1
|
Namuunaa G, Bujin B, Yamagami A, Bolortuya B, Kawabata S, Ogawa H, Kanatani A, Shimizu M, Minami A, Mochida K, Miyakawa T, Davaapurev BO, Asami T, Batkhuu J, Nakano T. Identification and functional analyses of drought stress resistance genes by transcriptomics of the Mongolian grassland plant Chloris virgata. BMC PLANT BIOLOGY 2025; 25:44. [PMID: 39794690 PMCID: PMC11724609 DOI: 10.1186/s12870-025-06046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Mongolian grasslands, including the Gobi Desert, have been exposed to drought conditions with few rains. In such harsh environments, plants with highly resistant abilities against drought stress survive over long periods. We hypothesized that these plants could harbor novel and valuable genes for enhancing drought stress resistance. RESULTS In this study, we identified Chloris virgata, a Mongolian grassland plant with strong drought resistance. RNA-seq-based transcriptome analysis was performed to uncover genes associated with drought stress resistance in C. virgata. De novo transcriptome assembly revealed 25,469 protein-coding transcripts and 1,219 upregulated genes after 3- and 6-hr drought stress treatments. Analysis by homology search and Gene Ontology (GO) enrichment indicated that abscisic acid (ABA)- and drought stress-related GO terms were enriched. Among the highly induced genes, ten candidate cDNAs were selected and overexpressed in Arabidopsis. When subjected to drought stress, three of these genes conferred strong drought resistance in the transgenic plants. We named these genes Mongolian Grassland plant Drought-stress resistance genes 1, 2, and 3 (MGD1, MGD2, and MGD3). Gene expression analyses in the transformants suggested that MGD1, MGD2, and MGD3 may activate drought stress-related signalling pathways. CONCLUSION This study highlighted the drought resistance of C. virgata and identified three novel genes that enhance drought stress resistance.
Collapse
Affiliation(s)
- Ganbayar Namuunaa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Baldorj Bujin
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ayumi Yamagami
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Byambajav Bolortuya
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shintaro Kawabata
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hirotaka Ogawa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Asaka Kanatani
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Minami Shimizu
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Anzu Minami
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
- Baton Zone Program, RIKEN, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Takuya Miyakawa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bekh-Ochir Davaapurev
- School of Engineering and Technology, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Javzan Batkhuu
- School of Engineering and Technology, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Takeshi Nakano
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
2
|
Korbanka L, Kim JA, Sim S. Macroscopic Assembly of Materials with Engineered Bacterial Spores via Coiled-Coil Interaction. ACS Synth Biol 2024; 13:3668-3676. [PMID: 39393788 PMCID: PMC11856349 DOI: 10.1021/acssynbio.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Herein, we report macroscopic materials formed by the assembly of engineered bacterial spores. Spores were engineered by using a T7-driven expression system to display a high density of pH-responsive self-associating proteins on their surface. The engineered surface protein on the spore surface enabled pH-dependent binding at the protein level and enabled the assembly of granular materials. Mechanical properties remained largely constant with changing pH, but erosion stability was pH-dependent in a manner consistent with the pH-dependent interaction between the engineered surface proteins. Our finding utilizes synthetic biology for the design of macroscopic materials and illuminates the impact of coiled-coil interaction across various length scales.
Collapse
Affiliation(s)
- Lucas Korbanka
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Ju-An Kim
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Seunghyun Sim
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
- Center for Synthetic Biology, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Levintov L, Gorai B, Vashisth H. Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases. Biochemistry 2024; 63:2692-2703. [PMID: 39322977 PMCID: PMC11483822 DOI: 10.1021/acs.biochem.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having a physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Collapse
Affiliation(s)
- Lev Levintov
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Biswajit Gorai
- Institute
of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Harish Vashisth
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
- Integrated
Applied Mathematics Program, University
of New Hampshire, Durham, New Hampshire 03824, United States
- Molecular
and Cellular Biotechnology Program, University
of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
4
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Duan Y, Santos-Júnior CD, Schmidt TS, Fullam A, de Almeida BLS, Zhu C, Kuhn M, Zhao XM, Bork P, Coelho LP. A catalog of small proteins from the global microbiome. Nat Commun 2024; 15:7563. [PMID: 39214983 PMCID: PMC11364881 DOI: 10.1038/s41467-024-51894-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Small open reading frames (smORFs) shorter than 100 codons are widespread and perform essential roles in microorganisms, where they encode proteins active in several cell functions, including signal pathways, stress response, and antibacterial activities. However, the ecology, distribution and role of small proteins in the global microbiome remain unknown. Here, we construct a global microbial smORFs catalog (GMSC) derived from 63,410 publicly available metagenomes across 75 distinct habitats and 87,920 high-quality isolate genomes. GMSC contains 965 million non-redundant smORFs with comprehensive annotations. We find that archaea harbor more smORFs proportionally than bacteria. We moreover provide a tool called GMSC-mapper to identify and annotate small proteins from microbial (meta)genomes. Overall, this publicly-available resource demonstrates the immense and underexplored diversity of small proteins.
Collapse
Affiliation(s)
- Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Laboratory of Microbial Processes & Biodiversity - LMPB; Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo, Brazil
| | - Thomas Sebastian Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- APC Microbiome and School of Medicine, University College Cork, Cork, Ireland
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Breno L S de Almeida
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Lingang Laboratory, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Levintov L, Gorai B, Vashisth H. Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593448. [PMID: 38798363 PMCID: PMC11118388 DOI: 10.1101/2024.05.09.593448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham 03824, New Hampshire, USA
| | - Biswajit Gorai
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham 03824, New Hampshire, USA
- Department of Chemistry, University of New Hampshire, Durham 03824, New Hampshire, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham 03824, New Hampshire, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham 03824, New Hampshire, USA
| |
Collapse
|
7
|
Gray V, Letteri RA. Designing Coiled Coils for Heterochiral Complexation to Enhance Binding and Enzymatic Stability. Biomacromolecules 2024; 25:5273-5280. [PMID: 38980285 PMCID: PMC11323006 DOI: 10.1021/acs.biomac.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Coiled coils, commonly found in native proteins, are helical motifs important for mediating intermolecular interactions. While coiled coils are attractive for use in new therapies and biomaterials, the lack of enzymatic stability of naturally occurring l-peptides may limit their implementation in biological environments. d-peptides are of interest for biomedical applications as they are resistant to enzymatic degradation and recent reports indicate that stereochemistry-driven interactions, achieved by blending d- and l-peptides, yield access to a greater range of binding affinities and a resistance to enzymatic degradation compared to l-peptides alone. To our knowledge, this effect has not been studied in coiled coils. Here, we investigate the effects of blending heterochiral E/K coiled coils, which are a set of coiled coils widely used in biomaterials. We found that we needed to redesign the coiled coils from a repeating pattern of seven amino acids (heptad) to a repeating pattern of 11 amino acids (hendecad) to make them more amenable to heterochiral complex formation. The redesigned hendecad coiled coils form both homochiral and heterochiral complexes, where the heterochiral complexes have stronger heats of binding between the constituent peptides and are more enzymatically stable than the analogous homochiral complexes. Our results highlight the ability to design peptides to make them amenable to heterochiral complexation, so as to achieve desirable properties like increased enzymatic stability and stronger binding. Looking forward, understanding how to engineer peptides to utilize stereochemistry as a materials design tool will be important to the development of next-generation therapeutics and biomaterials.
Collapse
Affiliation(s)
- Vincent
P. Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rachel A. Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
8
|
Jayarajan RO, Chakraborty S, Raghu KG, Purushothaman J, Veleri S. Joubert syndrome causing mutation in C2 domain of CC2D2A affects structural integrity of cilia and cellular signaling molecules. Exp Brain Res 2024; 242:619-637. [PMID: 38231387 DOI: 10.1007/s00221-023-06762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.
Collapse
Affiliation(s)
- Roopasree O Jayarajan
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soura Chakraborty
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Kozhiparambil Gopalan Raghu
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayamurthy Purushothaman
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shobi Veleri
- Drug Safety Division, National Institute of Nutrition, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Govt. of India, Hyderabad, 500007, India.
| |
Collapse
|
9
|
Kotowski K, Fabian P, Roterman I, Stapor K. Convolutional ProteinUnetLM competitive with long short-term memory-based protein secondary structure predictors. Proteins 2023; 91:608-618. [PMID: 36448315 DOI: 10.1002/prot.26452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
The protein secondary structure (SS) prediction plays an important role in the characterization of general protein structure and function. In recent years, a new generation of algorithms for SS prediction based on embeddings from protein language models (pLMs) is emerging. These algorithms reach state-of-the-art accuracy without the need for time-consuming multiple sequence alignment (MSA) calculations. Long short-term memory (LSTM)-based SPOT-1D-LM and NetSurfP-3.0 are the latest examples of such predictors. We present the ProteinUnetLM model using a convolutional Attention U-Net architecture that provides prediction quality and inference times at least as good as the best LSTM-based models for 8-class SS prediction (SS8). Additionally, we address the issue of the heavily imbalanced nature of the SS8 problem by extending the loss function with the Matthews correlation coefficient, and by proper assessment using previously introduced adjusted geometric mean (AGM) metric. ProteinUnetLM achieved better AGM and sequence overlap score than LSTM-based predictors, especially for the rare structures 310-helix (G), beta-bridge (B), and high curvature loop (S). It is also competitive on challenging datasets without homologs, free-modeling targets, and chameleon sequences. Moreover, ProteinUnetLM outperformed its previous MSA-based version ProteinUnet2, and provided better AGM than AlphaFold2 for 1/3 of proteins from the CASP14 dataset, proving its potential for making a significant step forward in the domain. To facilitate the usage of our solution by protein scientists, we provide an easy-to-use web interface under https://biolib.com/SUT/ProteinUnetLM/.
Collapse
Affiliation(s)
- Krzysztof Kotowski
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Piotr Fabian
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
10
|
Pitsawong W, Pádua RAP, Grant T, Hoemberger M, Otten R, Bradshaw N, Grigorieff N, Kern D. From primordial clocks to circadian oscillators. Nature 2023; 616:183-189. [PMID: 36949197 PMCID: PMC10076222 DOI: 10.1038/s41586-023-05836-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Circadian rhythms play an essential part in many biological processes, and only three prokaryotic proteins are required to constitute a true post-translational circadian oscillator1. The evolutionary history of the three Kai proteins indicates that KaiC is the oldest member and a central component of the clock2. Subsequent additions of KaiB and KaiA regulate the phosphorylation state of KaiC for time synchronization. The canonical KaiABC system in cyanobacteria is well understood3-6, but little is known about more ancient systems that only possess KaiBC. However, there are reports that they might exhibit a basic, hourglass-like timekeeping mechanism7-9. Here we investigate the primordial circadian clock in Rhodobacter sphaeroides, which contains only KaiBC, to elucidate its inner workings despite missing KaiA. Using a combination of X-ray crystallography and cryogenic electron microscopy, we find a new dodecameric fold for KaiC, in which two hexamers are held together by a coiled-coil bundle of 12 helices. This interaction is formed by the carboxy-terminal extension of KaiC and serves as an ancient regulatory moiety that is later superseded by KaiA. A coiled-coil register shift between daytime and night-time conformations is connected to phosphorylation sites through a long-range allosteric network that spans over 140 Å. Our kinetic data identify the difference in the ATP-to-ADP ratio between day and night as the environmental cue that drives the clock. They also unravel mechanistic details that shed light on the evolution of self-sustained oscillators.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA
- Biomolecular Discovery, Relay Therapeutics, Cambridge, MA, USA
| | - Ricardo A P Pádua
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | - Timothy Grant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc Hoemberger
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA
- Treeline Biosciences, Watertown, MA, USA
| | - Renee Otten
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA
- Treeline Biosciences, Watertown, MA, USA
| | - Niels Bradshaw
- Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Howard Hughes Medical Institute, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dorothee Kern
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
11
|
Tsirigoni AM, Goktas M, Atris Z, Valleriani A, Vila Verde A, Blank KG. Chain Sliding versus β-Sheet Formation upon Shearing Single α-Helical Coiled Coils. Macromol Biosci 2023; 23:e2200563. [PMID: 36861255 DOI: 10.1002/mabi.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Indexed: 03/03/2023]
Abstract
Coiled coils (CCs) are key building blocks of biogenic materials and determine their mechanical response to large deformations. Of particular interest is the observation that CC-based materials display a force-induced transition from α-helices to mechanically stronger β-sheets (αβT). Steered molecular dynamics simulations predict that this αβT requires a minimum, pulling speed-dependent CC length. Here, de novo designed CCs with a length between four to seven heptads are utilized to probe if the transition found in natural CCs can be mimicked with synthetic sequences. Using single-molecule force spectroscopy and molecular dynamics simulations, these CCs are mechanically loaded in shear geometry and their rupture forces and structural responses to the applied load are determined. Simulations at the highest pulling speed (0.01 nm ns-1 ) show the appearance of β-sheet structures for the five- and six-heptad CCs and a concomitant increase in mechanical strength. The αβT is less probable at a lower pulling speed of 0.001 nm ns-1 and is not observed in force spectroscopy experiments. For CCs loaded in shear geometry, the formation of β-sheets competes with interchain sliding. β-sheet formation is only possible in higher-order CC assemblies or in tensile-loading geometries where chain sliding and dissociation are prohibited.
Collapse
Affiliation(s)
- Anna-Maria Tsirigoni
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zeynep Atris
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Ana Vila Verde
- University of Duisburg-Essen, Faculty of Physics, Lotharstrasse 1, 47057, Duisburg, Germany
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Johannes Kepler University Linz, Institute of Experimental Physics, Department of Biomolecular & Selforganizing Matter, Altenberger Strasse 69, Linz, 4040, Austria
| |
Collapse
|
12
|
Tang QY, Ren W, Wang J, Kaneko K. The Statistical Trends of Protein Evolution: A Lesson from AlphaFold Database. Mol Biol Evol 2022; 39:msac197. [PMID: 36108094 PMCID: PMC9550990 DOI: 10.1093/molbev/msac197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recent development of artificial intelligence provides us with new and powerful tools for studying the mysterious relationship between organism evolution and protein evolution. In this work, based on the AlphaFold Protein Structure Database (AlphaFold DB), we perform comparative analyses of the proteins of different organisms. The statistics of AlphaFold-predicted structures show that, for organisms with higher complexity, their constituent proteins will have larger radii of gyration, higher coil fractions, and slower vibrations, statistically. By conducting normal mode analysis and scaling analyses, we demonstrate that higher organismal complexity correlates with lower fractal dimensions in both the structure and dynamics of the constituent proteins, suggesting that higher functional specialization is associated with higher organismal complexity. We also uncover the topology and sequence bases of these correlations. As the organismal complexity increases, the residue contact networks of the constituent proteins will be more assortative, and these proteins will have a higher degree of hydrophilic-hydrophobic segregation in the sequences. Furthermore, by comparing the statistical structural proximity across the proteomes with the phylogenetic tree of homologous proteins, we show that, statistical structural proximity across the proteomes may indirectly reflect the phylogenetic proximity, indicating a statistical trend of protein evolution in parallel with organism evolution. This study provides new insights into how the diversity in the functionality of proteins increases and how the dimensionality of the manifold of protein dynamics reduces during evolution, contributing to the understanding of the origin and evolution of lives.
Collapse
Affiliation(s)
- Qian-Yuan Tang
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan
| | - Weitong Ren
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun Wang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100-DK, Denmark
| |
Collapse
|
13
|
Identification and characterization of coiled-coil motifs across Autographa californica multiple nucleopolyhedrovirus genome. Heliyon 2022; 8:e10588. [PMID: 36132175 PMCID: PMC9483598 DOI: 10.1016/j.heliyon.2022.e10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Coiled coils (CCs) are protein structural motifs universally found in proteins and mediate a plethora of biological interactions, and thus their reliable annotation is crucial for studies of protein structure and function. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a large double-stranded DNA (dsDNA) virus and encodes 154 proteins. In this study, genome-wide scans of previously uncharacterized CC motifs throughout AcMNPV was conducted using CC prediction software. In total, 24 CC motifs in 19 CC proteins with high confidence were identified. The characteristic of viral CC motifs were analyzed. The CC proteins could be divided into 12 viral structural proteins and 7 non-structural proteins, including viral membrane fusion proteins, enzymes, and transcription factors. Moreover, CC motifs are conserved in the baculoviral orthologs of 14 of the 19 proteins. It is noted that five CC proteins, including Ac51, Ac66, Exon0, Ac13, and GP16, were previously identified to function in the nuclear egress of nucleocapsids, and Ac66 contains multiple CC motifs, the longest of which comprises 252 amino acids, suggesting a role of CC motifs in this process. Taken together, the CC motifs identified in this study are valuable resource for studying protein function and protein interaction networks during virus replication.
Collapse
|
14
|
Bernhofer M, Rost B. TMbed: transmembrane proteins predicted through language model embeddings. BMC Bioinformatics 2022; 23:326. [PMID: 35941534 PMCID: PMC9358067 DOI: 10.1186/s12859-022-04873-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Despite the immense importance of transmembrane proteins (TMP) for molecular biology and medicine, experimental 3D structures for TMPs remain about 4-5 times underrepresented compared to non-TMPs. Today's top methods such as AlphaFold2 accurately predict 3D structures for many TMPs, but annotating transmembrane regions remains a limiting step for proteome-wide predictions. RESULTS Here, we present TMbed, a novel method inputting embeddings from protein Language Models (pLMs, here ProtT5), to predict for each residue one of four classes: transmembrane helix (TMH), transmembrane strand (TMB), signal peptide, or other. TMbed completes predictions for entire proteomes within hours on a single consumer-grade desktop machine at performance levels similar or better than methods, which are using evolutionary information from multiple sequence alignments (MSAs) of protein families. On the per-protein level, TMbed correctly identified 94 ± 8% of the beta barrel TMPs (53 of 57) and 98 ± 1% of the alpha helical TMPs (557 of 571) in a non-redundant data set, at false positive rates well below 1% (erred on 30 of 5654 non-membrane proteins). On the per-segment level, TMbed correctly placed, on average, 9 of 10 transmembrane segments within five residues of the experimental observation. Our method can handle sequences of up to 4200 residues on standard graphics cards used in desktop PCs (e.g., NVIDIA GeForce RTX 3060). CONCLUSIONS Based on embeddings from pLMs and two novel filters (Gaussian and Viterbi), TMbed predicts alpha helical and beta barrel TMPs at least as accurately as any other method but at lower false positive rates. Given the few false positives and its outstanding speed, TMbed might be ideal to sieve through millions of 3D structures soon to be predicted, e.g., by AlphaFold2.
Collapse
Affiliation(s)
- Michael Bernhofer
- Department of Informatics, Bioinformatics and Computational Biology ‑ i12, Technical University of Munich (TUM), Boltzmannstr. 3, 85748, Garching, Germany.
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany.
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology ‑ i12, Technical University of Munich (TUM), Boltzmannstr. 3, 85748, Garching, Germany
- Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748, Garching, Germany
- TUM School of Life Sciences Weihenstephan (TUM-WZW), Alte Akademie 8, Freising, Germany
| |
Collapse
|
15
|
Stern KL, Dalley NA, McMurray NT, Billings WM, Loftus TJ, Jones ZB, Hadfield JR, Price JL. Prerequisites for Stabilizing Long-Range Synergistic Interactions among b-, c-, and f-Residues in Coiled Coils. Biochemistry 2022; 61:319-326. [PMID: 35129961 PMCID: PMC9202806 DOI: 10.1021/acs.biochem.1c00760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coiled coils are among the most abundant tertiary and quaternary structures found in proteins. A growing body of evidence suggests that long-range synergistic interactions among solvent-exposed residues can contribute substantially to coiled-coil conformational stability, but our understanding of the key sequence and structural prerequisites of this effect is still developing. Here, we show that the strength of synergistic interaction involving a b-position Glu (i), an f-position Tyr (i + 4), and a c-position Lys (i + 8) depends on the identity of the f-position residue, the length and stability of the coiled coil, and its oligomerization stoichiometry/surface accessibility. Combined with previous observations, these results map out predictable sequence- and structure-based criteria for enhancing coiled-coil stability by up to -0.58 kcal/mol per monomer (or -2.32 kcal/mol per coiled-coil tetramer). Our observations expand the available tools for enhancing coiled coil stability by sequence variation at solvent-exposed b-, c-, and f-positions and suggest the need to exercise care in the choice of substitutions at these positions for application-specific purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joshua L. Price
- Corresponding Author: Joshua L. Price, C100 BNSN, Brigham Young University, Provo, UT 84602;
| |
Collapse
|
16
|
Virolainen MS, Søltoft CL, Pedersen PA, Ellgaard L. Production of an Active, Human Membrane Protein in Saccharomyces cerevisiae: Full-Length FICD. Int J Mol Sci 2022; 23:ijms23052458. [PMID: 35269596 PMCID: PMC8910494 DOI: 10.3390/ijms23052458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022] Open
Abstract
The human Fic domain-containing protein (FICD) is a type II endoplasmic reticulum (ER) membrane protein that is important for the maintenance of ER proteostasis. Structural and in vitro biochemical characterisation of FICD AMPylase and deAMPylase activity have been restricted to the soluble ER-luminal domain produced in Escherichia coli. Information about potentially important features, such as structural motifs, modulator binding sites or other regulatory elements, is therefore missing for the approximately 100 N-terminal residues including the transmembrane region of FICD. Expressing and purifying the required quantity and quality of membrane proteins is demanding because of the low yields and poor stability often observed. Here, we produce full-length FICD by combining a Saccharomyces cerevisiae-based platform with green fluorescent protein (GFP) tagging to optimise the conditions for expression, solubilisation and purification. We subsequently employ these conditions to purify milligram quantities of His-tagged FICD per litre of culture, and show that the purified, detergent-solubilised membrane protein is an active deAMPylating enzyme. Our work provides a straightforward methodology for producing not only full-length FICD, but also other membrane proteins in S. cerevisiae for structural and biochemical characterisation.
Collapse
Affiliation(s)
- Minttu S. Virolainen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
| | - Cecilie L. Søltoft
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
| | - Per A. Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2200 Copenhagen, Denmark
- Correspondence: (P.A.P.); (L.E.)
| | - Lars Ellgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
- Correspondence: (P.A.P.); (L.E.)
| |
Collapse
|
17
|
Czolkoss S, Safronov X, Rexroth S, Knoke LR, Aktas M, Narberhaus F. Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes. Front Microbiol 2021; 12:754486. [PMID: 34899640 PMCID: PMC8656257 DOI: 10.3389/fmicb.2021.754486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.
Collapse
Affiliation(s)
- Simon Czolkoss
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Xenia Safronov
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Sascha Rexroth
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lisa R Knoke
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
18
|
Simm D, Hatje K, Waack S, Kollmar M. Critical assessment of coiled-coil predictions based on protein structure data. Sci Rep 2021; 11:12439. [PMID: 34127723 PMCID: PMC8203680 DOI: 10.1038/s41598-021-91886-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Bank, down to each amino acid and its secondary structure. Apart from the 30-fold difference in minimum and maximum number of coiled coils predicted the tools strongly vary in where they predict coiled-coil regions. Accordingly, there is a high number of false predictions and missed, true coiled-coil regions. The evaluation of the binary classification metrics in comparison with naïve coin-flip models and the calculation of the Matthews correlation coefficient, the most reliable performance metric for imbalanced data sets, suggests that the tested tools' performance is close to random. This implicates that the tools' predictions have only limited informative value. Coiled-coil predictions are often used to interpret biochemical data and are part of in-silico functional genome annotation. Our results indicate that these predictions should be treated very cautiously and need to be supported and validated by experimental evidence.
Collapse
Affiliation(s)
- Dominic Simm
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Klas Hatje
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.417570.00000 0004 0374 1269Present Address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Waack
- grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Martin Kollmar
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Why Do Tethered-Bilayer Lipid Membranes Suit for Functional Membrane Protein Reincorporation? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane proteins (MPs) are essential for cellular functions. Understanding the functions of MPs is crucial as they constitute an important class of drug targets. However, MPs are a challenging class of biomolecules to analyze because they cannot be studied outside their native environment. Their structure, function and activity are highly dependent on the local lipid environment, and these properties are compromised when the protein does not reside in the cell membrane. Mammalian cell membranes are complex and composed of different lipid species. Model membranes have been developed to provide an adequate environment to envisage MP reconstitution. Among them, tethered-Bilayer Lipid Membranes (tBLMs) appear as the best model because they allow the lipid bilayer to be decoupled from the support. Thus, they provide a sufficient aqueous space to envisage the proper accommodation of large extra-membranous domains of MPs, extending outside. Additionally, as the bilayer remains attached to tethers covalently fixed to the solid support, they can be investigated by a wide variety of surface-sensitive analytical techniques. This review provides an overview of the different approaches developed over the last two decades to achieve sophisticated tBLMs, with a more and more complex lipid composition and adapted for functional MP reconstitution.
Collapse
|
20
|
Shao H, Huang W, Avilan L, Receveur-Bréchot V, Puppo C, Puppo R, Lebrun R, Gontero B, Launay H. A new type of flexible CP12 protein in the marine diatom Thalassiosira pseudonana. Cell Commun Signal 2021; 19:38. [PMID: 33761918 PMCID: PMC7992989 DOI: 10.1186/s12964-021-00718-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is an actor of the redox signaling pathway involved in the regulation of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological importance and their complex and still enigmatic evolutionary background. Methods A combination of biochemical, bioinformatics and biophysical methods including electrospray ionization-mass spectrometry, circular dichroism, nuclear magnetic resonance spectroscopy and small X ray scattering, was used to characterize a diatom CP12. Results Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 similarly to its homologues in other species has some features of intrinsically disorder protein family: it behaves abnormally under gel electrophoresis and size exclusion chromatography, has a high net charge and a bias amino acid composition. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as suggested by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering revealed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12 has a high content of α-helices, and nuclear magnetic resonance spectroscopy suggested that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled coil and disordered regions. Conclusions These findings bring new insights into the large family of dynamic proteins containing disordered regions, thus increasing the diversity of known CP12 proteins. As it is a protein that is more abundant in many stresses, it is not devoted to one metabolism and in particular, it is not specific to carbon metabolism. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle. Choregraphy of metabolism by CP12 proteins in Viridiplantae and Heterokonta. While the monomeric CP12 in Viridiplantae is involved in carbon assimilation, regulating phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) through the formation of a ternary complex, in Heterokonta studied so far, the dimeric CP12 is associated with Ferredoxin-NADP reductase (FNR) and GAPDH. The Viridiplantae CP12 can bind metal ions and can be a chaperone, the Heterokonta CP12 is more abundant in all stresses (C, N, Si, P limited conditions) and is not specific to a metabolism. ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00718-x.
Collapse
Affiliation(s)
- Hui Shao
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Wenmin Huang
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Luisana Avilan
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | | | - Carine Puppo
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Rémy Puppo
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Régine Lebrun
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Brigitte Gontero
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| | - Hélène Launay
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| |
Collapse
|
21
|
Liu SX, Lü G, Zhang H, Geng YZ, Ji Q. Origin of the Surprising Mechanical Stability of Kinesin's Neck Coiled Coil. J Chem Theory Comput 2021; 17:1017-1029. [PMID: 33512152 DOI: 10.1021/acs.jctc.0c00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinesin-1 is a motor protein moving along a microtubule with its two identical motor heads dimerized by two neck linkers and a coiled-coil stalk. When both motor heads bind the microtubule, an internal strain is built up between the two heads, which is indispensable to ensure proper coordination of the two motor heads during kinesin-1's mechanochemical cycle. The internal strain forms a tensile force along the neck linker that tends to unwind the neck coiled coil (NCC). Experiments showed that the kinesin-1's NCC has a high antiunwinding ability compared with conventional coiled coils, which was mainly attributed to the enhanced hydrophobic pressure arising from the unconventional sequence of kinesin-1's NCC. However, hydrophobic pressure cannot provide the shearing force which is needed to balance the tensile force on the interface between two helices. To find out the true origin of the mechanical stability of kinesin-1's NCC, we perform a novel and detailed mechanical analysis for the system based on molecular dynamics simulation at an atomic level. We find that the needed shearing force is provided by a buckle structure formed by two tyrosines which form effective steric hindrance in the presence of tensile forces. The tensile force is balanced by the tensile direction component of the contact force between the two tyrosines which forms the shearing force. The hydrophobic pressure balances the other component of the contact force perpendicular to the tensile direction. The antiunwinding strength of NCC is defined by the maximum shearing force, which is finally determined by the hydrophobic pressure. Kinesin-1 uses residues with plane side chains, tryptophans and tyrosines, to form the hydrophobic center and to shorten the interhelix distance so that a high antiunwinding strength is obtained. The special design of NCC ensures exquisite cooperation of steric hindrance and hydrophobic pressure that results in the surprising mechanical stability of NCC.
Collapse
Affiliation(s)
- Shu-Xia Liu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Gang Lü
- Mathematical and Physical Science School, North China Electric Power University, Baoding 071003, China
| | - Hui Zhang
- School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Yi-Zhao Geng
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China.,School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Qing Ji
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China.,School of Science, Hebei University of Technology, Tianjin 300401, China.,State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
22
|
Prediction of Protein-Protein Binding Interactions in Dimeric Coiled Coils by Information Contained in Folding Energy Landscapes. Int J Mol Sci 2021; 22:ijms22031368. [PMID: 33573048 PMCID: PMC7866404 DOI: 10.3390/ijms22031368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Coiled coils represent the simplest form of a complex formed between two interacting protein partners. Their extensive study has led to the development of various methods aimed towards the investigation and design of complex forming interactions. Despite the progress that has been made to predict the binding affinities for protein complexes, and specifically those tailored towards coiled coils, many challenges still remain. In this work, we explore whether the information contained in dimeric coiled coil folding energy landscapes can be used to predict binding interactions. Using the published SYNZIP dataset, we start from the amino acid sequence, to simultaneously fold and dock approximately 1000 coiled coil dimers. Assessment of the folding energy landscapes showed that a model based on the calculated number of clusters for the lowest energy structures displayed a signal that correlates with the experimentally determined protein interactions. Although the revealed correlation is weak, we show that such correlation exists; however, more work remains to establish whether further improvements can be made to the presented model.
Collapse
|
23
|
Regueira A, Rombouts JL, Wahl SA, Mauricio-Iglesias M, Lema JM, Kleerebezem R. Resource allocation explains lactic acid production in mixed-culture anaerobic fermentations. Biotechnol Bioeng 2020; 118:745-758. [PMID: 33073364 DOI: 10.1002/bit.27605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 02/04/2023]
Abstract
Lactate production in anaerobic carbohydrate fermentations with mixed cultures of microorganisms is generally observed only in very specific conditions: the reactor should be run discontinuously and peptides and B vitamins must be present in the culture medium as lactic acid bacteria (LAB) are typically auxotrophic for amino acids. State-of-the-art anaerobic fermentation models assume that microorganisms optimise the adenosine triphosphate (ATP) yield on substrate and therefore they do not predict the less ATP efficient lactate production, which limits their application for designing lactate production in mixed-culture fermentations. In this study, a metabolic model taking into account cellular resource allocation and limitation is proposed to predict and analyse under which conditions lactate production from glucose can be beneficial for microorganisms. The model uses a flux balances analysis approach incorporating additional constraints from the resource allocation theory and simulates glucose fermentation in a continuous reactor. This approach predicts lactate production is predicted at high dilution rates, provided that amino acids are in the culture medium. In minimal medium and lower dilution rates, mostly butyrate and no lactate is predicted. Auxotrophy for amino acids of LAB is identified to provide a competitive advantage in rich media because less resources need to be allocated for anabolic machinery and higher specific growth rates can be achieved. The Matlab™ codes required for performing the simulations presented in this study are available at https://doi.org/10.5281/zenodo.4031144.
Collapse
Affiliation(s)
- Alberte Regueira
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Julius L Rombouts
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Miguel Mauricio-Iglesias
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
24
|
Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 147:105144. [PMID: 33144171 DOI: 10.1016/j.nbd.2020.105144] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum.
Collapse
|
25
|
Stylianakis I, Shalev A, Scheiner S, Sigalas MP, Arkin IT, Glykos N, Kolocouris A. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide. J Comput Chem 2020; 41:2177-2188. [PMID: 32735736 DOI: 10.1002/jcc.26381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariella Shalev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Michael P Sigalas
- Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Nikolas Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Mancini JA, Pike DH, Tyryshkin AM, Haramaty L, Wang MS, Poudel S, Hecht M, Nanda V. Design of a Fe 4 S 4 cluster into the core of a de novo four-helix bundle. Biotechnol Appl Biochem 2020; 67:574-585. [PMID: 32770861 DOI: 10.1002/bab.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
We explore the capacity of the de novo protein, S824, to incorporate a multinuclear iron-sulfur cluster within the core of a single-chain four-helix bundle. This topology has a high intrinsic designability because sequences are constrained largely by the pattern of hydrophobic and hydrophilic amino acids, thereby allowing for the extensive substitution of individual side chains. Libraries of novel proteins based on these constraints have surprising functional potential and have been shown to complement the deletion of essential genes in E. coli. Our structure-based design of four first-shell cysteine ligands, one per helix, in S824 resulted in successful incorporation of a cubane Fe4 S4 cluster into the protein core. A number of challenges were encountered during the design and characterization process, including nonspecific metal-induced aggregation and the presence of competing metal-cluster stoichiometries. The introduction of buried iron-sulfur clusters into the helical bundle is an initial step toward converting libraries of designed structures into functional de novo proteins with catalytic or electron-transfer functionalities.
Collapse
Affiliation(s)
- Joshua A Mancini
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Douglas H Pike
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexei M Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Saroj Poudel
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Michael Hecht
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
27
|
Thomas JMH, Keegan RM, Rigden DJ, Davies OR. Extending the scope of coiled-coil crystal structure solution by AMPLE through improved ab initio modelling. Acta Crystallogr D Struct Biol 2020; 76:272-284. [PMID: 32133991 PMCID: PMC7057219 DOI: 10.1107/s2059798320000443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
The phase problem remains a major barrier to overcome in protein structure solution by X-ray crystallography. In recent years, new molecular-replacement approaches using ab initio models and ideal secondary-structure components have greatly contributed to the solution of novel structures in the absence of clear homologues in the PDB or experimental phasing information. This has been particularly successful for highly α-helical structures, and especially coiled-coils, in which the relatively rigid α-helices provide very useful molecular-replacement fragments. This has been seen within the program AMPLE, which uses clustered and truncated ensembles of numerous ab initio models in structure solution, and is already accomplished for α-helical and coiled-coil structures. Here, an expansion in the scope of coiled-coil structure solution by AMPLE is reported, which has been achieved through general improvements in the pipeline, the removal of tNCS correction in molecular replacement and two improved methods for ab initio modelling. Of the latter improvements, enforcing the modelling of elongated helices overcame the bias towards globular folds and provided a rapid method (equivalent to the time requirements of the existing modelling procedures in AMPLE) for enhanced solution. Further, the modelling of two-, three- and four-helical oligomeric coiled-coils, and the use of full/partial oligomers in molecular replacement, provided additional success in difficult and lower resolution cases. Together, these approaches have enabled the solution of a number of parallel/antiparallel dimeric, trimeric and tetrameric coiled-coils at resolutions as low as 3.3 Å, and have thus overcome previous limitations in AMPLE and provided a new functionality in coiled-coil structure solution at lower resolutions. These new approaches have been incorporated into a new release of AMPLE in which automated elongated monomer and oligomer modelling may be activated by selecting `coiled-coil' mode.
Collapse
Affiliation(s)
- Jens M. H. Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Ronan M. Keegan
- Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA, England
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Owen R. Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, England
| |
Collapse
|
28
|
Heal JW, Bartlett GJ, Wood CW, Thomson AR, Woolfson DN. Applying graph theory to protein structures: an Atlas of coiled coils. Bioinformatics 2019; 34:3316-3323. [PMID: 29722888 PMCID: PMC6157074 DOI: 10.1093/bioinformatics/bty347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Motivation To understand protein structure, folding and function fully and to design proteins de novo reliably, we must learn from natural protein structures that have been characterized experimentally. The number of protein structures available is large and growing exponentially, which makes this task challenging. Indeed, computational resources are becoming increasingly important for classifying and analyzing this resource. Here, we use tools from graph theory to define an Atlas classification scheme for automatically categorizing certain protein substructures. Results Focusing on the α-helical coiled coils, which are ubiquitous protein-structure and protein-protein interaction motifs, we present a suite of computational resources designed for analyzing these assemblies. iSOCKET enables interactive analysis of side-chain packing within proteins to identify coiled coils automatically and with considerable user control. Applying a graph theory-based Atlas classification scheme to structures identified by iSOCKET gives the Atlas of Coiled Coils, a fully automated, updated overview of extant coiled coils. The utility of this approach is illustrated with the first formal classification of an emerging subclass of coiled coils called α-helical barrels. Furthermore, in the Atlas, the known coiled-coil universe is presented alongside a partial enumeration of the 'dark matter' of coiled-coil structures; i.e. those coiled-coil architectures that are theoretically possible but have not been observed to date, and thus present defined targets for protein design. Availability and implementation iSOCKET is available as part of the open-source GitHub repository associated with this work (https://github.com/woolfson-group/isocket). This repository also contains all the data generated when classifying the protein graphs. The Atlas of Coiled Coils is available at: http://coiledcoils.chm.bris.ac.uk/atlas/app.
Collapse
Affiliation(s)
- Jack W Heal
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Andrew R Thomson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Chemistry, University of Glasgow, Glasgow, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Life Sciences Building, Bristol, UK
| |
Collapse
|
29
|
Importance of the Choice of a Recombinant System to Produce Large Amounts of Functional Membrane Protein hERG. Int J Mol Sci 2019; 20:ijms20133181. [PMID: 31261773 PMCID: PMC6651182 DOI: 10.3390/ijms20133181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Human ether-a-gogo related gene (hERG) product is the membrane potassium channel Kv11.1, which is involved in the electrical activity of the heart. As such, it is a key player in the toxicity of many drug candidates. Therefore, having this protein at hand during earlier stages of drug discovery is important for preventing later toxicity. Furthermore, having a fair quantity of functional channels may help in the development of the necessary techniques for gaining insight in this channel structure. Thus, we performed a comparative study of methods for over-expressing a mutated but functional, hERG in different orthologous hosts, such as yeast, bacteria, insect and human cell lines. We also engineered the protein to test various constructs of a functional channel. We obtained a significant amount of a functional mutant channel from HEK cells that we thoroughly characterized. The present work paves the way for the expression of large amounts of this protein, with which protein crystallization or cryo-electronic microscopy will be attempted. This will be a way to gain information on the structure of the hERG active site and its modelization to obtain data on the pauses of various reference compounds from the pharmacopeia, as well as to gain information about the thermodynamics of the hERG/ligand relationship.
Collapse
|
30
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
31
|
Majerle A, Schmieden DT, Jerala R, Meyer AS. Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry 2019; 58:2095-2104. [PMID: 30957491 DOI: 10.1021/acs.biochem.8b00922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nature is based on complex self-assembling systems that span from the nanoscale to the macroscale. We have already begun to design biomimetic systems with properties that have not evolved in nature, based on designed molecular interactions and regulation of biological systems. Synthetic biology is based on the principle of modularity, repurposing diverse building modules to design new types of molecular and cellular assemblies. While we are currently able to use techniques from synthetic biology to design self-assembling molecules and re-engineer functional cells, we still need to use guided assembly to construct biological assemblies at the macroscale. We review the recent strategies for designing biological systems ranging from molecular assemblies based on self-assembly of (poly)peptides to the guided assembly of patterned bacteria, spanning 7 orders of magnitude.
Collapse
Affiliation(s)
- Andreja Majerle
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Dominik T Schmieden
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , 2629 HZ Delft , The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Anne S Meyer
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|
32
|
Kretzschmar A, Schülke JP, Masana M, Dürre K, Müller MB, Bausch AR, Rein T. The Stress-Inducible Protein DRR1 Exerts Distinct Effects on Actin Dynamics. Int J Mol Sci 2018; 19:ijms19123993. [PMID: 30545002 PMCID: PMC6321462 DOI: 10.3390/ijms19123993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Cytoskeletal dynamics are pivotal to memory, learning, and stress physiology, and thus psychiatric diseases. Downregulated in renal cell carcinoma 1 (DRR1) protein was characterized as the link between stress, actin dynamics, neuronal function, and cognition. To elucidate the underlying molecular mechanisms, we undertook a domain analysis of DRR1 and probed the effects on actin binding, polymerization, and bundling, as well as on actin-dependent cellular processes. Methods: DRR1 domains were cloned and expressed as recombinant proteins to perform in vitro analysis of actin dynamics (binding, bundling, polymerization, and nucleation). Cellular actin-dependent processes were analyzed in transfected HeLa cells with fluorescence recovery after photobleaching (FRAP) and confocal microscopy. Results: DRR1 features an actin binding site at each terminus, separated by a coiled coil domain. DRR1 enhances actin bundling, the cellular F-actin content, and serum response factor (SRF)-dependent transcription, while it diminishes actin filament elongation, cell spreading, and actin treadmilling. We also provide evidence for a nucleation effect of DRR1. Blocking of pointed end elongation by addition of profilin indicates DRR1 as a novel barbed end capping factor. Conclusions: DRR1 impacts actin dynamics in several ways with implications for cytoskeletal dynamics in stress physiology and pathophysiology.
Collapse
Affiliation(s)
- Anja Kretzschmar
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| | - Jan-Philip Schülke
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| | - Mercè Masana
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg Universität Medical Center, 55131 Mainz, Germany.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, CIBERNED, Casanova, 143, 08036 Barcelona, Spain.
| | - Katharina Dürre
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
| | - Marianne B Müller
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg Universität Medical Center, 55131 Mainz, Germany.
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| |
Collapse
|
33
|
André I, Bjelic S. Computational assessment of folding energy landscapes in heterodimeric coiled coils. Proteins 2018; 86:790-801. [PMID: 29675909 DOI: 10.1002/prot.25516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Abstract
The coiled coil structural motif consists of alpha helices supercoiling around each other to form staggered knobs-into-holes packing. Such structures are deceptively simple, especially as they often can be described with parametric equations, but are known to exist in various conformations. Even the simplest systems, consisting of 2 monomers, can assemble into a wide range of states. They can form canonical as well as noncanonical coiled coils, be parallel or antiparallel, where helices associate with different degrees of shift, tilt, and rotation. Here, we investigate the energy landscape of heterodimeric coiled coils by carrying out de novo folding simulations starting from amino acid sequence. We folded a diverse set of 22 heterodimers and demonstrate that the approach is capable of identifying the atomic details in the experimental structure in the majority of cases. Our methodology also enables exploration of alternative states that can be accessible in solution beyond the experimentally determined structure. For many systems, we observe folding energy landscapes with multiple energy minima and several isoenergetic states. By comparing coiled coils from single domains and those extracted from larger proteins, we find that standalone coiled coils have deeper energy wells at the experimentally determined conformation. By folding the competing homodimeric states in addition to the heterodimers, we observe that the structural specificity towards the heteromeric state is often small. Taken together, our results demonstrate that de novo folding simulations can be a powerful tool to characterize structural specificity of coiled coils when coupled to assessment of energy landscapes.
Collapse
Affiliation(s)
- Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
34
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
35
|
Goktas M, Luo C, Sullan RMA, Bergues-Pupo AE, Lipowsky R, Vila Verde A, Blank KG. Molecular mechanics of coiled coils loaded in the shear geometry. Chem Sci 2018; 9:4610-4621. [PMID: 29899954 PMCID: PMC5969510 DOI: 10.1039/c8sc01037d] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/19/2018] [Indexed: 01/25/2023] Open
Abstract
Coiled coils are important nanomechanical building blocks in biological and biomimetic materials. A mechanistic molecular understanding of their structural response to mechanical load is essential for elucidating their role in tissues and for utilizing and tuning these building blocks in materials applications. Using a combination of single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations, we have investigated the mechanics of synthetic heterodimeric coiled coils of different length (3-4 heptads) when loaded in shear geometry. Upon shearing, we observe an initial rise in the force, which is followed by a constant force plateau and ultimately strand separation. The force required for strand separation depends on the coiled coil length and the applied loading rate, suggesting that coiled coil shearing occurs out of equilibrium. This out-of-equilibrium behaviour is determined by a complex structural response which involves helix uncoiling, uncoiling-assisted sliding of the helices relative to each other in the direction of the applied force as well as uncoiling-assisted dissociation perpendicular to the force axis. These processes follow a hierarchy of timescales with helix uncoiling being faster than sliding and sliding being faster than dissociation. In SMFS experiments, strand separation is dominated by uncoiling-assisted dissociation and occurs at forces between 25-45 pN for the shortest 3-heptad coiled coil and between 35-50 pN for the longest 4-heptad coiled coil. These values are highly similar to the forces required for shearing apart short double-stranded DNA oligonucleotides, reinforcing the potential role of coiled coils as nanomechanical building blocks in applications where protein-based structures are desired.
Collapse
Affiliation(s)
- Melis Goktas
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Chuanfu Luo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ruby May A Sullan
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| |
Collapse
|
36
|
Yagi S, Akanuma S, Yamagishi A. Creation of artificial protein-protein interactions using α-helices as interfaces. Biophys Rev 2018; 10:411-420. [PMID: 29214605 PMCID: PMC5899712 DOI: 10.1007/s12551-017-0352-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Designing novel protein-protein interactions (PPIs) with high affinity is a challenging task. Directed evolution, a combination of randomization of the gene for the protein of interest and selection using a display technique, is one of the most powerful tools for producing a protein binder. However, the selected proteins often bind to the target protein at an undesired surface. More problematically, some selected proteins bind to their targets even though they are unfolded. Current state-of-the-art computational design methods have successfully created novel protein binders. These computational methods have optimized the non-covalent interactions at interfaces and thus produced artificial protein complexes. However, to date there are only a limited number of successful examples of computationally designed de novo PPIs. De novo design of coiled-coil proteins has been extensively performed and, therefore, a large amount of knowledge of the sequence-structure relationship of coiled-coil proteins has been accumulated. Taking advantage of this knowledge, de novo design of inter-helical interactions has been used to produce artificial PPIs. Here, we review recent progress in the in silico design and rational design of de novo PPIs and the use of α-helices as interfaces.
Collapse
Affiliation(s)
- Sota Yagi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
37
|
Insights into the homo-oligomerization properties of N-terminal coiled-coil domain of Ebola virus VP35 protein. Virus Res 2018; 247:61-70. [PMID: 29427597 DOI: 10.1016/j.virusres.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
The multifunctional Ebola virus (EBOV) VP35 protein is a key determinant of virulence. VP35 is essential for EBOV replication, is a component of the viral RNA polymerase and participates in nucleocapsid formation. Furthermore, VP35 contributes to EBOV evasion of the host innate immune response by suppressing RNA silencing and blocking RIG-I like receptors' pathways that lead to type I interferon (IFN) production. VP35 homo-oligomerization has been reported to be critical for its replicative function and to increase its IFN-antagonism properties. Moreover, homo-oligomerization is mediated by a predicted coiled-coil (CC) domain located within its N-terminal region. Here we report the homo-oligomerization profile of full-length recombinant EBOV VP35 (rVP35) assessed by size-exclusion chromatography and native polyacrylamide gel electrophoresis. Based on our biochemical results and in agreement with previous experimental observations, we have built an in silico 3D model of the so-far structurally unsolved EBOV VP35 CC domain and performed self-assembly homo-oligomerization simulations by means of molecular dynamics. Our model advances the understanding of how VP35 may associate in different homo-oligomeric species, a crucial process for EBOV replication and pathogenicity.
Collapse
|
38
|
Evolution and adaptation of single-pass transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:364-377. [DOI: 10.1016/j.bbamem.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
|
39
|
Lapenta F, Aupič J, Strmšek Ž, Jerala R. Coiled coil protein origami: from modular design principles towards biotechnological applications. Chem Soc Rev 2018; 47:3530-3542. [DOI: 10.1039/c7cs00822h] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review illustrates the current state in designing coiled-coil-based proteins with an emphasis on coiled coil protein origami structures and their potential.
Collapse
Affiliation(s)
- Fabio Lapenta
- Department of Synthetic Biology and Immunology
- National Institute of Chemistry
- Ljubljana
- Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology
- National Institute of Chemistry
- Ljubljana
- Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology
- National Institute of Chemistry
- Ljubljana
- Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology
- National Institute of Chemistry
- Ljubljana
- Slovenia
- EN-FIST Centre of Excellence
| |
Collapse
|
40
|
Toward high-resolution computational design of the structure and function of helical membrane proteins. Nat Struct Mol Biol 2017; 23:475-80. [PMID: 27273630 DOI: 10.1038/nsmb.3231] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
The computational design of α-helical membrane proteins is still in its infancy but has already made great progress. De novo design allows stable, specific and active minimal oligomeric systems to be obtained. Computational reengineering can improve the stability and function of naturally occurring membrane proteins. Currently, the major hurdle for the field is the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress.
Collapse
|
41
|
Mohanasundaram KA, Grover MP, Crowley TM, Goscinski A, Wouters MA. Mapping genotype-phenotype associations of nsSNPs in coiled-coil oligomerization domains of the human proteome. Hum Mutat 2017; 38:1378-1393. [PMID: 28489284 DOI: 10.1002/humu.23252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 04/13/2017] [Accepted: 05/05/2017] [Indexed: 11/11/2022]
Abstract
We assessed the impact of disease mutations (DMs) versus polymorphisms (PYs) in coiled-coil (CC) domains in UniProt by modeling the structural and functional impact of variants in silico with the CC prediction program Multicoil. The structural impact of variants was evaluated with respect to three main metrics: the oligomerization score-to determine whether the variant is stabilizing or destabilizing-the oligomerization state, and the register-specific score. The functional impact was queried indirectly in several ways. First, we examined marginally stable CCs that were either stabilized or destabilized by the variant. Second, we looked for variants that altered the register of the wild-type CC near wild-type irregularities of likely functional importance, such as skips and stammers. Third, we searched for variants that altered the oligomerization state of the CC. DMs tended to be more destabilizing than PYs; but interestingly, PYs were more frequently associated with predicted changes in the oligomerization state. The functional impact was also queried by testing the association of CC variants with multiple phenotypes, that is, pleiotropy. Mutations in CC regions of proteins cause 155 different phenotypes and are more frequently associated with pleiotropy than proteins in general. Importantly, the CC region itself often encodes the pleiotropy.
Collapse
Affiliation(s)
| | - Mani P Grover
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,Australian Animal Health Laboratory, CSIRO Biosecurity Flagship, Geelong, Victoria, Australia
| | - Andrzej Goscinski
- School of Information Technology, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Merridee A Wouters
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
42
|
Schmidt NW, Grigoryan G, DeGrado WF. The accommodation index measures the perturbation associated with insertions and deletions in coiled-coils: Application to understand signaling in histidine kinases. Protein Sci 2017; 26:414-435. [PMID: 27977891 PMCID: PMC5326573 DOI: 10.1002/pro.3095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
Coiled-coils are essential components of many protein complexes. First discovered in structural proteins such as keratins, they have since been found to figure largely in the assembly and dynamics required for diverse functions, including membrane fusion, signal transduction and motors. Coiled-coils have a characteristic repeating seven-residue geometric and sequence motif, which is sometimes interrupted by the insertion of one or more residues. Such insertions are often highly conserved and critical to interdomain communication in signaling proteins such as bacterial histidine kinases. Here we develop the "accommodation index" as a parameter that allows automatic detection and classification of insertions based on the three dimensional structure of a protein. This method allows precise identification of the type of insertion and the "accommodation length" over which the insertion is structurally accommodated. A simple theory is presented that predicts the structural perturbations of 1, 3, 4 residue insertions as a function of the length over which the insertion is accommodated. Analysis of experimental structures is in good agreement with theory, and shows that short accommodation lengths give rise to greater perturbation of helix packing angles, changes in local helical phase, and increased structural asymmetry relative to long accommodation lengths. Cytoplasmic domains of histidine kinases in different signaling states display large changes in their accommodation lengths, which can now be seen to underlie diverse structural transitions including symmetry/asymmetry and local variations in helical phase that accompany signal transduction.
Collapse
Affiliation(s)
- Nathan W. Schmidt
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of CaliforniaSan FranciscoCalifornia94158
| | - Gevorg Grigoryan
- Department of Computer ScienceDartmouth CollegeHanoverNew Hampshire03755
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire03755
| | - William F. DeGrado
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of CaliforniaSan FranciscoCalifornia94158
| |
Collapse
|
43
|
Saidijam M, Azizpour S, Patching SG. Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure. J Biomol Struct Dyn 2017; 36:443-464. [PMID: 28150531 DOI: 10.1080/07391102.2017.1285725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Sonia Azizpour
- a Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds , UK
| |
Collapse
|
44
|
Röder K, Wales DJ. Transforming the Energy Landscape of a Coiled-Coil Peptide via Point Mutations. J Chem Theory Comput 2017; 13:1468-1477. [DOI: 10.1021/acs.jctc.7b00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
45
|
Bronder AM, Bieker A, Elter S, Etzkorn M, Häussinger D, Oesterhelt F. Oriented Membrane Protein Reconstitution into Tethered Lipid Membranes for AFM Force Spectroscopy. Biophys J 2016; 111:1925-1934. [PMID: 27806274 PMCID: PMC5103026 DOI: 10.1016/j.bpj.2016.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
Membrane proteins act as a central interface between the extracellular environment and the intracellular response and as such represent one of the most important classes of drug targets. The characterization of the molecular properties of integral membrane proteins, such as topology and interdomain interaction, is key to a fundamental understanding of their function. Atomic force microscopy (AFM) and force spectroscopy have the intrinsic capabilities of investigating these properties in a near-native setting. However, atomic force spectroscopy of membrane proteins is traditionally carried out in a crystalline setup. Alternatively, model membrane systems, such as tethered bilayer membranes, have been developed for surface-dependent techniques. While these setups can provide a more native environment, data analysis may be complicated by the normally found statistical orientation of the reconstituted protein in the model membrane. We have developed a model membrane system that enables the study of membrane proteins in a defined orientation by single-molecule force spectroscopy. Our approach is demonstrated using cell-free expressed bacteriorhodopsin coupled to a quartz glass surface in a defined orientation through a protein anchor and reconstituted inside an artificial membrane system. This approach offers an effective way to study membrane proteins in a planar lipid bilayer. It can be easily transferred to all membrane proteins that possess a suitable tag and can be reconstituted into a lipid bilayer. In this respect, we anticipate that this technique may contribute important information on structure, topology, and intra- and intermolecular interactions of other seven-transmembrane helical receptors.
Collapse
Affiliation(s)
- Anna M Bronder
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | - Adeline Bieker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Shantha Elter
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Filipp Oesterhelt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany; Department for Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
46
|
Bernhofer M, Kloppmann E, Reeb J, Rost B. TMSEG: Novel prediction of transmembrane helices. Proteins 2016; 84:1706-1716. [PMID: 27566436 DOI: 10.1002/prot.25155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/18/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Transmembrane proteins (TMPs) are important drug targets because they are essential for signaling, regulation, and transport. Despite important breakthroughs, experimental structure determination remains challenging for TMPs. Various methods have bridged the gap by predicting transmembrane helices (TMHs), but room for improvement remains. Here, we present TMSEG, a novel method identifying TMPs and accurately predicting their TMHs and their topology. The method combines machine learning with empirical filters. Testing it on a non-redundant dataset of 41 TMPs and 285 soluble proteins, and applying strict performance measures, TMSEG outperformed the state-of-the-art in our hands. TMSEG correctly distinguished helical TMPs from other proteins with a sensitivity of 98 ± 2% and a false positive rate as low as 3 ± 1%. Individual TMHs were predicted with a precision of 87 ± 3% and recall of 84 ± 3%. Furthermore, in 63 ± 6% of helical TMPs the placement of all TMHs and their inside/outside topology was correctly predicted. There are two main features that distinguish TMSEG from other methods. First, the errors in finding all helical TMPs in an organism are significantly reduced. For example, in human this leads to 200 and 1600 fewer misclassifications compared to the second and third best method available, and 4400 fewer mistakes than by a simple hydrophobicity-based method. Second, TMSEG provides an add-on improvement for any existing method to benefit from. Proteins 2016; 84:1706-1716. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael Bernhofer
- Department of Informatics & Center for Bioinformatics & Computational Biology - i12, Technische Universität München (TUM), Boltzmannstr. 3, Garching/Munich, 85748, Germany.
| | - Edda Kloppmann
- Department of Informatics & Center for Bioinformatics & Computational Biology - i12, Technische Universität München (TUM), Boltzmannstr. 3, Garching/Munich, 85748, Germany.,New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York, 10027
| | - Jonas Reeb
- Department of Informatics & Center for Bioinformatics & Computational Biology - i12, Technische Universität München (TUM), Boltzmannstr. 3, Garching/Munich, 85748, Germany
| | - Burkhard Rost
- Department of Informatics & Center for Bioinformatics & Computational Biology - i12, Technische Universität München (TUM), Boltzmannstr. 3, Garching/Munich, 85748, Germany.,New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York, 10027.,Institute of Advanced Study (TUM-IAS), Lichtenbergstr. 2a, Garching/Munich, 85748, Germany.,Institute for Food and Plant Sciences WZW - Weihenstephan, Alte Akademie 8, Freising, Germany
| |
Collapse
|
47
|
Qureshi T, Goto NK. Impact of Differential Detergent Interactions on Transmembrane Helix Dimerization Affinities. ACS OMEGA 2016; 1:277-285. [PMID: 31457129 PMCID: PMC6640775 DOI: 10.1021/acsomega.6b00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 06/10/2023]
Abstract
Interactions between transmembrane (TM) helices play a critical role in the fundamental processes required for cells to communicate and exchange materials with their surroundings. Our understanding of the factors that promote TM helix interactions has greatly benefited from our ability to study these interactions in the solution phase through the use of membrane-mimetic micelles. However, less is known about the potential influence of juxtamembrane regions flanking the interacting TM helices that may modulate dimerization affinities, even when the interacting surface itself is not altered. To investigate this question, we used solution NMR to quantitate the dimerization affinity of the major coat protein from the M13 bacteriophage in sodium dodecyl sulfate (SDS), a well-characterized model of a single-spanning self-associating TM protein. Here, we showed that a shorter construct lacking the N-terminal amphipathic helix has a higher dimerization affinity relative to that of the full-length protein, with no change in the helical structure between the monomeric and dimeric states in both cases. Although this translated into a 0.6 kcal/mol difference in free energy when the SDS solvent was approximated as a continuous phase, there were deviations from this model at high protein to detergent ratios. Instead, the equilibria were better fit to a model that treats the empty micelle as an active participant in the reaction, giving rise to standard free energies of association that were the same for both full-length and TM-segment constructs. According to this model, the higher apparent affinity of the shorter peptide could be completely explained by the enhanced detergent binding by the monomer relative to that bound by the dimer. Therefore, differential detergent binding between the monomeric and dimeric states provides a mechanism by which TM helix interactions can be modulated by noninteracting juxtamembrane regions.
Collapse
|
48
|
Abstract
Coiled‐coils are found in proteins throughout all three kingdoms of life. Coiled‐coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled‐coil. Other coiled‐coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled‐coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled‐coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled‐coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled‐coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Saidijam M, Azizpour S, Patching SG. Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction. J Biomol Struct Dyn 2016; 35:929-949. [PMID: 27159787 DOI: 10.1080/07391102.2016.1167622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Sonia Azizpour
- a Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , UK
| |
Collapse
|
50
|
Wang F, Beck-García K, Zorzin C, Schamel WWA, Davis MM. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat Immunol 2016; 17:844-50. [PMID: 27213689 PMCID: PMC4916016 DOI: 10.1038/ni.3462] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Most adaptive immune responses require the activation of specific T cells through the T cell antigen receptor (TCR)-CD3 complex. Here we show that cholesterol sulfate (CS), a naturally occurring analog of cholesterol, inhibits CD3 ITAM phosphorylation, a crucial first step in T cell activation. In biochemical studies, CS disrupted TCR multimers, apparently by displacing cholesterol, which is known to bind TCRβ. Moreover, CS-deficient mice showed heightened sensitivity to a self-antigen, whereas increasing CS content by intrathymic injection inhibited thymic selection, indicating that this molecule is an intrinsic regulator of thymocyte development. These results reveal a regulatory role for CS in TCR signaling and thymic selection, highlighting the importance of the membrane microenvironment in modulating cell surface receptor activation.
Collapse
Affiliation(s)
- Feng Wang
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Katharina Beck-García
- Center for Biological Signaling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Carina Zorzin
- Center for Biological Signaling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Wolfgang W A Schamel
- Center for Biological Signaling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Mark M Davis
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|