1
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
2
|
Blood-Brain Barrier Modulation to Improve Glioma Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12111085. [PMID: 33198244 PMCID: PMC7697580 DOI: 10.3390/pharmaceutics12111085] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is formed by brain microvascular endothelial cells that are sealed by tight junctions, making it a significant obstacle for most brain therapeutics. The poor BBB penetration of newly developed therapeutics has therefore played a major role in limiting their clinical success. A particularly challenging therapeutic target is glioma, which is the most frequently occurring malignant brain tumor. Thus, to enhance therapeutic uptake in tumors, researchers have been developing strategies to modulate BBB permeability. However, most conventional BBB opening strategies are difficult to apply in the clinical setting due to their broad, non-specific modulation of the BBB, which can result in damage to normal brain tissue. In this review, we have summarized strategies that could potentially be used to selectively and efficiently modulate the tumor BBB for more effective glioma treatment.
Collapse
|
3
|
Zhao Q, Qu R, Teng L, Yin C, Yuan Y. HO-1 protects the nerves of rats with cerebral hemorrhage by regulating the PI3K/AKT signaling pathway. Neuropsychiatr Dis Treat 2019; 15:1459-1468. [PMID: 31239681 PMCID: PMC6551621 DOI: 10.2147/ndt.s197030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: This study aimed to investigate the neuroprotective effect of heme oxygenase-1 (HO-1) on the PI3K/AKT signaling pathway in rats with cerebral hemorrhage. Materials and methods: Adult male Sprague-Dawley rats were randomly divided into: a sham group, a model group and an HO-1 inhibitor group (ZnPP group). Functional defects after surgery were scored according to the Longa5 standard. Hemotoxylin and eosin staining was used to detect whether the model was constructed successfully. Superoxide dismutase (SOD) vitality and malondialdehyde (MDA) content were calculated by the xanthine oxidase method and thiobarbituric acid method, respectively. Blood-brain barrier permeability was measured by Evans Blue. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The expression of Bcl-2 and BAX was evaluated by immunohistochemistry and the expression of PI3K, p-PI3K, AKT and p-AKT was tested by Western blotting. Results: The rat intracerebral hemorrhage model was successfully constructed. Compared with the model group, the bleeding in the ZnPP group was more serious, the cell edema and deformation were aggravated, and the neurological deficit score in the rat was significantly increased. In addition, the content of Evans blue, MDA, the number of apoptotic cells, the water content of brain tissue and the expression of BAX were significantly increased, while the SOD activity and the expressions of Bcl-2, p-PI3K and p-AKT protein were decreased. Conclusion: HO-1 could protect the nerves of rats with cerebral hemorrhage by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qingping Zhao
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province 264000, People's Republic of China
| | - Rongbo Qu
- Department of Neurosurgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai City, Shandong Province 264100, People's Republic of China
| | - Lu Teng
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province 264000, People's Republic of China
| | - Changyou Yin
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province 264000, People's Republic of China
| | - Yuan Yuan
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province 264000, People's Republic of China
| |
Collapse
|
4
|
Yao L, Xue X, Yu P, Ni Y, Chen F. Evans Blue Dye: A Revisit of Its Applications in Biomedicine. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7628037. [PMID: 29849513 PMCID: PMC5937594 DOI: 10.1155/2018/7628037] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Evans blue (EB) dye has owned a long history as a biological dye and diagnostic agent since its first staining application by Herbert McLean Evans in 1914. Due to its high water solubility and slow excretion, as well as its tight binding to serum albumin, EB has been widely used in biomedicine, including its use in estimating blood volume and vascular permeability, detecting lymph nodes, and localizing the tumor lesions. Recently, a series of EB derivatives have been labeled with PET isotopes and can be used as theranostics with a broad potential due to their improved half-life in the blood and reduced release. Some of EB derivatives have even been used in translational applications in clinics. In addition, a novel necrosis-avid feature of EB has recently been reported in some preclinical animal studies. Given all these interesting and important advances in EB study, a comprehensive revisiting of EB has been made in its biomedical applications in the review.
Collapse
Affiliation(s)
- Linpeng Yao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Peipei Yu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
- Department of Radiology, Sanmen County People's Hospital, Sanmen, Zhejiang 317100, China
| | - Yicheng Ni
- Radiology Section, University Hospitals, University of Leuven, 3000 Leuven, Belgium
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
5
|
Perilesional Inflammation in Neurocysticercosis - Relationship Between Contrast-Enhanced Magnetic Resonance Imaging, Evans Blue Staining and Histopathology in the Pig Model. PLoS Negl Trop Dis 2016; 10:e0004869. [PMID: 27459388 PMCID: PMC4961384 DOI: 10.1371/journal.pntd.0004869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Background Disease manifestations in neurocysticercosis (NCC) are frequently due to inflammation of degenerating Taenia solium brain cysts. Exacerbated inflammation post anthelmintic treatment is associated with leakage of the blood brain barrier (BBB) using Evans blue (EB) staining. How well EB extravasation into the brain correlates with magnetic resonance imaging (MRI) using gadolinium (Gd) enhancement as a contrast agent and pericystic inflammation was analyzed in pigs harboring brain cysts of Taenia solium. Methodology/Principal Findings Three groups of 4 naturally infected pigs were assessed. The first and second groups were treated with both praziquantel plus albendazole and sacrificed two and five days post treatment, respectively. A third untreated group remained untreated. Pigs were injected with EB two hours prior to evaluation by Gd-enhanced T1-MRI, and euthanized. The EB staining for each cyst capsule was scored (EB grades were 0: 0%; 1: up to 50%; 2: over 50% but less than 100%; 3: 100%). Similarly, the Gd enhancement around each cyst was qualitatively and quantitatively scored from the MRI. The extent of pericystic inflammation on histology was scored in increasing severity as IS1, IS2, IS3 and IS4. Grade 3 EB staining and enhancement was only seen in treated capsules. Also, treated groups had higher Gd intensity than the untreated group. Grades of enhancement correlated significantly with Gd enhancement intensity. EB staining was correlated with Gd enhancement intensity and with IS4 in the treated groups. These correlations were stronger in internally located cysts compared to superficial cysts in treated groups. Significance EB staining and Gd enhancement strongly correlate. The intensity of enhancement determined by MRI is a good indication of the degree of inflammation. Similarly, EB staining highly correlates with the degree of inflammation and may be applied to study inflammation in the pig model of NCC. Neurocysticercosis (NCC) is a frequent parasitic infection of the human brain in developing countries. The symptomatology of human NCC after antiparasitic treatment is generally related to inflammation. The presence and degree of enhancement after intravascular injection of the contrast agent gadolinium in magnetic resonance imaging (MRI) is commonly considered an evidence of blood brain barrier (BBB) leakage. Experimentally, the presence and degree of extravasation of Evans blue (EB) after intravascular injection into the tissues of the brain is a direct measure of blood brain barrier leakage. The BBB leakage of gadolinium in neurocysticercosis is commonly used as an indirect measure of inflammation but has never been experimentally proven. Here we evaluated the relationship between contrast T1-MRI, EB staining and histology findings in naturally infected pigs. There was a strong correlation between EB staining, contrast MRI and histopathology findings after antiparasitic treatment. This correlation was stronger when cysts were internally located in the brain than in superficial cysts partly located in the subarachnoid space (meninges). Contrast-enhanced MRI is a non invasive tool used in diagnosis and follow up of NCC patients. This study shows that the use of EB staining allows for the same conclusions as when using MRI post-treatment, and that both techniques correlate with histopathology findings. These results support the use of EB staining to study NCC using the porcine model as well as validate MRI enhancement to assess brain inflammation in patients.
Collapse
|
6
|
Ventura NM, Jin AY, Tse MY, Peterson NT, Andrew RD, Mewburn JD, Pang SC. Maternal hypertension programs increased cerebral tissue damage following stroke in adult offspring. Mol Cell Biochem 2015; 408:223-33. [PMID: 26169981 DOI: 10.1007/s11010-015-2498-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/19/2015] [Indexed: 12/01/2022]
Abstract
The maternal system is challenged with many physiological changes throughout pregnancy to prepare the body to meet the metabolic needs of the fetus and for delivery. Many pregnancies, however, are faced with pathological stressors or complications that significantly impact maternal health. A shift in this paradigm is now beginning to investigate the implication of pregnancy complications on the fetus and their continued influence on offspring disease risk into adulthood. In this investigation, we sought to determine whether maternal hypertension during pregnancy alters the cerebral response of adult offspring to acute ischemic stroke. Atrial natriuretic peptide gene-disrupted (ANP(-/-)) mothers exhibit chronic hypertension that escalates during pregnancy. Through comparison of heterozygote offspring born from either normotensive (ANP(+/-WT)) or hypertensive (ANP(+/-KO)) mothers, we have demonstrated that offspring exposed to maternal hypertension exhibit larger cerebral infarct volumes following middle cerebral artery occlusion. Observation of equal baseline cardiovascular measures, cerebrovascular structure, and cerebral blood volumes between heterozygote offspring suggests no added influences on offspring that would contribute to adverse cerebral response post-stroke. Cerebral mRNA expression of endothelin and nitric oxide synthase vasoactive systems demonstrated up-regulation of Et-1 and Nos3 in ANP(+/-KO) mice and thus an enhanced acute vascular response compared to ANP(+/-WT) counterparts. Gene expression of Na(+)/K(+) ATPase channel isoforms, Atp1a1, Atp1a3, and Atp1b1, displayed no significant differences. These investigations are the first to demonstrate a fetal programming effect between maternal hypertension and adult offspring stroke outcome. Further mechanistic studies are required to complement epidemiological evidence of this phenomenon in the literature.
Collapse
Affiliation(s)
- Nicole M Ventura
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| | - Albert Y Jin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Department of Medicine (Neurology), Kingston General Hospital, Kingston, ON, Canada.
| | - M Yat Tse
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| | - Nichole T Peterson
- Department of Medicine (Neurology), Kingston General Hospital, Kingston, ON, Canada.
| | - R David Andrew
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Centre for Neuroscience, Queen's University, Kingston, ON, Canada.
| | | | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
7
|
Ex vivo Evans blue assessment of the blood brain barrier in three breast cancer brain metastasis models. Breast Cancer Res Treat 2014; 144:93-101. [PMID: 24510011 DOI: 10.1007/s10549-014-2854-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
The limited entry of anticancer drugs into the central nervous system represents a special therapeutic challenge for patients with brain metastases and is primarily due to the blood brain barrier (BBB). Albumin-bound Evans blue (EB) dye is too large to cross the BBB but can grossly stain tissue blue when the BBB is disrupted. The course of tumor development and the integrity of the BBB were studied in three preclinical breast cancer brain metastasis (BCBM) models. A luciferase-transduced braintropic clone of MDA-231 cell line was used. Nude mice were subjected to stereotactic intracerebral inoculation, mammary fat pad-derived tumor fragment implantation, or carotid artery injections. EB was injected 30 min prior to euthanasia at various timepoints for each of the BCBM model animals. Serial bioluminescent imaging demonstrated exponential tumor growth in all models. Carotid BCBM appeared as diffuse multifocal cell clusters. EB aided the localization of metastases ex vivo. Tumor implants stained blue at 7 days whereas gross staining was not evident until day 14 in the stereotactic model and day 28 for the carotid model. EB assessment of the integrity of the BBB provides useful information relevant to drug testing in preclinical BCBM models.
Collapse
|
8
|
White E, Bienemann A, Malone J, Megraw L, Bunnun C, Wyatt M, Gill S. An evaluation of the relationships between catheter design and tissue mechanics in achieving high-flow convection-enhanced delivery. J Neurosci Methods 2011; 199:87-97. [PMID: 21549753 DOI: 10.1016/j.jneumeth.2011.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 03/22/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Convection-enhanced delivery (CED) is a rational technique for the direct intracranial administration of a range of therapeutic agents. CED critically depends on the use of a catheter with a narrow outer diameter and low infusion rate. Failure to adhere to these requirements can lead to reflux of infusate along the catheter-brain interface and damage at the catheter-tip. In this study we have tested the hypothesis that the relationship between infusion parameters and infusate distribution, including reflux, is critically dependent on the occurrence of tissue damage. The relationship between catheter outer diameter and the extent of blood-brain barrier disruption and subsequent tissue oedema was evaluated following catheter insertion into the striatum of rats. Three patterns of infusate distribution were observed: (1) Reflux restricted to the traumatised tissue around the catheter site. (2) Distribution in the white matter beyond the area of tissue trauma. (3) Widespread distribution in the striatum, which occurred only with catheters of an outer diameter of 0.35 mm or less. Extensive tissue damage occurred with a 0.2mm outer diameter catheter. This damage was completely prevented by rounding the catheter-tip. Infusions into pig brain demonstrated that high-flow CED could be performed in a large brain in both grey and white matter using a 0.2mm outer diameter catheter, with minimal reflux or MRI-evidence of tissue damage. This study demonstrates that by minimising tissue damage from catheter design and insertion, high flow-rate CED can be utilised to distribute therapeutic agents over large volumes of brain within clinically practical timescales.
Collapse
Affiliation(s)
- Edward White
- Department of Neurosurgery, Frenchay Hospital, Bristol BS16 1LE, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Sun A, Hou L, Prugpichailers T, Dunkel J, Kalani MA, Chen X, Kalani MYS, Tse V. Firefly luciferase-based dynamic bioluminescence imaging: a noninvasive technique to assess tumor angiogenesis. Neurosurgery 2010; 66:751-7; discussion 757. [PMID: 20305496 DOI: 10.1227/01.neu.0000367452.37534.b1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Bioluminescence imaging (BLI) is emerging as a cost-effective, high-throughput, noninvasive, and sensitive imaging modality to monitor cell growth and trafficking. We describe the use of dynamic BLI as a noninvasive method of assessing vessel permeability during brain tumor growth. METHODS With the use of stereotactic technique, 10 firefly luciferase-transfected GL26 mouse glioblastoma multiforme cells were injected into the brains of C57BL/6 mice (n = 80). After intraperitoneal injection of D-luciferin (150 mg/kg), serial dynamic BLI was performed at 1-minute intervals (30 seconds exposure) every 2 to 3 days until death of the animals. The maximum intensity was used as an indirect measurement of tumor growth. The adjusted slope of initial intensity (I90/Im) was used as a proxy to monitor the flow rate of blood into the vascular tree. Using a modified Evans blue perfusion protocol, we calculated the relative permeability of the vascular tree at various time points. RESULTS Daily maximum intensity correlated strongly with tumor volume. At postinjection day 23, histology and BLI demonstrated an exponential growth of the tumor mass. Slopes were calculated to reflect the flow in the vessels feeding the tumor (adjusted slope = I90/Im). The increase in BLI intensity was correlated with a decrease in adjusted slope, reflecting a decrease in the rate of blood flow as tumor volume increased (y = 93.8e-0.49, R2 = 0.63). Examination of calculated slopes revealed a peak in permeability around postinjection day 20 (n = 42, P < .02 by 1-way analysis of variance) and showed a downward trend in relation to both postinjection day and maximum intensity observed; as angiogenesis progressed, tumor vessel caliber increased dramatically, resulting in sluggish but increased flow. This trend was correlated with Evans blue histology, revealing an increase in Evans blue dye uptake into the tumor, as slope calculated by BLI increases. CONCLUSION Dynamic BLI is a practical, noninvasive technique that can semiquantitatively monitor changes in vascular permeability and therefore facilitate the study of tumor angiogenesis in animal models of disease.
Collapse
Affiliation(s)
- Amy Sun
- Department of Biological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 2009; 94:299-312. [PMID: 19381449 DOI: 10.1007/s11060-009-9875-7] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/16/2009] [Indexed: 02/08/2023]
Abstract
In this review we will describe eight commonly used rat brain tumor models and their application for the development of novel therapeutic and diagnostic modalities. The C6, 9L and T9 gliomas were induced by repeated injections of methylnitrosourea (MNU) to adult rats. The C6 glioma has been used extensively for a variety of studies, but since it arose in an outbred Wistar rat, it is not syngeneic to any inbred strain, and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma has been used widely and has provided important information relating to brain tumor biology and therapy. The T9 glioma, although not generally recognized, was and probably still is the same as the 9L. Both of these tumors arose in Fischer rats and can be immunogenic in syngeneic hosts, a fact that must be taken into consideration when used in therapy studies, especially if survival is the endpoint. The RG2 and F98 gliomas were both chemically induced by administering ethylnitrosourea (ENU) to pregnant rats, the progeny of which developed brain tumors that subsequently were propagated in vitro and cloned. They are either weakly or non-immunogenic and have an invasive pattern of growth and uniform lethality, which make them particularly attractive models to test new therapeutic modalities. The CNS-1 glioma was induced by administering MNU to a Lewis rat. It has an infiltrative pattern of growth and is weakly immunogenic, which should make it useful in experimental neuro-oncology. Finally, the BT4C glioma was induced by administering ENU to a BD IX rat, following which brain cells were propagated in vitro until a tumorigenic clone was isolated. This tumor has been used for a variety of studies to evaluate new therapeutic modalities. The Avian Sarcoma Virus (ASV) induced tumors, and a continuous cell line derived from one of them designated RT-2, have been useful for studies in which de novo tumor induction is an important requirement. These tumors also are immunogenic and this limits their usefulness for therapy studies. It is essential to recognize the limitations of each of the models that have been described, and depending upon the nature of the study to be conducted, it is important that the appropriate model be selected.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, Columbus, OH 43210, USA.
| | | |
Collapse
|
11
|
Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B, Ge Z, Gibson HW, Russ JL, Leonard AP, Duchamp JC, Dorn HC. In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 2006; 240:756-64. [PMID: 16837672 DOI: 10.1148/radiol.2403051341] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the effectiveness of a functionalized trimetallic nitride endohedral metallofullerene nanoparticle as a magnetic resonance (MR) imaging proton relaxation agent and to follow its distribution for in vitro agarose gel infusions and in vivo infusions in rat brain. MATERIALS AND METHODS The animal study was approved by the animal care and use committee. Gd(3)N@C(80) was functionalized with poly(ethylene glycol) units, and the carbon cage was hydroxylated to provide improved water solubility and biodistribution. Relaxation rate measurements (R1 = 1/T1 and R2 = 1/T2) of water solutions of this contrast agent were conducted at 0.35-, 2.4-, and 9.4-T MR imaging. Images of contrast agent distributions were produced following infusions in six agarose gel samples at 2.4 T and from direct brain infusions into normal and tumor-bearing rat brain at 2.4 T. The relaxivity of a control functionalized lutetium agent, Lu(3)N@C(80), was also determined. RESULTS Water hydrogen MR imaging relaxivity (r1) for this metallofullerene nanoparticle was markedly higher than that for commercial agents (eg, gadodiamide); r1 values of 102, 143, and 32 L . mmol(-1) . sec(-1) were measured at 0.35, 2.4, and 9.4 T, respectively. In studies of in vitro agarose gel infusion, the use of functionalized Gd(3)N@C(80) at concentrations an order of magnitude lower resulted in equivalent visualization in comparison with commercial agents. Comparable contrast enhancement was obtained with direct infusions of 0.013 mmol/L of Gd(3)N@C(80) and 0.50 mmol/L of gadodiamide in live normal rat brain. Elapsed-time studies demonstrated lower diffusion rates for Gd(3)N@C(80) relative to gadodiamide in live normal rat brain tissue. Functionalized metallofullerenes directly infused into a tumor-bearing brain provided an improved tumor delineation in comparison with the intravenously injected conventional Gd(3+) chelate. A control lutetium functionalized Lu(3)N@C(80) nanoparticle exhibited very low MR imaging relaxivity. CONCLUSION The new functionalized trimetallic nitride endohedral metallofullerene species Gd(3)N@C(80)[DiPEG5000(OH)(x)] is an effective proton relaxation agent, as demonstrated with in vitro relaxivity and MR imaging studies, in infusion experiments with agarose gel and in vivo rat brain studies simulating clinical conditions of direct intraparenchymal drug delivery for the treatment of brain tumors.
Collapse
Affiliation(s)
- Panos P Fatouros
- Department of Radiology, Virginia Commonwealth University, Sanger Hall, B3-021, 1101 E Marshall St, PO Box 980072, Richmond, VA 23298-0072, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ambruosi A, Khalansky AS, Yamamoto H, Gelperina SE, Begley DJ, Kreuter J. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 2006; 14:97-105. [PMID: 16608736 DOI: 10.1080/10611860600636135] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It was recently shown that doxorubicin (DOX) bound to polysorbate-coated nanoparticles (NP) crossed the intact blood-brain barrier (BBB), and thus reached therapeutic concentrations in the brain. Here, we investigated the biodistribution in the brain and in the body of poly(butyl-2-cyano[3-(14)C]acrylate) NP ([(14)C]-PBCA NP), polysorbate 80 (PS 80)-coated [(14)C]-PBCA NP, DOX-loaded [(14)C]-PBCA NP in glioblastoma 101/8-bearing rats after i.v. injection. The biodistribution profiles and brain concentrations of radiolabeled NP were determined by radioactivity counting after i.v. administration in rats. Changes in BBB permeability after tumour inoculation were assessed by i.v. injection of Evans Blue solution. The accumulation of NP in the tumour site and in the contralateral hemisphere in glioblastoma bearing-rats probably was augmented by the enhanced permeability and retention effect (EPR effect) that may have been becoming instrumental due to the impaired BBB on the NP delivery into the brain. The uptake of the NP by the organs of the reticuloendothelial system (RES) was reduced after PS 80-coating, but the addition of DOX increased again the concentration of NP in the RES.
Collapse
Affiliation(s)
- Alessandra Ambruosi
- Institute of Pharmaceutical Technology, Johann Wolfgang Goethe-University, Marie-Curie-Strasse 9, 60439, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Metastasis of melanoma to the central nervous system (CNS) remains one of the major barriers to successful treatment of this disease. Available treatment modalities are of limited clinical efficacy. This problem is compounded by the presence of the blood-brain barrier (BBB), an important consideration in the development of new therapeutic agents. Only in animal models can the dual properties of experimental tumours and the BBB be explored in one system. A variety of rodent models have been developed, utilizing both murine and human melanoma cell lines. These models have highlighted the complex biology of cerebral metastasis, involving apparent disease progression through the selection of subclones at each stage, eventually leading to disease in the brain. As demonstrated in a number of animal studies, different subpopulations of metastatic melanoma cells are likely to be responsible for parenchymal and leptomeningeal CNS disease. In addition, these animal systems have been used to demonstrate the potential efficacy of new chemotherapeutic drugs, radiation treatments and immunotherapeutic approaches for the treatment of melanoma brain metastasis. Key biological questions remain to be answered. In particular, the molecular and cellular mechanisms responsible for establishing cerebral melanoma must be clearly delineated. Several molecules, including vascular endothelial growth factor (VEGF) and integrins, appear to play important, but not definitive, roles. Other, as yet undefined, molecules appear to be critical. The identification of these factors in experimental models, with confirmatory studies in humans, will expand our understanding of cerebral melanoma and provide valuable new therapeutic targets for intervention in this difficult clinical problem.
Collapse
Affiliation(s)
- Lee D Cranmer
- Section of Hematology and Oncology, The Arizona Cancer Center, University of Arizona/University Medical Center, Tucson, Arizona 85724, USA.
| | | | | | | |
Collapse
|
14
|
Hensley HH, Chang WC, Clapper ML. Detection and volume determination of colonic tumors in Min mice by magnetic resonance micro-imaging. Magn Reson Med 2004; 52:524-9. [PMID: 15334570 DOI: 10.1002/mrm.20175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We applied MRI to the in vivo detection of spontaneous colorectal tumors in a unique mouse model, the Fox Chase Cancer Center (FCCC) ApcMIN mouse. Unlike other Min (multiple intestinal neoplasia) strains, FCCC ApcMIN animals develop an appreciable number of tumors in the large intestine, which makes them an appropriate mouse model for colon cancer in humans. We describe a method for marking the colon on MRI data sets that involves a bowel-cleansing procedure and the insertion of a polyurethane tube (filled with an MRI contrast agent) fully into the colon. We found that tumors as small as 1.5 mm in diameter can be consistently identified from MRI datasets with a voxel size of 0.1 mm x 0.133 mm x 0.133 mm. Tumor volumes were determined from the MRM data sets with the use of a novel approach to planimetry in 3D data sets. We observed a correlation between tumor volume (as measured from the MRI datasets) and tumor weight of 0.942, and a P-value of 0.008, based on Spearman's test. These data show that MRI can be used to accurately monitor tumor growth in mouse models of colorectal carcinogenesis.
Collapse
|
15
|
Chiocca EA, Broaddus WC, Gillies GT, Visted T, Lamfers MLM. Neurosurgical delivery of chemotherapeutics, targeted toxins, genetic and viral therapies in neuro-oncology. J Neurooncol 2004; 69:101-17. [PMID: 15527083 DOI: 10.1023/b:neon.0000041874.02554.b3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Local delivery of biologic agents, such as gene and viruses, has been tested preclinically with encouraging success, and in some instances clinical trials have also been performed. In addition, the positive pressure infusion of various therapeutic agents is undergoing human testing and approval has already been granted for routine clinical use of biodegradable implants that diffuse a chemotherapeutic agent into peritumoral regions. Safety in glioma patients has been shown, but anticancer efficacy needs additional refinements in the technologies employed. In this review, we will describe these modalities and provide a perspective on needed improvements that should render them more successful.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Molecular Neuro-Oncology Laboratories, Neurosurgery Service, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | | | | |
Collapse
|
16
|
Chen ZJ, Gillies GT, Broaddus WC, Prabhu SS, Fillmore H, Mitchell RM, Corwin FD, Fatouros PP. A realistic brain tissue phantom for intraparenchymal infusion studies. J Neurosurg 2004; 101:314-22. [PMID: 15309925 DOI: 10.3171/jns.2004.101.2.0314] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. The goal of this study was to validate a simple, inexpensive, and robust model system to be used as an in vitro surrogate for in vivo brain tissues in preclinical and exploratory studies of infusion-based intraparenchymal drug and cell delivery.
Methods. Agarose gels of varying concentrations and porcine brain were tested to determine the infusion characteristics of several different catheters at flow rates of 0.5 and 1 µl per minute by using bromophenol blue (BPB) dye (molecular weight [MW] ∼690) and gadodiamide (MW ∼573). Magnetic resonance (MR) imaging and videomicroscopy were used to measure the distribution of these infusates, with a simultaneous measurement of infusion pressures. In addition, the forces of catheter penetration and movement through gel and brain were measured.
Agarose gel at a 0.6% concentration closely resembles in vivo brain with respect to several critical physical characteristics. The ratio of distribution volume to infusion volume of agarose was 10 compared with 7.1 for brain. The infusion pressure of the gel demonstrated profiles similar in configuration and magnitude to those of the brain (plateau pressures 10–20 mm Hg). Gadodiamide infusion in agarose closely resembled that in the brain, as documented using T1-weighted MR imaging. Gadodiamide distribution in agarose gel was virtually identical to that of BPB dye, as documented by MR imaging and videomicroscopy. The force profile for insertion of a silastic catheter into agarose gel was similar in magnitude and configuration to the force profile for insertion into the brain. Careful insertion of the cannula using a stereotactic guide is critical to minimize irregularity and backflow of infusate distribution.
Conclusions. Agarose gel (0.6%) is a useful surrogate for in vivo brain in exploratory studies of convection-enhanced delivery.
Collapse
Affiliation(s)
- Zhi-Jian Chen
- Department of Neurosurgery, Harold F. Young Neurosurgical Center, Division of Radiation Physics and Biology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, Virginia 23298-0631, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries HE, Schepers J, Vos IMP, Dijkstra CD, Kappelle LJ, Nicolay K, Bär PR. Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab 2003; 23:1029-39. [PMID: 12973019 DOI: 10.1097/01.wcb.0000080703.47016.b6] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inflammatory response that exacerbates cerebral injury after ischemia is an attractive therapeutic target: it progresses over days and strongly contributes to worsening of the neurologic outcome. The authors show that, after transient ischemic injury to the rat brain, systemic application of interferon-beta (IFN-beta), a cytokine with antiinflammatory properties, attenuated the development of brain infarction. Serial magnetic resonance imaging (MRI) showed that IFN-beta treatment reduced lesion volume on diffusion-weighted MRI by 70% (P < 0.01) at 1 day after stroke. IFN-beta attenuated the leakage of contrast agent through the blood-brain barrier (P < 0.005), indicating a better-preserved blood-brain barrier integrity. Both control and IFN-beta-treated animals showed a similar degree of relative hyperperfusion of the lesioned hemisphere, indicating that neuroprotection by IFN-beta was not mediated by improved cerebral perfusion as assessed 24 hours after stroke onset. IFN-beta treatment resulted in an 85% reduction (P < 0.0001) in infarct volume 3 weeks later, as determined from T2-weighted MRI and confirmed by histology. This effect was achieved even when treatment was started 6 hours after stroke onset. Quantitative immunohistochemistry at 24 hours after stroke onset showed that IFN-beta almost completely prevented the infiltration of neutrophils and monocytes into the brain. Gelatinase zymography showed that this effect was associated with a decrease in matrix metalloproteinase-9 expression. In conclusion, treatment with the antiinflammatory cytokine IFN-beta affords significant neuroprotection against ischemia/reperfusion injury, and within a relatively long treatment window. Because IFN-beta has been approved for clinical use, it may be rapidly tested in a clinical trial for its efficacy against human stroke.
Collapse
Affiliation(s)
- Wouter B Veldhuis
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging. current technology and perspectives for oncological imaging. Eur J Cancer 2002; 38:2173-88. [PMID: 12387842 DOI: 10.1016/s0959-8049(02)00394-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the biomedical sciences have been accelerated by the introduction of many new imaging technologies in recent years. With animal models widely used in the basic and pre-clinical sciences, finding ways to conduct animal experiments more accurately and efficiently becomes a key factor in the success and timeliness of research. Non-invasive imaging technologies prove to be extremely valuable tools in performing such studies and have created the recent surge in small animal imaging. This review is focused on three modalities, PET, MR and optical imaging which are available to the scientist for oncological investigations in animals.
Collapse
Affiliation(s)
- Jason S Lewis
- Radiation Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | |
Collapse
|
19
|
Li X, Lu Y, Pirzkall A, McKnight T, Nelson SJ. Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging 2002; 16:229-37. [PMID: 12205577 DOI: 10.1002/jmri.10147] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To evaluate the role of 3D MR spectroscopic imaging (MRSI) as a tool for characterizing heterogeneity within a lesion in glioma patients. MATERIALS AND METHODS Forty-nine patients with newly diagnosed glioma were studied with 3D water-suppressed proton (1-H) MRSI. Signal intensities from choline (Cho), creatine (Cr), N-acytel aspartate (NAA), and lactate/lipid (LL) were estimated from the spectra. Regions of interest (ROIs) corresponding to the metabolic abnormalities were defined and compared with the anatomic lesions. RESULTS This study showed that the tumor burden measured with either the volumes of the metabolic abnormalities or the metabolic levels in the most abnormal voxels was correlated with the degree of malignancy of the tumor. The volumes of elevated Cho and decreased NAA were useful for distinguishing low-grade from high-grade lesions. The volume of abnormal LL was correlated with the existence of necrosis and with the volume of contrast-enhancing lesions in high-grade lesions. The differences in the volume of abnormal LL were also statistically significant between patients in each grade. CONCLUSION These 3D-MRSI data provide important additional information to conventional MRI for evaluating and characterizing gliomas.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Radiology, Magnetic Resonance Science Center, University of California-San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
20
|
Chen ZJ, Broaddus WC, Viswanathan RR, Raghavan R, Gillies GT. Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans Biomed Eng 2002; 49:85-96. [PMID: 12066887 DOI: 10.1109/10.979348] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have used agarose gel to develop a robust model of the intraparenchymal brain tissues for the purpose of simulating positive-pressure infusion of therapeutic agents directly into the brain. In parallel with that effort, we have synthesized a mathematical description of the infusion process on the basis of a poroelastic theory for the swelling of the tissues under the influence of the infusate's penetration into the interstitial space. Infusion line pressure measurements and video microscopy determinations of infusate volume of distribution within the gel demonstrate a good match between theory and experiment over a wide range of flow rates (0.5-10.0 microliters/min) and have clinical relevance for the convection-enhanced delivery of drugs into the brain without hindrance by the blood-brain barrier. We have put the brain phantom gel and the infusion measurement system into routine use in determining performance characteristics of novel types of neurosurgical catheters. This approach simplifies the catheter design process and helps to avoid some of the costs of in vivo testing. It also will allow validation of the elementary aspects of treatment planning systems that predict infusion distribution volumes on the basis of theoretical descriptions such as those derived from the poroelastic model.
Collapse
Affiliation(s)
- Zhi-Jian Chen
- Division of Neurosurgery, Virginia Commonwealth University/Medical College of Virginia, Richmond 23298-0631, USA
| | | | | | | | | |
Collapse
|
21
|
Moats R, Ma LQ, Wajed R, Sugiura Y, Lazaryev A, Tyszka M, Jacobs R, Fraser S, Nelson MD, DeClerck YA. Magnetic resonance imaging for the evaluation of a novel metastatic orthotopic model of human neuroblastoma in immunodeficient mice. Clin Exp Metastasis 2001; 18:455-61. [PMID: 11592302 DOI: 10.1023/a:1011827122126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neuroblastoma is the second most common solid tumor in children. So far few tumor models for this cancer have been reported in mice. We have created a murine tumor model for studying human neuroblastoma based on surgical orthotopic implantation in scid mice. Small fragments of subcutaneous tumors of SK-N-BE(2) human neuroblastoma cells expressing enhanced green fluorescent protein were surgically implanted near the left adrenal gland of scid mice. One hundred percent of the animals (n = 21) successfully implanted developed a large retroperitoneal tumor and became moribund between 22 and 57 days after implantation (mean survival time = 41 days). At the time of sacrifice the presence of bone marrow metastasis was detected by RT-PCR for green fluorescent protein in 95% of the cases. The growth of small tumor implants could be easily visualized and quantified by surveillance MR imaging, with a resolution of 117 x 117 x 750 microm in two orthogonal planes allowing accurate volume measurements, as well as assessment of necrosis and tissue invasion. This novel model should be a valuable tool to study the biology and therapeutic approaches to neuroblastoma.
Collapse
Affiliation(s)
- R Moats
- Childrens Hospital Los Angeles, Department of Pediatrics, USC Keck School of Medicine, California 90027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|