1
|
Luo Y, Zhong JJ, Xiao H. Mechanism and engineering of endoplasmic reticulum-localized membrane protein folding in Saccharomyces cerevisiae. Metab Eng 2025; 90:43-56. [PMID: 40064436 DOI: 10.1016/j.ymben.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Correct folding of endoplasmic reticulum (ER)-localized membrane proteins, such as cytochrome P450, endows a synthetic biology host with crucial catalytic functions, which is of vital importance in the field of metabolic engineering and synthetic biology. However, due to complexed interaction with cellular membrane environment and other proteins (e.g., molecular chaperone) regulation, a substantial proportion of heterologous membrane proteins cannot be properly folded in the ER of Saccharomyces cerevisiae, a widely used synthetic biology host. In this review, we first introduce the four steps in membrane protein folding process and the affecting factors including the amino acid sequence of membrane protein, the folding process, molecular chaperones, quality control mechanism, and lipid environment in S. cerevisiae. Then, we summarize the metabolic engineering strategies to enhance the correct folding of ER-localized membrane proteins, such as by engineering and de novel design of membrane protein, regulation of the co-translational folding process, co-expression of molecular chaperones, modulation of ER quality, and lipids engineering. Finally, we discuss the limitations of current strategies and propose future research directions to address the key issues.
Collapse
Affiliation(s)
- Yuhuan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China.
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Choi SI, Jin Y, Choi Y, Seong BL. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int J Mol Sci 2024; 26:53. [PMID: 39795912 PMCID: PMC11720324 DOI: 10.3390/ijms26010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading. Remarkably, it fails to adequately explain how intrinsic and extrinsic factors, such as charges and cellular macromolecules, prevent intermolecular aggregation independently of intramolecular protein folding and structure. The pervasive inconsistencies between protein folding and aggregation call for a new framework. In all combined reactions of molecules, both intramolecular and intermolecular rate (or equilibrium) constants are mutually independent; accordingly, intrinsic and extrinsic factors independently affect both rate constants. This universal principle, when applied to protein folding and aggregation, indicates that they should be treated as two independent yet interconnected processes. Based on this principle, a new framework provides groundbreaking insights into misfolding, Anfinsen's thermodynamic hypothesis, molecular chaperones, intrinsic chaperone-like activities of cellular macromolecules, intermolecular repulsive force-driven aggregation inhibition, proteome solubility maintenance, and proteinopathies. Consequently, this paradigm shift not only refines our current understanding but also offers a more comprehensive view of how aggregation is coupled to protein folding in the complex cellular milieu.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Baik L. Seong
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Park C, Han B, Choi Y, Jin Y, Kim KP, Choi SI, Seong BL. RNA-dependent proteome solubility maintenance in Escherichia coli lysates analysed by quantitative mass spectrometry: Proteomic characterization in terms of isoelectric point, structural disorder, functional hub, and chaperone network. RNA Biol 2024; 21:1-18. [PMID: 38361426 PMCID: PMC10878026 DOI: 10.1080/15476286.2024.2315383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.
Collapse
Affiliation(s)
- Chan Park
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
| | - Bitnara Han
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, Korea
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Baik L. Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
| |
Collapse
|
4
|
Liu Y, Wang Z, Cui Z, Qi Q, Hou J. Progress and perspectives for microbial production of farnesene. BIORESOURCE TECHNOLOGY 2022; 347:126682. [PMID: 35007732 DOI: 10.1016/j.biortech.2022.126682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Farnesene is increasingly used in industry, agriculture, and other fields due to its unique and excellent properties, necessitating its efficient synthesis. Microbial synthesis is an ideal farnesene production method. Recently, researchers have used several strategies to optimize the production performance of microorganisms. This review summarized these strategies, including regulation of farnesene synthesis pathways, and proposed some emerging tools and methods in stain engineering. Meanwhile, new farnesene biosynthetic pathways and effective farnesene production from cheap or waste substrates were emphatically introduced. Finally, future farnesene biosynthesis challenges were discussed.
Collapse
Affiliation(s)
- Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
5
|
A Conceptual Framework for Integrating Cellular Protein Folding, Misfolding and Aggregation. Life (Basel) 2021; 11:life11070605. [PMID: 34202456 PMCID: PMC8304792 DOI: 10.3390/life11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
How proteins properly fold and maintain solubility at the risk of misfolding and aggregation in the cellular environments still remains largely unknown. Aggregation has been traditionally treated as a consequence of protein folding (or misfolding). Notably, however, aggregation can be generally inhibited by affecting the intermolecular interactions leading to aggregation, independently of protein folding and conformation. We here point out that rigorous distinction between protein folding and aggregation as two independent processes is necessary to reconcile and underlie all observations regarding the combined cellular protein folding and aggregation. So far, the direct attractive interactions (e.g., hydrophobic interactions) between cellular macromolecules including chaperones and interacting polypeptides have been widely believed to mainly stabilize polypeptides against aggregation. However, the intermolecular repulsions by large excluded volume and surface charges of cellular macromolecules can play a key role in stabilizing their physically connected polypeptides against aggregation, irrespective of the connection types and induced conformational changes, underlying the generic intrinsic chaperone activity of cellular macromolecules. Such rigorous distinction and intermolecular repulsive force-driven aggregation inhibition by cellular macromolecules could give new insights into understanding the complex cellular protein landscapes that remain uncharted.
Collapse
|
6
|
Shukla V, Phulara SC. Impact of culture condition modulation on the high-yield, high-specificity and cost-effective production of terpenoids from microbial sources: A review. Appl Environ Microbiol 2021; 87:AEM.02369-20. [PMID: 33257314 PMCID: PMC7851692 DOI: 10.1128/aem.02369-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent years have seen a remarkable increase in the non-natural production of terpenoids from microbial route. This is due to the advancements in synthetic biology tools and techniques, which have overcome the challenges associated with the non-native production of terpenoids from microbial hosts. Although, microbes in their native form have ability to grow in wide range of physicochemical parameters such as, pH, temperature, agitation, aeration etc; however, after genetic modifications, culture conditions need to be optimized in order to achieve improved titers of desired terpenoids from engineered microbes. The physicochemical parameters together with medium supplements, such as, inducer, carbon and nitrogen source, and cofactor supply not only play an important role in high-yield production of target terpenoids from engineered host, but also reduce the accumulation of undesired metabolites in fermentation medium, thus facilitate product recovery. Further, for the economic production of terpenoids, the biomass derived sugars can be utilized together with the optimized culture conditions. In the present mini-review, we have highlighted the impact of culture conditions modulation on the high-yield and high-specificity production of terpenoids from engineered microbes. Lastly, utilization of economic feedstock has also been discussed for the cost-effective and sustainable production of terpenoids.
Collapse
Affiliation(s)
- Vibha Shukla
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Suresh Chandra Phulara
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, Andhra Pradesh, India
| |
Collapse
|
7
|
Choi SI, Seong BL. A social distancing measure governing the whole proteome. Curr Opin Struct Biol 2020; 66:104-111. [PMID: 33238232 DOI: 10.1016/j.sbi.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
Protein folding in vivo has been largely understood in the context of molecular chaperones preventing aggregation of nascent polypeptides in the crowded cellular environment. Nascent chains utilize the crowded environment in favor of productive folding by direct physical connection with cellular macromolecules. The intermolecular repulsive forces by large excluded volume and surface charges of interacting cellular macromolecules, exerting 'social distancing' measure among folding intermediates, could play an important role in stabilizing their physically connected polypeptides against aggregation regardless of the physical connection types. The generic intrinsic chaperone activity of cellular macromolecules likely provides a robust cellular environment for the productive protein folding and solubility maintenance at the whole proteome level.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Pramastya H, Xue D, Abdallah II, Setroikromo R, Quax WJ. High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory. N Biotechnol 2020; 60:159-167. [PMID: 33148534 DOI: 10.1016/j.nbt.2020.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/09/2023]
Abstract
The anti-malarial drug artemisinin, produced naturally in the plant Artemisia annua, experiences unstable and insufficient supply as its production relies heavily on the plant source. To meet the massive demand for this compound, metabolic engineering of microbes has been studied extensively. In this study, we focus on improving the production of amorphadiene, a crucial artemisinin precursor, in Bacillus subtilis. The expression level of the plant-derived amorphadiene synthase (ADS) was upregulated by fusion with green fluorescent protein (GFP). Furthermore, a co-expression system of ADS and a synthetic operon carrying the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway genes was established. Subsequently, farnesyl pyrophosphate synthase (FPPS), a key enzyme in formation of the sesquiterpene precursor farnesyl pyrophosphate (FPP), was expressed to supply sufficient substrate for ADS. The consecutive combination of these features yielded a B. subtilis strain expressing chromosomally integrated GFP-ADS followed by FPPS and a plasmid encoded synthetic operon showing a stepwise increased production of amorphadiene. An experimental design-aided systematic medium optimization was used to maximize the production level for the most promising engineered B. subtilis strain, resulting in an amorphadiene yield of 416 ± 15 mg/L, which is 20-fold higher than that previously reported in B. subtilis and more than double the production in Escherichia coli or Saccharomyces cerevisiae on a shake flask fermentation level.
Collapse
Affiliation(s)
- Hegar Pramastya
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands; Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, 40132, Bandung, Indonesia
| | - Dan Xue
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Ingy I Abdallah
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
9
|
Abstract
Most bacteria respond to surfaces by biogenesis of intracellular c-di-GMP, which inhibits motility and induces secretion of biofilm-promoting adherence factors. Bacterial cellulose is a widespread biofilm component whose secretion in Gram-negative species requires an inner membrane, c-di-GMP-dependent synthase tandem (BcsAB), an outer membrane porin (BcsC), and various accessory subunits that regulate synthase assembly and function as well as the exopolysaccharide's chemical composition and mechanical properties. We recently showed that in Escherichia coli, most Bcs proteins form a megadalton-sized secretory nanomachine, but the role and structure of individual regulatory components remained enigmatic. Here, we demonstrate that essential-for-secretion BcsR and BcsQ regulate each other's folding and stability and are recruited to the inner membrane via c-di-GMP-sensing BcsE and its intraoperon partner BcsF. Crystallographic and solution-based data show that BcsE's predicted GIL domain is a degenerate receiver-GGDEF domain tandem (BcsEREC*-GGDEF*), where the divergent diguanylate cyclase module binds both dimeric c-di-GMP and BcsQ through mutually independent interfaces. In addition, we reveal that a third N-terminal domain (BcsENTD) determines the protein's homooligomerization and targeting of BcsERQ to the membrane as well as previously unreported interactions with transcription antitermination complex components. Together, the data suggest that BcsE acts on multiple levels to fine-tune bacterial cellulose secretion, from the early stages of secretion system assembly to the maintenance of a membrane-proximal pool of dimeric c-di-GMP for processive synthase activation.IMPORTANCE Bacterial cellulose is a widespread biofilm component that can modulate microbial fitness and virulence both in the environment and infected hosts. Whereas its secretion generally involves an inner membrane c-di-GMP-dependent synthase tandem (BcsAB) across the bacterial domain of life, enterobacteria feature sophisticated Escherichia coli-like Bcs secretion systems, where multiple additional subunits are either required for secretion or contribute to the maximal production of the polysaccharide in vivo. Here, we demonstrate that essential-for-secretion BcsR and BcsQ regulate each other's folding and stability and are recruited to the inner membrane via c-di-GMP-sensing BcsE and its intraoperon partner, BcsF. Crystallographic and functional data reveal that BcsE features unexpected domain architecture and likely acts on multiple levels to fine-tune bacterial cellulose production, from the early stages of secretion system assembly to the maintenence of a membrane-proximal pool of dimeric c-di-GMP for processive synthase activation.
Collapse
|
10
|
Ki MR, Pack SP. Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 2020; 104:2411-2425. [DOI: 10.1007/s00253-020-10402-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
|
11
|
Choi SI. A Simple Principle for Understanding the Combined Cellular Protein Folding and Aggregation. Curr Protein Pept Sci 2020; 21:3-21. [DOI: 10.2174/1389203720666190725114550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
Proteins can undergo kinetic/thermodynamic partitioning between folding and aggregation. Proper protein folding and thermodynamic stability are crucial for aggregation inhibition. Thus, proteinfolding principles have been widely believed to consistently underlie aggregation as a consequence of conformational change. However, this prevailing view appears to be challenged by the ubiquitous phenomena that the intrinsic and extrinsic factors including cellular macromolecules can prevent aggregation, independently of (even with sacrificing) protein folding rate and stability. This conundrum can be definitely resolved by ‘a simple principle’ based on a rigorous distinction between protein folding and aggregation: aggregation can be controlled by affecting the intermolecular interactions for aggregation, independently of the intramolecular interactions for protein folding. Aggregation is beyond protein folding. A unifying model that can conceptually reconcile and underlie the seemingly contradictory observations is described here. This simple principle highlights, in particular, the importance of intermolecular repulsive forces against aggregation, the magnitude of which can be correlated with the size and surface properties of molecules. The intermolecular repulsive forces generated by the common intrinsic properties of cellular macromolecules including chaperones, such as their large excluded volume and surface charges, can play a key role in preventing the aggregation of their physically connected polypeptides, thus underlying the generic intrinsic chaperone activity of soluble cellular macromolecules. Such intermolecular repulsive forces of bulky cellular macromolecules, distinct from protein conformational change and attractive interactions, could be the puzzle pieces for properly understanding the combined cellular protein folding and aggregation including how proteins can overcome their metastability to amyloid fibrils in vivo.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Lee HM, Kwon SB, Son A, Kim DH, Kim KH, Lim J, Kwon YG, Kang JS, Lee BK, Byun YH, Seong BL. Stabilization of Intrinsically Disordered DKK2 Protein by Fusion to RNA-Binding Domain. Int J Mol Sci 2019; 20:ijms20112847. [PMID: 31212691 PMCID: PMC6600415 DOI: 10.3390/ijms20112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs. Dickkopf2 (DKK2), Wnt antagonist and a prototype IDP, was fused with lysyl-tRNA synthetase (LysRS), with or without the fragment crystallizable (Fc) domain of an immunoglobulin and expressed predominantly as a soluble form from a bacterial host. The functional competence was confirmed by in vitro Wnt signaling reporter and tube formation in human umbilical vein endothelial cells (HUVECs) and in vivo Matrigel plug assay. The removal of LysRS by site-specific protease cleavage prompted the insoluble aggregation, confirming that the linkage to RBP chaperones the functional competence of IDPs. While addressing to DKK2 as a key modulator for cancer and ischemic vascular diseases, our results suggest the use of RBPs as stabilizers of disordered proteinaceous materials for acquiring and maintaining the structural stability and functional competence, which would impact the druggability of a variety of IDPs from human proteome.
Collapse
Affiliation(s)
- Hye Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Doo Hyun Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Kyun-Hwan Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Jonghyo Lim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jin Sun Kang
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Byung Kyu Lee
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
13
|
Conversion of a soluble protein into a potent chaperone in vivo. Sci Rep 2019; 9:2735. [PMID: 30804538 PMCID: PMC6389997 DOI: 10.1038/s41598-019-39158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Molecular chaperones play an important role in cellular protein-folding assistance and aggregation inhibition. As a different but complementary model, we previously proposed that, in general, soluble cellular macromolecules with large excluded volume and surface charges exhibit intrinsic chaperone activity to prevent aggregation of their connected polypeptides irrespective of the connection type, thereby contributing to efficient protein folding. As a proof of concept, we here demonstrated that a model recombinant protein with a specific sequence-binding domain robustly exerted chaperone activity toward various proteins harbouring a short recognition tag of 7 residues in Escherichia coli. The chaperone activity of this protein was comparable to that of representative E. coli chaperones in vivo. Furthermore, in vitro refolding experiments confirmed the in vivo results. Our findings reveal that a soluble protein exhibits the intrinsic chaperone activity to prevent off-pathway aggregation of its interacting proteins, leading to more productive folding while allowing them to fold according to their intrinsic folding pathways. This study gives new insights into the plausible chaperoning role of soluble cellular macromolecules in terms of aggregation inhibition and indirect folding assistance.
Collapse
|
14
|
Kwon SB, Yu JE, Kim J, Oh H, Park C, Lee J, Seong BL. Quality Screening of Incorrectly Folded Soluble Aggregates from Functional Recombinant Proteins. Int J Mol Sci 2019; 20:ijms20040907. [PMID: 30791505 PMCID: PMC6413200 DOI: 10.3390/ijms20040907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/01/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
Solubility is the prime criterion for determining the quality of recombinant proteins, yet it often fails to represent functional activity due to the involvement of non-functional, misfolded, soluble aggregates, which compromise the quality of recombinant proteins. However, guidelines for the quality assessment of soluble proteins have neither been proposed nor rigorously validated experimentally. Using the aggregation-prone enhanced green-fluorescent protein (EGFP) folding reporter system, we evaluated the folding status of recombinant proteins by employing the commonly used sonication and mild lysis of recombinant host cells. We showed that the differential screening of solubility and folding competence is crucial for improving the quality of recombinant proteins without sacrificing their yield. These results highlight the importance of screening out incorrectly folded soluble aggregates at the initial purification step to ensure the functional quality of recombinant proteins.
Collapse
Affiliation(s)
- Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jihoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Hana Oh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jinhee Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
15
|
Lee J, Son A, Kim P, Kwon SB, Yu JE, Han G, Seong BL. RNA‐dependent chaperone (chaperna) as an engineered pro‐region for the folding of recombinant microbial transglutaminase. Biotechnol Bioeng 2019; 116:490-502. [DOI: 10.1002/bit.26879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Ahyun Son
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
- Present affiliation: Department of Chemistry and BiochemistryKnoebel Institute for Healthy AgingUniversity of DenverDenver Colorado
| | - Paul Kim
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Soon Bin Kwon
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Ji Eun Yu
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Gyoonhee Han
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Baik L. Seong
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| |
Collapse
|
16
|
Kwon SB, Yu JE, Park C, Lee J, Seong BL. Nucleic Acid-Dependent Structural Transition of the Intrinsically Disordered N-Terminal Appended Domain of Human Lysyl-tRNA Synthetase. Int J Mol Sci 2018; 19:ijms19103016. [PMID: 30282926 PMCID: PMC6213541 DOI: 10.3390/ijms19103016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic lysyl-tRNA synthetases (LysRS) have an N-terminal appended tRNA-interaction domain (RID) that is absent in their prokaryotic counterparts. This domain is intrinsically disordered and lacks stable structures. The disorder-to-order transition is induced by tRNA binding and has implications on folding and subsequent assembly into multi-tRNA synthetase complexes. Here, we expressed and purified RID from human LysRS (hRID) in Escherichia coli and performed a detailed mutagenesis of the appended domain. hRID was co-purified with nucleic acids during Ni-affinity purification, and cumulative mutations on critical amino acid residues abolished RNA binding. Furthermore, we identified a structural ensemble between disordered and helical structures in non-RNA-binding mutants and an equilibrium shift for wild-type into the helical conformation upon RNA binding. Since mutations that disrupted RNA binding led to an increase in non-functional soluble aggregates, a stabilized RNA-mediated structural transition of the N-terminal appended domain may have implications on the functional organization of human LysRS and multi-tRNA synthetase complexes in vivo.
Collapse
Affiliation(s)
- Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jiseop Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
17
|
Yang SW, Jang YH, Kwon SB, Lee YJ, Chae W, Byun YH, Kim P, Park C, Lee YJ, Kim CK, Kim YS, Choi SI, Seong BL. Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation. FASEB J 2018; 32:2658-2675. [PMID: 29295864 PMCID: PMC5901386 DOI: 10.1096/fj.201700747rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023]
Abstract
A novel protein-folding function of RNA has been recognized, which can outperform previously known molecular chaperone proteins. The RNA as a molecular chaperone (chaperna) activity is intrinsic to some ribozymes and is operational during viral infections. Our purpose was to test whether influenza hemagglutinin (HA) can be assembled in a soluble, trimeric, and immunologically activating conformation by means of an RNA molecular chaperone (chaperna) activity. An RNA-interacting domain (RID) from the host being immunized was selected as a docking tag for RNA binding, which served as a transducer for the chaperna function for de novo folding and trimeric assembly of RID-HA1. Mutations that affect tRNA binding greatly increased the soluble aggregation defective in trimer assembly, suggesting that RNA interaction critically controls the kinetic network in the folding/assembly pathway. Immunization of mice resulted in strong hemagglutination inhibition and high titers of a neutralizing antibody, providing sterile protection against a lethal challenge and confirming the immunologically relevant HA conformation. The results may be translated into a rapid response to a new influenza pandemic. The harnessing of the novel chaperna described herein with immunologically tailored antigen-folding functions should serve as a robust prophylactic and diagnostic tool for viral infections.-Yang, S. W., Jang, Y. H., Kwon, S. B., Lee, Y. J., Chae, W., Byun, Y. H., Kim, P., Park, C., Lee, Y. J., Kim, C. K., Kim, Y. S., Choi, S. I., Seong, B. L. Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunization
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/immunology
- Molecular Chaperones/metabolism
- Mutation
- Protein Folding
- Protein Multimerization
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/immunology
- RNA, Transfer/metabolism
- Rabbits
Collapse
Affiliation(s)
- Seung Won Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon Jae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Jae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Choon Kang Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
18
|
Hong TJ, Hahn JS. Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli. Biochem Biophys Res Commun 2016; 478:1647-52. [PMID: 27591899 DOI: 10.1016/j.bbrc.2016.08.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Abstract
NOD1 is an intracellular sensor of innate immunity which is related to a number of inflammatory diseases. NOD1 is known to be difficult to express and purify for structural and biochemical studies. Based on the fact that Hsp90 and its cochaperone SGT1 are necessary for the stabilization and activation of NOD1 in mammals, SGT1 was chosen as a fusion partner of the leucine-rich repeat (LRR) domain of NOD1 for its soluble expression in Escherichia coli. Fusion of human SGT1 (hSGT1) to NOD1 LRR significantly enhanced the solubility, and the fusion protein was stabilized by coexpression of mouse Hsp90α. The expression level of hSGT1-NOD1 LRR was further enhanced by supplementation of rare codon tRNAs and exchange of antibiotic marker genes.
Collapse
Affiliation(s)
- Tae-Joon Hong
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Ki MR, Nguyen TKM, Kim SH, Kwon I, Pack SP. Chimeric protein of internally duplicated α-type carbonic anhydrase from Dunaliella species for improved expression and CO 2 sequestration. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Dinjaski N, Ebrahimi D, Ling S, Shah S, Buehler MJ, Kaplan DL. Integrated Modeling and Experimental Approaches to Control Silica Modification of Design Silk-Based Biomaterials. ACS Biomater Sci Eng 2016; 3:2877-2888. [PMID: 33418709 DOI: 10.1021/acsbiomaterials.6b00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mineralized polymeric biomaterials provide useful options toward mechanically robust systems for some tissue repairs. Silks as a mechanically robust protein-based material provide a starting point for biomaterial options, particularly when combined with silica toward organic-inorganic hybrid systems. To further understand the interplay between silk proteins and silica related to material properties, we systematically study the role of three key domains in bioengineered spider silk fusion proteins with respect to β-sheet formation and mineralization: (i) a core silk domain for materials assembly, (ii) a histidine tag for purification, and (iii) a silicification domain for mineralization. Computational simulations are used to identify the effect of each domain on the protein folding and accessibility of positively charged amino acids for silicification and predictions are then compared with experimental data. The results show that the addition of the silica and histidine domains reduces β-sheet structure in the materials, and increases solvent-accessible surface area to the positive charged amino acids, leading to higher levels of silica precipitation. Moreover, the simulations show that the location of the charged biomineralization domain has small effect on the protein folding and consequently surface exposure of charged amino acids. Those surfaces display correlation with the amount of silicification in experiments. The results demonstrate that the exposure of the positively charged amino acids impacts protein function related to mineralization. In addition, processing parameters (solvating agent, the method of β-sheet induction and temperature) affect protein secondary structure, folding and function. This integrated modeling and experimental approach provides insight into sequence-structure-function relationships for control of mineralized protein biomaterial structures.
Collapse
Affiliation(s)
- Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Davoud Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Suraj Shah
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
21
|
Do BH, Ryu HB, Hoang P, Koo BK, Choe H. Soluble prokaryotic overexpression and purification of bioactive human granulocyte colony-stimulating factor by maltose binding protein and protein disulfide isomerase. PLoS One 2014; 9:e89906. [PMID: 24594699 PMCID: PMC3940694 DOI: 10.1371/journal.pone.0089906] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/24/2014] [Indexed: 01/17/2023] Open
Abstract
Human granulocyte colony-stimulating factor (hGCSF), a neutrophil-promoting cytokine, is an effective therapeutic agent for neutropenia patients who have undergone several cancer treatments. Efficient production of hGCSF using E. coli is challenging because the hormone tends to aggregate and forms inclusion bodies. This study examined the ability of seven different N-terminal fusion tags to increase expression of soluble hGCSF in E. coli. Four tag proteins, namely maltose-binding protein (MBP), N-utilization substance protein A, protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), increased the solubility of hGCSF under normal conditions. Lowering the expression temperature from 30°C to 18°C also increased the solubility of thioredoxin-tagged and glutathione S-transferase-tagged hGCSF. By contrast, hexahistidine-tagged hGCSF was insoluble at both temperatures. Simple conventional chromatographic methods were used to purify hGCSF from the overexpressed PDIb'a'-hGCSF and MBP-hGCSF proteins. In total, 11.3 mg or 10.2 mg of pure hGCSF were obtained from 500 mL cultures of E. coli expressing PDIb'a'-hGCSF or MBP-hGCSF, respectively. SDS-PAGE analysis and silver staining confirmed high purity of the isolated hGCSF proteins, and the endotoxin levels were less than 0.05 EU/µg of protein. Subsequently, the bioactivity of the purified hGCSF proteins similar to that of the commercially available hGCSF was confirmed using the mouse M-NFS-60 myelogenous leukemia cell line. The EC50s of the cell proliferation dose-response curves for hGCSF proteins purified from MBP-hGCSF and PDIb'a'-hGCSF were 2.83±0.31 pM, and 3.38±0.41 pM, respectively. In summary, this study describes an efficient method for the soluble overexpression and purification of bioactive hGCSF in E. coli.
Collapse
Affiliation(s)
- Bich Hang Do
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Bong Ryu
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Phuong Hoang
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Bon-Kyung Koo
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Choe
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Jang YH, Cho SH, Son A, Lee YH, Lee J, Lee KH, Seong BL. High-yield soluble expression of recombinant influenza virus antigens from Escherichia coli and their potential uses in diagnosis. J Virol Methods 2014; 196:56-64. [DOI: 10.1016/j.jviromet.2013.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
|
23
|
Zhou K, Zou R, Zhang C, Stephanopoulos G, Too H. Optimization of amorphadiene synthesis in
bacillus subtilis
via transcriptional, translational, and media modulation. Biotechnol Bioeng 2013; 110:2556-61. [DOI: 10.1002/bit.24900] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Zhou
- Chemical and Pharmaceutical EngineeringSingapore‐MIT Alliance4 Engineering Drive 3Singapore
| | - Ruiyang Zou
- Chemical and Pharmaceutical EngineeringSingapore‐MIT Alliance4 Engineering Drive 3Singapore
| | - Congqiang Zhang
- Chemical and Pharmaceutical EngineeringSingapore‐MIT Alliance4 Engineering Drive 3Singapore
| | - Gregory Stephanopoulos
- Chemical and Pharmaceutical EngineeringSingapore‐MIT Alliance4 Engineering Drive 3Singapore
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA
| | - Heng‐Phon Too
- Chemical and Pharmaceutical EngineeringSingapore‐MIT Alliance4 Engineering Drive 3Singapore
- Department of BiochemistryNational University of Singapore8 Medical DriveSingapore
| |
Collapse
|
24
|
Chen Z, Chen XJ, Xia M, He HW, Wang S, Liu H, Gong H, Yan YB. Chaperone-like effect of the linker on the isolated C-terminal domain of rabbit muscle creatine kinase. Biophys J 2013; 103:558-566. [PMID: 22947872 DOI: 10.1016/j.bpj.2012.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022] Open
Abstract
Intramolecular chaperones (IMCs), which are specific domains/segments encoded in the primary structure of proteins, exhibit chaperone-like activity against the aggregation of the other domains in the same molecule. In this research, we found that the truncation of the linker greatly promoted the thermal aggregation of the isolated C-terminal domain (CTD) of rabbit muscle creatine kinase (RMCK). Either the existence of the linker covalently linked to CTD or the supply of the synthetic linker peptide additionally could successfully protect the CTD of RMCK against aggregation in a concentration-dependent manner. Truncated fragments of the linker also behaved as a chaperone-like effect with lower efficiency, revealing the importance of its C-terminal half in the IMC function of the linker. The aggregation sites in the CTD of RMCK were identified by molecular dynamics simulations. Mutational analysis of the three key hydrophobic residues resulted in opposing effects on the thermal aggregation between the CTD with intact or partial linker, confirming the role of linker as a lid to protect the hydrophobic residues against exposure to solvent. These observations suggested that the linkers in multidomain proteins could act as IMCs to facilitate the correct folding of the aggregation-prone domains. Furthermore, the intactness of the IMC linker after proteolysis modulates the production of off-pathway aggregates, which may be important to the onset of some diseases caused by the toxic effects of aggregated proteolytic fragments.
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | - Xiang-Jun Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China; Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu, China
| | - Mengdie Xia
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua-Wei He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | - Sha Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | - Huihui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China.
| |
Collapse
|
25
|
Raran-Kurussi S, Waugh DS. The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One 2012; 7:e49589. [PMID: 23166722 PMCID: PMC3500312 DOI: 10.1371/journal.pone.0049589] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli maltose binding protein (MBP) is commonly used to promote the solubility of its fusion partners. To investigate the mechanism of solubility enhancement by MBP, we compared the properties of MBP fusion proteins refolded in vitro with those of the corresponding fusion proteins purified under native conditions. We fused five aggregation-prone passenger proteins to 3 different N-terminal tags: His6-MBP, His6-GST and His6. After purifying the 15 fusion proteins under denaturing conditions and refolding them by rapid dilution, we recovered far more of the soluble MBP fusion proteins than their GST- or His-tagged counterparts. Hence, we can reproduce the solubilizing activity of MBP in a simple in vitro system, indicating that no additional factors are required to mediate this effect. We assayed both the soluble fusion proteins and their TEV protease digestion products (i.e., with the N-terminal tag removed) for biological activity. Little or no activity was detected for some fusion proteins whereas others were quite active. When the MBP fusions proteins were purified from E. coli under native conditions they were all substantially active. These results indicate that the ability of MBP to promote the solubility of its fusion partners in vitro sometimes, but not always, results in their proper folding. We show that the folding of some passenger proteins is mediated by endogenous chaperones in vivo. Hence, MBP serves as a passive participant in the folding process; passenger proteins either fold spontaneously or with the assistance of chaperones.
Collapse
Affiliation(s)
- Sreejith Raran-Kurussi
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David S. Waugh
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhou K, Zou R, Stephanopoulos G, Too HP. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production. Microb Cell Fact 2012; 11:148. [PMID: 23148661 PMCID: PMC3545872 DOI: 10.1186/1475-2859-11-148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/07/2012] [Indexed: 12/02/2022] Open
Abstract
Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites.
Collapse
Affiliation(s)
- Kang Zhou
- Chemical and Pharmaceutical Engineering, Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, Singapore
| | | | | | | |
Collapse
|
27
|
Choi SI, Son A, Lim KH, Jeong H, Seong BL. Macromolecule-assisted de novo protein folding. Int J Mol Sci 2012; 13:10368-10386. [PMID: 22949867 PMCID: PMC3431865 DOI: 10.3390/ijms130810368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 01/24/2023] Open
Abstract
In the processes of protein synthesis and folding, newly synthesized polypeptides are tightly connected to the macromolecules, such as ribosomes, lipid bilayers, or cotranslationally folded domains in multidomain proteins, representing a hallmark of de novo protein folding environments in vivo. Such linkage effects on the aggregation of endogenous polypeptides have been largely neglected, although all these macromolecules have been known to effectively and robustly solubilize their linked heterologous proteins in fusion or display technology. Thus, their roles in the aggregation of linked endogenous polypeptides need to be elucidated and incorporated into the mechanisms of de novo protein folding in vivo. In the classic hydrophobic interaction-based stabilizing mechanism underlying the molecular chaperone-assisted protein folding, it has been assumed that the macromolecules connected through a simple linkage without hydrophobic interactions and conformational changes would make no effect on the aggregation of their linked polypeptide chains. However, an increasing line of evidence indicates that the intrinsic properties of soluble macromolecules, especially their surface charges and excluded volume, could be important and universal factors for stabilizing their linked polypeptides against aggregation. Taken together, these macromolecules could act as folding helpers by keeping their linked nascent chains in a folding-competent state. The folding assistance provided by these macromolecules in the linkage context would give new insights into de novo protein folding inside the cell.
Collapse
Affiliation(s)
- Seong Il Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| | - Ahyun Son
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
| | - Keo-Heun Lim
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
| | - Hotcherl Jeong
- Vismer Co., Ltd., Ansan, Kyeonggi-do 426-791, Korea
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| | - Baik L. Seong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| |
Collapse
|
28
|
Sun W, Xie J, Lin H, Mi S, Li Z, Hua F, Hu Z. A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif 2012; 83:21-9. [PMID: 22387083 DOI: 10.1016/j.pep.2012.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 02/03/2023]
Abstract
Recombinant single-chain variable fragment (scFv) antibodies have wide applications in the areas of biotechnology and medicine. However, there is currently no universal expression-purification system for generating different soluble scFvs. In this study, A15 and E34, two genes coding scFvs against human IL-17A, were fused with N-terminal signal peptide sequences pelB or STII, or with highly hydrophilic tags Trx, NusA, or MBP, respectively. These constructs were expressed in Escherichia coli. We found that the scFvs fused with either NusA or MBP showed a higher solubility than fused with signal peptides or Trx. The scFvs were aggregated when the NusA or MBP was removed by thrombin. Interestingly, we observed a reduction of precipitation when the fusion proteins were expressed in Origami B(DE3)pLysS cells but not in BL21(DE3)pLysS. Because cleaving the tags resulted in the aggregation of scFvs, several solubility-enhancing additives were added in the digestion buffer and only L-arginine (Arg) or Tween20 promoted the solubility. After an affinity chromatography, the scFvs were separated from the tags with the purity up to 90%. The final yield of scFvs from the scFv-MBP system was approximately 8.9 mg/L of culture medium and 1.5 mg/g of wet weight cells, which was 1.6-fold higher than the yield from the scFv-NusA system. The obtained scFvs exhibited normal binding affinities and activities after endotoxin removal. In conclusion, we describe a strategy combining the fusion tags, the Escherichia coli with oxidizing bacterial cytoplasm, and the solubility-enhancing additives for expressing and purifying the soluble and functional scFvs.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Lim KH, Kim KH, Choi SI, Park ES, Park SH, Ryu K, Park YK, Kwon SY, Yang SI, Lee HC, Sung IK, Seong BL. RPS3a over-expressed in HBV-associated hepatocellular carcinoma enhances the HBx-induced NF-κB signaling via its novel chaperoning function. PLoS One 2011; 6:e22258. [PMID: 21857917 PMCID: PMC3156704 DOI: 10.1371/journal.pone.0022258] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/18/2011] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is one of the major causes of hepatocellular carcinoma (HCC) development. Hepatitis B virus X protein (HBx) is known to play a key role in the development of hepatocellular carcinoma (HCC). Several cellular proteins have been reported to be over-expressed in HBV-associated HCC tissues, but their role in the HBV-mediated oncogenesis remains largely unknown. Here, we explored the effect of the over-expressed cellular protein, a ribosomal protein S3a (RPS3a), on the HBx-induced NF-κB signaling as a critical step for HCC development. The enhancement of HBx-induced NF-κB signaling by RPS3a was investigated by its ability to translocate NF-κB (p65) into the nucleus and the knock-down analysis of RPS3a. Notably, further study revealed that the enhancement of NF-κB by RPS3a is mediated by its novel chaperoning activity toward physiological HBx. The over-expression of RPS3a significantly increased the solubility of highly aggregation-prone HBx. This chaperoning function of RPS3a for HBx is closely correlated with the enhanced NF-κB activity by RPS3a. In addition, the mutational study of RPS3a showed that its N-terminal domain (1–50 amino acids) is important for the chaperoning function and interaction with HBx. The results suggest that RPS3a, via extra-ribosomal chaperoning function for HBx, contributes to virally induced oncogenesis by enhancing HBx-induced NF-κB signaling pathway.
Collapse
Affiliation(s)
- Keo-Heun Lim
- Department of Biotechnology, College of Life science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology, IBST, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Sciences, Konkuk University, Seoul, Korea
- * E-mail: (BLS); (K-HK)
| | - Seong Il Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | - Eun-Sook Park
- Department of Pharmacology, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Hwa Park
- Department of Anatomy and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Kisun Ryu
- Department of Biotechnology, College of Life science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yong Kwang Park
- Department of Pharmacology, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - So Young Kwon
- Department of Internal Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Sung-Il Yang
- Department of Pharmacology, IBST, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Sciences, Konkuk University, Seoul, Korea
| | - Han Chu Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In-Kyung Sung
- Department of Internal Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Baik L. Seong
- Department of Biotechnology, College of Life science and Biotechnology, Yonsei University, Seoul, Korea
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
- * E-mail: (BLS); (K-HK)
| |
Collapse
|
30
|
Angulo I, Acebrón I, de las Rivas B, Muñoz R, Rodríguez-Crespo I, Menéndez M, García P, Tateno H, Goldstein IJ, Pérez-Agote B, Mancheño JM. High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile β-trefoil lectin domain from the mushroom Laetiporus sulphureus. Glycobiology 2011; 21:1349-61. [PMID: 21632870 DOI: 10.1093/glycob/cwr074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this work, we analyzed at high resolution the sugar-binding mode of the recombinant N-terminal ricin-B domain of the hemolytic protein LSLa (LSL(150)) from the mushroom Laetiporus sulphureus and also provide functional in vitro evidence suggesting that, together with its putative receptor-binding role, this module may also increase the solubility of its membrane pore-forming partner. We first demonstrate that recombinant LSL(150) behaves as an autonomous folding unit and an active lectin. We have determined its crystal structure at 1.47 Å resolution and also that of the [LSL(150):(lactose)β, γ)] binary complex at 1.67 Å resolution. This complex reveals two lactose molecules bound to the β and γ sites of LSL(150), respectively. Isothermal titration calorimetry indicates that LSL(150) binds two lactoses in solution with highly different affinities. Also, we test the working hypothesis that LSL(150) exhibits in vivo properties typical of solubility tags. With this aim, we have fused an engineered version of LSL(150) (LSL(t)) to the N-terminal end of various recombinant proteins. All the designed LSL(150)-tagged fusion proteins were successfully produced at high yield, and furthermore, the target proteins were purified by a straightforward affinity procedure on agarose-based matrices due to the excellent properties of LSL(150) as an affinity tag. An optimized protocol for target protein purification was devised, which involved removal of the LSL(150) tag through in-column cleavage of the fusion proteins with His(6)-tagged TEV endoprotease. These results permitted to set up a novel, lectin-based system for production and purification of recombinant proteins in E. coli cells with attractive biotechnological applications.
Collapse
Affiliation(s)
- Iván Angulo
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chaperoning roles of macromolecules interacting with proteins in vivo. Int J Mol Sci 2011; 12:1979-90. [PMID: 21673934 PMCID: PMC3111645 DOI: 10.3390/ijms12031979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/15/2011] [Accepted: 03/17/2011] [Indexed: 11/28/2022] Open
Abstract
The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.
Collapse
|
32
|
Kim HK, Choi SI, Seong BL. 5S rRNA-assisted DnaK refolding. Biochem Biophys Res Commun 2009; 391:1177-81. [PMID: 19962961 DOI: 10.1016/j.bbrc.2009.11.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/29/2009] [Indexed: 10/20/2022]
Abstract
Although accumulating evidence has revealed that most proteins can fold without the assistance of molecular chaperones, little attention has been paid to other types of chaperoning macromolecules. A variety of proteins interact with diverse RNA molecules in vivo, suggesting a potential role of RNAs for folding of their interacting proteins. Here we show that the in vitro refolding of a representative molecular chaperone, DnaK, an Escherichia coli homolog of Hsp70, could be assisted by its interacting 5S rRNA. The folding enhancement occurred in RNA concentration and its size dependent manner whereas neither the RNA with the reverse sequence of 5S rRNA nor the RNase pretreated 5S rRNA stimulated the folding in vitro. Based on our results, we propose that 5S rRNA could exert the chaperoning activity on DnaK during the folding process. The results suggest an interesting possibility that the folding of RNA-interacting proteins could be assisted by their cognate RNA ligands.
Collapse
Affiliation(s)
- Hyo Kyung Kim
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | | | | |
Collapse
|
33
|
Ryu K, Kim CW, Kim BH, Han KS, Kim KH, Choi SI, Seong BL. Assessment of substrate-stabilizing factors for DnaK on the folding of aggregation-prone proteins. Biochem Biophys Res Commun 2008; 373:74-9. [DOI: 10.1016/j.bbrc.2008.05.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
|
34
|
Choi SI, Han KS, Kim CW, Ryu KS, Kim BH, Kim KH, Kim SI, Kang TH, Shin HC, Lim KH, Kim HK, Hyun JM, Seong BL. Protein solubility and folding enhancement by interaction with RNA. PLoS One 2008; 3:e2677. [PMID: 18628952 PMCID: PMC2444022 DOI: 10.1371/journal.pone.0002677] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/17/2008] [Indexed: 11/18/2022] Open
Abstract
While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.
Collapse
Affiliation(s)
- Seong Il Choi
- Institute of Life Science and Biotechnology, Yonsei University, Seodaemun-Gu, Seoul, Korea
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Kyoung Sim Han
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Chul Woo Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Ki-Sun Ryu
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Byung Hee Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology, School of Medicine, and Center for Diagnostic Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Seo-Il Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Tae Hyun Kang
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Hang-Cheol Shin
- Department of Bioinformatics and Life Science, and CAMDRC, Soongsil University, Seoul, Korea
| | - Keo-Heun Lim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Hyo Kyung Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Jeong-Min Hyun
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
| | - Baik L. Seong
- Institute of Life Science and Biotechnology, Yonsei University, Seodaemun-Gu, Seoul, Korea
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
35
|
Zou Z, Cao L, Zhou P, Su Y, Sun Y, Li W. Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli. J Biotechnol 2008; 135:333-9. [PMID: 18599143 DOI: 10.1016/j.jbiotec.2008.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 05/08/2008] [Accepted: 05/15/2008] [Indexed: 11/30/2022]
Abstract
High expression of recombinant proteins in Escherichia coli (E. coli) often leads to protein aggregation. One popular approach to address this problem is the use of fusion tags (or partners) that improve the solubility of the proteins in question. However, such fusion tags are not effective for all proteins. In this study, we demonstrate that the hyper-acidic protein fusion partners can largely enhance the soluble expression of target proteins recalcitrant to the efforts by using routine solubilising tags. This new type of fusion partners examined includes three extremely acidic E. coli polypeptides, i.e. yjgD, the N-terminal domain of rpoD (sigma 70 factor of RNA polymerase) and our preliminarily evaluated msyB. The target proteins used are highly aggregation-prone, including EK (the bovine enterokinase), TEV (the tobacco etch virus protease) and rbcL (the large subunit of tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase). On removal in vitro and in vivo of the fusion tags by using yeast SUMO/Ulp1 reaction and TEV auto-cleavage, the resultant findings indicate the hyper-acidic fusion partners can function as intramolecular chaperones assisting in the correct folding of the target proteins.
Collapse
Affiliation(s)
- Zhurong Zou
- School of Life Sciences, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China.
| | | | | | | | | | | |
Collapse
|