1
|
Abbott J, Ye T, Krenek K, Qin L, Kim Y, Wu W, Gertner RS, Park H, Ham D. The Design of a CMOS Nanoelectrode Array with 4096 Current-Clamp/Voltage-Clamp Amplifiers for Intracellular Recording/Stimulation of Mammalian Neurons. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2020; 55:2567-2582. [PMID: 33762776 PMCID: PMC7983016 DOI: 10.1109/jssc.2020.3005816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
CMOS microelectrode arrays (MEAs) can record electrophysiological activities of a large number of neurons in parallel but only extracellularly with low signal-to-noise ratio. Patch clamp electrodes can perform intracellular recording with high signal-to-noise ratio but only from a few neurons in parallel. Recently we have developed and reported a neuroelectronic interface that combines the parallelism of the CMOS MEA and the intracellular sensitivity of the patch clamp. Here, we report the design and characterization of the CMOS integrated circuit (IC), a critical component of the neuroelectronic interface. Fabricated in 0.18-μm technology, the IC features an array of 4,096 platinum black (PtB) nanoelectrodes spaced at a 20 μm pitch on its surface and contains 4,096 active pixel circuits. Each active pixel circuit, consisting of a new switched-capacitor current injector--capable of injecting from ±15 pA to ±0.7 μA with a 5 pA resolution--and an operational amplifier, is highly configurable. When configured into current-clamp mode, the pixel intracellularly records membrane potentials including subthreshold activities with ∼23 μVrms input referred noise while injecting a current for simultaneous stimulation. When configured into voltage-clamp mode, the pixel becomes a switched-capacitor transimpedance amplifier with ∼1 pArms input referred noise, and intracellularly records ion channel currents while applying a voltage for simultaneous stimulation. Such voltage/current-clamp intracellular recording/stimulation is a feat only previously possible with the patch clamp method. At the same time, as an array, the IC overcomes the lack of parallelism of the patch clamp method, measuring thousands of mammalian neurons in parallel, with full-frame intracellular recording/stimulation at 9.4 kHz.
Collapse
Affiliation(s)
- Jeffrey Abbott
- John A. Paulson School of Engineering and Applied Sciences, the Department of Chemistry and Chemical Biology, and the Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Tianyang Ye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Keith Krenek
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ling Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA. He is now with Cavium Inc., Marlborough, MA 01752, USA
| | - Youbin Kim
- Harvard College, Cambridge, MA 02138 USA. He is now with University of California, Berkeley, CA 94720, USA
| | - Wenxuan Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rona S Gertner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hongkun Park
- Department of Chemistry and Chemical Biology and the Department of Physics, Harvard University, Cambridge, MA 02138 USA
| | - Donhee Ham
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Shadmani A, Viswam V, Chen Y, Bounik R, Dragas J, Radivojevic M, Geissler S, Sitnikov S, Muller J, Hierlemann A. Stimulation and Artifact-Suppression Techniques for In Vitro High-Density Microelectrode Array Systems. IEEE Trans Biomed Eng 2019; 66:2481-2490. [PMID: 30605090 PMCID: PMC6711758 DOI: 10.1109/tbme.2018.2890530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present novel voltage stimulation buffers with controlled output current, along with recording circuits featuring adjustable high-pass cut-off filtering to perform efficient stimulation while actively suppressing stimulation artifacts in high-density microelectrode arrays. Owing to the dense packing and close proximity of the electrodes in such systems, a stimulation through one electrode can cause large electrical artifacts on neighboring electrodes that easily saturate the corresponding recording amplifiers. To suppress such artifacts, the high-pass corner frequencies of all available 2048 recording channels can be raised from several Hz to several kHz by applying a "soft-reset" or pole-shifting technique. With the implemented artifact suppression technique, the saturation time of the recording circuits, connected to electrodes in immediate vicinity to the stimulation site, could be reduced to less than 150 μs. For the stimulation buffer, we developed a circuit, which can operate in two modes: either control of only the stimulation voltage or control of current and voltage during stimulation. The voltage-only controlled mode employs a local common-mode feedback operational transconductance amplifier with a near rail-to-rail input/output range, suitable for driving high-capacitive loads. The current/voltage controlled mode is based on a positive current conveyor generating adjustable output currents, whereas its upper and lower output voltages are limited by two feedback loops. The current/voltage controlled circuit can generate stimulation pulses up to 30 μA with less than ±0.1% linearity error in the low-current mode and up to 300 μA with less than ±0.2% linearity error in the high-current mode.
Collapse
|
3
|
Obien MEJ, Frey U. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks. ADVANCES IN NEUROBIOLOGY 2019; 22:83-123. [PMID: 31073933 DOI: 10.1007/978-3-030-11135-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High-density microelectrode arrays (HD-MEAs) are increasingly being used for the observation and manipulation of neurons and networks in vitro. Large-scale electrode arrays allow for long-term extracellular recording of the electrical activity from thousands of neurons simultaneously. Beyond population activity, it has also become possible to extract information of single neurons at subcellular level (e.g., the propagation of action potentials along axons). In effect, HD-MEAs have become an electrical imaging platform for label-free extraction of the structure and activation of cells in cultures and tissues. The quality of HD-MEA data depends on the resolution of the electrode array and the signal-to-noise ratio. In this chapter, we begin with an introduction to HD-MEA signals. We provide an overview of the developments on complementary metal-oxide-semiconductor or CMOS-based HD-MEA technology. We also discuss the factors affecting the performance of HD-MEAs and the trending application requirements that drive the efforts for future devices. We conclude with an outlook on the potential of HD-MEAs for advancing basic neuroscience and drug discovery.
Collapse
Affiliation(s)
- Marie Engelene J Obien
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- MaxWell Biosystems, Basel, Switzerland.
| | - Urs Frey
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems, Basel, Switzerland
| |
Collapse
|
4
|
Tajima S, Mita T, Bakkum DJ, Takahashi H, Toyoizumi T. Locally embedded presages of global network bursts. Proc Natl Acad Sci U S A 2017; 114:9517-9522. [PMID: 28827362 PMCID: PMC5594667 DOI: 10.1073/pnas.1705981114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous, synchronous bursting of neural population is a widely observed phenomenon in nervous networks, which is considered important for functions and dysfunctions of the brain. However, how the global synchrony across a large number of neurons emerges from an initially nonbursting network state is not fully understood. In this study, we develop a state-space reconstruction method combined with high-resolution recordings of cultured neurons. This method extracts deterministic signatures of upcoming global bursts in "local" dynamics of individual neurons during nonbursting periods. We find that local information within a single-cell time series can compare with or even outperform the global mean-field activity for predicting future global bursts. Moreover, the intercell variability in the burst predictability is found to reflect the network structure realized in the nonbursting periods. These findings suggest that deterministic local dynamics can predict seemingly stochastic global events in self-organized networks, implying the potential applications of the present methodology to detecting locally concentrated early warnings of spontaneous seizure occurrence in the brain.
Collapse
Affiliation(s)
- Satohiro Tajima
- Department of Basic Neuroscience, University of Geneva, Centre Médical Universitaire, Genève 1211, Switzerland;
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takeshi Mita
- Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Douglas J Bakkum
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Hirokazu Takahashi
- Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Taro Toyoizumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Dragas J, Viswam V, Shadmani A, Chen Y, Bounik R, Stettler A, Radivojevic M, Geissler S, Obien M, Müller J, Hierlemann A. A Multi-Functional Microelectrode Array Featuring 59760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement and Neurotransmitter Detection Channels. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2017; 52:1576-1590. [PMID: 28579632 PMCID: PMC5447818 DOI: 10.1109/jssc.2017.2686580] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48×2.43 mm2) to accommodate 59,760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5 μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2,048 action-potential (AP, bandwidth: 300 Hz to 10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz to 300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.
Collapse
Affiliation(s)
- Jelena Dragas
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Vijay Viswam
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Amir Shadmani
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Yihui Chen
- ETH Zurich, D-BSSE, 4058 Basel, Switzerland, and now is with Analog Devices Shanghai Co. Ltd., Shanghai, China
| | - Raziyeh Bounik
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Alexander Stettler
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Milos Radivojevic
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Sydney Geissler
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Marie Obien
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Jan Müller
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| |
Collapse
|
6
|
Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration. Sci Rep 2017; 7:978. [PMID: 28428560 PMCID: PMC5430511 DOI: 10.1038/s41598-017-00981-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/17/2017] [Indexed: 12/15/2022] Open
Abstract
We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11’000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.
Collapse
|
7
|
Obien MEJ, Gong W, Frey U, Bakkum DJ. CMOS-Based High-Density Microelectrode Arrays: Technology and Applications. SERIES IN BIOENGINEERING 2017. [DOI: 10.1007/978-981-10-3957-7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Müller J, Ballini M, Livi P, Chen Y, Radivojevic M, Shadmani A, Viswam V, Jones IL, Fiscella M, Diggelmann R, Stettler A, Frey U, Bakkum DJ, Hierlemann A. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. LAB ON A CHIP 2015; 15:2767-80. [PMID: 25973786 PMCID: PMC5421573 DOI: 10.1039/c5lc00133a] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Studies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level. The key feature is a rapidly reconfigurable array of 26 400 microelectrodes arranged at low pitch (17.5 μm) within a large overall sensing area (3.85 × 2.10 mm(2)). An arbitrary subset of the electrodes can be simultaneously connected to 1024 low-noise readout channels as well as 32 stimulation units. Each electrode or electrode subset can be used to electrically stimulate or record the signals of virtually any neuron on the array. We demonstrate the applicability and potential of this device for various different experimental paradigms: large-scale recordings from whole networks of neurons as well as investigations of axonal properties of individual neurons.
Collapse
Affiliation(s)
- Jan Müller
- ETH Zurich, Bio Engineering Laboratory, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kameda S, Hayashida Y, Tanaka Y, Akita D, Yagi T. A multichannel current stimulator chip for spatiotemporal pattern stimulation of neural tissues. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5011-5. [PMID: 25571118 DOI: 10.1109/embc.2014.6944750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We developed a prototype very-large-scale integration chip of a multichannel current stimulator for stimulating neural tissues by utilizing 0.25 μm high-voltage complementary metal-oxide-semiconductor technology. Our designed chip has 20 output channels that are driven by five current buffers arranged in parallel; each buffer controls four output channels in time-sharing mode. The amplitude of a stimulation pulse can be controlled within a range of approximately ±100 μA/phase in each output channel. The stimulus parameters, e.g., amplitude and duration, are controlled separately for each channel by digital codes stored in built-in registers. Combinations of anode and cathode electrodes to pass the current can be changed online. We integrated our stimulator chip with a multielectrode array and studied the neuronal responses to multichannel current stimulations with various temporal patterns in mouse brain slices.
Collapse
|
10
|
Obien MEJ, Deligkaris K, Bullmann T, Bakkum DJ, Frey U. Revealing neuronal function through microelectrode array recordings. Front Neurosci 2015; 8:423. [PMID: 25610364 PMCID: PMC4285113 DOI: 10.3389/fnins.2014.00423] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/03/2014] [Indexed: 12/26/2022] Open
Abstract
Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function.
Collapse
Affiliation(s)
| | - Kosmas Deligkaris
- RIKEN Quantitative Biology Center, RIKEN Kobe, Japan ; Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | | | - Douglas J Bakkum
- Department of Biosystems Science and Engineering, ETH Zurich Basel, Switzerland
| | - Urs Frey
- RIKEN Quantitative Biology Center, RIKEN Kobe, Japan ; Graduate School of Frontier Biosciences, Osaka University Osaka, Japan ; Department of Biosystems Science and Engineering, ETH Zurich Basel, Switzerland
| |
Collapse
|
11
|
Ballini M, Müller J, Livi P, Chen Y, Frey U, Stettler A, Shadmani A, Viswam V, Jones IL, Jäckel D, Radivojevic M, Lewandowska MK, Gong W, Fiscella M, Bakkum DJ, Heer F, Hierlemann A. A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2014; 49:2705-2719. [PMID: 28502989 PMCID: PMC5424881 DOI: 10.1109/jssc.2014.2359219] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 × 2.10 mm2) with sub-cellular spatial resolution (pitch of 17.5 μm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 μVrms in the action-potential band (300 Hz-10 kHz) and 5.4 μVrms in the local-field-potential band (1 Hz-300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures.
Collapse
Affiliation(s)
- Marco Ballini
- D-BSSE, ETH Zurich, 4058 Basel, Switzerland. He is now with IMEC vzw, 3001 Leuven, Belgium
| | - Jan Müller
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Paolo Livi
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Yihui Chen
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Urs Frey
- D-BSSE, ETH Zurich, 4058 Basel, Switzerland. He is now with the RIKEN Quantitative Biology Center, 650-0047 Kobe, Japan
| | - Alexander Stettler
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Amir Shadmani
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Vijay Viswam
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Ian Lloyd Jones
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - David Jäckel
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Milos Radivojevic
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Marta K Lewandowska
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Wei Gong
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Michele Fiscella
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Douglas J Bakkum
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Flavio Heer
- D-BSSE, ETH Zurich, 4058 Basel, Switzerland. He is now with Zurich Instruments AG, 8005 Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Bakkum DJ, Frey U, Radivojevic M, Russell TL, Müller J, Fiscella M, Takahashi H, Hierlemann A. Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nat Commun 2014; 4:2181. [PMID: 23867868 DOI: 10.1038/ncomms3181] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022] Open
Abstract
Axons are traditionally considered stable transmission cables, but evidence of the regulation of action potential propagation demonstrates that axons may have more important roles. However, their small diameters render intracellular recordings challenging, and low-magnitude extracellular signals are difficult to detect and assign. Better experimental access to axonal function would help to advance this field. Here we report methods to electrically visualize action potential propagation and network topology in cortical neurons grown over custom arrays, which contain 11,011 microelectrodes and are fabricated using complementary metal oxide semiconductor technology. Any neuron lying on the array can be recorded at high spatio-temporal resolution, and simultaneously precisely stimulated with little artifact. We find substantial velocity differences occurring locally within single axons, suggesting that the temporal control of a neuron's output may contribute to neuronal information processing.
Collapse
Affiliation(s)
- Douglas J Bakkum
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bakkum DJ, Radivojevic M, Frey U, Franke F, Hierlemann A, Takahashi H. Parameters for burst detection. Front Comput Neurosci 2014; 7:193. [PMID: 24567714 PMCID: PMC3915237 DOI: 10.3389/fncom.2013.00193] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/23/2013] [Indexed: 11/23/2022] Open
Abstract
Bursts of action potentials within neurons and throughout networks are believed to serve roles in how neurons handle and store information, both in vivo and in vitro. Accurate detection of burst occurrences and durations are therefore crucial for many studies. A number of algorithms have been proposed to do so, but a standard method has not been adopted. This is due, in part, to many algorithms requiring the adjustment of multiple ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results. Here, we broadly catalog existing approaches and present a new approach requiring the selection of only a single parameter: the number of spikes N comprising the smallest burst to consider. A burst was identified if N spikes occurred in less than T ms, where the threshold T was automatically determined from observing a probability distribution of inter-spike-intervals. Performance was compared vs. different classes of detectors on data gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach offered a number of useful features including: a simple implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing approaches, detection was not biased toward larger bursts, allowing identification and analysis of a greater range of neuronal and network dynamics.
Collapse
Affiliation(s)
- Douglas J Bakkum
- Department of Biosystems Science and Engineering, ETH Zurich Basel, Switzerland ; Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Milos Radivojevic
- Department of Biosystems Science and Engineering, ETH Zurich Basel, Switzerland
| | - Urs Frey
- RIKEN Quantitative Biology Center Kobe, Japan
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zurich Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich Basel, Switzerland
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan ; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology Saitama, Japan
| |
Collapse
|
14
|
Müller J, Bakkum DJ, Hierlemann A. Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons. Front Neural Circuits 2013; 6:121. [PMID: 23335887 PMCID: PMC3541546 DOI: 10.3389/fncir.2012.00121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/22/2012] [Indexed: 11/20/2022] Open
Abstract
We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network.
Collapse
Affiliation(s)
- Jan Müller
- Bio Engineering Laboratory, ETH Zürich Basel, Switzerland
| | | | | |
Collapse
|
15
|
Arfin SK, Sarpeshkar R. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2012; 6:1-14. [PMID: 23852740 DOI: 10.1109/tbcas.2011.2166072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.
Collapse
Affiliation(s)
- Scott K Arfin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|