1
|
Snyder WE, Vértes PE, Kyriakopoulou V, Wagstyl K, Williams LZJ, Moraczewski D, Thomas AG, Karolis VR, Seidlitz J, Rivière D, Robinson EC, Mangin JF, Raznahan A, Bullmore ET. A bimodal taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients. Neuron 2024; 112:3396-3411.e6. [PMID: 39178859 PMCID: PMC11502256 DOI: 10.1016/j.neuron.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/22/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (n = 34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bimodal distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex, and complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (n = 228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.
Collapse
Affiliation(s)
- William E Snyder
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Adam G Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette 91191, France
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Jean-Francois Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette 91191, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
2
|
Foubet O, Mangin JF, Sun ZY, Sherwood CC, Hopkins WD. Phylogenetic differences in the morphology and shape of the central sulcus in great apes and humans: implications for the evolution of motor functions. Cereb Cortex 2024; 34:bhae232. [PMID: 38869374 PMCID: PMC11170658 DOI: 10.1093/cercor/bhae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The central sulcus divides the primary motor and somatosensory cortices in many anthropoid primate brains. Differences exist in the surface area and depth of the central sulcus along the dorso-ventral plane in great apes and humans compared to other primate species. Within hominid species, there are variations in the depth and aspect of their hand motor area, or knob, within the precentral gyrus. In this study, we used post-image analyses on magnetic resonance images to characterize the central sulcus shape of humans, chimpanzees (Pan troglodytes), gorillas (Gorilla gorilla), and orangutans (Pongo pygmaeus and Pongo abelii). Using these data, we examined the morphological variability of central sulcus in hominids, focusing on the hand region, a significant change in human evolution. We show that the central sulcus shape differs between great ape species, but all show similar variations in the location of their hand knob. However, the prevalence of the knob location along the dorso-ventral plane and lateralization differs between species and the presence of a second ventral motor knob seems to be unique to humans. Humans and orangutans exhibit the most similar and complex central sulcus shapes. However, their similarities may reflect divergent evolutionary processes related to selection for different positional and habitual locomotor functions.
Collapse
Affiliation(s)
- Ophelie Foubet
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, 91191 Gif-sur-Yvette, Ile de France, France
| | - Jean-François Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, 91191 Gif-sur-Yvette, Ile de France, France
| | - Zhong Yi Sun
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, 91191 Gif-sur-Yvette, Ile de France, France
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, United States
| | - William D Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX 78602, United States
| |
Collapse
|
3
|
Labra N, Mounier A, Leprince Y, Rivière D, Didier M, Bardinet E, Santin MD, Mangin JF, Filippo A, Albessard‐Ball L, Beaudet A, Broadfield D, Bruner E, Carlson KJ, Cofran Z, Falk D, Gilissen E, Gómez‐Robles A, Neubauer S, Pearson A, Röding C, Zhang Y, Balzeau A. What do brain endocasts tell us? A comparative analysis of the accuracy of sulcal identification by experts and perspectives in palaeoanthropology. J Anat 2024; 244:274-296. [PMID: 37935387 PMCID: PMC10780157 DOI: 10.1111/joa.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Palaeoneurology is a complex field as the object of study, the brain, does not fossilize. Studies rely therefore on the (brain) endocranial cast (often named endocast), the only available and reliable proxy for brain shape, size and details of surface. However, researchers debate whether or not specific marks found on endocasts correspond reliably to particular sulci and/or gyri of the brain that were imprinted in the braincase. The aim of this study is to measure the accuracy of sulcal identification through an experiment that reproduces the conditions that palaeoneurologists face when working with hominin endocasts. We asked 14 experts to manually identify well-known foldings in a proxy endocast that was obtained from an MRI of an actual in vivo Homo sapiens head. We observe clear differences in the results when comparing the non-corrected labels (the original labels proposed by each expert) with the corrected labels. This result illustrates that trying to reconstruct a sulcus following the very general known shape/position in the literature or from a mean specimen may induce a bias when looking at an endocast and trying to follow the marks observed there. We also observe that the identification of sulci appears to be better in the lower part of the endocast compared to the upper part. The results concerning specific anatomical traits have implications for highly debated topics in palaeoanthropology. Endocranial description of fossil specimens should in the future consider the variation in position and shape of sulci in addition to using models of mean brain shape. Moreover, it is clear from this study that researchers can perceive sulcal imprints with reasonably high accuracy, but their correct identification and labelling remains a challenge, particularly when dealing with extinct species for which we lack direct knowledge of the brain.
Collapse
Affiliation(s)
- Nicole Labra
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
| | - Aurélien Mounier
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
- Turkana Basin InstituteNairobiKenya
| | - Yann Leprince
- Université Paris‐Saclay, CEA, CNRS UMR 9027, Baobab, NeuroSpinGif‐sur‐YvetteFrance
| | - Denis Rivière
- Université Paris‐Saclay, CEA, CNRS UMR 9027, Baobab, NeuroSpinGif‐sur‐YvetteFrance
| | - Mélanie Didier
- ICM—Institut du Cerveau, Hôpital Pitié‐Salpêtrière, Centre de NeuroImagerie de Recherche—CENIRParisFrance
| | - Eric Bardinet
- ICM—Institut du Cerveau, Hôpital Pitié‐Salpêtrière, Centre de NeuroImagerie de Recherche—CENIRParisFrance
| | - Mathieu D. Santin
- ICM—Institut du Cerveau, Hôpital Pitié‐Salpêtrière, Centre de NeuroImagerie de Recherche—CENIRParisFrance
| | - Jean François Mangin
- Université Paris‐Saclay, CEA, CNRS UMR 9027, Baobab, NeuroSpinGif‐sur‐YvetteFrance
| | - Andréa Filippo
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
| | - Lou Albessard‐Ball
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
- Department of ArchaeologyPalaeoHub, University of YorkYorkUK
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRSUniversité de PoitiersPoitiersFrance
| | | | - Emiliano Bruner
- Paleobiología, Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| | - Kristian J. Carlson
- Evolutionary Studies InstituteUniversity of the Witwatersrand, Palaeosciences CentreJohannesburgSouth Africa
- Department of Integrative Anatomical Sciences, Keck School of MedicineUniversity of Southern CaliforniaCaliforniaLos AngelesUSA
| | - Zachary Cofran
- Anthropology DepartmentVassar CollegePoughkeepsieNew YorkUSA
| | - Dean Falk
- Department of AnthropologyFlorida State UniversityTallahasseeFloridaUSA
| | - Emmanuel Gilissen
- Department of African ZoologyRoyal Museum for Central AfricaTervurenBelgium
| | | | - Simon Neubauer
- Institute of Anatomy and Cell BiologyJohannes Kepler University LinzLinzAustria
| | - Alannah Pearson
- School of Archaeology and AnthropologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Carolin Röding
- Paleoanthropology, Institute for Archaeological Sciences and Senckenberg Centre for Human Evolution and PaleoenvironmentEberhard Karls University of TübingenTübingenGermany
| | - Yameng Zhang
- Institute of Cultural HeritageShandong UniversityQingdaoShandongChina
| | - Antoine Balzeau
- Département Homme et EnvironnementUMR 7194, CNRS, PaleoFED Team, Muséum national d’Histoire naturelleParisFrance
- Department of African ZoologyRoyal Museum for Central AfricaTervurenBelgium
| |
Collapse
|
4
|
Sighinolfi G, Mitolo M, Pizzagalli F, Stanzani-Maserati M, Remondini D, Rochat MJ, Cantoni E, Venturi G, Vornetti G, Bartiromo F, Capellari S, Liguori R, Tonon C, Testa C, Lodi R. Sulcal Morphometry Predicts Mild Cognitive Impairment Conversion to Alzheimer's Disease. J Alzheimers Dis 2024; 99:177-190. [PMID: 38640154 PMCID: PMC11191431 DOI: 10.3233/jad-231192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Being able to differentiate mild cognitive impairment (MCI) patients who would eventually convert (MCIc) to Alzheimer's disease (AD) from those who would not (MCInc) is a key challenge for prognosis. Objective This study aimed to investigate the ability of sulcal morphometry to predict MCI progression to AD, dedicating special attention to an accurate identification of sulci. Methods Twenty-five AD patients, thirty-seven MCI and twenty-five healthy controls (HC) underwent a brain-MR protocol (1.5T scanner) including a high-resolution T1-weighted sequence. MCI patients underwent a neuropsychological assessment at baseline and were clinically re-evaluated after a mean of 2.3 years. At follow-up, 12 MCI were classified as MCInc and 25 as MCIc. Sulcal morphometry was investigated using the BrainVISA framework. Consistency of sulci across subjects was ensured by visual inspection and manual correction of the automatic labelling in each subject. Sulcal surface, depth, length, and width were retrieved from 106 sulci. Features were compared across groups and their classification accuracy in predicting MCI conversion was tested. Potential relationships between sulcal features and cognitive scores were explored using Spearman's correlation. Results The width of sulci in the temporo-occipital region strongly differentiated between each pair of groups. Comparing MCIc and MCInc, the width of several sulci in the bilateral temporo-occipital and left frontal areas was significantly altered. Higher width of frontal sulci was associated with worse performances in short-term verbal memory and phonemic fluency. Conclusions Sulcal morphometry emerged as a strong tool for differentiating HC, MCI, and AD, demonstrating its potential prognostic value for the MCI population.
Collapse
Affiliation(s)
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | | | - Elena Cantoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Greta Venturi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gianfranco Vornetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Falcon C, Operto G, Molinuevo JL, Gispert JD. Neuroimaging Methods for MRI Analysis in CSF Biomarkers Studies. Methods Mol Biol 2024; 2785:143-162. [PMID: 38427193 DOI: 10.1007/978-1-0716-3774-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Among others, the existence of pathophysiological biomarkers such as cerebrospinal fluid (CSF) Aβ-42, t-tau, and p-tau preceding the onset of Alzheimer's disease (AD) symptomatology has shifted the conceptualization of AD as a continuum. In addition, magnetic resonance imaging (MRI) enables the study of structural and functional cross-sectional correlates and longitudinal changes in vivo, and therefore, the combination of CSF data and imaging analyses emerges as a synergistic approach to understand the structural correlates related with specific AD-related biomarkers. In this chapter, we describe the methods used in neuroimaging that will allow researchers to combine data on CSF metabolites with imaging analyses.
Collapse
Affiliation(s)
- Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
6
|
Snyder WE, Vértes PE, Kyriakopoulou V, Wagstyl K, Williams LZJ, Moraczewski D, Thomas AG, Karolis VR, Seidlitz J, Rivière D, Robinson EC, Mangin JF, Raznahan A, Bullmore ET. A bipolar taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572454. [PMID: 38168226 PMCID: PMC10760196 DOI: 10.1101/2023.12.19.572454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (N=228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.
Collapse
Affiliation(s)
- William E Snyder
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Adam G Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Jean-Francois Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
7
|
Yadav R, Dupé FX, Takerkart S, Auzias G. Population-wise labeling of sulcal graphs using multi-graph matching. PLoS One 2023; 18:e0293886. [PMID: 37943809 PMCID: PMC10635518 DOI: 10.1371/journal.pone.0293886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Population-wise matching of the cortical folds is necessary to compute statistics, a required step for e.g. identifying biomarkers of neurological or psychiatric disorders. The difficulty arises from the massive inter-individual variations in the morphology and spatial organization of the folds. The task is challenging both methodologically and conceptually. In the widely used registration-based techniques, these variations are considered as noise and the matching of folds is only implicit. Alternative approaches are based on the extraction and explicit identification of the cortical folds. In particular, representing cortical folding patterns as graphs of sulcal basins-termed sulcal graphs-enables to formalize the task as a graph-matching problem. In this paper, we propose to address the problem of sulcal graph matching directly at the population level using multi-graph matching techniques. First, we motivate the relevance of the multi-graph matching framework in this context. We then present a procedure for generating populations of artificial sulcal graphs, which allows us to benchmark several state-of-the-art multi-graph matching methods. Our results on both artificial and real data demonstrate the effectiveness of multi-graph matching techniques in obtaining a population-wise consistent labeling of cortical folds at the sulcal basin level.
Collapse
Affiliation(s)
- Rohit Yadav
- Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
- Institut Marseille Imaging, Aix Marseille Université, Marseille, France
- Laboratoire d’Informatique et Systèmes UMR 7020, CNRS, Aix-Marseille Université, Marseille, France
| | - François-Xavier Dupé
- Laboratoire d’Informatique et Systèmes UMR 7020, CNRS, Aix-Marseille Université, Marseille, France
| | - Sylvain Takerkart
- Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| |
Collapse
|
8
|
Guo Y, Chen Q, Choi GPT, Lui LM. Automatic landmark detection and registration of brain cortical surfaces via quasi-conformal geometry and convolutional neural networks. Comput Biol Med 2023; 163:107185. [PMID: 37418897 DOI: 10.1016/j.compbiomed.2023.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In medical imaging, surface registration is extensively used for performing systematic comparisons between anatomical structures, with a prime example being the highly convoluted brain cortical surfaces. To obtain a meaningful registration, a common approach is to identify prominent features on the surfaces and establish a low-distortion mapping between them with the feature correspondence encoded as landmark constraints. Prior registration works have primarily focused on using manually labeled landmarks and solving highly nonlinear optimization problems, which are time-consuming and hence hinder practical applications. In this work, we propose a novel framework for the automatic landmark detection and registration of brain cortical surfaces using quasi-conformal geometry and convolutional neural networks. We first develop a landmark detection network (LD-Net) that allows for the automatic extraction of landmark curves given two prescribed starting and ending points based on the surface geometry. We then utilize the detected landmarks and quasi-conformal theory for achieving the surface registration. Specifically, we develop a coefficient prediction network (CP-Net) for predicting the Beltrami coefficients associated with the desired landmark-based registration and a mapping network called the disk Beltrami solver network (DBS-Net) for generating quasi-conformal mappings from the predicted Beltrami coefficients, with the bijectivity guaranteed by quasi-conformal theory. Experimental results are presented to demonstrate the effectiveness of our proposed framework. Altogether, our work paves a new way for surface-based morphometry and medical shape analysis.
Collapse
Affiliation(s)
- Yuchen Guo
- Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
| | - Qiguang Chen
- Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
| | - Gary P T Choi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lok Ming Lui
- Department of Mathematics, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
9
|
Hopkins WD, Coulon O, Meguerditchian A, Staes N, Sherwood CC, Schapiro SJ, Mangin JF, Bradley B. Genetic determinants of individual variation in the superior temporal sulcus of chimpanzees (Pan troglodytes). Cereb Cortex 2023; 33:1925-1940. [PMID: 35697647 PMCID: PMC9977371 DOI: 10.1093/cercor/bhac183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/22/2022] Open
Abstract
The superior temporal sulcus (STS) is a conserved fold that divides the middle and superior temporal gyri. In humans, there is considerable variation in the shape, folding pattern, lateralization, and depth of the STS that have been reported to be associated with social cognition and linguistic functions. We examined the role that genetic factors play on individual variation in STS morphology in chimpanzees. The surface area and depth of the STS were quantified in sample of 292 captive chimpanzees comprised of two genetically isolated population of individuals. The chimpanzees had been previously genotyped for AVPR1A and KIAA0319, two genes that play a role in social cognition and communication in humans. Single nucleotide polymorphisms in the KIAA0319 and AVPR1A genes were associated with average depth as well as asymmetries in the STS. By contrast, we found no significant effects of these KIA0319 and AVPR1A polymorphism on surface area and depth measures for the central sulcus. The overall findings indicate that genetic factors account for a small to moderate amount of variation in STS morphology in chimpanzees. These findings are discussed in the context of the role of the STS in social cognition and language in humans and their potential evolutionary origins.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- IMéRA – Institut d’Etudes Avancées, Aix-Marseille Universite, Marseille 13004, France
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
| | - Oliver Coulon
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
- Aix-Marseille Univ, CNRS, Institut de Neurosciences de La Timone, UMR7289, Marseille 13284, France
| | - Adrien Meguerditchian
- Institute of Language, Communication and The Brain, Aix-Marseille Universite, CNRS, Aix-en-Provence 13604, France
- Laboratoire de Psychologie Cognitive, UMR 7290, LPC, Aix-Marseille Univ, CNRS, Marseille 13284, France
| | - Nicky Staes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen 2200N, Denmark
| | | | - Brenda Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
10
|
Lemaitre H, Le Guen Y, Tilot AK, Stein JL, Philippe C, Mangin JF, Fisher SE, Frouin V. Genetic variations within human gained enhancer elements affect human brain sulcal morphology. Neuroimage 2023; 265:119773. [PMID: 36442731 DOI: 10.1016/j.neuroimage.2022.119773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/07/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022] Open
Abstract
The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors.
Collapse
Affiliation(s)
- Herve Lemaitre
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France.
| | - Yann Le Guen
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Amanda K Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Jason L Stein
- Department of Genetics and the UNC Neuroscience Center, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Cathy Philippe
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Jean-François Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Vincent Frouin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Song T, Bodin C, Coulon O. Ensemble learning for the detection of pli-de-passages in the superior temporal sulcus. Neuroimage 2023; 265:119776. [PMID: 36460275 DOI: 10.1016/j.neuroimage.2022.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The surface of the cerebral cortex is very convoluted, with a large number of folds, the cortical sulci. These folds are extremely variable from one individual to another, and this large variability is a problem for many applications in neuroscience and brain imaging. In particular, sulcal geometry (shape) and sulcal topology (branches, number of pieces) are very variable. "Plis de passages" (PPs) or "annectant gyri" can explain part of the topological variability, namely why sulci have a variable number of pieces across subjects. The concept of PPs was first introduced by Gratiolet (1854) to describe transverse gyri that interconnect both sides of a sulcus, that are frequently buried in the depth of sulci, and that are sometimes apparent on the cortical surface, hence seemingly interrupting the course of sulci and separating them in several pieces. Nevertheless, the difficulty of identifying PPs and the lack of systematic methods to automatically detect them has limited their use. However, based on a recent characterization of PPs in the superior temporal sulcus, we present here a method to automatically detect PPs in the superior temporal sulcus. Local morphology within the sulcus is characterized using cortical surface profiling, and the three-dimensional PP recognition problem is performed as a two-dimensional image classification problem with class-imbalance. This is solved by using an ensemble support vector machine model (EnsSVM) with a rebalancing strategy. Cross validation and quantitative experimental results on an external dataset show the effectiveness and robustness of our approach.
Collapse
Affiliation(s)
- Tianqi Song
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, UMR CNRS 7289, Marseille, France
| | - Clémentine Bodin
- Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada; Department of Biology, McGill University, Montreal, QC, Canada
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, UMR CNRS 7289, Marseille, France.
| |
Collapse
|
12
|
Sun BB, Loomis SJ, Pizzagalli F, Shatokhina N, Painter JN, Foley CN, Jensen ME, McLaren DG, Chintapalli SS, Zhu AH, Dixon D, Islam T, Ba Gari I, Runz H, Medland SE, Thompson PM, Jahanshad N, Whelan CD. Genetic map of regional sulcal morphology in the human brain from UK biobank data. Nat Commun 2022; 13:6071. [PMID: 36241887 PMCID: PMC9568560 DOI: 10.1038/s41467-022-33829-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic associations with macroscopic brain structure can provide insights into brain function and disease. However, specific associations with measures of local brain folding are largely under-explored. Here, we conducted large-scale genome- and exome-wide associations of regional cortical sulcal measures derived from magnetic resonance imaging scans of 40,169 individuals in UK Biobank. We discovered 388 regional brain folding associations across 77 genetic loci, with genes in associated loci enriched for expression in the cerebral cortex, neuronal development processes, and differential regulation during early brain development. We integrated brain eQTLs to refine genes for various loci, implicated several genes involved in neurodevelopmental disorders, and highlighted global genetic correlations with neuropsychiatric phenotypes. We provide an interactive 3D visualisation of our summary associations, emphasising added resolution of regional analyses. Our results offer new insights into the genetic architecture of brain folding and provide a resource for future studies of sulcal morphology in health and disease.
Collapse
Affiliation(s)
- Benjamin B Sun
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US.
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Stephanie J Loomis
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Fabrizio Pizzagalli
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher N Foley
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Optima Partners, Edinburgh, UK
| | - Megan E Jensen
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Donald G McLaren
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | | | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Daniel Dixon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Tasfiya Islam
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Iyad Ba Gari
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Heiko Runz
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | | |
Collapse
|
13
|
Disentangling the variability of the superficial white matter organization using regional-tractogram-based population stratification. Neuroimage 2022; 255:119197. [PMID: 35417753 DOI: 10.1016/j.neuroimage.2022.119197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Each variation of the cortical folding pattern implies a particular rearrangement of the geometry of the fibers of the underlying white matter. While this rearrangement only impacts the ends of the long pathways, it may affect most of the trajectory of the short bundles. Therefore, mapping the short fibers of the human brain using diffusion-based tractography requires a dedicated strategy to overcome the variability of the folding patterns. In this paper, we propose a fiber-based stratification strategy splitting the population into homogeneous groups for disentangling the superficial white matter bundle organization. This strategy introduces a new refined fiber distance which includes angular considerations for inferring fine-grained atlases of the short bundles surrounding a specific sulcus and a subtractogram distance that quantifies the similitude between fiber sets of two different subjects. The stratification splits the population into groups with similar regional fiber organization using manifold learning. We first successfully test the hypothesis that the main source of variability of the regional fiber organization is the variability of the regional folding pattern. Then, in each group, we proceed with the automatic identification of the most stable bundles, at a higher granularity level than what can be achieved with the non-stratified whole population, enabling the disentanglement of the very variable configuration of the short fibers. Finally, the method searches for bundle correspondence across groups to build a population level atlas. As a proof of concept, the atlas refinement achieved by this strategy is illustrated for the fibers that surround the central sulcus and the superior temporal sulcus using the HCP dataset.
Collapse
|
14
|
Becker Y, Claidière N, Margiotoudi K, Marie D, Roth M, Nazarian B, Anton JL, Coulon O, Meguerditchian A. Broca area homologue's asymmetry reflects gestural communication lateralisation in monkeys (Papio anubis). eLife 2022; 11:70521. [PMID: 35108197 PMCID: PMC8846582 DOI: 10.7554/elife.70521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Manual gestures and speech recruit a common neural network, involving Broca’s area in the left hemisphere. Such speech-gesture integration gave rise to theories on the critical role of manual gesturing in the origin of language. Within this evolutionary framework, research on gestural communication in our closer primate relatives has received renewed attention for investigating its potential language-like features. Here, using in vivo anatomical MRI in 50 baboons, we found that communicative gesturing is related to Broca homologue’s marker in monkeys, namely the ventral portion of the Inferior Arcuate sulcus (IA sulcus). In fact, both direction and degree of gestural communication’s handedness – but not handedness for object manipulation are associated and correlated with contralateral depth asymmetry at this exact IA sulcus portion. In other words, baboons that prefer to communicate with their right hand have a deeper left-than-right IA sulcus, than those preferring to communicate with their left hand and vice versa. Interestingly, in contrast to handedness for object manipulation, gestural communication’s lateralisation is not associated to the Central sulcus depth asymmetry, suggesting a double dissociation of handedness’ types between manipulative action and gestural communication. It is thus not excluded that this specific gestural lateralisation signature within the baboons’ frontal cortex might reflect a phylogenetical continuity with language-related Broca lateralisation in humans.
Collapse
Affiliation(s)
- Yannick Becker
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Nicolas Claidière
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Konstantina Margiotoudi
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Damien Marie
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Muriel Roth
- Centre IRMf Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Bruno Nazarian
- Centre IRM Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Jean-Luc Anton
- Centre IRM Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
15
|
Mortamais M, Laure-Anne G, Balem M, Bars EL, de Champfleur NM, Bouyahia A, Chupin M, Perus L, Fisher C, Vellas B, Andrieu S, Mangin JF, Berr C, Gabelle A. Sulcal morphology as cognitive decline predictor in older adults with memory complaints. Neurobiol Aging 2022; 113:84-94. [DOI: 10.1016/j.neurobiolaging.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
|
16
|
Cachia A, Borst G, Jardri R, Raznahan A, Murray GK, Mangin JF, Plaze M. Towards Deciphering the Fetal Foundation of Normal Cognition and Cognitive Symptoms From Sulcation of the Cortex. Front Neuroanat 2021; 15:712862. [PMID: 34650408 PMCID: PMC8505772 DOI: 10.3389/fnana.2021.712862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Growing evidence supports that prenatal processes play an important role for cognitive ability in normal and clinical conditions. In this context, several neuroimaging studies searched for features in postnatal life that could serve as a proxy for earlier developmental events. A very interesting candidate is the sulcal, or sulco-gyral, patterns, macroscopic features of the cortex anatomy related to the fold topology-e.g., continuous vs. interrupted/broken fold, present vs. absent fold-or their spatial organization. Indeed, as opposed to quantitative features of the cortical sheet (e.g., thickness, surface area or curvature) taking decades to reach the levels measured in adult, the qualitative sulcal patterns are mainly determined before birth and stable across the lifespan. The sulcal patterns therefore offer a window on the fetal constraints on specific brain areas on cognitive abilities and clinical symptoms that manifest later in life. After a global review of the cerebral cortex sulcation, its mechanisms, its ontogenesis along with methodological issues on how to measure the sulcal patterns, we present a selection of studies illustrating that analysis of the sulcal patterns can provide information on prenatal dispositions to cognition (with a focus on cognitive control and academic abilities) and cognitive symptoms (with a focus on schizophrenia and bipolar disorders). Finally, perspectives of sulcal studies are discussed.
Collapse
Affiliation(s)
- Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Université de Paris, IPNP, INSERM, Paris, France
| | - Grégoire Borst
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| | - Renaud Jardri
- Univ Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Centre, Plasticity & SubjectivitY (PSY) team, Lille, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Marion Plaze
- Université de Paris, IPNP, INSERM, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris, Paris, France
| |
Collapse
|
17
|
Broca's area and the search for anatomical asymmetry: commentary and perspectives. Brain Struct Funct 2021; 227:441-449. [PMID: 34390415 DOI: 10.1007/s00429-021-02357-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
We present a brief commentary on the field's search for an anatomical asymmetry between Broca's area and its homologue in the non-dominant hemisphere, focusing on a selection of studies, including research from the last decade. We demonstrate that, several years after the influential review of Keller and colleagues from 2009, and despite recent advances in neuroimaging, the existence of a structural asymmetry of Broca's area is still controversial. This is especially the case for studies of the macroanatomy of this region. We point out the inconsistencies in methodology across studies that could account for the discrepancy in results. Investigations of the microstructure of Broca's area show a trend of a leftward asymmetry, but it is still unclear how these results relate to language dominance. We suggest that it may be necessary to combine multiple metrics in a systematic manner to find robust asymmetries and to expand the regional scope of structural investigations. Finally, based on the current state of the literature, we should not rule out the possibility that language dominance may simply not be reflected in local anatomical differences in the brain.
Collapse
|
18
|
Spinal and Cerebral Integration of Noxious Inputs in Left-handed Individuals. Brain Topogr 2021; 34:568-586. [PMID: 34338897 DOI: 10.1007/s10548-021-00864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Some pain-related information is processed preferentially in the right cerebral hemisphere. Considering that functional lateralization can be affected by handedness, spinal and cerebral pain-related responses may be different between right- and left-handed individuals. Therefore, this study aimed to investigate the cortical and spinal mechanisms of nociceptive integration when nociceptive stimuli are applied to right -handed vs. left -handed individuals. The NFR, evoked potentials (ERP: P45, N100, P260), and event-related spectral perturbations (ERSP: theta, alpha, beta and gamma band oscillations) were compared between ten right-handed and ten left-handed participants. Pain was induced by transcutaneous electrical stimulation of the lower limbs and left upper limb. Stimulation intensity was adjusted individually in five counterbalanced conditions of 21 stimuli each: three unilateral (right lower limb, left lower limb, and left upper limb stimulation) and two bilateral conditions (right and left lower limbs, and the right lower limb and left upper limb stimulation). The amplitude of the NFR, ERP, ERSP, and pain ratings were compared between groups and conditions using a mixed ANOVA. A significant increase of responses was observed in bilateral compared with unilateral conditions for pain intensity, NFR amplitude, N100, theta oscillations, and gamma oscillations. However, these effects were not significantly different between right- and left-handed individuals. These results suggest that spinal and cerebral integration of bilateral nociceptive inputs is similar between right- and left-handed individuals. They also imply that pain-related responses measured in this study may be examined independently of handedness.
Collapse
|
19
|
Borne L, Rivière D, Cachia A, Roca P, Mellerio C, Oppenheim C, Mangin JF. Automatic recognition of specific local cortical folding patterns. Neuroimage 2021; 238:118208. [PMID: 34089872 DOI: 10.1016/j.neuroimage.2021.118208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022] Open
Abstract
The study of local cortical folding patterns showed links with psychiatric illnesses as well as cognitive functions. Despite the tools now available to visualize cortical folds in 3D, manually classifying local sulcal patterns is a time-consuming and tedious task. In fact, 3D visualization of folds helps experts to identify different sulcal patterns but fold variability is so high that the distinction between these patterns sometimes requires the definition of complex criteria, making manual classification difficult and not reliable. However, the assessment of the impact of these patterns on the functional organization of the cortex could benefit from the study of large databases, especially when studying rare patterns. In this paper, several algorithms for the automatic classification of fold patterns are proposed to allow morphological studies to be extended and confirmed on such large databases. Three methods are proposed, the first based on a Support Vector Machine (SVM) classifier, the second on the Scoring by Non-local Image Patch Estimator (SNIPE) approach and the third based on a 3D Convolution Neural Network (CNN). These methods are generic enough to be applicable to a wide range of folding patterns. They are tested on two types of patterns for which there is currently no method to automatically identify them: the Anterior Cingulate Cortex (ACC) patterns and the Power Button Sign (PBS). The two ACC patterns are almost equally present whereas PBS is a particularly rare pattern in the general population. The three models proposed achieve balanced accuracies of approximately 80% for ACC patterns classification and 60% for PBS classification. The CNN-based model is more interesting for the classification of ACC patterns thanks to its rapid execution. However, SVM and SNIPE-based models are more effective in managing unbalanced problems such as PBS recognition.
Collapse
Affiliation(s)
- Léonie Borne
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France; University of Newcastle, HMRI, Systems Neuroscience Group, NSW, Australia.
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris, France; Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France
| | - Pauline Roca
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France; Pixyl, Research and Development Laboratory, Grenoble, France
| | - Charles Mellerio
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France; Centre d'imagerie du Nord, Saint Denis, France
| | - Catherine Oppenheim
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France
| | | |
Collapse
|
20
|
Hopkins WD, Procyk E, Petrides M, Schapiro SJ, Mareno MC, Amiez C. Sulcal Morphology in Cingulate Cortex is Associated with Voluntary Oro-Facial Motor Control and Gestural Communication in Chimpanzees (Pan troglodytes). Cereb Cortex 2021; 31:2845-2854. [PMID: 33447847 PMCID: PMC8107786 DOI: 10.1093/cercor/bhaa392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Individual differences in sulcal variation within the anterior and mid-cingulate cortex of the human brain, particularly the presence or absence of a paracingulate sulcus (PCGS), are associated with various motor and cognitive processes. Recently, it has been reported that chimpanzees possess a PCGS, previously thought to be a unique feature of the human brain. Here, we examined whether individual variation in the presence or absence of a PCGS as well as the variability in the intralimbic sulcus (ILS) are associated with oro-facial motor control, handedness for manual gestures, and sex in a sample of MRI scans obtained in 225 chimpanzees. Additionally, we quantified the depth of the cingulate sulcus (CGS) along the anterior-posterior axis and tested for association with oro-facial motor control, handedness, and sex. Chimpanzees with better oro-facial motor control were more likely to have a PCGS, particularly in the left hemisphere compared to those with poorer control. Male chimpanzees with better oro-facial motor control showed increased leftward asymmetries in the depth of the anterior CGS, whereas female chimpanzees showed the opposite pattern. Significantly, more chimpanzees had an ILS in the left compared to the right hemisphere, but variability in this fold was not associated with sex, handedness, or oro-facial motor control. Finally, significant population-level leftward asymmetries were found in the anterior portion of the CGS, whereas significant rightward biases were evident in the posterior regions. The collective results suggest that the emergence of a PCGS and enhanced gyrification within the anterior and mid-cingulate gyrus may have directly or indirectly evolved in response to selection for increasing oro-facial motor control in primates.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Emmanuel Procyk
- Univ Lyon, Université Claude Bernard Lyon I, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Michael Petrides
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mary Catherine Mareno
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Celine Amiez
- Univ Lyon, Université Claude Bernard Lyon I, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| |
Collapse
|
21
|
Meguerditchian A, Marie D, Margiotoudi K, Roth M, Nazarian B, Anton JL, Claidière N. Baboons (Papio anubis) living in larger social groups have bigger brains. EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Eichert N, Watkins KE, Mars RB, Petrides M. Morphological and functional variability in central and subcentral motor cortex of the human brain. Brain Struct Funct 2020; 226:263-279. [PMID: 33355695 PMCID: PMC7817568 DOI: 10.1007/s00429-020-02180-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
There is a long-established link between anatomy and function in the somatomotor system in the mammalian cerebral cortex. The morphology of the central sulcus is predictive of the location of functional activation peaks relating to movement of different effectors in individuals. By contrast, morphological variation in the subcentral region and its relationship to function is, as yet, unknown. Investigating the subcentral region is particularly important in the context of speech, since control of the larynx during human speech production is related to activity in this region. Here, we examined the relationship between morphology in the central and subcentral region and the location of functional activity during movement of the hand, lips, tongue, and larynx at the individual participant level. We provide a systematic description of the sulcal patterns of the subcentral and adjacent opercular cortex, including the inter-individual variability in sulcal morphology. We show that, in the majority of participants, the anterior subcentral sulcus is not continuous, but consists of two distinct segments. A robust relationship between morphology of the central and subcentral sulcal segments and movement of different effectors is demonstrated. Inter-individual variability of underlying anatomy might thus explain previous inconsistent findings, in particular regarding the ventral larynx area in subcentral cortex. A surface registration based on sulcal labels indicated that such anatomical information can improve the alignment of functional data for group studies.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
23
|
Bodin C, Pron A, Le Mao M, Régis J, Belin P, Coulon O. Plis de passage in the superior temporal sulcus: Morphology and local connectivity. Neuroimage 2020; 225:117513. [PMID: 33130271 DOI: 10.1016/j.neuroimage.2020.117513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
While there is a profusion of functional investigations involving the superior temporal sulcus (STS), our knowledge of the anatomy of this sulcus is still limited by a large individual variability. In particular, an accurate characterization of the "plis de passage" (PPs), annectant gyri inside the fold, is lacking to explain this variability. Performed on 90 subjects of the HCP database, our study revealed that PPs constitute landmarks that can be identified from the geometry of the STS walls. They were found associated with a specific U-shape white-matter connectivity between the two banks of the sulcus, the amount of connectivity being related to the depth of the PPs. These findings raise new hypotheses regarding the spatial organization of PPs, the relation between cortical anatomy and structural connectivity, as well as the possible role of PPs in the regional functional organization.
Collapse
Affiliation(s)
- C Bodin
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France.
| | - A Pron
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France
| | - M Le Mao
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France
| | - J Régis
- INSERM U1106, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - P Belin
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France; Département de Psychologie, Université de Montréal, Montréal, Canada; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - O Coulon
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| |
Collapse
|
24
|
Pizzagalli F, Auzias G, Yang Q, Mathias SR, Faskowitz J, Boyd JD, Amini A, Rivière D, McMahon KL, de Zubicaray GI, Martin NG, Mangin JF, Glahn DC, Blangero J, Wright MJ, Thompson PM, Kochunov P, Jahanshad N. The reliability and heritability of cortical folds and their genetic correlations across hemispheres. Commun Biol 2020; 3:510. [PMID: 32934300 PMCID: PMC7493906 DOI: 10.1038/s42003-020-01163-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cortical folds help drive the parcellation of the human cortex into functionally specific regions. Variations in the length, depth, width, and surface area of these sulcal landmarks have been associated with disease, and may be genetically mediated. Before estimating the heritability of sulcal variation, the extent to which these metrics can be reliably extracted from in-vivo MRI must be established. Using four independent test-retest datasets, we found high reliability across the brain (intraclass correlation interquartile range: 0.65-0.85). Heritability estimates were derived for three family-based cohorts using variance components analysis and pooled (total N > 3000); the overall sulcal heritability pattern was correlated to that derived for a large population cohort (N > 9000) calculated using genomic complex trait analysis. Overall, sulcal width was the most heritable metric, and earlier forming sulci showed higher heritability. The inter-hemispheric genetic correlations were high, yet select sulci showed incomplete pleiotropy, suggesting hemisphere-specific genetic influences.
Collapse
Grants
- P41 EB015922 NIBIB NIH HHS
- R01 EB015611 NIBIB NIH HHS
- P01 AG026276 NIA NIH HHS
- R21 NS064534 NINDS NIH HHS
- R01 MH078111 NIMH NIH HHS
- R01 HD050735 NICHD NIH HHS
- R01 NS056307 NINDS NIH HHS
- R01 MH121246 NIMH NIH HHS
- P50 MH071616 NIMH NIH HHS
- R03 EB012461 NIBIB NIH HHS
- R01 AG059874 NIA NIH HHS
- U24 RR021382 NCRR NIH HHS
- P30 AG066444 NIA NIH HHS
- P01 AG003991 NIA NIH HHS
- P50 AG005681 NIA NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- U54 MH091657 NIMH NIH HHS
- R01 AG021910 NIA NIH HHS
- R01 MH078143 NIMH NIH HHS
- P41 RR015241 NCRR NIH HHS
- S10 OD023696 NIH HHS
- R01 MH083824 NIMH NIH HHS
- This research was funded in part by NIH ENIGMA Center grant U54 EB020403, supported by the Big Data to Knowledge (BD2K) Centers of Excellence program funded by a cross-NIH initiative. Additional grant support was provided by: R01 AG059874, R01 MH117601, R01 MH121246, and P41 EB015922. QTIM was supported by NIH R01 HD050735, and the NHMRC 486682, Australia; GOBS: Financial support for this study was provided by the National Institute of Mental Health grants MH078143 (PI: DC Glahn), MH078111 (PI: J Blangero), and MH083824 (PI: DC Glahn & J Blangero); HCP data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University; UK Biobank: This research was conducted using the UK Biobank Resource under Application Number ‘11559’; BrainVISA’s Morphologist software development received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 720270 & 785907 (Human Brain ProjectSGA1 & SGA2), and by the FRM DIC20161236445. OASIS: Cross-Sectional: Principal Investigators: D. Marcus, R. Buckner, J. Csernansky J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382. KKI was supported by NIH grants NCRR P41 RR015241 (Peter C.M. van Zijl), 1R01NS056307 (Jerry Prince), 1R21NS064534-01A109 (Bennett A. Landman/Jerry L. Prince), 1R03EB012461-01 (Bennett A. Landman). Neda Jahanshad and Paul Thompson are MPIs of a research project grant from Biogen, Inc. (PO 969323).
Collapse
Affiliation(s)
- Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université & CNRS, Marseille, France
| | - Qifan Yang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Joshua Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Joshua D Boyd
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Armand Amini
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
- CATI, Multicenter Neuroimaging Platform, Paris, France
| | - Katie L McMahon
- School of Clinical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Greig I de Zubicaray
- Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | | | - Jean-François Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
- CATI, Multicenter Neuroimaging Platform, Paris, France
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| |
Collapse
|
25
|
Spocter MA, Sherwood CC, Schapiro SJ, Hopkins WD. Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees ( Pan troglodytes). Proc Biol Sci 2020; 287:20201320. [PMID: 32900313 PMCID: PMC7542794 DOI: 10.1098/rspb.2020.1320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Once considered a hallmark of human uniqueness, brain asymmetry has emerged as a feature shared with several other species, including chimpanzees, one of our closest living relatives. Most notable has been the discovery of asymmetries in homologues of cortical language areas in apes, particularly in the planum temporale (PT), considered a central node of the human language network. Several lines of evidence indicate a role for genetic mechanisms in the emergence of PT asymmetry; however, the genetic determinants of cerebral asymmetries have remained elusive. Studies in humans suggest that there is heritability of brain asymmetries of the PT, but this has not been explored to any extent in chimpanzees. Furthermore, the potential influence of non-genetic factors has raised questions about the reproducibility of earlier observations of PT asymmetry reported in chimpanzees. As such, the present study was aimed at examining both the heritability of phenotypic asymmetries in PT morphology, as well as their reproducibility. Using magnetic resonance imaging, we evaluated morphological asymmetries of PT surface area (mm2) and mean depth (mm) in captive chimpanzees (n = 291) derived from two genetically isolated populations. Our results confirm that chimpanzees exhibit a significant population-level leftward asymmetry for PT surface area, as well as significant heritability in the surface area and mean depth of the PT. These results conclusively demonstrate the existence of a leftward bias in PT asymmetry in chimpanzees and suggest that genetic mechanisms play a key role in the emergence of anatomical asymmetry in this region.
Collapse
Affiliation(s)
- Muhammad A. Spocter
- Department of Anatomy, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
- School of Anatomical Sciences, University of Witwatersrand, Johannesburg 2094, South Africa
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Steven J. Schapiro
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
| |
Collapse
|
26
|
Grewal JS, Gloe T, Hegedus J, Bitterman K, Billings BK, Chengetanai S, Bentil S, Wang VX, Ng JC, Tang CY, Geletta S, Wicinski B, Bertelson M, Tendler BC, Mars RB, Aguirre GK, Rusbridge C, Hof PR, Sherwood CC, Manger PR, Spocter MA. Brain gyrification in wild and domestic canids: Has domestication changed the gyrification index in domestic dogs? J Comp Neurol 2020; 528:3209-3228. [PMID: 32592407 DOI: 10.1002/cne.24972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Over the last 15 years, research on canid cognition has revealed that domestic dogs possess a surprising array of complex sociocognitive skills pointing to the possibility that the domestication process might have uniquely altered their brains; however, we know very little about how evolutionary processes (natural or artificial) might have modified underlying neural structure to support species-specific behaviors. Evaluating the degree of cortical folding (i.e., gyrification) within canids may prove useful, as this parameter is linked to functional variation of the cerebral cortex. Using quantitative magnetic resonance imaging to investigate the impact of domestication on the canine cortical surface, we compared the gyrification index (GI) in 19 carnivore species, including six wild canid and 13 domestic dog individuals. We also explored correlations between global and local GI with brain mass, cortical thickness, white and gray matter volume and surface area. Our results indicated that GI values for domestic dogs are largely consistent with what would be expected for a canid of their given brain mass, although more variable than that observed in wild canids. We also found that GI in canids is positively correlated with cortical surface area, cortical thickness and total cortical gray matter volumes. While we found no evidence of global differences in GI between domestic and wild canids, certain regional differences in gyrification were observed.
Collapse
Affiliation(s)
- Jagmeet S Grewal
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Tyler Gloe
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Joseph Hegedus
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | | | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Samson Chengetanai
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Sarah Bentil
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | - Victoria X Wang
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johnny C Ng
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry,and BioMedical and Engineering Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Simon Geletta
- Department of Public Health, Des Moines University, Des Moines, Iowa, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mads Bertelson
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark
| | - Benjamin C Tendler
- Wellcome Centre for Intergrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Intergrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, Pennsylvania, USA
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Fitzpatrick Referrals Ltd, Godalming, UK.,School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, Des Moines, Iowa, USA.,School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
27
|
Huang SG, Lyu I, Qiu A, Chung MK. Fast Polynomial Approximation of Heat Kernel Convolution on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2201-2212. [PMID: 31976883 PMCID: PMC7778732 DOI: 10.1109/tmi.2020.2967451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heat diffusion has been widely used in brain imaging for surface fairing, mesh regularization and cortical data smoothing. Motivated by diffusion wavelets and convolutional neural networks on graphs, we present a new fast and accurate numerical scheme to solve heat diffusion on surface meshes. This is achieved by approximating the heat kernel convolution using high degree orthogonal polynomials in the spectral domain. We also derive the closed-form expression of the spectral decomposition of the Laplace-Beltrami operator and use it to solve heat diffusion on a manifold for the first time. The proposed fast polynomial approximation scheme avoids solving for the eigenfunctions of the Laplace-Beltrami operator, which is computationally costly for large mesh size, and the numerical instability associated with the finite element method based diffusion solvers. The proposed method is applied in localizing the male and female differences in cortical sulcal and gyral graph patterns obtained from MRI in an innovative way. The MATLAB code is available at http://www.stat.wisc.edu/~mchung/chebyshev.
Collapse
|
28
|
Peyre H, Mohanpuria N, Jednoróg K, Heim S, Grande M, van Ermingen-Marbach M, Altarelli I, Monzalvo K, Williams CM, Germanaud D, Toro R, Ramus F. Neuroanatomy of dyslexia: An allometric approach. Eur J Neurosci 2020; 52:3595-3609. [PMID: 31991019 DOI: 10.1111/ejn.14690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 01/06/2023]
Abstract
Despite evidence for a difference in total brain volume between dyslexic and good readers, no previous neuroimaging study examined differences in allometric scaling (i.e. differences in the relationship between regional and total brain volumes) between dyslexic and good readers. The present study aims to fill this gap by testing differences in allometric scaling and regional brain volume differences in dyslexic and good readers. Object-based morphometry analysis was used to determine grey and white matter volumes of the four lobes, the cerebellum and limbic structures in 130 dyslexic and 106 good readers aged 8-14 years. Data were collected across three countries (France, Poland and Germany). Three methodological approaches were used as follows: principal component analysis (PCA), linear regression and multiple-group confirmatory factor analysis (MGCFA). Difference in total brain volume between good and dyslexic readers was Cohen's d = 0.39. We found no difference in allometric scaling, nor in regional brain volume between dyslexic and good readers. Results of our three methodological approaches (PCA, linear regression and MGCFA) were consistent. This study provides evidence for total brain volume differences between dyslexic and control children, but no evidence for differences in the volumes of the four lobes, the cerebellum or limbic structures, once allometry is taken into account. It also finds no evidence for a difference in allometric relationships between the groups. We highlight the methodological interest of the MGCFA approach to investigate such research issues.
Collapse
Affiliation(s)
- Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Ecole Normale Supérieure, PSL University, Paris, France.,Neurodiderot, INSERM UMR 1141, Paris Diderot University, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Neha Mohanpuria
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Ecole Normale Supérieure, PSL University, Paris, France
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Stefan Heim
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine (INM-1), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HZ), Jülich, Germany
| | - Marion Grande
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Muna van Ermingen-Marbach
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Irene Altarelli
- Laboratory for the Psychology of Child Development and Education, CNRS UMR 8240, Université de Paris, Paris, France
| | - Karla Monzalvo
- INSERM, UMR992, CEA, NeuroSpin Center, University Paris Saclay, Gif-sur-Yvette, France
| | - Camille Michèle Williams
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Ecole Normale Supérieure, PSL University, Paris, France
| | - David Germanaud
- Neurodiderot, INSERM UMR 1141, Paris Diderot University, Paris, France.,INSERM, UMR992, CEA, NeuroSpin Center, University Paris Saclay, Gif-sur-Yvette, France.,Department of Pediatric Neurology and Metabolic Diseases, Robert Debré Hospital, APHP, Paris, France.,INSERM, CEA, UMR 1129, Sorbonne Paris Cité University (USPC), Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Ecole Normale Supérieure, PSL University, Paris, France
| |
Collapse
|
29
|
Neubauer S, Gunz P, Scott NA, Hublin JJ, Mitteroecker P. Evolution of brain lateralization: A shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes. SCIENCE ADVANCES 2020; 6:eaax9935. [PMID: 32110727 PMCID: PMC7021492 DOI: 10.1126/sciadv.aax9935] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Brain lateralization is commonly interpreted as crucial for human brain function and cognition. However, as comparative studies among primates are rare, it is not known which aspects of lateralization are really uniquely human. Here, we quantify both pattern and magnitude of brain shape asymmetry based on endocranial imprints of the braincase in humans, chimpanzees, gorillas, and orangutans. Like previous studies, we found that humans were more asymmetric than chimpanzees, however so were gorillas and orangutans, highlighting the need to broaden the comparative framework for interpretation. We found that the average spatial asymmetry pattern, previously considered to be uniquely human, was shared among humans and apes. In humans, however, it was less directed, and different local asymmetries were less correlated. We, thus, found human asymmetry to be much more variable compared with that of apes. These findings likely reflect increased functional and developmental modularization of the human brain.
Collapse
Affiliation(s)
- Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nadia A. Scott
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | |
Collapse
|
30
|
A novel voxel-based method to estimate cortical sulci width and its application to compare patients with Alzheimer's disease to controls. Neuroimage 2019; 207:116343. [PMID: 31734431 DOI: 10.1016/j.neuroimage.2019.116343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
A voxel-based method for measuring sulcal width was developed, validated and applied to a database. This method (EDT-based LM) employs the 3D Euclidean Distance Transform (EDT) of the pial surface and a Local Maxima labeling algorithm. A computational phantom was designed to test method performance; results revealed the method's inaccuracy δ, to range between 0.1 and 0.5 voxels, for a width that varied between 1 and 7 voxels. Two morphological descriptors were computed to characterize each defined sulcus: mean sulcal width (MSW) and mean absolute deviation (MAD). The former is the average width for all available width measurements within the sulcus, and the latter is the deviation of these measurements. The EDT-based LM method was applied to the Minimal Interval Resonance Imaging in the Alzheimer's Disease (MIRIAD) database, for a set of high-resolution Magnetic Resonance (MR) images of 66 subjects: 43 patients with Alzheimer Disease (AD) and 23 control subjects. AD causes significant gray matter loss; hence, some sulci were expected to broaden. Methodological results concurred with this hypothesis. After a Wilcoxon test, MSW was grater in the case of all sulci pertaining to AD patients, (p < 0.05, FDR corrected), whereas MAD showed significant differences in 8 sulci (p < 0.05, FDR corrected). This work presents a novel voxel-based method for measuring sulcal width and extracting descriptors to characterize and compare the sulci within and across subjects.
Collapse
|
31
|
Abstract
While it is well established that cortical morphology differs in relation to a variety of inter-individual factors, it is often characterized using estimates of volume, thickness, surface area, or gyrification. Here we developed a computational approach for estimating sulcal width and depth that relies on cortical surface reconstructions output by FreeSurfer. While other approaches for estimating sulcal morphology exist, studies often require the use of multiple brain morphology programs that have been shown to differ in their approaches to localize sulcal landmarks, yielding morphological estimates based on inconsistent boundaries. To demonstrate the approach, sulcal morphology was estimated in three large sample of adults across the lifespan, in relation to aging. A fourth sample is additionally used to estimate test–retest reliability of the approach. This toolbox is now made freely available as supplemental to this paper: https://cmadan.github.io/calcSulc/.
Collapse
|
32
|
Dojat M, Pizzagalli F, Hupé JM. Magnetic resonance imaging does not reveal structural alterations in the brain of grapheme-color synesthetes. PLoS One 2018; 13:e0194422. [PMID: 29617401 PMCID: PMC5884511 DOI: 10.1371/journal.pone.0194422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 03/04/2018] [Indexed: 11/19/2022] Open
Abstract
Several publications have reported structural changes in the brain of synesthetes compared to controls, either local differences or differences in connectivity. In the present study, we pursued this quest for structural brain differences that might support the subjective experience of synesthesia. In particular, for the first time in this field, we investigated brain folding in comparing 45 sulcal shapes in each hemisphere of control and grapheme-color synesthete populations. To overcome flaws relative to data interpretation based only on p-values, common in the synesthesia literature, we report confidence intervals of effect sizes. Moreover, our statistical maps are displayed without introducing the classical, but misleading, p-value level threshold. We adopt such a methodological procedure to facilitate appropriate data interpretation and promote the "New Statistics" approach. Based on structural or diffusion magnetic resonance imaging data, we did not find any strong cerebral anomaly, in sulci, tissue volume, tissue density or fiber organization that could support synesthetic color experience. Finally, by sharing our complete datasets, we strongly support the multi-center construction of a sufficient large dataset repository for detecting, if any, subtle brain differences that may help understanding how a subjective experience, such as synesthesia, is mentally constructed.
Collapse
Affiliation(s)
- Michel Dojat
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale & Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Fabrizio Pizzagalli
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale & Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Jean-Michel Hupé
- Centre de Recherche Cerveau et Cognition, Université de Toulouse Paul Sabatier & Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
33
|
Neuroimaging Methods for MRI Analysis in CSF Biomarkers Studies. Methods Mol Biol 2018. [PMID: 29512072 DOI: 10.1007/978-1-4939-7704-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Among others, the existence of pathophysiological biomarkers such as cerebrospinal fluid (CSF) Aβ-42, t-tau, and p-tau preceding the onset of Alzheimer's disease (AD) symptomatology have shifted the conceptualization of AD as a continuum. In addition, magnetic resonance imaging (MRI) enables the study of structural and functional cross-sectional correlates and longitudinal changes in vivo and, therefore, the combination of CSF data and imaging analyses emerges as a synergistic approach to understand the structural correlates related with specific AD-related biomarkers. In this chapter, we describe the methods used in neuroimaging that will allow researchers to combine data on CSF metabolites with imaging analyses.
Collapse
|
34
|
Operto G, Chupin M, Batrancourt B, Habert MO, Colliot O, Benali H, Poupon C, Champseix C, Delmaire C, Marie S, Rivière D, Pélégrini-Issac M, Perlbarg V, Trebossen R, Bottlaender M, Frouin V, Grigis A, Orfanos DP, Dary H, Fillon L, Azouani C, Bouyahia A, Fischer C, Edward L, Bouin M, Thoprakarn U, Li J, Makkaoui L, Poret S, Dufouil C, Bouteloup V, Chételat G, Dubois B, Lehéricy S, Mangin JF, Cointepas Y. CATI: A Large Distributed Infrastructure for the Neuroimaging of Cohorts. Neuroinformatics 2018; 14:253-64. [PMID: 27066973 DOI: 10.1007/s12021-016-9295-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This paper provides an overview of CATI, a platform dedicated to multicenter neuroimaging. Initiated by the French Alzheimer's plan (2008-2012), CATI is a research project called on to provide service to other projects like an industrial partner. Its core mission is to support the neuroimaging of large populations, providing concrete solutions to the increasing complexity involved in such projects by bringing together a service infrastructure, the know-how of its expert academic teams and a large-scale, harmonized network of imaging facilities. CATI aims to make data sharing across studies easier and promotes sharing as much as possible. In the last 4 years, CATI has assisted the clinical community by taking charge of 35 projects so far and has emerged as a recognized actor at the national and international levels.
Collapse
Affiliation(s)
- Grégory Operto
- Centre pour l'Acquisition et le Traitement des Images, . .,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France. .,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
| | - Marie Chupin
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,INRIA Paris-Rocquencourt, 75013, Paris, France
| | - Bénédicte Batrancourt
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Information Analysis and Management project of France Life Imaging
| | - Marie-Odile Habert
- Centre pour l'Acquisition et le Traitement des Images.,Nuclear Medicine Department, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Olivier Colliot
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,INRIA Paris-Rocquencourt, 75013, Paris, France
| | - Habib Benali
- Centre pour l'Acquisition et le Traitement des Images.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Cyril Poupon
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France
| | - Catherine Champseix
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Christine Delmaire
- Centre pour l'Acquisition et le Traitement des Images.,U1171 - Département de Neuroradiologie, Centre Hospitalier Régional Universitaire de Lille, Université Lille Nord de France, F-59037, Lille, France
| | - Sullivan Marie
- Centre pour l'Acquisition et le Traitement des Images.,Nuclear Medicine Department, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Denis Rivière
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France
| | - Mélanie Pélégrini-Issac
- Centre pour l'Acquisition et le Traitement des Images.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Vincent Perlbarg
- Centre pour l'Acquisition et le Traitement des Images.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France.,IHU-A-ICM, Bioinformatics/Biostatistics Platform, F-75013, Paris, France
| | - Régine Trebossen
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France.,Information Analysis and Management project of France Life Imaging.,Commissariat à l'Energie Atomique, Service Hospitalier Frédéric Joliot, I2BM, Orsay, France
| | - Michel Bottlaender
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France.,Commissariat à l'Energie Atomique, Service Hospitalier Frédéric Joliot, I2BM, Orsay, France
| | - Vincent Frouin
- NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France
| | - Antoine Grigis
- NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France
| | | | - Hugo Dary
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,INRIA Paris-Rocquencourt, 75013, Paris, France
| | - Ludovic Fillon
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,INRIA Paris-Rocquencourt, 75013, Paris, France
| | - Chabha Azouani
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,INRIA Paris-Rocquencourt, 75013, Paris, France
| | - Ali Bouyahia
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,INRIA Paris-Rocquencourt, 75013, Paris, France
| | - Clara Fischer
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Lydie Edward
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mathilde Bouin
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Urielle Thoprakarn
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Jinpeng Li
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France.,Information Analysis and Management project of France Life Imaging
| | - Leila Makkaoui
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France
| | - Sylvain Poret
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Paris, France
| | - Carole Dufouil
- INSERM U708, Neuroepidemiology, CIC-EC7 & Bordeaux University, Bordeaux, France
| | - Vincent Bouteloup
- INSERM U897, Clinical Investigation Center-Clinical Epidemiology-CIC-1401, Epidemiology and Biostatistics Center, Bordeaux School of Public Health, Bordeaux University, Bordeaux, France
| | - Gaël Chételat
- Centre pour l'Acquisition et le Traitement des Images.,Ecole Pratique des Hautes Etudes, CHU de Caen, INSERM U1077 - Université de Caen Basse-Normandie, UMR-S1077, Caen, France
| | - Bruno Dubois
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Paris, France
| | - Stéphane Lehéricy
- Centre pour l'Acquisition et le Traitement des Images.,INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Centre de NeuroImagerie de Recherche - CENIR, Département de Neuroradiologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jean-François Mangin
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France
| | - Yann Cointepas
- Centre pour l'Acquisition et le Traitement des Images.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Saclay, France.,Information Analysis and Management project of France Life Imaging
| | | |
Collapse
|
35
|
Fish AM, Cachia A, Fischer C, Mankiw C, Reardon PK, Clasen LS, Blumenthal JD, Greenstein D, Giedd JN, Mangin JF, Raznahan A. Influences of Brain Size, Sex, and Sex Chromosome Complement on the Architecture of Human Cortical Folding. Cereb Cortex 2017; 27:5557-5567. [PMID: 27799275 PMCID: PMC6075547 DOI: 10.1093/cercor/bhw323] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/01/2016] [Accepted: 01/01/2016] [Indexed: 11/12/2022] Open
Abstract
Gyrification is a fundamental property of the human cortex that is increasingly studied by basic and clinical neuroscience. However, it remains unclear if and how the global architecture of cortical folding varies with 3 interwoven sources of anatomical variation: brain size, sex, and sex chromosome dosage (SCD). Here, for 375 individuals spanning 7 karyotype groups (XX, XY, XXX, XYY, XXY, XXYY, XXXXY), we use structural neuroimaging to measure a global sulcation index (SI, total sulcal/cortical hull area) and both determinants of sulcal area: total sulcal length and mean sulcal depth. We detail large and patterned effects of sex and SCD across all folding metrics, but show that these effects are in fact largely consistent with the normative scaling of cortical folding in health: larger human brains have disproportionately high SI due to a relative expansion of sulcal area versus hull area, which arises because disproportionate sulcal lengthening overcomes a lack of proportionate sulcal deepening. Accounting for these normative allometries reveals 1) brain size-independent sulcal lengthening in males versus females, and 2) insensitivity of overall folding architecture to SCD. Our methodology and findings provide a novel context for future studies of human cortical folding in health and disease.
Collapse
Affiliation(s)
- Ari M Fish
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Arnaud Cachia
- CNRS-University Paris Descartes UMR 8240, Laboratory for the Psychology of Child Development and Education, La Sorbonne, Paris 75005, France
- INSERM-Paris Descartes University UMR 894, Imaging Biomarkers of Brain Development and Disorders, Ste Anne Hospital, Paris 75014, France
| | - Clara Fischer
- UNATI, Neurospin, CEA, Gif-sur-Yvette 91191, France
- CATI Multicenter Neuroimaging Platform, Neurospin, cati-neuroimaging.com, Gif-sur-Yvette 91191, France
| | - Catherine Mankiw
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - P K Reardon
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Liv S Clasen
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jonathan D Blumenthal
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Deanna Greenstein
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jay N Giedd
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean-François Mangin
- UNATI, Neurospin, CEA, Gif-sur-Yvette 91191, France
- CATI Multicenter Neuroimaging Platform, Neurospin, cati-neuroimaging.com, Gif-sur-Yvette 91191, France
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Bodin C, Takerkart S, Belin P, Coulon O. Anatomo-functional correspondence in the superior temporal sulcus. Brain Struct Funct 2017; 223:221-232. [DOI: 10.1007/s00429-017-1483-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/21/2017] [Indexed: 12/23/2022]
|
37
|
Genetic Factors and Orofacial Motor Learning Selectively Influence Variability in Central Sulcus Morphology in Chimpanzees ( Pan troglodytes). J Neurosci 2017; 37:5475-5483. [PMID: 28473646 DOI: 10.1523/jneurosci.2641-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
Captive chimpanzees (Pan troglodytes) have been shown to learn the use of novel attention-getting (AG) sounds to capture the attention of humans as a means of requesting or drawing their attention to a desired object or food. There are significant individual differences in the use of AG sounds by chimpanzees and, here, we examined whether changes in cortical organization of the central sulcus (CS) were associated with AG sound production. MRI scans were collected from 240 chimpanzees, including 122 that reliably produced AG sounds and 118 that did not. For each subject, the depth of CS was quantified along the superior-inferior plane with specific interest in the inferior portion corresponding to the region of the motor cortex where the mouth and orofacial movements are controlled. Results indicated that CS depth in the inferior, but not superior, portion was significantly greater in chimpanzees that reliably produced AG sounds compared with those who did not. Quantitative genetic analyses indicated that overall CS surface area and depth were significantly heritable, particularly in the superior regions, but less so in the inferior and central portions. Further, heritability in CS depth was altered as a function of acquisition of AG sounds. The collective results suggest that learning to produce AG sounds resulted in region-specific cortical reorganization within the inferior portion of the CS, a finding previously undocumented in chimpanzees or any nonhuman primate.SIGNIFICANCE STATEMENT Recent studies in chimpanzees (Pan troglodytes) have shown that some can learn to produce novel sounds by configuring different orofacial movement patterns and these sounds are used in communicatively relevant contexts. Here, we examined the neuromorphological correlates in the production of these sounds in chimpanzees. We show that chimpanzees that have learned to produce these sounds show significant differences in central sulcus (CS) morphology, particularly in the inferior region. We further show that overall CS morphology and regions within the superior portion are significantly heritable, whereas central and inferior portions of the CS are not. The collective findings suggest chimpanzees exhibit cortical plasticity in regions of the brain that were central to the emergence of speech functions in humans.
Collapse
|
38
|
Hopkins WD, Meguerditchian A, Coulon O, Misiura M, Pope S, Mareno MC, Schapiro SJ. Motor skill for tool-use is associated with asymmetries in Broca's area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes). Behav Brain Res 2017; 318:71-81. [PMID: 27816558 PMCID: PMC5459306 DOI: 10.1016/j.bbr.2016.10.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca's area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30029, United States.
| | - Adrien Meguerditchian
- Laboratory of Cognitive Psychology, UMR 7290, Aix-Marseille University, CNRS, Marseille, France
| | - Olivier Coulon
- Aix-Marseille Université, LSIS, UMR CNRS 7296, Marseille, France
| | - Maria Misiura
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States
| | - Sarah Pope
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States
| | - Mary Catherine Mareno
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, United States
| | - Steven J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, United States
| |
Collapse
|
39
|
Plocharski M, Østergaard LR. Extraction of sulcal medial surface and classification of Alzheimer's disease using sulcal features. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 133:35-44. [PMID: 27393798 DOI: 10.1016/j.cmpb.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/11/2016] [Accepted: 05/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Recent advancements in medical imaging have resulted in a significant growth in diagnostic possibilities of neurodegenerative disorders. Neuroanatomical abnormalities of the cerebral cortex in Alzheimer's disease (AD), the most frequent type of dementia in the elderly, can be observed in morphology analysis of cortical sulci, and used to distinguish between cognitively normal (CN) subjects and subjects with AD. OBJECTIVE The purpose of this paper was to extract sulcal features by means of computing a sulcal medial surface for AD/CN classification. METHODS 24 distinct sulci per subject were extracted from 210 subjects from the ADNI database by the BrainVISA sulcal identification pipeline. Sulcal medial surface features (depth, length, mean and Gaussian curvature, surface area) were computed for AD/CN classification with a support vector machine (SVM). RESULTS The obtained 10-fold cross-validated classification accuracy was 87.9%, sensitivity 90.0%, and specificity 86.7%, based on ten features. The area under the receiver operating characteristic curve (AUC) was 0.89. CONCLUSIONS The sulcal medial surface features can be used as biomarkers for cortical neuroanatomical abnormalities in AD. All the features were located in the left hemisphere, which had previously been reported to be more severely affected in AD and to lose grey matter faster than the right hemisphere.
Collapse
Affiliation(s)
- Maciej Plocharski
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | | |
Collapse
|
40
|
Alberdi A, Aztiria A, Basarab A. On the early diagnosis of Alzheimer's Disease from multimodal signals: A survey. Artif Intell Med 2016; 71:1-29. [PMID: 27506128 DOI: 10.1016/j.artmed.2016.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The number of Alzheimer's Disease (AD) patients is increasing with increased life expectancy and 115.4 million people are expected to be affected in 2050. Unfortunately, AD is commonly diagnosed too late, when irreversible damages have been caused in the patient. OBJECTIVE An automatic, continuous and unobtrusive early AD detection method would be required to improve patients' life quality and avoid big healthcare costs. Thus, the objective of this survey is to review the multimodal signals that could be used in the development of such a system, emphasizing on the accuracy that they have shown up to date for AD detection. Some useful tools and specific issues towards this goal will also have to be reviewed. METHODS An extensive literature review was performed following a specific search strategy, inclusion criteria, data extraction and quality assessment in the Inspec, Compendex and PubMed databases. RESULTS This work reviews the extensive list of psychological, physiological, behavioural and cognitive measurements that could be used for AD detection. The most promising measurements seem to be magnetic resonance imaging (MRI) for AD vs control (CTL) discrimination with an 98.95% accuracy, while electroencephalogram (EEG) shows the best results for mild cognitive impairment (MCI) vs CTL (97.88%) and MCI vs AD distinction (94.05%). Available physiological and behavioural AD datasets are listed, as well as medical imaging analysis steps and neuroimaging processing toolboxes. Some issues such as "label noise" and multi-site data are discussed. CONCLUSIONS The development of an unobtrusive and transparent AD detection system should be based on a multimodal system in order to take full advantage of all kinds of symptoms, detect even the smallest changes and combine them, so as to detect AD as early as possible. Such a multimodal system might probably be based on physiological monitoring of MRI or EEG, as well as behavioural measurements like the ones proposed along the article. The mentioned AD datasets and image processing toolboxes are available for their use towards this goal. Issues like "label noise" and multi-site neuroimaging incompatibilities may also have to be overcome, but methods for this purpose are already available.
Collapse
Affiliation(s)
- Ane Alberdi
- Mondragon University, Electronics and Computing Department, Goiru Kalea, 2, Arrasate 20500, Spain.
| | - Asier Aztiria
- Mondragon University, Electronics and Computing Department, Goiru Kalea, 2, Arrasate 20500, Spain.
| | - Adrian Basarab
- Université de Toulouse, Institut de Recherche en Informatique de Toulouse, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5505, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
41
|
Vandekar SN, Shinohara RT, Raznahan A, Hopson RD, Roalf DR, Ruparel K, Gur RC, Gur RE, Satterthwaite TD. Subject-level measurement of local cortical coupling. Neuroimage 2016; 133:88-97. [PMID: 26956908 PMCID: PMC4889557 DOI: 10.1016/j.neuroimage.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
The human cortex is highly folded to allow for a massive expansion of surface area. Notably, the thickness of the cortex strongly depends on cortical topology, with gyral cortex sometimes twice as thick as sulcal cortex. We recently demonstrated that global differences in thickness between gyral and sulcal cortex continue to evolve throughout adolescence. However, human cortical development is spatially heterogeneous, and global comparisons lack power to detect localized differences in development or psychopathology. Here we extend previous work by proposing a new measure - local cortical coupling - that is sensitive to differences in the localized topological relationship between cortical thickness and sulcal depth. After estimation, subject-level coupling maps can be analyzed using standard neuroimaging analysis tools. Capitalizing on a large cross-sectional sample (n=932) of youth imaged as part of the Philadelphia Neurodevelopmental Cohort, we demonstrate that local coupling is spatially heterogeneous and exhibits nonlinear development-related trajectories. Moreover, we uncover sex differences in coupling that indicate divergent patterns of cortical topology. Developmental changes and sex differences in coupling support its potential as a neuroimaging phenotype for investigating neuropsychiatric disorders that are increasingly conceptualized as disorders of brain development. R code to estimate subject-level coupling maps from any two cortical surfaces generated by FreeSurfer is made publicly available along with this manuscript.
Collapse
Affiliation(s)
- Simon N Vandekar
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Russell T Shinohara
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Child Psychiatry Branch, National Institutes of Mental Health, Bethesda, MD 20892, USA
| | - Ryan D Hopson
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
42
|
Takerkart S, Auzias G, Brun L, Coulon O. Structural graph-based morphometry: A multiscale searchlight framework based on sulcal pits. Med Image Anal 2016; 35:32-45. [PMID: 27310172 DOI: 10.1016/j.media.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
Abstract
Studying the topography of the cortex has proved valuable in order to characterize populations of subjects. In particular, the recent interest towards the deepest parts of the cortical sulci - the so-called sulcal pits - has opened new avenues in that regard. In this paper, we introduce the first fully automatic brain morphometry method based on the study of the spatial organization of sulcal pits - Structural Graph-Based Morphometry (SGBM). Our framework uses attributed graphs to model local patterns of sulcal pits, and further relies on three original contributions. First, a graph kernel is defined to provide a new similarity measure between pit-graphs, with few parameters that can be efficiently estimated from the data. Secondly, we present the first searchlight scheme dedicated to brain morphometry, yielding dense information maps covering the full cortical surface. Finally, a multi-scale inference strategy is designed to jointly analyze the searchlight information maps obtained at different spatial scales. We demonstrate the effectiveness of our framework by studying gender differences and cortical asymmetries: we show that SGBM can both localize informative regions and estimate their spatial scales, while providing results which are consistent with the literature. Thanks to the modular design of our kernel and the vast array of available kernel methods, SGBM can easily be extended to include a more detailed description of the sulcal patterns and solve different statistical problems. Therefore, we suggest that our SGBM framework should be useful for both reaching a better understanding of the normal brain and defining imaging biomarkers in clinical settings.
Collapse
Affiliation(s)
- Sylvain Takerkart
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, CNRS, Laboratoire d'Informatique Fondamentale UMR 7279 Faculté des Sciences, 163 avenue de Luminy, Case 901, 13009 Marseille, France.
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, CNRS, LSIS laboratory, UMR 7296 Bâtiment Polytech Saint Jérôme, Avenue Escadrille Normandie-Niemen, 13013 Marseille, France
| | - Lucile Brun
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, CNRS, LSIS laboratory, UMR 7296 Bâtiment Polytech Saint Jérôme, Avenue Escadrille Normandie-Niemen, 13013 Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, CNRS, LSIS laboratory, UMR 7296 Bâtiment Polytech Saint Jérôme, Avenue Escadrille Normandie-Niemen, 13013 Marseille, France
| |
Collapse
|
43
|
von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E. Detection and Magnetic Source Imaging of Fast Oscillations (40-160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients. Brain Topogr 2016; 29:218-31. [PMID: 26830767 PMCID: PMC4754324 DOI: 10.1007/s10548-016-0471-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/16/2016] [Indexed: 02/03/2023]
Abstract
We present a framework to detect fast oscillations (FOs) in magnetoencephalography (MEG) and to perform magnetic source imaging (MSI) to determine the location and extent of their generators in the cortex. FOs can be of physiologic origin associated to sensory processing and memory consolidation. In epilepsy, FOs are of pathologic origin and biomarkers of the epileptogenic zone. Seventeen patients with focal epilepsy previously confirmed with identified FOs in scalp electroencephalography (EEG) were
evaluated. To handle data deriving from large number of sensors (275 axial gradiometers) we used an automatic detector with high sensitivity. False positives were discarded by two human experts. MSI of the FOs was performed with the wavelet based maximum entropy on the mean method. We found FOs in 11/17 patients, in only one patient the channel with highest FO rate was not concordant with the epileptogenic region and might correspond to physiologic oscillations. MEG FOs rates were very low: 0.02–4.55 per minute. Compared to scalp EEG, detection sensitivity was lower, but the specificity higher in MEG. MSI of FOs showed concordance or partial concordance with proven generators of seizures and epileptiform activity in 10/11 patients. We have validated the proposed framework for the non-invasive study of FOs with MEG. The excellent overall concordance with other clinical gold standard evaluation tools indicates that MEG FOs can provide relevant information to guide implantation for intracranial EEG pre-surgical evaluation and for surgical treatment, and demonstrates the important added value of choosing appropriate FOs detection and source localization methods.
Collapse
Affiliation(s)
- Nicolás von Ellenrieder
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.,LEICI, CONICET - Universidad Nacional de La Plata, Calle 116 y 48, 1900, La Plata, Argentina
| | - Giovanni Pellegrino
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jean-Marc Lina
- Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada.,Centre de Recherches Mathematiques, Univeristé de Montréal, 2920 Chemin de la tour, Montreal, QC, H3T 1J4, Canada.,Center for Advanced Research on Sleep Medecine, Centre de Rech. de l'Hôpital du Sacré-Cœur de Montréal, 5400 W Gouin Blvd, Montreal, QC, H4J 1J5, Canada
| | - Christophe Grova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.,Physics Department and PERFORM Centre, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
44
|
Saha PK, Strand R, Borgefors G. Digital Topology and Geometry in Medical Imaging: A Survey. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1940-1964. [PMID: 25879908 DOI: 10.1109/tmi.2015.2417112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Digital topology and geometry refers to the use of topologic and geometric properties and features for images defined in digital grids. Such methods have been widely used in many medical imaging applications, including image segmentation, visualization, manipulation, interpolation, registration, surface-tracking, object representation, correction, quantitative morphometry etc. Digital topology and geometry play important roles in medical imaging research by enriching the scope of target outcomes and by adding strong theoretical foundations with enhanced stability, fidelity, and efficiency. This paper presents a comprehensive yet compact survey on results, principles, and insights of methods related to digital topology and geometry with strong emphasis on understanding their roles in various medical imaging applications. Specifically, this paper reviews methods related to distance analysis and path propagation, connectivity, surface-tracking, image segmentation, boundary and centerline detection, topology preservation and local topological properties, skeletonization, and object representation, correction, and quantitative morphometry. A common thread among the topics reviewed in this paper is that their theory and algorithms use the principle of digital path connectivity, path propagation, and neighborhood analysis.
Collapse
|
45
|
Asymmetries of the central sulcus in young adults: Effects of gender, age and sulcal pattern. Int J Dev Neurosci 2015; 44:65-74. [DOI: 10.1016/j.ijdevneu.2015.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 12/12/2022] Open
|
46
|
Roca P, Mellerio C, Chassoux F, Rivière D, Cachia A, Charron S, Lion S, Mangin JF, Devaux B, Meder JF, Oppenheim C. Sulcus-based MR analysis of focal cortical dysplasia located in the central region. PLoS One 2015; 10:e0122252. [PMID: 25822985 PMCID: PMC4378936 DOI: 10.1371/journal.pone.0122252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/10/2015] [Indexed: 11/29/2022] Open
Abstract
Objective Focal cortical dysplasias (FCDs) are mainly located in the frontal region, with a particular tropism for the central sulcus. Up to 30% of lesions are undetected (magnetic resonance [MR]-negative FCD patients) or belatedly diagnosed by visual analysis of MR images. We propose an automated sulcus-based method to analyze abnormal sulcal patterns associated with central FCD, taking into account the normal interindividual sulcal variability. Methods We retrospectively studied 29 right-handed patients with FCD in the central region (including 12 MR negative histologically-confirmed cases) and 29 right-handed controls. The analysis of sulcal abnormalities from T1-weighted MR imaging (MRI) was performed using a graph-based representation of the cortical folds and an automated sulci recognition system, providing a new quantitative criterion to describe sulcal patterns, termed sulcus energy. Results Group analysis showed that the central sulcus in the hemisphere ipsilateral to the FCD exhibited an abnormal sulcal pattern compared with controls (p = 0.032). FCDs were associated with abnormal patterns of the central sulci compared with controls (p = 0.006), a result that remained significant when MR-negative and MR-positive patients were considered separately, while the effects of sex, age and MR-field were not significant. At the individual level, sulcus energy alone failed to detect the FCD lesion. We found, however, a significant association between maximum z-scores and the site of FCD (p = 0.0046) which remained significant in MR-negative (p = 0.024) but not in MR-positive patients (p = 0.058). The maximum z-score pointed to an FCD sulcus in four MR-negative and five MR-positive patients. Conclusions We identified abnormal sulcal patterns in patients with FCD of the central region compared with healthy controls. The abnormal sulcal patterns ipsilateral to the FCD and the link between sulcus energy and the FCD location strengthen the interest of sulcal abnormalities in FCD patients.
Collapse
Affiliation(s)
- Pauline Roca
- Department of Neuroimaging, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Center for Psychiatry & Neurosciences, UMR 894 INSERM, Paris, France
- * E-mail:
| | - Charles Mellerio
- Department of Neuroimaging, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Center for Psychiatry & Neurosciences, UMR 894 INSERM, Paris, France
| | - Francine Chassoux
- Department of Neurosurgery, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | | | - Arnaud Cachia
- Center for Psychiatry & Neurosciences, Sainte-Anne Hospital Center, UMR 894 INSERM/Université Paris Descartes & Laboratory for the Psychology of Child Development and Education, UMR 8240 CNRS/Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Sylvain Charron
- Department of Neuroimaging, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Center for Psychiatry & Neurosciences, UMR 894 INSERM, Paris, France
| | - Stéphanie Lion
- Department of Neuroimaging, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Center for Psychiatry & Neurosciences, UMR 894 INSERM, Paris, France
| | | | - Bertrand Devaux
- Department of Neurosurgery, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Jean-François Meder
- Department of Neuroimaging, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Center for Psychiatry & Neurosciences, UMR 894 INSERM, Paris, France
| | - Catherine Oppenheim
- Department of Neuroimaging, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Center for Psychiatry & Neurosciences, UMR 894 INSERM, Paris, France
| |
Collapse
|
47
|
Oguz I, Styner M, Sanchez M, Shi Y, Sonka M. LOGISMOS-B for Primates: Primate Cortical Surface Reconstruction and Thickness Measurement. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9413. [PMID: 26028802 DOI: 10.1117/12.2082327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 ± 0.03mm and an unsigned surface error of 0.42 ± 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 ± 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.
Collapse
Affiliation(s)
- Ipek Oguz
- Iowa Institute for Biomedical Imaging, Dept. of Electrical & Computer Engineering, and Ophthalmology & Visual Sciences, The Univ. of Iowa, Iowa City, IA
| | - Martin Styner
- Dept. of Psychiatry and Computer Science, Univ. of North Carolina, Chapel Hill, NC
| | - Mar Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Yundi Shi
- Dept. of Psychiatry and Computer Science, Univ. of North Carolina, Chapel Hill, NC
| | - Milan Sonka
- Iowa Institute for Biomedical Imaging, Dept. of Electrical & Computer Engineering, and Ophthalmology & Visual Sciences, The Univ. of Iowa, Iowa City, IA
| |
Collapse
|
48
|
Autrey MM, Reamer LA, Mareno MC, Sherwood CC, Herndon JG, Preuss T, Schapiro SJ, Hopkins WD. Age-related effects in the neocortical organization of chimpanzees: gray and white matter volume, cortical thickness, and gyrification. Neuroimage 2014; 101:59-67. [PMID: 24983715 PMCID: PMC4165649 DOI: 10.1016/j.neuroimage.2014.06.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/03/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and white matter over the adult lifespan. However, these previous studies were limited with a small sample of chimpanzees of the most advanced ages. In the present study, we sought to further test for potential age-related decline in cortical organization in chimpanzees by expanding the sample size of aged chimpanzees. We used the BrainVisa software to measure total brain volume, gray and white matter volumes, gray matter thickness, and gyrification index in a cross-sectional sample of 219 captive chimpanzees (8-53 years old), with 38 subjects being 40 or more years of age. Mean depth and cortical fold opening of 11 major sulci of the chimpanzee brains were also measured. We found that chimpanzees showed increased gyrification with age and a cubic relationship between age and white matter volume. For the association between age and sulcus depth and width, the results were mostly non-significant with the exception of one negative correlation between age and the fronto-orbital sulcus. In short, results showed that chimpanzees exhibit few age-related changes in global cortical organization, sulcus folding and sulcus width. These findings support previous studies and the theory that the age-related changes in the human brain is due to an extended lifespan.
Collapse
Affiliation(s)
- Michelle M Autrey
- Department of Psychology, Agnes Scott College, Decatur, GA 30030, USA
| | - Lisa A Reamer
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Mary Catherine Mareno
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington DC 20052, USA
| | - James G Herndon
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Todd Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Steve J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, USA; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
49
|
Hopkins WD, Meguerditchian A, Coulon O, Bogart S, Mangin JF, Sherwood CC, Grabowski MW, Bennett AJ, Pierre PJ, Fears S, Woods R, Hof PR, Vauclair J. Evolution of the central sulcus morphology in primates. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:19-30. [PMID: 25139259 PMCID: PMC4166656 DOI: 10.1159/000362431] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/22/2013] [Indexed: 12/16/2022]
Abstract
The central sulcus (CS) divides the pre- and postcentral gyri along the dorsal-ventral plane of which all motor and sensory functions are topographically organized. The motor-hand area of the precentral gyrus or KNOB has been described as the anatomical substrate of the hand in humans. Given the importance of the hand in primate evolution, here we examine the evolution of the motor-hand area by comparing the relative size and pattern of cortical folding of the CS surface area from magnetic resonance images in 131 primates, including Old World monkeys, apes and humans. We found that humans and great apes have a well-formed motor-hand area that can be seen in the variation in depth of the CS along the dorsal-ventral plane. We further found that great apes have relatively large CS surface areas compared to Old World monkeys. However, relative to great apes, humans have a small motor-hand area in terms of both adjusted and absolute surface areas.
Collapse
Affiliation(s)
- William D. Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30322
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, Aix-Marseille University/CNRS, UMR7290, Marseille, France
| | - Olivier Coulon
- Laboratoire des Sciences de l'Information et des Systèmes, Aix-Marseille Universite, Marseille, France
| | - Stephanie Bogart
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30322
| | | | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Hominid Paleobiology, The George Washington University, Washington, DC 20052
| | - Mark W. Grabowski
- Department of Anthropology and Center for the Advanced Study of Hominid Paleobiology, The George Washington University, Washington, DC 20052
| | - Allyson J. Bennett
- Harlow Center for Biological Psychology, Psychology Department, University of Wisconsin, Madison, Wisconsin 53715
| | - Peter J. Pierre
- Department of Behavioral Management, Wisconsin National Primate Research Center, Madison, Wisconsin 53115
| | - Scott Fears
- Center for Neurobehavioral Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, California 90095
| | - Roger Woods
- Center for Neurobehavioral Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, California 90095
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029
- New York Consortium in Evolutionary Primatology, New York, New York 10029
| | - Jacques Vauclair
- Department of Psychology, Research Center in Psychology of Cognition, Language & Emotion, Aix-Marseille University, Aix-en-Provence, France
| |
Collapse
|
50
|
Simplified gyral pattern in severe developmental microcephalies? New insights from allometric modeling for spatial and spectral analysis of gyrification. Neuroimage 2014; 102 Pt 2:317-31. [PMID: 25107856 DOI: 10.1016/j.neuroimage.2014.07.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 01/13/2023] Open
Abstract
The strong positive-allometric relationship between brain size, cortical extension and gyrification complexity, recently highlighted in the general population, could be modified by brain developmental disorders. Indeed, in case of brain growth insufficiency, the pathophysiological relevance of the "simplified gyral pattern" phenotype is strongly disputed since almost no genotype-phenotype correlations have been found in primary microcephalies. Using surface scaling analysis and newly-developed spectral analysis of gyrification (Spangy), we tested whether the gyral simplification in groups of severe microcephalies related to ASPM, PQBP1 or fetal-alcohol-syndrome could be fully explained by brain size reduction according to the allometric scaling law established in typically-developing control groups, or whether an additional disease effect was to be suspected. We found the surface area reductions to be fully explained by scaling effect, leading to predictable folding intensities measured by gyrification indices. As for folding pattern assessed by spectral analysis, scaling effect also accounted for the majority of the variations, but an additional negative or positive disease effect was found in the case of ASPM and PQBP1-linked microcephalies, respectively. Our results point out the necessity of taking allometric scaling into account when studying the gyrification variability in pathological conditions. They also show that the quantitative analysis of gyrification complexity through spectral analysis can enable distinguishing between even (predictable, non-specific) and uneven (unpredictable, maybe disease-specific) gyral simplifications.
Collapse
|