1
|
Samanta R, Zhuang X, Varney KM, Weber DJ, Matysiak S. Deciphering S100B Allosteric Signaling: The Role of a Peptide Target, TRTK-12, as an Ensemble Modulator. J Chem Inf Model 2024; 64:3477-3487. [PMID: 38605537 DOI: 10.1021/acs.jcim.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Allostery is an essential biological phenomenon in which perturbation at one site in a biomolecule elicits a functional response at a distal location(s). It is integral to biological processes, such as cellular signaling, metabolism, and transcription regulation. Understanding allostery is also crucial for rational drug discovery. In this work, we focus on an allosteric S100B protein that belongs to the S100 class of EF-hand Ca2+-binding proteins. The Ca2+-binding affinity of S100B is modulated allosterically by TRTK-12 peptide binding 25 Å away from the Ca2+-binding site. We investigated S100B allostery by carrying out nuclear magnetic resonance (NMR) measurements along with microsecond-long molecular dynamics (MD) simulations on S100B/Ca2+ with/without TRTK-12 at different NaCl salt concentrations. NMR HSQC results show that TRTK-12 reorganizes how S100B/Ca2+ responds to different salt concentrations at both orthosteric and allosteric sites. The MD data suggest that TRTK-12 breaks the dynamic aromatic and hydrogen-bond interactions (not observed in X-ray crystallographic structures) between the hinge/helix and Ca2+-binding EF-hand loop of the two subunits in the homodimeric protein. This triggers rearrangement in the protein network architectures and leads to allosteric communication. Finally, computational studies of S100B at distinct ionic strengths suggest that ligand-bound species are more robust to the changing environment relative to the S100B/Ca2+ complex.
Collapse
Affiliation(s)
- Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| | - Xinhao Zhuang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland 20742, United States
| | - David J Weber
- IBBR, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
3
|
Alasady MJ, Terry AR, Pierce AD, Cavalier MC, Blaha CS, Adipietro KA, Wilder PT, Weber DJ, Hay N. The calcium-binding protein S100B reduces IL6 production in malignant melanoma via inhibition of RSK cellular signaling. PLoS One 2021; 16:e0256238. [PMID: 34411141 PMCID: PMC8376063 DOI: 10.1371/journal.pone.0256238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.
Collapse
Affiliation(s)
- Milad J. Alasady
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Alexander R. Terry
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Adam D. Pierce
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Michael C. Cavalier
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Catherine S. Blaha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Kaylin A. Adipietro
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul T. Wilder
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
4
|
Young BD, Yu W, Rodríguez DJV, Varney KM, MacKerell AD, Weber DJ. Specificity of Molecular Fragments Binding to S100B versus S100A1 as Identified by NMR and Site Identification by Ligand Competitive Saturation (SILCS). Molecules 2021; 26:E381. [PMID: 33450915 PMCID: PMC7828390 DOI: 10.3390/molecules26020381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/29/2022] Open
Abstract
S100B, a biomarker of malignant melanoma, interacts with the p53 protein and diminishes its tumor suppressor function, which makes this S100 family member a promising therapeutic target for treating malignant melanoma. However, it is a challenge to design inhibitors that are specific for S100B in melanoma versus other S100-family members that are important for normal cellular activities. For example, S100A1 is most similar in sequence and structure to S100B, and this S100 protein is important for normal skeletal and cardiac muscle function. Therefore, a combination of NMR and computer aided drug design (CADD) was used to initiate the design of specific S100B inhibitors. Fragment-based screening by NMR, also termed "SAR by NMR," is a well-established method, and was used to examine spectral perturbations in 2D [1H, 15N]-HSQC spectra of Ca2+-bound S100B and Ca2+-bound S100A1, side-by-side, and under identical conditions for comparison. Of the 1000 compounds screened, two were found to be specific for binding Ca2+-bound S100A1 and four were found to be specific for Ca2+-bound S100B, respectively. The NMR spectral perturbations observed in these six data sets were then used to model how each of these small molecule fragments showed specificity for one S100 versus the other using a CADD approach termed Site Identification by Ligand Competitive Saturation (SILCS). In summary, the combination of NMR and computational approaches provided insight into how S100A1 versus S100B bind small molecules specifically, which will enable improved drug design efforts to inhibit elevated S100B in melanoma. Such a fragment-based approach can be used generally to initiate the design of specific inhibitors for other highly homologous drug targets.
Collapse
Affiliation(s)
- Brianna D. Young
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA; (B.D.Y.); (D.J.V.R.); (K.M.V.)
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
| | - Wenbo Yu
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA
| | - Darex J. Vera Rodríguez
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA; (B.D.Y.); (D.J.V.R.); (K.M.V.)
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA; (B.D.Y.); (D.J.V.R.); (K.M.V.)
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA
| | - Alexander D. MacKerell
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA; (B.D.Y.); (D.J.V.R.); (K.M.V.)
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA; (W.Y.); (A.D.M.J.)
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA
| |
Collapse
|
5
|
Dhar A, Mallick S, Ghosh P, Maiti A, Ahmed I, Bhattacharya S, Mandal T, Manna A, Roy K, Singh S, Nayak DK, Wilder PT, Markowitz J, Weber D, Ghosh MK, Chattopadhyay S, Guha R, Konar A, Bandyopadhyay S, Roy S. Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide. Biopolymers 2016; 102:344-58. [PMID: 24839139 DOI: 10.1002/bip.22505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/07/2014] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development.
Collapse
Affiliation(s)
- Amlanjyoti Dhar
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cavalier MC, Pierce AD, Wilder PT, Alasady MJ, Hartman KG, Neau DB, Foley TL, Jadhav A, Maloney DJ, Simeonov A, Toth EA, Weber DJ. Covalent small molecule inhibitors of Ca(2+)-bound S100B. Biochemistry 2014; 53:6628-40. [PMID: 25268459 PMCID: PMC4211652 DOI: 10.1021/bi5005552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated levels of the tumor marker S100B are observed in malignant melanoma, and this EF-hand-containing protein was shown to directly bind wild-type (wt) p53 in a Ca(2+)-dependent manner, dissociate the p53 tetramer, and inhibit its tumor suppression functions. Likewise, inhibiting S100B with small interfering RNA (siRNA(S100B)) is sufficient to restore wild-type p53 levels and its downstream gene products and induce the arrest of cell growth and UV-dependent apoptosis in malignant melanoma. Therefore, it is a goal to develop S100B inhibitors (SBiXs) that inhibit the S100B-p53 complex and restore active p53 in this deadly cancer. Using a structure-activity relationship by nuclear magnetic resonance approach (SAR by NMR), three persistent binding pockets are found on S100B, termed sites 1-3. While inhibitors that simultaneously bind sites 2 and 3 are in place, no molecules that simultaneously bind all three persistent sites are available. For this purpose, Cys84 was used in this study as a potential means to bridge sites 1 and 2 because it is located in a small crevice between these two deeper pockets on the protein. Using a fluorescence polarization competition assay, several Cys84-modified S100B complexes were identified and examined further. For five such SBiX-S100B complexes, crystallographic structures confirmed their covalent binding to Cys84 near site 2 and thus present straightforward chemical biology strategies for bridging sites 1 and 3. Importantly, one such compound, SC1982, showed an S100B-dependent death response in assays with WM115 malignant melanoma cells, so it will be particularly useful for the design of SBiX molecules with improved affinity and specificity.
Collapse
Affiliation(s)
- Michael C Cavalier
- Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wafer LN, Tzul FO, Pandharipande PP, Makhatadze GI. Novel interactions of the TRTK12 peptide with S100 protein family members: specificity and thermodynamic characterization. Biochemistry 2013; 52:5844-56. [PMID: 23899389 DOI: 10.1021/bi400788s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The S100 protein family consists of small, dimeric proteins that exert their biological functions in response to changing calcium concentrations. S100B is the best-studied member and has been shown to interact with more than 20 binding partners in a calcium-dependent manner. The TRTK12 peptide, derived from the consensus binding sequence for S100B, has previously been found to interact with S100A1 and has been proposed to be a general binding partner of the S100 family. To test this hypothesis and gain a better understanding of the specificity of binding for the S100 proteins, 16 members of the human S100 family were screened against this peptide and its alanine variants. Novel interactions were found with only two family members, S100P and S100A2, indicating that TRTK12 selectively interacts with a small subset of the S100 proteins. Substantial promiscuity was observed in the binding site of S100B thereby accommodating variations in the peptide sequence, while S100A1, S100A2, and S100P exhibited larger differences in the binding constants for the TRTK12 alanine variants. This suggests that single-point substitutions can be used to selectively modulate the affinity of TRTK12 peptides for individual S100 proteins. This study has important implications for the rational drug design of inhibitors for the S100 proteins, which are involved in a variety of cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucas N Wafer
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | | | | |
Collapse
|
8
|
Wafer LN, Streicher WW, McCallum SA, Makhatadze GI. Thermodynamic and kinetic analysis of peptides derived from CapZ, NDR, p53, HDM2, and HDM4 binding to human S100B. Biochemistry 2012; 51:7189-201. [PMID: 22913742 PMCID: PMC3448795 DOI: 10.1021/bi300865g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S100B is a member of the S100 subfamily of EF-hand proteins that has been implicated in malignant melanoma and neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. Calcium-induced conformational changes expose a hydrophobic binding cleft, facilitating interactions with a wide variety of nuclear, cytoplasmic, and extracellular target proteins. Previously, peptides derived from CapZ, p53, NDR, HDM2, and HDM4 have been shown to interact with S100B in a calcium-dependent manner. However, the thermodynamic and kinetic basis of these interactions remains largely unknown. To gain further insight, we screened these peptides against the S100B protein using isothermal titration calorimetry and nuclear magnetic resonance. All peptides were found to have binding affinities in the low micromolar to nanomolar range. Binding-induced changes in the line shapes of S100B backbone (1)H and (15)N resonances were monitored to obtain the dissociation constants and the kinetic binding parameters. The large microscopic K(on) rate constants observed in this study (≥1 × 10(7) M(-1) s(-1)) suggest that S100B utilizes a "fly casting mechanism" in the recognition of these peptide targets.
Collapse
Affiliation(s)
- Lucas N. Wafer
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | - George I. Makhatadze
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| |
Collapse
|
9
|
Molecular dynamic simulation insights into the normal state and restoration of p53 function. Int J Mol Sci 2012; 13:9709-9740. [PMID: 22949826 PMCID: PMC3431824 DOI: 10.3390/ijms13089709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022] Open
Abstract
As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level.
Collapse
|
10
|
The Calcium-Dependent Interaction of S100B with Its Protein Targets. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20827422 PMCID: PMC2933916 DOI: 10.1155/2010/728052] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/09/2010] [Indexed: 01/16/2023] Open
Abstract
S100B is a calcium signaling protein that is a member of the S100 protein family. An important feature of S100B and most other S100 proteins (S100s) is that they often bind Ca2+ ions relatively weakly in the absence of a protein target; upon binding their target proteins, Ca2+-binding then increases by as much as from 200- to 400-fold. This manuscript reviews the structural basis and physiological significance of increased Ca2+-binding affinity in the presence of protein targets. New information regarding redundancy among family members and the structural domains that mediate the interaction of S100B, and other S100s, with their targets is also presented. It is the diversity among individual S100s, the protein targets that they interact with, and the Ca2+ dependency of these protein-protein interactions that allow S100s to transduce changes in [Ca2+]intracellular levels into spatially and temporally unique biological responses.
Collapse
|
11
|
Wilder PT, Charpentier TH, Liriano MA, Gianni K, Varney KM, Pozharski E, Coop A, Toth EA, Mackerell AD, Weber DJ. In vitro screening and structural characterization of inhibitors of the S100B-p53 interaction. ACTA ACUST UNITED AC 2010; 2010:109-126. [PMID: 21132089 DOI: 10.2147/ijhts.s8210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
S100B is highly over-expressed in many cancers, including malignant melanoma. In such cancers, S100B binds wild-type p53 in a calcium-dependent manner, sequestering it, and promoting its degradation, resulting in the loss of p53-dependent tumor suppression activities. Therefore, S100B inhibitors may be able to restore wild-type p53 levels in certain cancers and provide a useful therapeutic strategy. In this regard, an automated and sensitive fluorescence polarization competition assay (FPCA) was developed and optimized to screen rapidly for lead compounds that bind Ca(2+)-loaded S100B and inhibit S100B target complex formation. A screen of 2000 compounds led to the identification of 26 putative S100B low molecular weight inhibitors. The binding of these small molecules to S100B was confirmed by nuclear magnetic resonance spectroscopy, and additional structural information was provided by x-ray crystal structures of several compounds in complexes with S100B. Notably, many of the identified inhibitors function by chemically modifying Cys84 in protein. These results validate the use of high-throughput FPCA to facilitate the identification of compounds that inhibit S100B. These lead compounds will be the subject of future optimization studies with the ultimate goal of developing a drug with therapeutic activity for the treatment of malignant melanoma and/or other cancers with elevated S100B.
Collapse
Affiliation(s)
- Paul T Wilder
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Charpentier TH, Thompson LE, Liriano MA, Varney KM, Wilder PT, Pozharski E, Toth EA, Weber DJ. The effects of CapZ peptide (TRTK-12) binding to S100B-Ca2+ as examined by NMR and X-ray crystallography. J Mol Biol 2010; 396:1227-43. [PMID: 20053360 DOI: 10.1016/j.jmb.2009.12.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/22/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
Abstract
Structure-based drug design is underway to inhibit the S100B-p53 interaction as a strategy for treating malignant melanoma. X-ray crystallography was used here to characterize an interaction between Ca(2)(+)-S100B and TRTK-12, a target that binds to the p53-binding site on S100B. The structures of Ca(2+)-S100B (1.5-A resolution) and S100B-Ca(2)(+)-TRTK-12 (2.0-A resolution) determined here indicate that the S100B-Ca(2+)-TRTK-12 complex is dominated by an interaction between Trp7 of TRTK-12 and a hydrophobic binding pocket exposed on Ca(2+)-S100B involving residues in helices 2 and 3 and loop 2. As with an S100B-Ca(2)(+)-p53 peptide complex, TRTK-12 binding to Ca(2+)-S100B was found to increase the protein's Ca(2)(+)-binding affinity. One explanation for this effect was that peptide binding introduced a structural change that increased the number of Ca(2+) ligands and/or improved the Ca(2+) coordination geometry of S100B. This possibility was ruled out when the structures of S100B-Ca(2+)-TRTK-12 and S100B-Ca(2+) were compared and calcium ion coordination by the protein was found to be nearly identical in both EF-hand calcium-binding domains (RMSD=0.19). On the other hand, B-factors for residues in EF2 of Ca(2+)-S100B were found to be significantly lowered with TRTK-12 bound. This result is consistent with NMR (15)N relaxation studies that showed that TRTK-12 binding eliminated dynamic properties observed in Ca(2+)-S100B. Such a loss of protein motion may also provide an explanation for how calcium-ion-binding affinity is increased upon binding a target. Lastly, it follows that any small-molecule inhibitor bound to Ca(2+)-S100B would also have to cause an increase in calcium-ion-binding affinity to be effective therapeutically inside a cell, so these data need to be considered in future drug design studies involving S100B.
Collapse
Affiliation(s)
- Thomas H Charpentier
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Charpentier TH, Wilder PT, Liriano MA, Varney KM, Zhong S, Coop A, Pozharski E, MacKerell AD, Toth EA, Weber DJ. Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography. Biochemistry 2009; 48:6202-12. [PMID: 19469484 DOI: 10.1021/bi9005754] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural studies are part of a rational drug design program aimed at inhibiting the S100B-p53 interaction and restoring wild-type p53 function in malignant melanoma. To this end, structures of three compounds (SBi132, SBi1279, and SBi523) bound to Ca(2+)-S100B were determined by X-ray crystallography at 2.10 A (R(free) = 0.257), 1.98 A (R(free) = 0.281), and 1.90 A (R(free) = 0.228) resolution, respectively. Upon comparison, SBi132, SBi279, and SBi523 were found to bind in distinct locations and orientations within the hydrophobic target binding pocket of Ca(2+)-S100B with minimal structural changes observed for the protein upon complex formation with each compound. Specifically, SBi132 binds nearby residues in loop 2 (His-42, Phe-43, and Leu-44) and helix 4 (Phe-76, Met-79, Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88), whereas SBi523 interacts with a separate site defined by residues within loop 2 (Ser-41, His-42, Phe-43, Leu-44, Glu-45, and Glu-46) and one residue on helix 4 (Phe-87). The SBi279 binding site on Ca(2+)-S100B overlaps the SBi132 and SBi523 sites and contacts residues in both loop 2 (Ser-41, His-42, Phe-43, Leu-44, and Glu-45) and helix 4 (Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88). NMR data, including saturation transfer difference (STD) and (15)N backbone and (13)C side chain chemical shift perturbations, were consistent with the X-ray crystal structures and demonstrated the relevance of all three small molecule-S100B complexes in solution. The discovery that SBi132, SBi279, and SBi523 bind to proximal sites on Ca(2+)-S100B could be useful for the development of a new class of molecule(s) that interacts with one or more of these binding sites simultaneously, thereby yielding novel tight binding inhibitors specific for blocking protein-protein interactions involving S100B.
Collapse
Affiliation(s)
- Thomas H Charpentier
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wright NT, Cannon BR, Wilder PT, Morgan MT, Varney KM, Zimmer DB, Weber DJ. Solution structure of S100A1 bound to the CapZ peptide (TRTK12). J Mol Biol 2009; 386:1265-77. [PMID: 19452629 DOI: 10.1016/j.jmb.2009.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As is typical for S100-target protein interactions, a Ca 2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca 2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca 2+-loaded S100A1. When bound to S100A1, TRTK12 forms an amphipathic helix (residues N6 to S12) with several favorable hydrophobic interactions observed between W7, I10, and L11 of the peptide and a well-defined hydrophobic binding pocket in S100A1 that is only present in the Ca 2+-bound state. Next, the structure of S100A1-TRTK12 was compared to that of another S100A1-target complex (i.e., S100A1-RyRP12), which illustrated how the binding pocket in Ca 2+-S100A1 can accommodate peptide targets with varying amino acid sequences. Similarities and differences were observed when the structures of S100A1-TRTK12 and S100B-TRTK12 were compared, providing insights regarding how more than one S100 protein can interact with the same peptide target. Such comparisons, including those with other S100-target and S100-drug complexes, provide the basis for designing novel small-molecule inhibitors that could be specific for blocking one or more S100-target protein interactions.
Collapse
Affiliation(s)
- Nathan T Wright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wright NT, Cannon BR, Zimmer DB, Weber DJ. S100A1: Structure, Function, and Therapeutic Potential. ACTA ACUST UNITED AC 2009; 3:138-145. [PMID: 19890475 DOI: 10.2174/187231309788166460] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S100A1 is a member of the S100 family of calcium-binding proteins. As with most S100 proteins, S100A1 undergoes a large conformational change upon binding calcium as necessary to interact with numerous protein targets. Targets of S100A1 include proteins involved in calcium signaling (ryanidine receptors 1 & 2, Serca2a, phopholamban), neurotransmitter release (synapsins I & II), cytoskeletal and filament associated proteins (CapZ, microtubules, intermediate filaments, tau, mocrofilaments, desmin, tubulin, F-actin, titin, and the glial fibrillary acidic protein GFAP), transcription factors and their regulators (e.g. myoD, p53), enzymes (e.g. aldolase, phosphoglucomutase, malate dehydrogenase, glycogen phosphorylase, photoreceptor guanyl cyclases, adenylate cyclases, glyceraldehydes-3-phosphate dehydrogenase, twitchin kinase, Ndr kinase, and F1 ATP synthase), and other Ca2+-activated proteins (annexins V & VI, S100B, S100A4, S100P, and other S100 proteins). There is also a growing interest in developing inhibitors of S100A1 since they may be beneficial for treating a variety of human diseases including neurological diseases, diabetes mellitus, heart failure, and several types of cancer. The absence of significant phenotypes in S100A1 knockout mice provides some early indication that an S100A1 antagonist could have minimal side effects in normal tissues. However, development of S100A1-mediated therapies is complicated by S100A1's unusual ability to function as both an intracellular signaling molecule and as a secreted protein. Additionally, many S100A1 protein targets have only recently been identified, and so fully characterizing both these S100A1-target complexes and their resulting functions is a necessary prerequisite.
Collapse
Affiliation(s)
- Nathan T Wright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, Maryland, 21201
| | | | | | | |
Collapse
|
16
|
Marlatt NM, Boys BL, Konermann L, Shaw GS. Formation of Monomeric S100B and S100A11 Proteins at Low Ionic Strength. Biochemistry 2009; 48:1954-63. [DOI: 10.1021/bi802086a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicole M. Marlatt
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada, and Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Brian L. Boys
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada, and Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada, and Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Gary S. Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada, and Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
17
|
Malashkevich VN, Varney KM, Garrett SC, Wilder PT, Knight D, Charpentier TH, Ramagopal UA, Almo SC, Weber DJ, Bresnick AR. Structure of Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle myosin-IIA. Biochemistry 2008; 47:5111-26. [PMID: 18410126 DOI: 10.1021/bi702537s] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S100A4, also known as mts1, is a member of the S100 family of Ca2+-binding proteins that is directly involved in tumor invasion and metastasis via interactions with specific protein targets, including nonmuscle myosin-IIA (MIIA). Human S100A4 binds two Ca2+ ions with the typical EF-hand exhibiting an affinity that is nearly 1 order of magnitude tighter than that of the pseudo-EF-hand. To examine how Ca2+ modifies the overall organization and structure of the protein, we determined the 1.7 A crystal structure of the human Ca2+-S100A4. Ca2+ binding induces a large reorientation of helix 3 in the typical EF-hand. This reorganization exposes a hydrophobic cleft that is comprised of residues from the hinge region,helix 3, and helix 4, which afford specific target recognition and binding. The Ca2+-dependent conformational change is required for S100A4 to bind peptide sequences derived from the C-terminal portion of the MIIA rod with submicromolar affinity. In addition, the level of binding of Ca2+ to both EF-hands increases by 1 order of magnitude in the presence of MIIA. NMR spectroscopy studies demonstrate that following titration with a MIIA peptide, the largest chemical shift perturbations and exchange broadening effects occur for residues in the hydrophobic pocket of Ca2+-S100A4. Most of these residues are not exposed in apo-S100A4 and explain the Ca2+ dependence of formation of theS100A4-MIIA complex. These studies provide the foundation for understanding S100A4 target recognition and may support the development of reagents that interfere with S100A4 function.
Collapse
Affiliation(s)
- Vladimir N Malashkevich
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Prosser BL, Wright NT, Hernãndez-Ochoa EO, Varney KM, Liu Y, Olojo RO, Zimmer DB, Weber DJ, Schneider MF. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J Biol Chem 2008; 283:5046-57. [PMID: 18089560 PMCID: PMC4821168 DOI: 10.1074/jbc.m709231200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100A1, a 21-kDa dimeric Ca2+-binding protein, is an enhancer of cardiac Ca2+ release and contractility and a potential therapeutic agent for the treatment of cardiomyopathy. The role of S100A1 in skeletal muscle has been less well defined. Additionally, the precise molecular mechanism underlying S100A1 modulation of sarcoplasmic reticulum Ca2+ release in striated muscle has not been fully elucidated. Here, utilizing a genetic approach to knock out S100A1, we demonstrate a direct physiological role of S100A1 in excitation-contraction coupling in skeletal muscle. We show that the absence of S100A1 leads to decreased global myoplasmic Ca2+ transients following electrical excitation. Using high speed confocal microscopy, we demonstrate with high temporal resolution depressed activation of sarcoplasmic reticulum Ca2+ release in S100A1-/- muscle fibers. Through competition assays with sarcoplasmic reticulum vesicles and through tryptophan fluorescence experiments, we also identify a novel S100A1-binding site on the cytoplasmic face of the intact ryanodine receptor that is conserved throughout striated muscle and corresponds to a previously identified calmodulin-binding site. Using a 12-mer peptide of this putative binding domain, we demonstrate low micromolar binding affinity to S100A1. NMR spectroscopy reveals this peptide binds within the Ca2+-dependent hydrophobic pocket of S100A1. Taken together, these data suggest that S100A1 plays a significant role in skeletal muscle excitation-contraction coupling, primarily through specific interactions with a conserved binding domain of the ryanodine receptor. This warrants further investigation into the use of S100A1 as a therapeutic target for the treatment of both cardiac and skeletal myopathies.
Collapse
Affiliation(s)
- Benjamin L. Prosser
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan T. Wright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Erick O. Hernãndez-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yewei Liu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Rotimi O. Olojo
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Danna B. Zimmer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-44467
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Martin F. Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
19
|
Arendt Y, Bhaumik A, Del Conte R, Luchinat C, Mori M, Porcu M. Fragment Docking to S100 Proteins Reveals a Wide Diversity of Weak Interaction Sites. ChemMedChem 2007; 2:1648-54. [PMID: 17705319 DOI: 10.1002/cmdc.200700096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The S100 protein family is a highly conserved group of Ca(2+)-binding proteins that belong to the EF-hand type and are considered potential drug targets. In the present study we focused our attention on two members of the family: S100A13 and S100B; the former is involved in the nonclassical protein release of two proangiogenic polypeptides FGF-1 and IL-1alpha that are involved in inflammatory processes, whereas S100B is known to interact with the C-terminal domain of the intracellular tumor suppressor p53 and promote cancer development. We screened, using waterLOGSY NMR experiments, 430 molecules of a generic fragment library and we identified different hits for each protein. The subset of fragments interacting with S100B has very few members in common with the subset interacting with S100A13. From the (15)N-HSQC NMR spectra of the proteins in the presence of those hits the chemical shift differences Deltadelta(HN) were calculated, and the main regions of surface interaction were identified. A relatively large variety of interaction regions for various ligands were identified for the two proteins, including known or suggested protein-protein interaction sites.
Collapse
Affiliation(s)
- Yvonne Arendt
- ProtEra S.r.l. University Scientific Campus viale delle Idee, 22, 50019 Sesto Fiorentino FI, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Wilder PT, Lin J, Bair CL, Charpentier TH, Yang D, Liriano M, Varney KM, Lee A, Oppenheim AB, Adhya S, Carrier F, Weber DJ. Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1284-97. [PMID: 17010455 DOI: 10.1016/j.bbamcr.2006.08.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 08/16/2006] [Accepted: 08/17/2006] [Indexed: 01/10/2023]
Abstract
S100B is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effect by binding and affecting various target proteins. A consensus sequence for S100B target proteins was published as (K/R)(L/I)xWxxIL and matches a region in the actin capping protein CapZ (V.V. Ivanenkov, G.A. Jamieson, Jr., E. Gruenstein, R.V. Dimlich, Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ, J. Biol. Chem. 270 (1995) 14651-14658). Several additional S100B targets are known including p53, a nuclear Dbf2 related (NDR) kinase, the RAGE receptor, neuromodulin, protein kinase C, and others. Examining the binding sites of such targets and new protein sequence searches provided additional potential target proteins for S100B including Hdm2 and Hdm4, which were both found to bind S100B in a calcium-dependent manner. The interaction between S100B and the Hdm2 and/or the Hdm4 proteins may be important physiologically in light of evidence that like Hdm2, S100B also contributes to lowering protein levels of the tumor suppressor protein, p53. For the S100B-p53 interaction, it was found that phosphorylation of specific serine and/or threonine residues reduces the affinity of the S100B-p53 interaction by as much as an order of magnitude, and is important for protecting p53 from S100B-dependent down-regulation, a scenario that is similar to what is found for the Hdm2-p53 complex.
Collapse
Affiliation(s)
- Paul T Wilder
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Santamaria-Kisiel L, Rintala-Dempsey A, Shaw G. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006; 396:201-14. [PMID: 16683912 PMCID: PMC1462724 DOI: 10.1042/bj20060195] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 12/12/2022]
Abstract
The S100 proteins comprise at least 25 members, forming the largest group of EF-hand signalling proteins in humans. Although the proteins are expressed in many tissues, each S100 protein has generally been shown to have a preference for expression in one particular tissue or cell type. Three-dimensional structures of several S100 family members have shown that the proteins assume a dimeric structure consisting of two EF-hand motifs per monomer. Calcium binding to these S100 proteins, with the exception of S100A10, results in an approx. 40 degrees alteration in the position of helix III, exposing a broad hydrophobic surface that enables the S100 proteins to interact with a variety of target proteins. More than 90 potential target proteins have been documented for the S100 proteins, including the cytoskeletal proteins tubulin, glial fibrillary acidic protein and F-actin, which have been identified mostly from in vitro experiments. In the last 5 years, efforts have concentrated on quantifying the protein interactions of the S100 proteins, identifying in vivo protein partners and understanding the molecular specificity for target protein interactions. Furthermore, the S100 proteins are the only EF-hand proteins that are known to form both homo- and hetero-dimers, and efforts are underway to determine the stabilities of these complexes and structural rationales for their formation and potential differences in their biological roles. This review highlights both the calcium-dependent and -independent interactions of the S100 proteins, with a focus on the structures of the complexes, differences and similarities in the strengths of the interactions, and preferences for homo- compared with hetero-dimeric S100 protein assembly.
Collapse
Affiliation(s)
| | - Anne C. Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Gary S. Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
22
|
Markowitz J, Rustandi RR, Varney KM, Wilder PT, Udan R, Wu SL, Horrocks WD, Weber DJ. Calcium-Binding Properties of Wild-Type and EF-Hand Mutants of S100B in the Presence and Absence of a Peptide Derived from the C-Terminal Negative Regulatory Domain of p53. Biochemistry 2005; 44:7305-14. [PMID: 15882069 DOI: 10.1021/bi050321t] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium. The large reorientation of this helix is a prerequisite for the interaction between each subunit of S100B and target proteins such as the tumor suppressor protein, p53. In this study, Tb(3+) was used as a probe to examine how binding of a 22-residue peptide derived from the C-terminal regulatory domain of p53 affects the rate of Ca(2+) ion dissociation. In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively. These data are consistent with a previously reported result, which showed that that target peptide binding to S100B enhances its calcium-binding affinity [Rustandi et al. (1998) Biochemistry 37, 1951-1960]. The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively. These two association rate constants are significantly below the diffusion control ( approximately 10(9) M(-)(1) s(-)(1)) and likely involve both Ca(2+) ion association and a Ca(2+)-dependent structural rearrangement, which is slightly different when the target peptide is present. EF-hand calcium-binding mutants of S100B were engineered at the -Z position (EF-hand 1, E31A; EF-hand 2, E72A; both EF-hands, E31A + E72A) and examined to further understand how specific residues contribute to calcium binding in S100B in the absence and presence of the p53 peptide.
Collapse
Affiliation(s)
- Joseph Markowitz
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wilder PT, Varney KM, Weiss MB, Gitti RK, Weber DJ. Solution Structure of Zinc- and Calcium-Bound Rat S100B as Determined by Nuclear Magnetic Resonance Spectroscopy†,‡. Biochemistry 2005; 44:5690-702. [PMID: 15823027 DOI: 10.1021/bi0475830] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The EF-hand calcium-binding protein S100B also binds one zinc ion per subunit with a relatively high affinity (K(d) approximately 90 nM) [Wilder et al., (2003) Biochemistry 42, 13410-13421]. In this study, the structural characterization of zinc binding to calcium-loaded S100B was examined using high-resolution NMR techniques, including structural characterization of this complex in solution at atomic resolution. As with other S100 protein structures, the quaternary structure of Zn(2+)-Ca(2+)-bound S100B was found to be dimeric with helices H1, H1', H4, and H4' forming an X-type four-helix bundle at the dimer interface. NMR data together with mutational analyses are consistent with Zn(2+) coordination arising from His-15 and His-25 of one S100B subunit and from His-85 and Glu-89 of the other subunit. The addition of Zn(2+) was also found to extend helices H4 and H4' three to four residues similar to what was previously observed with the binding of target proteins to S100B. Furthermore, a kink in helix 4 was observed in Zn(2+)-Ca(2+)-bound S100B that is not in Ca(2+)-bound S100B. These structural changes upon Zn(2+)-binding could explain the 5-fold increase in affinity that Zn(2+)-Ca(2+)-bound S100B has for peptide targets such as the TRTK peptide versus Ca(2+)-bound S100B. There are also changes in the relative positioning of the two EF-hand calcium-binding domains and the respective helices comprising these EF-hands. Changes in conformation such as these could contribute to the order of magnitude higher affinity that S100B has for calcium in the presence of Zn(2+).
Collapse
Affiliation(s)
- Paul T Wilder
- Molecular and Cell Biology Program, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
24
|
Lin J, Yang Q, Yan Z, Markowitz J, Wilder PT, Carrier F, Weber DJ. Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells. J Biol Chem 2004; 279:34071-7. [PMID: 15178678 DOI: 10.1074/jbc.m405419200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
S100 calcium-binding proteins such as S100B are elevated in primary malignant melanoma and are used as markers for this and numerous other cancers. Wild-type p53 protein levels are relatively low in these cancer cells (i.e. when compared with cells without S100B) but are elevated when RNA antisense to S100B is introduced. This result implicates S100B in the down-regulation of p53 and is consistent with the large decreases in p53 protein levels observed previously in transient co-transfections of p53 and S100B (Lin, J., Blake, M., Tang, C., Zimmer, D., Rustandi, R. R., Weber, D. J., and Carrier, F. (2001) J. Biol. Chem. 276, 35037-35041). Down-regulation of p53 in primary malignant melanoma cells is likely the result of a direct interaction with S100B, which was observed by co-immunoprecipitation experiments. Furthermore, p53 binds regions of the S100B promoter, one of which matches the 20-nucleotide p53-binding consensus DNA sequence perfectly. Therefore, when p53 levels increase, it contributes to its own demise by up-regulating the transcription of S100B as part of a negative feedback loop. This is analogous to what is found for another protein that down-regulates p53, namely hdm2 (human double mutant 2).
Collapse
Affiliation(s)
- Jing Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zimmer DB, Wright Sadosky P, Weber DJ. Molecular mechanisms of S100-target protein interactions. Microsc Res Tech 2003; 60:552-9. [PMID: 12645003 DOI: 10.1002/jemt.10297] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
S100 proteins have no known enzymatic activity and exert their intracellular effects via interaction with and regulation of the activity of other proteins, termed target proteins, in both a Ca(2+)-dependent and Ca(2+)-independent manner. Structural studies have identified the linker region between the two EF-hand Ca(2+) binding domains and the C-terminus as Ca(2+)-dependent target protein binding sites in several S100 family members. In fact, C-terminal aromatic residues are obligatory for interaction of S100A1 with several of its Ca(2+)-dependent target proteins. Pharmacological studies suggest the presence of additional Ca(2+)-dependent binding motifs on some family members. A minimum of seven family members interact with and regulate the activity of aldolase A in a Ca(2+)-independent manner. In the case of S100A1, Ca(2+)-independent target protein interactions utilize a binding motif distinct from the C-terminal Ca(2+)-dependent target protein binding site. Several studies suggest that ionic interactions participate in the interaction of S100 family members with Ca(2+)-independent target proteins. While some target proteins are activated by multiple family members, other target proteins exhibit family member-specific activation, i.e., they are activated by a single family member. As predicted, family member specific interactions appear to be mediated by regions that exhibit the most divergence in amino acid sequence among family members, the linker or "hinge" region and the C terminus. Further specificity in S100-target protein interactions may arise from the different biochemical/biophysical properties of the individual family members, including affinity for metal ions (Ca(2+), Zn(2+), and Cu(2+)), oligomerization properties, heterodimerization, post-translational modifications, and lipid-binding. Delineation of the structural motifs that mediate S100-target protein interactions and determination of the in vivo relevance of these interactions are needed to fully understand the role of S100 proteins in normal and diseased cells.
Collapse
Affiliation(s)
- Danna B Zimmer
- Department of Pharmacology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | |
Collapse
|
26
|
Deloulme JC, Gentil BJ, Baudier J. Monitoring of S100 homodimerization and heterodimeric interactions by the yeast two-hybrid system. Microsc Res Tech 2003; 60:560-8. [PMID: 12645004 DOI: 10.1002/jemt.10298] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The S100 family consists of 19 members, which function as transducers of calcium signals in a tissue-specific manner. Upon calcium binding, the conformation of many S100 proteins changes dramatically. Several hydrophobic residues are exposed, allowing the S100 proteins to interact with their target proteins, and thereby to transduce calcium signals into specific biological responses. To further elucidate the exact contribution of the S100 calciproteins in the calcium signalling pathways, several groups have applied the yeast two-hybrid technology to identify putative target proteins for the various S100 calciproteins. Two-hybrid large screens using S100 proteins as baits have confirmed the biochemical and structural feature of S100, which enable them to form homodimers and the ability of some members to form specific heterodimers in vivo. Yeast two-hybrid investigations have allowed the identification of conserved hydrophobic residues and domains that are crucial for the stabilization of S100 homo- and heterodimers. Furthermore, this method clearly underlines that the homo- and heterodimerization mechanisms differ among the members of the S100 family. However, several lines of evidence strongly suggest that two-hybrid methodology is limited to the analysis of interactions that are calcium-independent, since no target proteins other than S100 family members themselves have been detected with this methodology.
Collapse
Affiliation(s)
- Jean Christophe Deloulme
- Département Réponse et Dynamique Cellulaires du CEA, INSERM, EMI 0104, CEA-Grenoble, 38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
27
|
Mbele GO, Deloulme JC, Gentil BJ, Delphin C, Ferro M, Garin J, Takahashi M, Baudier J. The zinc- and calcium-binding S100B interacts and co-localizes with IQGAP1 during dynamic rearrangement of cell membranes. J Biol Chem 2002; 277:49998-50007. [PMID: 12377780 DOI: 10.1074/jbc.m205363200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Zn(2+)- and Ca(2+)-binding S100B protein is implicated in multiple intracellular and extracellular regulatory events. In glial cells, a relationship exists between cytoplasmic S100B accumulation and cell morphological changes. We have identified the IQGAP1 protein as the major cytoplasmic S100B target protein in different rat and human glial cell lines in the presence of Zn(2+) and Ca(2+). Zn(2+) binding to S100B is sufficient to promote interaction with IQGAP1. IQ motifs on IQGAP1 represent the minimal interaction sites for S100B. We also provide evidence that, in human astrocytoma cell lines, S100B co-localizes with IQGAP1 at the polarized leading edge and areas of membrane ruffling and that both proteins relocate in a Ca(2+)-dependent manner within newly formed vesicle-like structures. Our data identify IQGAP1 as a potential target protein of S100B during processes of dynamic rearrangement of cell membrane morphology. They also reveal an additional cellular function for IQGAP1 associated with Zn(2+)/Ca(2+)-dependent relocation of S100B.
Collapse
Affiliation(s)
- Gaelh Ouengue Mbele
- Département Réponse et Différenciation Cellulaires du Commissariat à l'Energie Atomique (CEA), INSERM EMI-0104 DRDC-TS, Grenoble 38054, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Inman KG, Yang R, Rustandi RR, Miller KE, Baldisseri DM, Weber DJ. Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12. J Mol Biol 2002; 324:1003-14. [PMID: 12470955 DOI: 10.1016/s0022-2836(02)01152-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The solution NMR structure is reported for Ca(2+)-loaded S100B bound to a 12-residue peptide, TRTK-12, from the actin capping protein CapZ (alpha1 or alpha2 subunit, residues 265-276: TRTKIDWNKILS). This peptide was discovered by Dimlich and co-workers by screening a bacteriophage random peptide display library, and it matches exactly the consensus S100B binding sequence ((K/R)(L/I)XWXXIL). As with other S100B target proteins, a calcium-dependent conformational change in S100B is required for TRTK-12 binding. The TRTK-12 peptide is an amphipathic helix (residues W7 to S12) in the S100B-TRTK complex, and helix 4 of S100B is extended by three or four residues upon peptide binding. However, helical TRTK-12 in the S100B-peptide complex is uniquely oriented when compared to the three-dimensional structures of other S100-peptide complexes. The three-dimensional structure of the S100B-TRTK peptide complex illustrates that residues in the S100B binding consensus sequence (K4, I5, W7, I10, L11) are all involved in the S100B-peptide interface, which can explain its orientation in the S100B binding pocket and its relatively high binding affinity. A comparison of the S100B-TRTK peptide structure to the structures of apo- and Ca(2+)-bound S100B illustrates that the binding site of TRTK-12 is buried in apo-S100B, but is exposed in Ca(2+)-bound S100B as necessary to bind the TRTK-12 peptide.
Collapse
Affiliation(s)
- Keith G Inman
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 N. Greene St., Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
29
|
Arcuri C, Giambanco I, Bianchi R, Donato R. Subcellular localization of S100A11 (S100C, calgizzarin) in developing and adult avian skeletal muscles. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:84-94. [PMID: 12445463 DOI: 10.1016/s1570-9639(02)00448-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
S100A11 is a member of a multigenic family of Ca(2+)-modulated proteins of the EF-hand type. We studied the subcellular localization of S100A11 in developing and adult avian skeletal muscle cells by confocal laser scanning microscopy and immunogold cytochemistry to get information about possible functional roles of this protein. Analyses of alpha-actinin, S100A1 and S100B were done in parallel for comparison. Low levels of S100A11 were found in skeletal muscle cells at embryonic day (E) 8. At E12, S100A11 was found in myotubes in the form of fine dots located between Z-discs, and on the sarcolemma and its invaginations. At E15, S100A11 was found on the sarcolemma and internal membranes, likely longitudinal tubules, where the protein was co-localized in part with S100A1 and S100B. At E18 and afterwards, co-localization of the three S100 proteins on internal membranes was almost complete. No evidence for association of S100A11 with the contractile elements of the sarcomeres was obtained. Our data suggests that, like S100A1 and S100B, S100A11 might have a role in the regulation of membrane activities, probably in relation to Ca(2+) fluxes in skeletal muscle cells.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy
| | | | | | | |
Collapse
|
30
|
Baldisseri DM, Margolis JW, Weber DJ, Koo JH, Margolis FL. Olfactory marker protein (OMP) exhibits a beta-clam fold in solution: implications for target peptide interaction and olfactory signal transduction. J Mol Biol 2002; 319:823-37. [PMID: 12054873 DOI: 10.1016/s0022-2836(02)00282-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Olfactory marker protein (OMP) is a ubiquitous, cytoplasmic protein found in mature olfactory receptor neurons of all vertebrates. Electrophysiological and behavioral studies demonstrate that it is a modulator of the olfactory signal transduction pathway. Here, we demonstrate that the solution structure of OMP, as determined by NMR studies, is a single globular domain protein comprised of eight beta-strands forming two beta-sheets oriented orthogonally to one another, thus exhibiting a "beta-clam" or "beta-sandwich" fold: beta-sheet 1 is comprised of beta3-beta8-beta1-beta2 and beta-sheet 2 contains beta6-beta5-beta4-beta7. Insertions include two, long alpha-helices located on opposite sides of the beta-clam and three flexible loops. The juxtaposition of beta-strands beta6-beta5-beta4-beta7-beta2-beta1-beta8-beta3 forms a continuously curved surface and encloses one side of the beta-clam. The "cleft" formed by the two beta-sheets is opposite to the closed end of the beta-clam. Using a peptide titration series, we have identified this cleft as the binding surface for a peptide derived from the Bex1 protein. The highly conserved Omega-loop structure adjacent to the Bex1 peptide-binding surface found in OMP may be the site of additional OMP-protein interactions related to its role in modulating olfactory signal transduction. Thus, the interaction between the OMP and Bex1 proteins could facilitate the interaction between OMP and other components of the olfactory signaling pathway.
Collapse
Affiliation(s)
- Donna M Baldisseri
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | | | |
Collapse
|
31
|
Mäler L, Sastry M, Chazin WJ. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin. J Mol Biol 2002; 317:279-90. [PMID: 11902843 DOI: 10.1006/jmbi.2002.5421] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.
Collapse
Affiliation(s)
- Lena Mäler
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, Sweden
| | | | | |
Collapse
|
32
|
Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33:637-68. [PMID: 11390274 DOI: 10.1016/s1357-2725(01)00046-2] [Citation(s) in RCA: 1181] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
S100 is a multigenic family of non-ubiquitous Ca(2+)-modulated proteins of the EF-hand type expressed in vertebrates exclusively and implicated in intracellular and extracellular regulatory activities. Within cells, most of S100 members exist in the form of antiparallelly packed homodimers (in some cases heterodimers), capable of functionally crossbridging two homologous or heterologous target proteins in a Ca(2+)-dependent (and, in some instances, Ca(2+)-independent) manner. S100 oligomers can also form, under the non-reducing conditions found in the extracellular space and/or within cells upon changes in the cell redox status. Within cells, S100 proteins have been implicated in the regulation of protein phosphorylation, some enzyme activities, the dynamics of cytoskeleton components, transcription factors, Ca(2+) homeostasis, and cell proliferation and differentiation. Certain S100 members are released into the extracellular space by an unknown mechanism. Extracellular S100 proteins stimulate neuronal survival and/or differentiation and astrocyte proliferation, cause neuronal death via apoptosis, and stimulate (in some cases) or inhibit (in other cases) the activity of inflammatory cells. A cell surface receptor, RAGE, has been identified on inflammatory cells and neurons for S100A12 and S100B, which transduces S100A12 and S100B effects. It is not known whether RAGE is a universal S100 receptor, S100 members interact with other cell surface receptors, or S100 protein interaction with other extracellular factors specifies the biological effects of a given S100 protein on a target cell. The variety of intracellular target proteins of S100 proteins and, in some cases, of a single S100 protein, and the cell specificity of expression of certain S100 members suggest that these proteins might have a role in the fine regulation of effector proteins and/or specific steps of signaling pathways/cellular functions. Future analyses should discriminate between functionally relevant S100 interactions with target proteins and in vitro observations devoid of physiological importance.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental and Biochemical Sciences, Section of Anatomy, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy.
| |
Collapse
|
33
|
Newlon MG, Roy M, Morikis D, Carr DW, Westphal R, Scott JD, Jennings PA. A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 2001; 20:1651-62. [PMID: 11285229 PMCID: PMC145475 DOI: 10.1093/emboj/20.7.1651] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The specificity of intracellular signaling events is controlled, in part, by compartmentalization of protein kinases and phosphatases. The subcellular localization of these enzymes is often maintained by protein- protein interactions. A prototypic example is the compartmentalization of the cAMP-dependent protein kinase (PKA) through its association with A-kinase anchoring proteins (AKAPs). A docking and dimerization domain (D/D) located within the first 45 residues of each regulatory (R) subunit protomer forms a high affinity binding site for its anchoring partner. We now report the structures of two D/D-AKAP peptide complexes obtained by solution NMR methods, one with Ht31(493-515) and the other with AKAP79(392-413). We present the first direct structural data demonstrating the helical nature of the peptides. The structures reveal conserved hydrophobic interaction surfaces on the helical AKAP peptides and the PKA R subunit, which are responsible for mediating the high affinity association in the complexes. In a departure from the dimer-dimer interactions seen in other X-type four-helix bundle dimeric proteins, our structures reveal a novel hydrophobic groove that accommodates one AKAP per RIIalpha D/D.
Collapse
Affiliation(s)
- Marceen G. Newlon
- The Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359,
VA Medical Center, R&D-8, 3710 S.W. Veterans Hospital Road, Portland, OR 97201 and Howard Hughes Medical Institute, Vollum Institute, 3181 S.W. Sam Jackson Park Road, Portland, OR, USA Present address: The Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA Corresponding author e-mail:
| | | | | | - Daniel W. Carr
- The Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359,
VA Medical Center, R&D-8, 3710 S.W. Veterans Hospital Road, Portland, OR 97201 and Howard Hughes Medical Institute, Vollum Institute, 3181 S.W. Sam Jackson Park Road, Portland, OR, USA Present address: The Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA Corresponding author e-mail:
| | - Ryan Westphal
- The Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359,
VA Medical Center, R&D-8, 3710 S.W. Veterans Hospital Road, Portland, OR 97201 and Howard Hughes Medical Institute, Vollum Institute, 3181 S.W. Sam Jackson Park Road, Portland, OR, USA Present address: The Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA Corresponding author e-mail:
| | - John D. Scott
- The Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359,
VA Medical Center, R&D-8, 3710 S.W. Veterans Hospital Road, Portland, OR 97201 and Howard Hughes Medical Institute, Vollum Institute, 3181 S.W. Sam Jackson Park Road, Portland, OR, USA Present address: The Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA Corresponding author e-mail:
| | - Patricia A. Jennings
- The Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359,
VA Medical Center, R&D-8, 3710 S.W. Veterans Hospital Road, Portland, OR 97201 and Howard Hughes Medical Institute, Vollum Institute, 3181 S.W. Sam Jackson Park Road, Portland, OR, USA Present address: The Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA Corresponding author e-mail:
| |
Collapse
|
34
|
Deloulme JC, Assard N, Mbele GO, Mangin C, Kuwano R, Baudier J. S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J Biol Chem 2000; 275:35302-10. [PMID: 10913138 DOI: 10.1074/jbc.m003943200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In solution, S100B protein is a noncovalent homodimer composed of two subunits associated in an antiparallel manner. Upon calcium binding, the conformation of S100B changes dramatically, leading to the exposure of hydrophobic residues at the surface of S100B. The residues in the C-terminal domain of S100B encompassing Phe(87) and Phe(88) have been implicated in interaction with target proteins. In this study, we used two-hybrid technology to identify specific S100B target proteins. Using S100B as bait, we identify S100A6 and S100A11 as specific targets for S100B. S100A1, the closest homologue of S100B, is capable of interaction with S100B but does not interact with S100A6 or S100A11. S100B, S100A6, and S100A11 isoforms are co-regulated and co-localized in astrocytoma U373 cells. Furthermore, co-immunoprecipitation experiments demonstrated that Ca(2+)/Zn(2+) stabilizes S100B-S100A6 and S100B-S100A11 heterocomplexes. Deletion of the C-terminal domain or mutation of Phe(87) and Phe(88) residues has no effect on S100B homodimerization and heterodimerization with S100A1 but drastically decreases interaction between S100B and S100A6 or S100A11. Our data suggest that the interaction between S100B and S100A6 or S100A11 should not be viewed as a typical S100 heterodimerization but rather as a model of interaction between S100B and target proteins.
Collapse
Affiliation(s)
- J C Deloulme
- Département de Biologie Moléculaire et Structurale du Commissariat à l'Energie Atomique, INSERM Unité 244, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|