1
|
Yu Z, Zou Y, Liao HC, Alrashdan F, Wen Z, Woods JE, Wang W, Robinson JT, Yang K. A Miniature Batteryless Bioelectronic Implant Using One Magnetoelectric Transducer for Wireless Powering and PWM Backscatter Communication. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1197-1208. [PMID: 39321009 DOI: 10.1109/tbcas.2024.3468374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Wireless minimally invasive bioelectronic implants enable a wide range of applications in healthcare, medicine, and scientific research. Magnetoelectric (ME) wireless power transfer (WPT) has emerged as a promising approach for powering miniature bio-implants because of its remarkable efficiency, safety limit, and misalignment tolerance. However, achieving low-power and high-quality uplink communication using ME remains a challenge. This paper presents a pulse-width modulated (PWM) ME backscatter uplink communication enabled by a switched-capacitor energy extraction (SCEE) technique. The SCEE rapidly extracts and dissipates the kinetic energy within the ME transducer during its ringdown period, enabling time-domain PWM in ME backscatter. Various circuit techniques are presented to realize SCEE with low power consumption. This paper also describes the high-order modeling of ME transducers to facilitate the design and analysis, which shows good matching with measurement. Our prototyping system includes a millimeter-scale ME implant with a fully integrated system-on-chip (SoC) and a portable transceiver for power transfer and bidirectional communication. SCEE is proven to induce 50% amplitude reduction within 2 ME cycles, leading to a PWM ME backscatter uplink with 17.73 kbps data rate and 0.9 pJ/bit efficiency. It also achieves 8.510-5 bit-error-rate (BER) at a 5 cm distance, using a lightweight multi-layer-perception (MLP) decoding algorithm. Finally, the system demonstrates continuous wireless neural local-field potential (LFP) recording in an in vitro setup.
Collapse
|
2
|
Chen JC, Dhuliyawalla A, Garcia R, Robledo A, Woods JE, Alrashdan F, O'Leary S, Husain A, Price A, Crosby S, Felicella MM, Wakhloo AK, Karas P, Provenza N, Goodman W, Sheth SA, Sheth SA, Robinson JT, Kan P. Endocisternal interfaces for minimally invasive neural stimulation and recording of the brain and spinal cord. Nat Biomed Eng 2024:10.1038/s41551-024-01281-9. [PMID: 39528629 DOI: 10.1038/s41551-024-01281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Minimally invasive neural interfaces can be used to diagnose, manage and treat many disorders, with reduced risks of surgical complications. However, endovascular probes lack access to key cortical, subcortical and spinal targets, and are not typically explantable after endothelialization. Here we report the development and testing, in sheep, of endocisternal neural interfaces that approach brain and spinal cord targets through inner and outer spaces filled with cerebrospinal fluid. Thus, the interfaces gain access to the entire brain convexity, to deep brain structures within the ventricles and to the spinal cord from the spinal subarachnoid space. We combined an endocisternal neural interface with wireless miniature magnetoelectrically powered bioelectronics so that it can be freely navigated percutaneously from the spinal space to the cranial subarachnoid space, and from the cranial subarachnoid space to the ventricles. In sheep, we show recording and stimulation functions, as well as repositioning of the flexible electrodes and explantation of the interface after chronic implantation. Minimally invasive endocisternal bioelectronics may enable chronic and transient therapies, particularly for stroke rehabilitation and epilepsy monitoring.
Collapse
Affiliation(s)
- Joshua C Chen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Abdeali Dhuliyawalla
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Robert Garcia
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Joshua E Woods
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Sean O'Leary
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Adam Husain
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Anthony Price
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott Crosby
- Neuromonitoring Associates LLC, Las Vegas, NV, USA
| | | | - Ajay K Wakhloo
- Department of Radiology, TUFTS University School of Medicine, Boston, MA, USA
- Deinde Medical, Miramar, FL, USA
| | - Patrick Karas
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Wayne Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sunil A Sheth
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Jacob T Robinson
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| | - Peter Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Wang W, Yu Z, Zou Y, Woods JE, Chari P, Su Y, Robinson JT, Yang K. Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2024; 59:3599-3611. [PMID: 39830594 PMCID: PMC11736903 DOI: 10.1109/jssc.2024.3464533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This paper presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and "magnetic field steering" technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multi-coil TX array in a closed loop, we develop an Active Echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2mm3 implantable stimulator embedding a custom low-power System-on-Chip (SoC) powered by an ME film, a transmitter with a custom three-channel AE RX chip, and a multi-coil TX array with mutual inductance cancellation. The AE RX achieves -161dBm/Hz input-referred noise with 64dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90° rotation from the ideal position, our omnidirectional WPT system achieves 6.8× higher power transfer efficiency (PTE) than a single-coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2% from using ideal control.
Collapse
Affiliation(s)
- Wei Wang
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Zhanghao Yu
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Yiwei Zou
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Joshua E Woods
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Prahalad Chari
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Yumin Su
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA, and Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA
| |
Collapse
|
4
|
Saha R, Kaffash Z, Mirbozorgi SA. Multi-resonator Wireless Inductive Power Link for Wearables on the 2D Surface and Implants in 3D Space of the Human Body. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1024-1036. [PMID: 38466594 DOI: 10.1109/tbcas.2024.3375794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This paper presents a novel resonance-based, adaptable, and flexible inductive wireless power transmission (WPT) link for powering implantable and wearable devices throughout the human body. The proposed design provides a comprehensive solution for wirelessly delivering power, sub-micro to hundreds of milliwatts, to deep-tissue implantable devices (3D space of human body) and surface-level wearable devices (2D surface of human skin) safely and seamlessly. The link comprises a belt-fitted transmitter (Belt-Tx) coil equipped with a power amplifier (PA) and a data demodulator unit, two resonator clusters (to cover upper-body and lower-body), and a receiver (Rx) unit that consists of Rx load and resonator coils, rectifier, microcontroller, and data modulator units for implementing a closed-loop power control (CLPC) mechanism. All coils are tuned at 13.56 MHz, Federal Communications Commission (FCC)-approved industrial, scientific, and medical (ISM) band. Novel customizable configurations of resonators in the clusters, parallel for implantable devices and cross-parallel for wearable devices and vertically oriented implants, ensure uniform power delivered to the load, PDL, enabling natural Tx power localization toward the Rx unit. The proposed design is modeled, simulated, and optimized using ANSYS HFSS software. The Specific Absorption Rate (SAR) is calculated under 1.5 W/kg, indicating the design's safety for the human body. The proposed link is implemented, and its performance is characterized. For both the parallel cluster (implant) and cross-parallel cluster (wearable) scenarios, the measured results indicate: 1) an upper-body PDL exceeding 350 mW with a Power Transfer Efficiency (PTE) reaching 25%, and 2) a lower-body PDL surpassing 360 mW with a PTE of up to 20%, while covering up to 92% of the human body.
Collapse
|
5
|
Choe JK, Kim S, Lee AY, Choi C, Cho JH, Jo W, Song MH, Cha C, Kim J. Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311154. [PMID: 38174953 DOI: 10.1002/adma.202311154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead-free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high-selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron-like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.
Collapse
Affiliation(s)
- Jun Kyu Choe
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Suntae Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ah-Young Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cholong Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae-Hyeon Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Wook Jo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiyun Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
6
|
Miziev S, Pawlak WA, Howard N. Comparative analysis of energy transfer mechanisms for neural implants. Front Neurosci 2024; 17:1320441. [PMID: 38292898 PMCID: PMC10825050 DOI: 10.3389/fnins.2023.1320441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
As neural implant technologies advance rapidly, a nuanced understanding of their powering mechanisms becomes indispensable, especially given the long-term biocompatibility risks like oxidative stress and inflammation, which can be aggravated by recurrent surgeries, including battery replacements. This review delves into a comprehensive analysis, starting with biocompatibility considerations for both energy storage units and transfer methods. The review focuses on four main mechanisms for powering neural implants: Electromagnetic, Acoustic, Optical, and Direct Connection to the Body. Among these, Electromagnetic Methods include techniques such as Near-Field Communication (RF). Acoustic methods using high-frequency ultrasound offer advantages in power transmission efficiency and multi-node interrogation capabilities. Optical methods, although still in early development, show promising energy transmission efficiencies using Near-Infrared (NIR) light while avoiding electromagnetic interference. Direct connections, while efficient, pose substantial safety risks, including infection and micromotion disturbances within neural tissue. The review employs key metrics such as specific absorption rate (SAR) and energy transfer efficiency for a nuanced evaluation of these methods. It also discusses recent innovations like the Sectored-Multi Ring Ultrasonic Transducer (S-MRUT), Stentrode, and Neural Dust. Ultimately, this review aims to help researchers, clinicians, and engineers better understand the challenges of and potentially create new solutions for powering neural implants.
Collapse
|
7
|
Chen JC, Bhave G, Alrashdan F, Dhuliyawalla A, Hogan KJ, Mikos AG, Robinson JT. Self-rectifying magnetoelectric metamaterials for remote neural stimulation and motor function restoration. NATURE MATERIALS 2024; 23:139-146. [PMID: 37814117 PMCID: PMC10972531 DOI: 10.1038/s41563-023-01680-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Magnetoelectric materials convert magnetic fields into electric fields. These materials are often used in wireless electronic and biomedical applications. For example, magnetoelectrics could enable the remote stimulation of neural tissue, but the optimal resonance frequencies are typically too high to stimulate neural activity. Here we describe a self-rectifying magnetoelectric metamaterial for a precisely timed neural stimulation. This metamaterial relies on nonlinear charge transport across semiconductor layers that allow the material to generate a steady bias voltage in the presence of an alternating magnetic field. We generate arbitrary pulse sequences with time-averaged voltage biases in excess of 2 V. As a result, we can use magnetoelectric nonlinear metamaterials to wirelessly stimulate peripheral nerves to restore a sensory reflex in an anaesthetized rat model and restore signal propagation in a severed nerve with latencies of less than 5 ms. Overall, these results showing the rational design of magnetoelectric metamaterials support applications in advanced biotechnology and electronics.
Collapse
Affiliation(s)
- Joshua C Chen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Gauri Bhave
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Abdeali Dhuliyawalla
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | | | - Jacob T Robinson
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Applied Physics Program, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Kim MW, Kim H, Song M, Kim JJ. Energy-Efficient Power Management Interface With Adaptive HV Multimode Stimulation for Power-Sensor Integrated Patch-Type Systems. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1355-1370. [PMID: 37478031 DOI: 10.1109/tbcas.2023.3297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
An energy-efficient power management interface (PMI) with adaptive high-voltage (HV) stimulation capability is presented for patch-type healthcare devices where power management and sensor readout circuits are integrated. For efficient power supply, it proposes a multimode buck converter with an adaptive mode controller, delivering 95.6% peak power conversion efficiency and over 90% efficiency across a wide 4-440 mA output current range. For energy-efficient stimulation, a HV stimulation system is designed to perform mode-adaptive on/off control, where the charge pump (CP) is adopted for periodic power saving. The CP output is adaptively tuned to minimize the stimulator's power waste by utilizing a bio-impedance path in the sensor circuit. The stimulation core supports multimode functionality of current-/voltage-controlled stimulations with monopolar and bipolar modes, providing ten kinds of various stimulation waveform shape. For efficient system operation, battery interface circuits are included to monitor state-of-charge (SOC) conditions, and a device power adjustment scheme is proposed to provide SOC-based maximum 28% power reduced optimal operation of high-resolution and low-power. The power-sensor integrated circuits were fabricated in a 0.18-μm CMOS process, and the proposed schemes were experimentally verified. For system-level feasibility, a patch-type device prototype was manufactured, and both power and bio-signal interfaces were functionally demonstrated.
Collapse
|
9
|
Nair V, Dalrymple AN, Yu Z, Balakrishnan G, Bettinger CJ, Weber DJ, Yang K, Robinson JT. Miniature battery-free bioelectronics. Science 2023; 382:eabn4732. [PMID: 37943926 DOI: 10.1126/science.abn4732] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Miniature wireless bioelectronic implants that can operate for extended periods of time can transform how we treat disorders by acting rapidly on precise nerves and organs in a way that drugs cannot. To reach this goal, materials and methods are needed to wirelessly transfer energy through the body or harvest energy from the body itself. We review some of the capabilities of emerging energy transfer methods to identify the performance envelope for existing technology and discover where opportunities lie to improve how much-and how efficiently-we can deliver energy to the tiny bioelectronic implants that can support emerging medical technologies.
Collapse
Affiliation(s)
- Vishnu Nair
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Zhanghao Yu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Gaurav Balakrishnan
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christopher J Bettinger
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
10
|
Bok I, Vareberg A, Gokhale Y, Bhatt S, Masterson E, Phillips J, Zhu T, Ren X, Hai A. Wireless agents for brain recording and stimulation modalities. Bioelectron Med 2023; 9:20. [PMID: 37726851 PMCID: PMC10510192 DOI: 10.1186/s42234-023-00122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 09/21/2023] Open
Abstract
New sensors and modulators that interact wirelessly with medical modalities unlock uncharted avenues for in situ brain recording and stimulation. Ongoing miniaturization, material refinement, and sensitization to specific neurophysiological and neurochemical processes are spurring new capabilities that begin to transcend the constraints of traditional bulky and invasive wired probes. Here we survey current state-of-the-art agents across diverse realms of operation and evaluate possibilities depending on size, delivery, specificity and spatiotemporal resolution. We begin by describing implantable and injectable micro- and nano-scale electronic devices operating at or below the radio frequency (RF) regime with simple near field transmission, and continue with more sophisticated devices, nanoparticles and biochemical molecular conjugates acting as dynamic contrast agents in magnetic resonance imaging (MRI), ultrasound (US) transduction and other functional tomographic modalities. We assess the ability of some of these technologies to deliver stimulation and neuromodulation with emerging probes and materials that provide minimally invasive magnetic, electrical, thermal and optogenetic stimulation. These methodologies are transforming the repertoire of readily available technologies paired with compatible imaging systems and hold promise toward broadening the expanse of neurological and neuroscientific diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Adam Vareberg
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Yash Gokhale
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Suyash Bhatt
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Emily Masterson
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Jack Phillips
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
| | - Tianxiang Zhu
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Xiaoxuan Ren
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA.
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
11
|
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics enables large power delivery to mm-sized wireless bioelectronics. JOURNAL OF APPLIED PHYSICS 2023; 134:094103. [PMID: 37692260 PMCID: PMC10484622 DOI: 10.1063/5.0156015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density [the amount of power transferred divided by receiver footprint area (length × width)]. Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm2, which is over four times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 and 56 mW to 10 and 27-mm2 ME receivers, respectively. This total power delivery is over five times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.
Collapse
Affiliation(s)
- Wonjune Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - C. Anne Tuppen
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Amanda Singer
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Rachel Weirnick
- Pratt School of Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
12
|
Kim W, Tuppen CA, Alrashdan F, Singer A, Weirnick R, Robinson JT. Magnetoelectrics Enables Large Power Delivery to mm-Sized Wireless Bioelectronics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555944. [PMID: 37732216 PMCID: PMC10508743 DOI: 10.1101/2023.09.01.555944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density (the amount of power transferred divided by receiver footprint area (length × width)). Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm 2 , which is over 4 times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 mW and 56 mW to 10-mm 2 and 27-mm 2 ME receivers, respectively. This total power delivery is over 5 times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.
Collapse
|
13
|
DAS D, Xu Z, Nasrollahpour M, Martos-Repath I, Zaeimbashi M, Khalifa A, Mittal A, Cash SS, Sun NX, Shrivastava A, Onabajo M. Circuit-Level Modeling and Simulation of Wireless Sensing and Energy Harvesting With Hybrid Magnetoelectric Antennas for Implantable Neural Devices. IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS 2023; 4:139-155. [PMID: 37829556 PMCID: PMC10569408 DOI: 10.1109/ojcas.2023.3259233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A magnetoelectric antenna (ME) can exhibit the dual capabilities of wireless energy harvesting and sensing at different frequencies. In this article, a behavioral circuit model for hybrid ME antennas is described to emulate the radio frequency (RF) energy harvesting and sensing operations during circuit simulations. The ME antenna of this work is interfaced with a CMOS energy harvester chip towards the goal of developing a wireless communication link for fully integrated implantable devices. One role of the integrated system is to receive pulse-modulated power from a nearby transmitter, and another role is to sense and transmit low-magnitude neural signals. The measurements reported in this paper are the first results that demonstrate simultaneous low-frequency wireless magnetic sensing and high-frequency wireless energy harvesting at two different frequencies with one dual-mode ME antenna. The proposed behavioral ME antenna model can be utilized during design optimizations of energy harvesting circuits. Measurements were performed to validate the wireless power transfer link with an ME antenna having a 2.57 GHz resonance frequency connected to an energy harvester chip designed in 65nm CMOS technology. Furthermore, this dual-mode ME antenna enables concurrent sensing using a carrier signal with a frequency that matches the second 63.63 MHz resonance mode. A wireless test platform has been developed for evaluation of ME antennas as a tool for neural implant design, and this prototype system was utilized to provide first experimental results with the transmission of magnetically modulated action potential waveforms.
Collapse
Affiliation(s)
- Diptashree DAS
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ziyue Xu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Mehdi Nasrollahpour
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
- MediaTek Inc., Woburn, MA 01801, USA
| | - Isabel Martos-Repath
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Mohsen Zaeimbashi
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Khalifa
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ankit Mittal
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nian X Sun
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Aatmesh Shrivastava
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Marvin Onabajo
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
14
|
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat Biomed Eng 2022; 6:706-716. [PMID: 35361934 PMCID: PMC9213237 DOI: 10.1038/s41551-022-00873-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023]
Abstract
Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm × 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals’ sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators. An endovascular wireless and battery-free millimetric implant enables the stimulation of peripheral nerves that are difficult to reach via traditional surgeries.
Collapse
|
15
|
Yu Z, Chen JC, He Y, Alrashdan FT, Avants BW, Singer A, Robinson JT, Yang K. Magnetoelectric Bio-Implants Powered and Programmed by a Single Transmitter for Coordinated Multisite Stimulation. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2022; 57:818-830. [PMID: 36275505 PMCID: PMC9581110 DOI: 10.1109/jssc.2021.3129993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This paper presents a hardware platform including stimulating implants wirelessly powered and controlled by a shared transmitter for coordinated leadless multisite stimulation. The adopted novel single-transmitter, multiple-implant structure can flexibly deploy stimuli, improve system efficiency, easily scale stimulating channel quantity and relieve efforts in device synchronization. In the proposed system, a wireless link leveraging magnetoelectric effects is co-designed with a robust and efficient system-on-chip to enable reliable operation and individual programming of every implant. Each implant integrates a 0.8-mm2 chip, a 6-mm2 magnetoelectric film, and an energy storage capacitor within a 6.2-mm3 size. Magnetoelectric power transfer is capable of safely transmitting milliwatt power to devices placed several centimeters away from the transmitter coil, maintaining good efficiency with size constraints and tolerating 60-degree, 1.5-cm misalignment in angular and lateral movement. The SoC robustly operates with 2-V source amplitude variations that spans a 40-mm transmitter-implant distance change, realizes individual addressability through physical unclonable function IDs, and achieves 90% efficiency for 1.5-to-3.5-V stimulation with fully programmable stimulation parameters.
Collapse
Affiliation(s)
| | | | - Yan He
- Rice University, Houston, TX 77005, USA
| | | | | | | | - Jacob T Robinson
- Rice University, Houston, TX 77005, USA; Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
16
|
Wang W, Pun KP, Zhao B. A Current-Switching Technique for Intra-Body Communication With Miniaturized Electrodes. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1343-1353. [PMID: 34748499 DOI: 10.1109/tbcas.2021.3125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medical implants are required to be minimized in size to alleviate surgical pains. Battery and antenna are often the main bottlenecks in system miniaturization. Wireless power transfer (WPT) is a possible way to minimize or eliminate the battery. Medical implants with WPT often use backscattering for data communication due to its low power consumption and low hardware cost. However, the conventional backscattering approach with WPT requires a large implanted antenna to ensure a relatively high efficiency and enough signal-to-noise ratio (SNR) for demodulation. In this work, we propose a current-switching technique for intra-body communication to achieve a high SNR and data rate with a pair of small implanted electrodes. Instead of the conventional electric-field based WPT and communication, a current loop is configured in the body tissue for WPT, where a new passive-communication scheme is implemented at the same time. A prototype is implemented to validate the proposed technique, in which the implanted electrodes are designed to be as small as 200 μm × 200 μm, located 13 mm deep in the tissue. The system achieves a communication rate of 10 Mbps with a bit error rate (BER) of 8.4 ×10-4 over the 406 MHz MedRadio band, while the signal-to-blocker ratio and SNR are measured to be -35.7 dB and 12.4dB, respectively.
Collapse
|
17
|
Yang X, McGlynn E, Das R, Paşca SP, Cui B, Heidari H. Nanotechnology Enables Novel Modalities for Neuromodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103208. [PMID: 34668249 PMCID: PMC8712412 DOI: 10.1002/adma.202103208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/27/2021] [Indexed: 05/18/2023]
Abstract
Neuromodulation is of great importance both as a fundamental neuroscience research tool for analyzing and understanding the brain function, and as a therapeutic avenue for treating brain disorders. Here, an overview of conceptual and technical progress in developing neuromodulation strategies is provided, and it is suggested that recent advances in nanotechnology are enabling novel neuromodulation modalities with less invasiveness, improved biointerfaces, deeper penetration, and higher spatiotemporal precision. The use of nanotechnology and the employment of versatile nanomaterials and nanoscale devices with tailored physical properties have led to considerable research progress. To conclude, an outlook discussing current challenges and future directions for next-generation neuromodulation modalities is presented.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCA94305USA
- Stanford Brain OrganogenesisWu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
- Wu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Eve McGlynn
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Rupam Das
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Sergiu P. Paşca
- Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCA94305USA
- Stanford Brain OrganogenesisWu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
| | - Bianxiao Cui
- Wu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Hadi Heidari
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
18
|
Hosur S, Sriramdas R, Karan SK, Liu N, Priya S, Kiani M. A Comprehensive Study on Magnetoelectric Transducers for Wireless Power Transfer Using Low-Frequency Magnetic Fields. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1079-1092. [PMID: 34623276 DOI: 10.1109/tbcas.2021.3118981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetoelectric (ME) transducers, comprising of layered magnetostrictive and piezoelectric materials, are more efficient than inductive coils in converting low-frequency magnetic fields into electric fields, particularly in applications that require miniaturized devices such as biomedical implants. Therefore, ME transducers are an attractive candidate for wireless power transfer (WPT) using low-frequency magnetic fields, which are less harmful to the human body and can penetrate easily through different lossy media. The literature lacks a comprehensive study on the ME transducer as a power receiver in a WPT link. This paper studies the impact of different ME design parameters on the WPT link performance. An accurate analytical model of the ME transducer, operating in the longitudinal-transverse mode, is presented, describing both temporal and spatial deformations. Nine ME transducers with different sizes (ME volume: 5-150 mm3) were fabricated with Galfenol and PZT-5A as magnetostrictive and piezoelectric layers, respectively. Through the modeling and measurement of these ME transducers, the effects of the ME transducer dimension, DC bias magnetic field, loading (RL), and operation frequency on the resonance frequency, quality factor, and received power (PL) of the ME transducer are determined. In measurements, a 150 mm3 ME transducer achieved > 10-fold higher PL for a wide RL range of 500 Ω to 1 MΩ at 95.5 kHz, compared to an optimized coil with comparable size and operation frequency.
Collapse
|
19
|
Kopyl S, Surmenev R, Surmeneva M, Fetisov Y, Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine- a review. Mater Today Bio 2021; 12:100149. [PMID: 34746734 PMCID: PMC8554634 DOI: 10.1016/j.mtbio.2021.100149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Magnetoelectric (ME) effect experimentally discovered about 60 years ago remains one of the promising research fields with the main applications in microelectronics and sensors. However, its applications to biology and medicine are still in their infancy. For the diagnosis and treatment of diseases at the intracellular level, it is necessary to develop a maximally non-invasive way of local stimulation of individual neurons, navigation, and distribution of biomolecules in damaged cells with relatively high efficiency and adequate spatial and temporal resolution. Recently developed ME materials (composites), which combine elastically coupled piezoelectric (PE) and magnetostrictive (MS) phases, have been shown to yield very strong ME effects even at room temperature. This makes them a promising toolbox for solving many problems of modern medicine. The main ME materials, processing technologies, as well as most prospective biomedical applications will be overviewed, and modern trends in using ME materials for future therapies, wireless power transfer, and optogenetics will be considered.
Collapse
Affiliation(s)
- S. Kopyl
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - R. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - M. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Y. Fetisov
- Research & Education Centre ‘Magnetoelectric Materials and Devices’, MIREA – Russian Technological University, Moscow, Russia
| | - A. Kholkin
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
20
|
Singer A, Robinson JT. Wireless Power Delivery Techniques for Miniature Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100664. [PMID: 34114368 PMCID: PMC8754427 DOI: 10.1002/adhm.202100664] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Progress in implanted bioelectronic technology offers the opportunity to develop more effective tools for personalized electronic medicine. While there are numerous clinical and pre-clinical applications for these devices, power delivery to these systems can be challenging. Wireless battery-free devices offer advantages such as a smaller and lighter device footprint and reduced failures and infections by eliminating lead wires. However, with the development of wireless technologies, there are fundamental tradeoffs between five essential factors: power, miniaturization, depth, alignment tolerance, and transmitter distance, while still allowing devices to work within safety limits. These tradeoffs mean that multiple forms of wireless power transfer are necessary for different devices to best meet the needs for a given biological target. Here six different types of wireless power transfer technologies used in bioelectronic implants-inductive coupling, radio frequency, mid-field, ultrasound, magnetoelectrics, and light-are reviewed in context of the five tradeoffs listed above. This core group of wireless power modalities is then used to suggest possible future bioelectronic technologies and their biological applications.
Collapse
Affiliation(s)
- Amanda Singer
- Department of Electrical and Computer EngineeringRice University6100 Main StHoustonTX77005USA
| | - Jacob T. Robinson
- Department of Electrical and Computer EngineeringRice University6100 Main StHoustonTX77005USA
| |
Collapse
|
21
|
Alrashdan FT, Chen JC, Singer A, Avants BW, Yang K, Robinson JT. Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants. J Neural Eng 2021; 18. [PMID: 34229314 PMCID: PMC8820397 DOI: 10.1088/1741-2552/ac1178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/06/2021] [Indexed: 01/09/2023]
Abstract
Objective.Compared to biomedical devices with implanted batteries, wirelessly powered technologies can be longer-lasting, less invasive, safer, and can be miniaturized to access difficult-to-reach areas of the body. Magnetic fields are an attractive wireless power transfer modality for such bioelectronic applications because they suffer negligible absorption and reflection in biological tissues. However, current solutions using magnetic fields for mm sized implants either operate at high frequencies (>500 kHz) or require high magnetic field strengths (>10 mT), which restricts the amount of power that can be transferred safely through tissue and limits the development of wearable power transmitter systems. Magnetoelectric (ME) materials have recently been shown to provide a wireless power solution for mm-sized neural stimulators. These ME transducers convert low magnitude (<1 mT) and low-frequency (∼300 kHz) magnetic fields into electric fields that can power custom integrated circuits or stimulate nearby tissue.Approach.Here we demonstrate a battery-powered wearable magnetic field generator that can power a miniaturized MagnetoElectric-powered Bio ImplanT 'ME-BIT' that functions as a neural stimulator. The wearable transmitter weighs less than 0.5 lbs and has an approximate battery life of 37 h.Main results.We demonstrate the ability to power a millimeter-sized prototype 'ME-BIT' at a distance of 4 cm with enough energy to electrically stimulate a rat sciatic nerve. We also find that the system performs well under translational misalignment and identify safe operating ranges according to the specific absorption rate limits set by the IEEE Std 95.1-2019.Significance.These results validate the feasibility of a wearable system that can power miniaturized ME implants that can be used for different neuromodulation applications.
Collapse
Affiliation(s)
| | - Joshua C Chen
- Rice University, Houston, TX 77005, United States of America
| | - Amanda Singer
- Rice University, Houston, TX 77005, United States of America
| | | | - Kaiyuan Yang
- Rice University, Houston, TX 77005, United States of America
| | - Jacob T Robinson
- Rice University, Houston, TX 77005, United States of America.,Baylor College of Medicine, Houston, TX 77030, United States of America
| |
Collapse
|
22
|
Cho J, Seong G, Chang Y, Kim C. Energy-Efficient Integrated Circuit Solutions Toward Miniaturized Closed-Loop Neural Interface Systems. Front Neurosci 2021; 15:667447. [PMID: 34135727 PMCID: PMC8200530 DOI: 10.3389/fnins.2021.667447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Miniaturized implantable devices play a crucial role in neural interfaces by monitoring and modulating neural activities on the peripheral and central nervous systems. Research efforts toward a compact wireless closed-loop system stimulating the nerve automatically according to the user's condition have been maintained. These systems have several advantages over open-loop stimulation systems such as reduction in both power consumption and side effects of continuous stimulation. Furthermore, a compact and wireless device consuming low energy alleviates foreign body reactions and risk of frequent surgical operations. Unfortunately, however, the miniaturized closed-loop neural interface system induces several hardware design challenges such as neural activity recording with severe stimulation artifact, real-time stimulation artifact removal, and energy-efficient wireless power delivery. Here, we will review recent approaches toward the miniaturized closed-loop neural interface system with integrated circuit (IC) techniques.
Collapse
Affiliation(s)
- Jaeouk Cho
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Geunchang Seong
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yonghee Chang
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Chul Kim
- Biomedical Energy-Efficient Electronics Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for Health Science and Technology, Daejeon, South Korea
| |
Collapse
|