1
|
Titov SA, Burlakov AB, Zinin PV, Bogachenkov AN. Measurement of ultrasound velocity in yolk and blastula of fish embryo in vivo. ULTRASONICS 2023; 132:106963. [PMID: 36863133 DOI: 10.1016/j.ultras.2023.106963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 05/29/2023]
Abstract
An acoustic microscopy method for measuring the velocity of ultrasound in the yolk and blastula of bony fish embryos at early stages of development was proposed. The yolk and blastula were approximated as a sphere and a spherical dome, respectively, consisting of a homogeneous liquid. A theoretical model of ultrasonic wave propagation through a spherical liquid drop located on a solid substrate was developed in the ray approximation. The dependence of the wave propagation time on the speed of sound in the drop, its diameter, and the position of the focus of the ultrasonic transducer has been determined. It was shown that the velocity in the drop can be found by solving the inverse problem by minimizing the discrepancy between the experimental and model spatial distributions of the propagation time, assuming that the velocity in the immersion liquid and the radius of the drop are known. The velocities in the yolk and blastula of the loach (Misgurnus fossilis) embryo at the stage of development of the middle blastula were measured in vivo using a pulsed scanning acoustic microscope operating at a central frequency of 50 MHz. The yolk and blastula radii were determined from ultrasound images of the embryo. Acoustic microscopy measurements conducted with four embryos provide velocities of the acoustic longitudinal wave in the yolk and blastula. They were measured to be 1581 ± 5 m/s and 1525 ± 4 m/s when the temperature of the liquid in the water tank was kept at 22 ± 2 °C.
Collapse
Affiliation(s)
- S A Titov
- Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences(STC UP RAS), 15 Butlerova str, Moscow 117342, Russia.
| | - A B Burlakov
- Lomonosov Moscow state University, 1 Leninskie Gory, Moscow 119991, Russia
| | - P V Zinin
- Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences(STC UP RAS), 15 Butlerova str, Moscow 117342, Russia
| | - A N Bogachenkov
- Institute of Biochemical Physics of the Russian Academy of Sciences, 4 Kosygina str, Moscow 119334, Russia
| |
Collapse
|
2
|
Giudici A, Wilkinson IB, Khir AW. Review of the Techniques Used for Investigating the Role Elastin and Collagen Play in Arterial Wall Mechanics. IEEE Rev Biomed Eng 2021; 14:256-269. [PMID: 32746366 DOI: 10.1109/rbme.2020.3005448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The arterial wall is characterised by a complex microstructure that impacts the mechanical properties of the vascular tissue. The main components consist of collagen and elastin fibres, proteoglycans, Vascular Smooth Muscle Cells (VSMCs) and ground matrix. While VSMCs play a key role in the active mechanical response of arteries, collagen and elastin determine the passive mechanics. Several experimental methods have been designed to investigate the role of these structural proteins in determining the passive mechanics of the arterial wall. Microscopy imaging of load-free or fixed samples provides useful information on the structure-function coupling of the vascular tissue, and mechanical testing provides information on the mechanical role of collagen and elastin networks. However, when these techniques are used separately, they fail to provide a full picture of the arterial micromechanics. More recently, advances in imaging techniques have allowed combining both methods, thus dynamically imaging the sample while loaded in a pseudo-physiological way, and overcoming the limitation of using either of the two methods separately. The present review aims at describing the techniques currently available to researchers for the investigation of the arterial wall micromechanics. This review also aims to elucidate the current understanding of arterial mechanics and identify some research gaps.
Collapse
|
3
|
Berquand A, Wahart A, Henry A, Gorisse L, Maurice P, Blaise S, Romier-Crouzet B, Pietrement C, Bennasroune A, Sartelet H, Jaisson S, Gillery P, Martiny L, Touré F, Duca L, Molinari M. Revealing the elasticity of an individual aortic fiber during ageing at nanoscale by in situ atomic force microscopy. NANOSCALE 2021; 13:1124-1133. [PMID: 33399602 DOI: 10.1039/d0nr06753a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arterial stiffness is a complex process affecting the aortic tree that significantly contributes to cardiovascular diseases (systolic hypertension, coronary artery disease, heart failure or stroke). This process involves a large extracellular matrix remodeling mainly associated with elastin content decrease and collagen content increase. Additionally, various chemical modifications that accumulate with ageing have been shown to affect long-lived assemblies, such as elastic fibers, that could affect their elasticity. To precisely characterize the fiber changes and the evolution of its elasticity with ageing, high resolution and multimodal techniques are needed for precise insight into the behavior of a single fiber and its surrounding medium. In this study, the latest developments in atomic force microscopy and the related nanomechanical modes are used to investigate the evolution and in a near-physiological environment, the morphology and elasticity of aorta cross sections obtained from mice of different ages with an unprecedented resolution. In correlation with more classical approaches such as pulse wave velocity and fluorescence imaging, we demonstrate that the relative Young's moduli of elastic fibers, as well as those of the surrounding areas, significantly increase with ageing. This nanoscale characterization presents a new view on the stiffness process, showing that, besides the elastin and collagen content changes, elasticity is impaired at the molecular level, allowing a deeper understanding of the ageing process. Such nanomechanical AFM measurements of mouse tissue could easily be applied to studies of diseases in which elastic fibers suffer pathologies such as atherosclerosis and diabetes, where the precise quantification of fiber elasticity could better follow the fiber remodeling and predict plaque rupture.
Collapse
Affiliation(s)
- Alexandre Berquand
- Laboratoire de Recherche en Nanosciences, LRN EA4682, University of Reims Champagne-Ardenne, 51685 Reims, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nagaoka R, Kobayashi K, Arakawa M, Hasegawa H, Saijo Y. Correction of phase rotation in pulse spectrum method for scanning acoustic microscopy and its application to measurements of cells. ULTRASONICS 2019; 99:105949. [PMID: 31284165 DOI: 10.1016/j.ultras.2019.105949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Scanning acoustic microscopy (SAM) can measure the mechanical properties, such as sound speed, thickness, and density, of biological tissues, by using the pulse spectrum method. However, the estimation method needs to be modified because of increases in the center frequency of acoustic transducers. In this paper, we proposed a new estimation method combining a time-of-flight method by Wiener filtering with the pulse spectrum method. First, an optimal control parameter β for Wiener filter was chosen based on a simulation by k-wave MATLAB toolbox. Setting the thickness of a layer to be 1.95 μm, a bias error between the estimated and true thickness was 0.0016% and the control parameter β was chosen to be 0.01 based on the simulated result and previous research. Next, the thickness of a film sample was measured by the time-of-flight method with Wiener filtering and was compared with an optically-measured thickness to confirm the estimation accuracy. Thickness was estimated to be 18.3 ± 0.025 μm at a center frequency of 120 MHz and agreed with the optically-measured thickness. Finally, the parameter n, the number of phase rotation in Gaussian plane, is calculated from the thickness and sound speed, and the pulse spectrum method with the correction of the parameter n is applied to the cellular measurements. Also, the mechanical properties estimated by the proposed method was compared with these by the conventional method.
Collapse
Affiliation(s)
- Ryo Nagaoka
- Laboratory of Medical Information Sensing, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan.
| | - Kazuto Kobayashi
- Division of Research and Development, Honda Electronics, Co. Ltd., Toyohashi 441-3193, Japan
| | - Mototaka Arakawa
- Department of Medical Ultrasound, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hideyuki Hasegawa
- Laboratory of Medical Information Sensing, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan
| | - Yoshifumi Saijo
- Department of Biomedical Imaging, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
5
|
Juntarapaso Y, Miyasaka C, Tutwiler RL, Anastasiadis P. Contrast Mechanisms for Tumor Cells by High-frequency Ultrasound. Open Neuroimag J 2018. [DOI: 10.2174/1874440001812010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Scanning Acoustic Microscopy (SAM) is a powerful technique for both the non-destructive determination of mechanical and elastic properties of biological specimens and for the ultrasonic imaging at a micrometer resolution. The implication of biomechanical properties during the onset and progression of disease has been established rendering a profound understanding of the relationship between mechanoelastic and biochemical signaling at a molecular level crucial. Computer simulation algorithms were developed for the generation of images and the investigation of contrast mechanisms in high-frequency and ultra-high frequency SAM. Furthermore, we determined the mechanical and elastic properties of HeLa and MCF-7 cells. Algorithms for simulatingV(z)responses were developed based on the ray and wave theory (angular spectrum). Theoretical simulations for high-frequency SAM array designs were performed with the Field II software. In these simulations, we applied phased array beam formation and dynamic apodization and focusing. The purpose of our transducer simulations was to explore volumetric imaging capabilities. The novel transducer arrays designed in this research aim at improving the performance of SAM systems by introducing electronic steering and hence, allowing for the 4D imaging of cells and tissues.
Collapse
|
6
|
Shaw A, Liu J, Yoon SW, Declercq NF. Characterization of the geometry of microscale periodic structures using acoustic microscopy. ULTRASONICS 2016; 70:258-265. [PMID: 27259118 DOI: 10.1016/j.ultras.2016.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/04/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
Periodic structures are very common in both scientific investigations and engineering applications. The geometry of the periodic structure is important for its designed functionality. Although the techniques such as optical and electron microscopy are capable of measuring the periodicity of microscale periodically-corrugated structures, they cannot be used to measure the height or depth of the corrugation. The technique of acoustic microscopy has been developed rapidly and it has been applied in the studies of steel integrated structures, ferro-elastic ceramics, human retina, semiconductors, composites, etc. In acoustic microscopy, V(z) curves have been used to investigate the visco-elastic parameters of thin sliced samples of composites, animal tissue, etc., while in this work it is applied in characterizing the geometry of periodically corrugated structures. The measurements of the geometry of periodic structures obtained using acoustic microscopy are compared with those obtained using optical microscopy, and the reliability of this acoustic technique is also examined.
Collapse
Affiliation(s)
- Anurupa Shaw
- Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, 2 Rue Marconi, 57070 Metz, France.
| | - Jingfei Liu
- Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, 2 Rue Marconi, 57070 Metz, France
| | - Suk Wang Yoon
- Sungkyunkwan University, 2066 Seoboo-ro, Jangan-ku, Suwon 16419, Republic of Korea
| | - Nico F Declercq
- Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, 2 Rue Marconi, 57070 Metz, France
| |
Collapse
|
7
|
Frequency-modulated atomic force microscopy localises viscoelastic remodelling in the ageing sheep aorta. J Mech Behav Biomed Mater 2016; 64:10-7. [PMID: 27479890 PMCID: PMC5020410 DOI: 10.1016/j.jmbbm.2016.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/08/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
Age-related aortic stiffening is associated with cardiovascular diseases such as heart failure. The mechanical functions of the main structural components of the aorta, such as collagen and elastin, are determined in part by their organisation at the micrometer length scale. With age and disease both components undergo aberrant remodelling, hence, there is a need for accurate characterisation of the biomechanical properties at this length scale. In this study we used a frequency-modulated atomic force microscopy (FM-AFM) technique on a model of ageing in female sheep aorta (young: ~18 months, old: >8 years) to measure the micromechanical properties of the medial layer of the ascending aorta. The novelty of our FM-AFM method, operated at 30 kHz, is that it is non-contact and can be performed on a conventional AFM using the ׳cantilever tune’ mode, with a spatial (areal) resolution of around 1.6 μm2. We found significant changes in the elastic and viscoelastic properties within the medial lamellar unit (elastic lamellae and adjacent inter-lamellar space) with age. In particular, there was an increase in elastic modulus (Young; geometric mean (geometric SD)=42.9 (2.26) kPa, Old=113.9 (2.57) kPa, P<0.0001), G′ and G″ (storage and loss modulus respectively) (Young; G′=14.3 (2.26) kPa, Old G′=38.0 (2.57) kPa, P<0.0001; Young; G″=14.5 (2.56) kPa, Old G″=32.8 (2.52) kPa, P<0.0001). The trends observed in the elastic properties with FM-AFM matched those we have previously found using scanning acoustic microscopy (SAM). The utility of the FM-AFM method is that it does not require custom AFM hardware and can be used to simultaneously determine the elastic and viscoelastic behaviour of a biological sample.
Collapse
|
8
|
Irie S, Inoue K, Yoshida K, Mamou J, Kobayashi K, Maruyama H, Yamaguchi T. Speed of sound in diseased liver observed by scanning acoustic microscopy with 80 MHz and 250 MHz. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:512-519. [PMID: 26827044 DOI: 10.1121/1.4940126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, the speed of sound (SOS) of two types of rat livers (eight normal livers, four cirrhotic livers) was measured with a scanning acoustic microscope using two transducers, one of which had an 80-MHz and the other a 250-MHz center frequency. The 250-MHz transducer had a better spatial resolution adapted to studying fiber or hepatic parenchymal cells. In normal livers, averages of the SOS values were from 1598 to 1677 m/s at 80-MHz and from 1568 to 1668 m/s at 250-MHz. In the fiber tissue of cirrhotic livers, averages of the SOS values were from 1645 to 1658 m/s at 80-MHz and from 1610 to 1695 m/s at 250-MHz, while the SOS values in the other tissue of cirrhotic livers ranged from 1644 to 1709 m/s at 80-MHz and from 1641 to 1715 m/s at 250-MHz. In one liver, SOS in fiber tissue was larger than that of tissues without fiber while in others it was lower. The resulting two-dimensional SOS maps provide a unique quantitative insight of liver acoustic microstructures in a healthy liver and in a cirrhotic ones. This study would be helpful to understand the complex relationship between acoustic properties and liver disease including fiber tissue.
Collapse
Affiliation(s)
- So Irie
- Graduate School of Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, Japan
| | - Kenta Inoue
- Graduate School of Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, Japan
| | - Jonathan Mamou
- Lizzi Center for Biomedical Engineering, Riverside Research, 156 William Street, New York, New York 10038, USA
| | - Kazuto Kobayashi
- Honda Electronics Co., Ltd., 20 Koyamazuka, Oiwa-cho, Toyohashi, Japan
| | - Hitoshi Maruyama
- Department of Gastroenterology and Nephrology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, Japan
| |
Collapse
|
9
|
Fadhel MN, Berndl ESL, Strohm EM, Kolios MC. High-Frequency Acoustic Impedance Imaging of Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2700-13. [PMID: 26166459 DOI: 10.1016/j.ultrasmedbio.2015.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 05/06/2023]
Abstract
Variations in the acoustic impedance throughout cells and tissue can be used to gain insight into cellular microstructures and the physiologic state of the cell. Ultrasound imaging can be used to create a map of the acoustic impedance, on which fluctuations can be used to help identify the dominant ultrasound scattering source in cells, providing information for ultrasound tissue characterization. The physiologic state of a cell can be inferred from the average acoustic impedance values, as many cellular physiologic changes are linked to an alteration in their mechanical properties. A recently proposed method, acoustic impedance imaging, has been used to measure the acoustic impedance maps of biological tissues, but the method has not been used to characterize individual cells. Using this method to image cells can result in more precise acoustic impedance maps of cells than obtained previously using time-resolved acoustic microscopy. We employed an acoustic microscope using a transducer with a center frequency of 375 MHz to calculate the acoustic impedance of normal (MCF-10 A) and cancerous (MCF-7) breast cells. The generated acoustic impedance maps and simulations suggest that the position of the nucleus with respect to the polystyrene substrate may have an effect on the measured acoustic impedance value of the cell. Fluorescence microscopy and confocal microscopy were used to correlate acoustic impedance images with the position of the nucleus within the cell. The average acoustic impedance statistically differed between normal and cancerous breast cells (1.636 ± 0.010 MRayl vs. 1.612 ± 0.006 MRayl), indicating that acoustic impedance could be used to differentiate between normal and cancerous cells.
Collapse
Affiliation(s)
| | | | - Eric M Strohm
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Beshtawi IM, Akhtar R, Hillarby MC, O'Donnell C, Zhao X, Brahma A, Carley F, Derby B, Radhakrishnan H. Biomechanical Changes of Collagen Cross-Linking on Human Keratoconic Corneas Using Scanning Acoustic Microscopy. Curr Eye Res 2015; 41:609-15. [PMID: 26126127 DOI: 10.3109/02713683.2015.1042545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess the biomechanical changes of collagen cross-linking on keratoconic corneas in vitro. METHODS Six keratoconic corneal buttons were included in this study. Each cornea was divided into two halves, where one half was cross-linked and the other half was treated with riboflavin only and served as control. The biomechanical changes of the corneal tissue were measured across the stroma using scanning acoustic microscopy (SAM). RESULTS In the cross-linked corneas, there was a steady decrease in the magnitude of speed of sound from the anterior region through to the posterior regions of the stroma. The speed of sound was found to decrease slightly across the corneal thickness in the control corneas. The increase in speed of sound between the cross-linked and control corneas in the anterior region was by a factor of 1.039×. CONCLUSION A higher speed of sound was detected in cross-linked keratoconic corneal tissue when compared with their controls, using SAM. This in vitro model can be used to compare to the cross-linking results obtained in vivo, as well as comparing the results obtained with different protocols.
Collapse
Affiliation(s)
- Ithar M Beshtawi
- a Optometry Department, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , State of Palestine
| | - Riaz Akhtar
- b Centre for Materials and Structures, School of Engineering, University of Liverpool , Liverpool , UK
| | - M Chantal Hillarby
- c Stopford Building, Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, University of Manchester , Manchester , UK
| | - Clare O'Donnell
- d Optegra Eye Sciences, Optegra Manchester Eye Hospital , Manchester , UK
| | - Xuegen Zhao
- e Manchester Materials Science Centre, School of Materials, The University of Manchester , Manchester , UK
| | - Arun Brahma
- f Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre , Manchester , UK and
| | - Fiona Carley
- f Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre , Manchester , UK and
| | - Brian Derby
- e Manchester Materials Science Centre, School of Materials, The University of Manchester , Manchester , UK
| | - Hema Radhakrishnan
- g Faculty of Life Sciences , The University of Manchester , Manchester , UK
| |
Collapse
|
11
|
Nijenhuis N, Zhao X, Carisey A, Ballestrem C, Derby B. Combining AFM and acoustic probes to reveal changes in the elastic stiffness tensor of living cells. Biophys J 2015; 107:1502-12. [PMID: 25296302 DOI: 10.1016/j.bpj.2014.07.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
Knowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g., Young's modulus, rather than the minimum of two terms of the stiffness tensor required by elasticity theory. In this study, we use two independent methods (acoustic microscopy and atomic force microscopy nanoindentation) to characterize the elastic properties of a cell and thus determine two independent elastic constants. This allows us to explore in detail how the mechanical properties of cells change in response to signaling pathways that are known to regulate the cell's cytoskeleton. In particular, we demonstrate that altering the tensioning of actin filaments in NIH3T3 cells has a strong influence on the cell's shear modulus but leaves its bulk modulus unchanged. In contrast, altering the polymerization state of actin filaments influences bulk and shear modulus in a similar manner. In addition, we can use the data to directly determine the Poisson ratio of a cell and show that in all cases studied, it is less than, but very close to, 0.5 in value.
Collapse
Affiliation(s)
- Nadja Nijenhuis
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Xuegen Zhao
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Alex Carisey
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Brian Derby
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
12
|
Akhtar R, Cruickshank JK, Zhao X, Derby B, Weber T. A pilot study of scanning acoustic microscopy as a tool for measuring arterial stiffness in aortic biopsies. Artery Res 2015; 13:1-5. [PMID: 26985242 PMCID: PMC4774581 DOI: 10.1016/j.artres.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study explores the use of scanning acoustic microscopy (SAM) as a potential tool for characterisation of arterial stiffness using aortic biopsies. SAM data is presented for human tissue collected during aortic bypass graft surgery for multi-vessel coronary artery disease. Acoustic wave speed as determined by SAM was compared to clinical data for the patients namely, pulse wave velocity (PWV), blood pressure, cholesterol and glucose levels. There was no obvious trend relating acoustic wave speed to PWV values, and an inverse relationship was found between systolic and diastolic blood pressure and acoustic wave speed. However, in patients with a higher cholesterol or glucose level, the acoustic wave speed increased. A more detailed investigation is needed to relate SAM data to clinical measurements. Scanning acoustic microscopy (SAM) is a potential tool for arterial stiffness. SAM provides a measure of the acoustic wave speed. In this pilot study, no clear trend was observed with pulse wave velocity. Blood pressure was inversely related with acoustic wave speed. Trends observed with other clinical markers such as glucose and total cholesterol.
Collapse
Affiliation(s)
- Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH, UK
| | - J Kennedy Cruickshank
- Diabetes & Cardiovascular Medicine, Nutritional Sciences Division, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Xuegen Zhao
- School of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Brian Derby
- School of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Thomas Weber
- Cardiology Department, Klinikum Wels-Grieskirchen, Grieskirchnerstrasse 42, 4600 Wels, Austria
| |
Collapse
|
13
|
Localized micro- and nano-scale remodelling in the diabetic aorta. Acta Biomater 2014; 10:4843-4851. [PMID: 25014552 PMCID: PMC4199142 DOI: 10.1016/j.actbio.2014.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/22/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
Abstract
Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.
Collapse
|
14
|
Beshtawi IM, Akhtar R, Hillarby MC, O’Donnell C, Zhao X, Brahma A, Carley F, Derby B, Radhakrishnan H. Biomechanical changes after repeated collagen cross-linking on human corneas assessed in vitro using scanning acoustic microscopy. Invest Ophthalmol Vis Sci 2014; 55:1549-54. [PMID: 24508795 PMCID: PMC4120094 DOI: 10.1167/iovs.13-13042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To explore the biomechanical changes induced by repeated cross-linking using scanning acoustic microscopy (SAM). METHODS Thirty human corneas were divided into three groups. In group A, five corneas were cross-linked once. In group B, five corneas were cross-linked twice, 24 hours apart. In group C, five corneas were cross-linked three times, 24 hours apart. The contralateral controls in all groups had similar treatment but without UV-A. The speed of sound, which is directly proportional to the square root of the tissue's elastic modulus, was assessed using SAM. RESULTS In group A, the speed of sound of the treated corneas was 1677.38 ± 10.70 ms(-1) anteriorly and 1603.90 ± 9.82 ms(-1) posteriorly, while it was 1595.23 ± 9.66 ms(-1) anteriorly and 1577.13 ± 8.16 ms(-1) posteriorly in the controls. In group B, the speed of sound of the treated corneas was 1746.33 ± 23.37 ms(-1) anteriorly and 1631.60 ± 18.92 ms(-1) posteriorly, while it was 1637.57 ± 22.15 ms(-1) anteriorly and 1612.30 ± 22.23 ms(-1) posteriorly in the controls. In group C, the speed of sound of the treated corneas was 1717.97 ± 18.92 ms(-1) anteriorly and 1616.62 ± 17.58 ms(-1) posteriorly, while it was 1628.69 ± 9.37 ms(-1) anteriorly and 1597.68 ± 11.97 ms(-1) posteriorly in the controls. The speed of sound in the anterior (200 × 200 μm) region between the cross-linked and control corneas in groups A, B, and C was increased by a factor of 1.051 (P = 0.005), 1.066 (P = 0.010), and 1.055 (P = 0.005) respectively. However, there was no significant difference among the cross-linked corneas in all groups (P = 0.067). CONCLUSIONS A significant increase in speed of sound was found in all treated groups compared with the control group; however, the difference among the treated groups is not significant, suggesting no further cross-links are induced when collagen cross-linking treatment is repeated.
Collapse
Affiliation(s)
- Ithar M. Beshtawi
- Optometry Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - M. Chantal Hillarby
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | | | - Xuegen Zhao
- Manchester Materials Science Centre, School of Materials, The University of Manchester, Manchester, United Kingdom
| | - Arun Brahma
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester
| | - Fiona Carley
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester
| | - Brian Derby
- Manchester Materials Science Centre, School of Materials, The University of Manchester, Manchester, United Kingdom
| | - Hema Radhakrishnan
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014; 16:R67. [PMID: 24618041 PMCID: PMC4060243 DOI: 10.1186/ar4505] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/25/2014] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Currently, there is huge research focus on the development of novel cell-based regeneration and tissue-engineering therapies for the treatment of intervertebral disc degeneration and the associated back pain. Both bone marrow-derived (BM) mesenchymal stem cells (MSCs) and adipose-derived MSCs (AD-MSCs) are proposed as suitable cells for such therapies. However, currently no consensus exists as to the optimum growth factor needed to drive differentiation to a nucleus pulposus (NP)-like phenotype. The aim of this study was to investigate the effect of growth differentiation factor-6 (GDF6), compared with other transforming growth factor (TGF) superfamily members, on discogenic differentiation of MSCs, the matrix composition, and micromechanics of engineered NP tissue constructs. METHODS Patient-matched human AD-MSCs and BM-MSCs were seeded into type I collagen hydrogels and cultured in differentiating media supplemented with TGF-β3, GDF5, or GDF6. After 14 days, quantitative polymerase chain reaction analysis of chondrogenic and novel NP marker genes and sulfated glycosaminoglycan (sGAG) content of the construct and media components were measured. Additionally, construct micromechanics were analyzed by using scanning acoustic microscopy (SAM). RESULTS GDF6 stimulation of BM-MSCs and AD-MSCs resulted in a significant increase in expression of novel NP marker genes, a higher aggrecan-to-type II collagen gene expression ratio, and higher sGAG production compared with TGF-β or GDF5 stimulation. These effects were greater in AD-MSCs than in BM-MSCs. Furthermore, the acoustic-wave speed measured by using SAM, and therefore tissue stiffness, was lowest in GDF6-stiumlated AD-MSC constructs. CONCLUSIONS The data suggest that GDF6 stimulation of AD-MSCs induces differentiation to an NP-like phenotype and results in a more proteoglycan-rich matrix. Micromechanical analysis shows that the GDF6-treated AD-MSCs have a less-stiff matrix composition, suggesting that the growth factor is inducing a matrix that is more akin to the native NP-like tissue. Thus, this cell and growth-factor combination may be the ideal choice for cell-based intervertebral disc (IVD)-regeneration therapies.
Collapse
|
16
|
Akhtar R. In vitro characterisation of arterial stiffening: From the macro- to the nano-scale. Artery Res 2014. [DOI: 10.1016/j.artres.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
17
|
Beshtawi IM, Akhtar R, Hillarby MC, O'Donnell C, Zhao X, Brahma A, Carley F, Derby B, Radhakrishnan H. Biomechanical properties of human corneas following low- and high-intensity collagen cross-linking determined with scanning acoustic microscopy. Invest Ophthalmol Vis Sci 2013; 54:5273-80. [PMID: 23847309 DOI: 10.1167/iovs.13-12576] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess and compare changes in the biomechanical properties of the cornea following different corneal collagen cross-linking protocols using scanning acoustic microscopy (SAM). METHODS Ten donor human corneal pairs were divided into two groups consisting of five corneal pairs in each group. In group A, five corneas were treated with low-fluence (370 nm, 3 mW/cm(2)) cross-linking (CXL) for 30 minutes. In group B, five corneas were treated with high-fluence (370 nm, 9 mW/cm(2)) CXL for 10 minutes. The contralateral control corneas in both groups had similar treatment but without ultraviolet A. The biomechanical properties of all corneas were tested using SAM. RESULTS In group A, the mean speed of sound in the treated corneas was 1677.38 ± 10.70 ms(-1) anteriorly and 1603.90 ± 9.82 ms(-1) posteriorly, while it was 1595.23 ± 9.66 ms(-1) anteriorly and 1577.13 ± 8.16 ms(-1) posteriorly in the control corneas. In group B, the mean speed of sound of the treated corneas was 1665.06 ± 9.54 ms(-1) anteriorly and 1589.89 ± 9.73 ms(-1) posteriorly, while it was 1583.55 ± 8.22 ms(-1) anteriorly and 1565.46 ± 8.13 ms(-1) posteriorly in the untreated control corneas. The increase in stiffness between the cross-linked and control corneas in both groups was by a factor of 1.051×. CONCLUSIONS SAM successfully detected changes in the corneal stiffness after application of collagen cross-linking. A higher speed-of-sound value was found in the treated corneas when compared with the controls. No significant difference was found in corneal stiffness between the corneas cross-linked with low- and high-intensity protocols.
Collapse
|
18
|
Beshtawi IM, Akhtar R, Hillarby MC, O'Donnell C, Zhao X, Brahma A, Carley F, Derby B, Radhakrishnan H. Scanning acoustic microscopy for mapping the microelastic properties of human corneal tissue. Curr Eye Res 2013; 38:437-44. [PMID: 23402595 DOI: 10.3109/02713683.2012.753094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To assess the feasibility of applying scanning acoustic microscopy (SAM) on UV cross-linked corneal tissue for mapping and analyzing its biomechanical properties. MATERIALS AND METHODS Five corneal pairs (10 corneas) were used. In each pair, one cornea was cross-linked (epithelium removed, riboflavin application for 45 min and UVA irradiation for 30 min) and the contralateral control cornea was epithelial debrided and treated only with riboflavin for 45 min. Histological sections were prepared and their mechanical properties were examined using SAM. A line profile technique and 2D analysis was used to analyze the mechanical properties of the corneas. Then the corneal paraformaldehyde and unfixed sections were examined histologically using hematoxylin and eosin (H&E) staining. RESULTS In the frozen fresh corneal tissue, the speed of sound of the treated corneas was 1672.5 ± 36.9 ms(-1), while it was 1584.2 ± 25.9 ms(-1) in the untreated corneas. In the paraformaldehyde fixed corneal tissue, the speed of sound of the treated corneas was 1863.0 ± 12.7 ms(-1), while it was 1739.5 ± 30.4 ms(-1) in the untreated corneas. The images obtained from the SAM technique corresponded well with the histological images obtained with H&E staining. CONCLUSION SAM is a novel tool for examining corneal tissue with a high spatial resolution, providing both histological and mechanical data.
Collapse
Affiliation(s)
- Ithar M Beshtawi
- Carys Bannister Building, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
López-Andrés N, Rousseau A, Akhtar R, Calvier L, Iñigo C, Labat C, Zhao X, Cruickshank K, Díez J, Zannad F, Lacolley P, Rossignol P. Cardiotrophin 1 is involved in cardiac, vascular, and renal fibrosis and dysfunction. Hypertension 2012; 60:563-73. [PMID: 22733458 DOI: 10.1161/hypertensionaha.112.194407] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiotrophin 1 (CT-1), a cytokine belonging to the interleukin 6 family, is increased in hypertension and in heart failure. We aimed to study the precise role of CT-1 on cardiac, vascular, and renal function; morphology; and remodeling in early stages without hypertension. CT-1 (20 μg/kg per day) or vehicle was administrated to Wistar rats for 6 weeks. Cardiac and vascular functions were analyzed in vivo using M-mode echocardiography, Doppler, and echo tracking device and ex vivo using a scanning acoustic microscopy method. Cardiovascular and renal histomorphology were measured by immunohistochemistry, RT-PCR, and Western blot. Kidney functional properties were assessed by serum creatinine and neutrophile gelatinase-associated lipocalin and microalbuminuria/creatininuria ratio. Without alterations in blood pressure levels, CT-1 treatment increased left ventricular volumes, reduced fractional shortening and ejection fraction, and induced myocardial dilatation and myocardial fibrosis. In the carotid artery of CT-1-treated rats, the circumferential wall stress-incremental elastic modulus curve was shifted leftward, and the acoustic speed of sound in the aorta was augmented, indicating increased arterial stiffness. Vascular media thickness, collagen, and fibronectin content were increased by CT-1 treatment. CT-1-treated rats presented unaltered serum creatinine concentrations but increased urinary and serum neutrophile gelatinase-associated lipocalin and microalbuminuria/creatininuria ratio. This paralleled a glomerular and tubulointerstitial fibrosis accompanied by renal epithelial-mesenchymal transition. CT-1 is a new potent fibrotic agent in heart, vessels, and kidney able to induce cardiovascular-renal dysfunction independent from blood pressure. Thus, CT-1 could be a new target simultaneously integrating alterations of heart, vessels, and kidney in early stages of heart failure.
Collapse
Affiliation(s)
- Natalia López-Andrés
- Institut National de la Santé et de la Recherche Médicale U961, Faculty of Medicine, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|