next-generation synchrotron X-ray sources and X-ray free-electron lasers. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:346-353. [PMID: 29488912 PMCID: PMC5829678 DOI: 10.1107/s160057751800108x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
An X-ray prism for the extraction of a specific harmonic of undulator radiation is proposed. By using the prism in a grazing incidence geometry, the beam axes of fundamental and harmonics of undulator radiation are separated with large angles over 10 µrad, which enables the selection of a specific harmonic with the help of apertures, while keeping a high photon flux. The concept of the harmonic separation was experimentally confirmed using X-ray beams from the X-ray free-electron laser SACLA.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Haruhiko Ohashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroshi Yamazaki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Shunji Goto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
47
|
Owada S, Togawa K, Inagaki T, Hara T, Tanaka T, Joti Y, Koyama T, Nakajima K, Ohashi H, Senba Y, Togashi T, Tono K, Yamaga M, Yumoto H, Yabashi M, Tanaka H, Ishikawa T. A soft X-ray free-electron laser beamline at SACLA: the light source, photon beamline and experimental station. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:282-288. [PMID: 29271777 PMCID: PMC5741133 DOI: 10.1107/s1600577517015685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/27/2017] [Indexed: 05/22/2023]
Abstract
The design and performance of a soft X-ray free-electron laser (FEL) beamline of the SPring-8 Compact free-electron LAser (SACLA) are described. The SPring-8 Compact SASE Source test accelerator, a prototype machine of SACLA, was relocated to the SACLA undulator hall for dedicated use for the soft X-ray FEL beamline. Since the accelerator is operated independently of the SACLA main linac that drives the two hard X-ray beamlines, it is possible to produce both soft and hard X-ray FEL simultaneously. The FEL pulse energy reached 110 µJ at a wavelength of 12.4 nm (i.e. photon energy of 100 eV) with an electron beam energy of 780 MeV.
Collapse
Affiliation(s)
- Shigeki Owada
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun 679-5148, Japan
| | - Kazuaki Togawa
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun 679-5148, Japan
| | | | - Toru Hara
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun 679-5148, Japan
| | - Takashi Tanaka
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun 679-5148, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Takahisa Koyama
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Kyo Nakajima
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Yasunori Senba
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Mitsuhiro Yamaga
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Hirokatsu Yumoto
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun 679-5948, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun 679-5148, Japan
| | - Hitoshi Tanaka
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun 679-5148, Japan
| | | |
Collapse
|
48
|
Bragin S, Meuren S, Keitel CH, Di Piazza A. High-Energy Vacuum Birefringence and Dichroism in an Ultrastrong Laser Field. PHYSICAL REVIEW LETTERS 2017; 119:250403. [PMID: 29303321 DOI: 10.1103/physrevlett.119.250403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 06/07/2023]
Abstract
A long-standing prediction of quantum electrodynamics, yet to be experimentally observed, is the interaction between real photons in vacuum. As a consequence of this interaction, the vacuum is expected to become birefringent and dichroic if a strong laser field polarizes its virtual particle-antiparticle dipoles. Here, we derive how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. Furthermore, we consider an experimental scheme to measure these effects in the nonperturbative high-energy regime, where the Euler-Heisenberg approximation breaks down. By employing circularly polarized high-energy probe photons, as opposed to the conventionally considered linearly polarized ones, the feasibility of quantitatively confirming the prediction of nonlinear QED for vacuum birefringence at the 5σ confidence level on the time scale of a few days is demonstrated for upcoming 10 PW laser systems. Finally, dichroism and anomalous dispersion in vacuum are shown to be accessible at these facilities.
Collapse
Affiliation(s)
- Sergey Bragin
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Sebastian Meuren
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Antonino Di Piazza
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| |
Collapse
|
49
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|