1
|
Li M, Sun R, He Y, Zhou T, Mao J, Li W, Liu C, Ma L, Fu S. Different responses of canopy and shrub leaves to canopy nitrogen and water addition in warm temperate forest. FRONTIERS IN PLANT SCIENCE 2025; 16:1530588. [PMID: 40297727 PMCID: PMC12034683 DOI: 10.3389/fpls.2025.1530588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
Introduction Understanding the effects of nitrogen deposition and increased rainfall on plants is critical for maintaining forest ecosystem services. Although previous studies primarily examined the effects of environmental changes on leaf functional traits, the underlying physiological and metabolic processes associated with these traits remain poorly understood and warrant further investigation. Methods To address this knowledge gap, we evaluated the influence of canopy nitrogen (25 kg ha-1 yr-1) and water (30% of the local precipitation) addition on leaf functional traits, diversity, and associated physiological and metabolic processes in the dominant species of tree and shrub layers. Results Only the interaction between nitrogen and water significantly reduced the functional richness (FRic) of the community. The other treatments had no notable effects on functional diversity. Importantly, the physiological processes of trees and shrubs showed different regulatory strategies. In addition, there were significant changes in 29 metabolic pathways of the tree, whereas only 18 metabolic pathways were significantly altered in shrub. Among the identified metabolic pathways, four were annotated multiple times, with amino acid metabolism being the most active. Discussion These regulatory processes enable the leaves to withstand external disturbances and maintain their relative stability under changing environmental conditions. The study findings underscore the limitations of previous research, which often relied on the direct application of treatments to the understory and so failed to accurately assess the effects of nitrogen and water on leaf functional traits. Future studies should adopt canopy-level nitrogen and water addition to better simulate the impacts of global environmental change.
Collapse
Affiliation(s)
- Mengke Li
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| | - Ruomin Sun
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| | - Yaqi He
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| | - Tenglong Zhou
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| | - Jianing Mao
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| | - Wen Li
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| | - Chang Liu
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| | - Lei Ma
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| | - Shenglei Fu
- College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng, China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
- Xinyang Academy of Ecological Research, Henan University, Xinyang, China
| |
Collapse
|
2
|
Xiang X, De KJ, Lin W, Feng T, Li F, Wei X. The ecological niche characteristics and interspecific associations of plant species in the alpine meadow of the Tibetan Plateau affected plant species diversity under nitrogen addition. PeerJ 2024; 12:e18526. [PMID: 39583097 PMCID: PMC11586050 DOI: 10.7717/peerj.18526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Background Plant species diversity is of great significance to maintain the structure and function of the grassland ecosystem. Analyzing community niche and interspecific associations is crucial for understanding changes in plant species diversity. However, there are few studies on the response of plant species diversity, species niche characteristics, and interspecific relationships to nitrogen addition in alpine meadows on the Qinghai-Tibet Plateau. Methods This study investigates the effects of different levels of nitrogen addition (0, 15, 30, 45, and 60 g N m-2) on plant species diversity, functional group importance values, niche width, niche overlap, and interspecific associations in an alpine meadow. Results 1) Compared with the control (CK), the Shannon-Weiner index and species richness index significantly increased by 11.36% and 30.77%, respectively, with nitrogen addition at 30 g N m-2, while both indices significantly decreased by 14.48% and 23.08%, respectively, at 60 g N m-2. As nitrogen addition increased, the importance value of grasses showed an upward trend, whereas the importance value of sedges showed a decline. 2) The niche width of Poa pratensis L., Elymus nutans Griseb., and Stipa purpurea Griseb. are increased with higher nitrogen addition. As nitrogen addition increases, the niche overlap values also show a rising trend. At 60 g N m-2, the overall community association in the alpine meadow exhibited a significant negative correlation. These findings suggest that grasses exhibit strong ecological adaptability under high nitrogen addition and gain a competitive advantage in spatial competition, increasing their niche width. Moreover, as nitrogen levels increase, the importance values of grasses rise significantly, and their ecological characteristics become more similar, resulting in reduced niche overlap among plant species. Furthermore, high nitrogen addition intensifies interspecific competition between grasses, sedges, and forbs, disrupting the original balance and reducing species diversity. These insights provide a valuable understanding of changes in species diversity and competitive dynamics in alpine meadow plant communities under high nitrogen addition.
Collapse
Affiliation(s)
- Xuemei Xiang
- College of Animal Husbandry and Veterinary Science, Qinghai University, Qinghai Province, Xining, China
| | - Ke Jia De
- College of Animal Husbandry and Veterinary Science, Qinghai University, Qinghai Province, Xining, China
| | - Weishan Lin
- College of Animal Husbandry and Veterinary Science, Qinghai University, Qinghai Province, Xining, China
| | - Tingxu Feng
- College of Animal Husbandry and Veterinary Science, Qinghai University, Qinghai Province, Xining, China
| | - Fei Li
- College of Animal Husbandry and Veterinary Science, Qinghai University, Qinghai Province, Xining, China
| | - Xijie Wei
- College of Animal Husbandry and Veterinary Science, Qinghai University, Qinghai Province, Xining, China
| |
Collapse
|
3
|
Ren J, Wang C, Wang Q, Song W, Sun W. Nitrogen addition regulates the effects of variation in precipitation patterns on plant biomass formation and allocation in a Leymus chinensis grassland of northeast China. FRONTIERS IN PLANT SCIENCE 2024; 14:1323766. [PMID: 38283970 PMCID: PMC10810989 DOI: 10.3389/fpls.2023.1323766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Global warming is predicted to change precipitation amount and reduce precipitation frequency, which may alter grassland primary productivity and biomass allocation, especially when interact with other global change factors, such as nitrogen deposition. The interactive effects of changes in precipitation amount and nitrogen addition on productivity and biomass allocation are extensively studied; however, how these effects may be regulated by the predicted reduction in precipitation frequency remain largely unknown. Using a mesocosm experiment, we investigated responses of primary productivity and biomass allocation to the manipulated changes in precipitation amount (PA: 150 mm, 300 mm, 450 mm), precipitation frequency (PF: medium and low), and nitrogen addition (NA: 0 and 10 g N m-2 yr-1) in a Leymus chinensis grassland. We detected significant effects of the PA, PF and NA treatments on both aboveground biomass (AGB) and belowground biomass (BGB); but the interactive effects were only significant between the PA and NA on AGB. Both AGB and BGB increased with an increment in precipitation amount and nitrogen addition; the reduction in PF decreased AGB, but increased BGB. The reduced PF treatment induced an enhancement in the variation of soil moisture, which subsequently affected photosynthesis and biomass formation. Overall, there were mismatches in the above- and belowground biomass responses to changes in precipitation regime. Our results suggest the predicted changes in precipitation regime, including precipitation amount and frequency, is likely to alter primary productivity and biomass allocation, especially when interact with nitrogen deposition. Therefore, predicting the influence of global changes on grassland structure and functions requires the consideration of interactions among multiple global change factors.
Collapse
Affiliation(s)
- Jianli Ren
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- Institute of Resources and Ecology, Yili Normal University, Yining, Xinjiang, China
- School of Resources and Environment, Yili Normal University, Yining, Xinjiang, China
| | - Chengliang Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
| | - Qiaoxin Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
| | - Wenzheng Song
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
4
|
Xie M, Li L, Liu B, Liu Y, Wan Q. Responses of terrestrial ecosystem productivity and community structure to intra-annual precipitation patterns: A meta-analysis. FRONTIERS IN PLANT SCIENCE 2023; 13:1088202. [PMID: 36699850 PMCID: PMC9868929 DOI: 10.3389/fpls.2022.1088202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The productivity and community structures of terrestrial ecosystems are regulated by total precipitation amount and intra-annual precipitation patterns, which have been altered by climate change. The timing and sizes of precipitation events are the two key factors of intra-annual precipitation patterns and potentially drive ecosystem function by influencing soil moisture. However, the generalizable patterns of how intra-annual precipitation patterns affect the productivity and community structures of ecosystems remain unclear. METHODS We synthesized 633 observations from 17 studies and conducted a global meta-analysis to investigate the influences of intra-annual precipitation patterns on the productivity and community structures of terrestrial ecosystems. By classifying intra-annual precipitation patterns, we also assess the importance of the magnitude and timing of precipitation events on plant productivity. RESULTS Our results showed that the intra-annual precipitation patterns decreased diversity by 6.3% but increased belowground net primary productivity, richness, and relative abundance by 16.8%, 10.5%, and 45.0%, respectively. Notably, we found that the timing uniformity of precipitation events was more important for plant productivity, while the plant community structure benefited from the increased precipitation variability. In addition, the relationship between plant productivity and community structure and soil moisture dynamic response was more consistent with the nonlinear model. COMCLUSIONS The patterns of the responses of plant productivity and community structure to altered intra-annual precipitation patterns were revealed, and the importance of the timing uniformity of precipitation events to the functioning of production systems was highlighted, which is essential to enhancing understanding of the structures and functions of ecosystems subjected to altered precipitation patterns and predicting their changes.
Collapse
Affiliation(s)
- Mingyu Xie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Liu
- Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Raymundo M, Pastore A, HilleRisLambers J, Mayfield MM. Annual rainfall variation and dispersal limitation combine to alter invaded plant community diversity, dominance hierarchies and seeding phenology. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Geppert C, Contri C, De Boni L, Corcos D, Marini L. Drought, nitrogen deposition and arthropod herbivory modify plant establishment dynamics after soil disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148956. [PMID: 34274666 DOI: 10.1016/j.scitotenv.2021.148956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Global change projections predict more recurrent and intense drought coupled with more frequent soil disturbance events and increased levels of N deposition related to intensive land-use. How these abiotic drivers interact with each other and with biotic drivers in determining plant community dynamics is still unclear. Our study aimed to disentangle the roles of biotic and abiotic drivers in plant natural succession after soil disturbance. We carried out a factorial field experiment in which we performed soil disturbance in two seasons and manipulated drought, N deposition and herbivory. After each disturbance event, we monitored plant establishment dynamics. The species composition of plant communities established after disturbance was different in the early and late season trial probably due to different phenology of species from the seed bank. Depending on the timing of disturbance, plant communities responded differently to drought and N. In particular, seedling emergence and growth appeared sensitive to water stress only in the late season trial. Irrespective of the other treatments, arthropod herbivores increased the number of plant species established after soil disturbance. N generally had a negligible effect on plant community dynamics. We only observed positive effects of N on plant biomass in in the late season trial when there was a high water availability. Under future global change, we expect drought to affect plant establishment after soil disturbance by interacting with biotic and abiotic drivers. In particular, we showed that overlooked drivers such as timing of soil disturbance and arthropod herbivory will play an important role in shaping novel plant communities. Our results stress the critical need to adopt a multiple factor approach when assessing global change impacts on plant community diversity, composition and recovery ability.
Collapse
Affiliation(s)
- Costanza Geppert
- DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Cristiana Contri
- DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Letizia De Boni
- DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Daria Corcos
- DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Lorenzo Marini
- DAFNAE, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| |
Collapse
|
7
|
Reynaert S, De Boeck HJ, Verbruggen E, Verlinden M, Flowers N, Nijs I. Risk of short-term biodiversity loss under more persistent precipitation regimes. GLOBAL CHANGE BIOLOGY 2021; 27:1614-1626. [PMID: 33355970 DOI: 10.1111/gcb.15501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Recent findings indicate that atmospheric warming increases the persistence of weather patterns in the mid-latitudes, resulting in sequences of longer dry and wet periods compared to historic averages. The alternation of progressively longer dry and wet extremes could increasingly select for species with a broad environmental tolerance. As a consequence, biodiversity may decline. Here we explore the relationship between the persistence of summer precipitation regimes and plant diversity by subjecting experimental grassland mesocosms to a gradient of dry-wet alternation frequencies whilst keeping the total precipitation constant. The gradient varied the duration of consecutive wet and dry periods, from 1 up to 60 days with or without precipitation, over a total of 120 days. An alternation of longer dry and wet spells led to a severe loss of species richness (up to -75% relative to the current rainfall pattern in W-Europe) and functional diversity (enhanced dominance of grasses relative to nitrogen (N)-fixers and non-N-fixing forbs). Loss of N-fixers and non-N-fixing forbs in severe treatments was linked to lower baseline competitive success and higher physiological sensitivity to changes in soil moisture compared to grasses. The extent of diversity losses also strongly depended on the timing of the dry and wet periods. Regimes in which long droughts (≥20 days) coincided with above-average temperatures showed significantly more physiological plant stress over the experimental period, greater plant mortality, and impoverished communities by the end of the season. Across all regimes, the duration of the longest period below permanent wilting point was an accurate predictor of mortality across the communities, indicating that increasingly persistent precipitation regimes may reduce opportunities for drought stress alleviation. We conclude that without recruitment, which was precluded in this experiment, summer precipitation regimes with longer dry and wet spells will likely diminish plant diversity, at least in the short term.
Collapse
Affiliation(s)
- Simon Reynaert
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Hans J De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Maya Verlinden
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Nina Flowers
- Institute of Population Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Ivan Nijs
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
8
|
Ploughe LW, Smith NG, Schuster MJ, Dukes JS. Increased rainfall variability and nitrogen deposition accelerate succession along a common sere. Ecosphere 2021. [DOI: 10.1002/ecs2.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Laura W. Ploughe
- Department of Natural Resource Science Thompson Rivers University Kamloops British ColumbiaV2C 0C8Canada
- Department of Biological Sciences Purdue University West Lafayette Indiana47906USA
| | - Nicholas G. Smith
- Department of Biological Sciences Purdue University West Lafayette Indiana47906USA
- Department of Biological Sciences Texas Tech University Lubbock Texas79409USA
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana47906USA
| | - Michael J. Schuster
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana47906USA
- Department of Forest Resources University of Minnesota St. Paul Minnesota55108USA
| | - Jeffrey S. Dukes
- Department of Biological Sciences Purdue University West Lafayette Indiana47906USA
- Department of Forestry and Natural Resources Purdue University West Lafayette Indiana47906USA
| |
Collapse
|
9
|
Bai Y, She W, Zhang Y, Qiao Y, Fu J, Qin S. N enrichment, increased precipitation, and the effect of shrubs collectively shape the plant community in a desert ecosystem in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135379. [PMID: 31839302 DOI: 10.1016/j.scitotenv.2019.135379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Understanding the responses of biological communities to global climate change is pivotal to accurately forecasting future dynamics and developing effective strategies for the adaptive ecological management of desert ecosystems. Although direct demographic responses of plant species to climatic factors have been widely acknowledged, they are also regulated by interspecific interactions (i.e., the effects of shrubs on herbaceous plants). The magnitude and direction of regulation of such interspecific interactions remain unclear. To address this knowledge gap, a full factorial field experiment simulating three levels of N enrichment (ambient, 10 kg N ha-1 yr-1, and 60 kg N ha-1 yr-1) and three levels of precipitation (ambient, 20% increase, and 40% increase) were conducted in the Mu Us Desert, northern China. N enrichment and increased precipitation significantly increased herbaceous productivity by improving the soil water content and nutrient availability (e.g., soil DIN:SAP) when shrubs were not present. Taller species responded to N enrichment, whereas those with a greater specific leaf area responded to increased precipitation. When shrubs were present, they acted as a 'buffer islands' that moderated the responses of herbaceous species to N enrichment and increased precipitation by weakening the effect of the improved soil water status. The magnitude of the effect of shrubs on herbaceous biomass and richness was comparable to that of N enrichment and increased precipitation. Our results highlight the importance and complexity of both large-scale environmental changes and small-scale interspecific interactions in structuring plant communities in desert ecosystems. Moreover, abiotic environmental factors and biotic interactions should be integrated in efforts to predict the responses of plant communities to future global change in desert ecosystems.
Collapse
Affiliation(s)
- Yuxuan Bai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Weiwei She
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China.
| | - Yangui Qiao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jie Fu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Wilsey B. Restoration in the face of changing climate: importance of persistence, priority effects, and species diversity. Restor Ecol 2020. [DOI: 10.1111/rec.13132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Brian Wilsey
- Department of Ecology, Evolution, and Organismal Biology Iowa State University 251 Bessey Hall, Ames IA 50011 U.S.A
| |
Collapse
|
11
|
Felton AJ, Slette IJ, Smith MD, Knapp AK. Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. GLOBAL CHANGE BIOLOGY 2020; 26:658-668. [PMID: 31386797 DOI: 10.1111/gcb.14789] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Ongoing intensification of the hydrological cycle is altering rainfall regimes by increasing the frequency of extreme wet and dry years and the size of individual rainfall events. Despite long-standing recognition of the importance of precipitation amount and variability for most terrestrial ecosystem processes, we lack understanding of their interactive effects on ecosystem functioning. We quantified this interaction in native grassland by experimentally eliminating temporal variability in growing season rainfall over a wide range of precipitation amounts, from extreme wet to dry conditions. We contrasted the rain use efficiency (RUE) of above-ground net primary productivity (ANPP) under conditions of experimentally reduced versus naturally high rainfall variability using a 32-year precipitation-ANPP dataset from the same site as our experiment. We found that increased growing season rainfall variability can reduce RUE and thus ecosystem functioning by as much as 42% during dry years, but that such impacts weaken as years become wetter. During low precipitation years, RUE is lowest when rainfall event sizes are relatively large, and when a larger proportion of total rainfall is derived from large events. Thus, a shift towards precipitation regimes dominated by fewer but larger rainfall events, already documented over much of the globe, can be expected to reduce the functioning of mesic ecosystems primarily during drought, when ecosystem processes are already compromised by low water availability.
Collapse
Affiliation(s)
- Andrew J Felton
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Department of Wildland Resources and The Ecology Center, Utah State University, Logan, UT, USA
| | - Ingrid J Slette
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Yang X, Huang Z, Dong M, Ye X, Liu G, Hu D, Tuvshintogtokh I, Tumenjargal T, Cornelissen JHC. Responses of community structure and diversity to nitrogen deposition and rainfall addition in contrasting steppes are ecosystem-dependent and dwarfed by year-to-year community dynamics. ANNALS OF BOTANY 2019; 124:461-469. [PMID: 31161191 PMCID: PMC6798833 DOI: 10.1093/aob/mcz098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Long-term studies to disentangle the multiple, simultaneous effects of global change on community dynamics are a high research priority to forecast future distribution of diversity. Seldom are such multiple effects of global change studied across different ecosystems. METHODS Here we manipulated nitrogen deposition and rainfall at levels realistic for future environmental scenarios in three contrasting steppe types in Mongolia and followed community dynamics for 7 years. KEY RESULTS Redundancy analyses showed that community composition varied significantly among years. Rainfall and nitrogen manipulations did have some significant effects, but these effects were dependent on the type of response and varied between ecosystems. Community compositions of desert and meadow steppes, but not that of typical steppe, responded significantly to rainfall addition. Only community composition of meadow steppe responded significantly to nitrogen deposition. Species richness in desert steppe responded significantly to rainfall addition, but the other two steppes did not. Typical steppe showed significant negative response of species richness to nitrogen deposition, but the other two steppes did not. There were significant interactions between year and nitrogen deposition in desert steppe and between year and rainfall addition in typical steppe, suggesting that the effect of the treatments depends on the particular year considered. CONCLUSIONS Our multi-year experiment thus suggests that responses of community structure and diversity to global change drivers are ecosystem-dependent and that their responses to experimental treatments are dwarfed by the year-to-year community dynamics. Therefore, our results point to the importance of taking annual environmental variability into account for understanding and predicting the specific responses of different ecosystems to multiple global change drivers.
Collapse
Affiliation(s)
- Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming Dong
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xuehua Ye
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guofang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dandan Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Indree Tuvshintogtokh
- Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Tsogtsaikhan Tumenjargal
- Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - J Hans C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Ploughe LW, Dukes JS. Understory plant composition and nitrogen transformations resistant to changes in seasonal precipitation. Ecosphere 2019. [DOI: 10.1002/ecs2.2747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Laura W. Ploughe
- Department of Biological Sciences Purdue University 915 West State Street West Lafayette Indiana 47907 USA
| | - Jeffrey S. Dukes
- Department of Biological Sciences Purdue University 915 West State Street West Lafayette Indiana 47907 USA
- Department of Forestry and Natural Resources Purdue University 715 West State Street West Lafayette Indiana 47907 USA
| |
Collapse
|
14
|
Ploughe LW, Jacobs EM, Frank GS, Greenler SM, Smith MD, Dukes JS. Community Response to Extreme Drought (CRED): a framework for drought-induced shifts in plant-plant interactions. THE NEW PHYTOLOGIST 2019; 222:52-69. [PMID: 30449035 DOI: 10.1111/nph.15595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Contents Summary 52 I. Introduction 52 II. The Community Response to Extreme Drought (CRED) framework 55 III. Post-drought rewetting rates: system and community recovery 61 IV. Site-specific characteristics influencing community resistance and resilience 63 V. Conclusions 64 Acknowledgements 65 References 66 SUMMARY: As climate changes, many regions of the world are projected to experience more intense droughts, which can drive changes in plant community composition through a variety of mechanisms. During drought, community composition can respond directly to resource limitation, but biotic interactions modify the availability of these resources. Here, we develop the Community Response to Extreme Drought framework (CRED), which organizes the temporal progression of mechanisms and plant-plant interactions that may lead to community changes during and after a drought. The CRED framework applies some principles of the stress gradient hypothesis (SGH), which proposes that the balance between competition and facilitation changes with increasing stress. The CRED framework suggests that net biotic interactions (NBI), the relative frequency and intensity of facilitative (+) and competitive (-) interactions between plants, will change temporally, becoming more positive under increasing drought stress and more negative as drought stress decreases. Furthermore, we suggest that rewetting rates affect the rate of resource amelioration, specifically water and nitrogen, altering productivity responses and the intensity and importance of NBI, all of which will influence drought-induced compositional changes. System-specific variables and the intensity of drought influence the strength of these interactions, and ultimately the system's resistance and resilience to drought.
Collapse
Affiliation(s)
- Laura W Ploughe
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
| | - Elin M Jacobs
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Graham S Frank
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Skye M Greenler
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Melinda D Smith
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, 251 W. Pitkin St., Fort Collins, CO, 80523, USA
| | - Jeffrey S Dukes
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Nogueira C, Werner C, Rodrigues A, Caldeira MC. A prolonged dry season and nitrogen deposition interactively affect CO 2 fluxes in an annual Mediterranean grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:978-986. [PMID: 30453267 DOI: 10.1016/j.scitotenv.2018.11.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 05/13/2023]
Abstract
Mediterranean annual grasslands are species-diverse ecosystems of high economic and ecological value. CO2 and water fluxes in these grasslands are triggered by the first rains in autumn, after a long hot and dry summer. Climate change scenarios project altered rainfall patterns, such as prolonged dry season into the autumn, while simultaneously nitrogen (N) deposition is increasing globally. However, how these global change drivers will interact to affect Mediterranean grassland CO2, water fluxes and productivity is still unclear. In a greenhouse experiment, we subjected the seedbank of an annual Mediterranean grassland to a factorial treatment, by prolonging the dry season by 0 days (i.e. no autumn drought), 50 days and 100 days and crossing these drought treatments with two levels of N deposition: no N and N addition. A delayed onset of the rain season, i.e., a prolonged dry season, induced lower CO2 and water fluxes throughout the growing season and a lower aboveground biomass by the end of the study period. However, N addition attenuated the effects on NEE, Reco and GPP, but did not affect aboveground biomass or functional group composition. A prolonged dry season also lowered the productivity of forbs, the dominant functional group in our grassland. Our results anticipate important effects of interacting global change drivers on Mediterranean grassland functioning.
Collapse
Affiliation(s)
- Carla Nogueira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.
| | | | - Ana Rodrigues
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
16
|
Henry HAL, Murphy SD, McFarlane ML, Barna H, Dunning K, Hood A, Crosthwaite JC. Evaluating outcomes of restoration ecology projects on limited budgets: assessment of variation in sampling intensity and sampling frequency for four habitat types. Restor Ecol 2018. [DOI: 10.1111/rec.12855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hugh A. L. Henry
- Department of Biology; University of Western Ontario; London Ontario N6A 5B7 Canada
| | - Stephen D. Murphy
- Department of Environment and Resource Studies; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Mhairi L. McFarlane
- Nature Conservancy of Canada, 245 Eglinton Avenue East, Suite 410; Toronto Ontario M4P 3J1 Canada
| | - Heather Barna
- Nature Conservancy of Canada, 245 Eglinton Avenue East, Suite 410; Toronto Ontario M4P 3J1 Canada
| | - Katelyn Dunning
- Department of Environment and Resource Studies; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Alexandra Hood
- Nature Conservancy of Canada, 245 Eglinton Avenue East, Suite 410; Toronto Ontario M4P 3J1 Canada
| | - Jill C. Crosthwaite
- Nature Conservancy of Canada, 245 Eglinton Avenue East, Suite 410; Toronto Ontario M4P 3J1 Canada
| |
Collapse
|
17
|
Shi B, Wang Y, Meng B, Zhong S, Sun W. Effects of Nitrogen Addition on the Drought Susceptibility of the Leymus chinensis Meadow Ecosystem Vary with Drought Duration. FRONTIERS IN PLANT SCIENCE 2018; 9:254. [PMID: 29535757 PMCID: PMC5835344 DOI: 10.3389/fpls.2018.00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is not clear yet how extreme drought and nitrogen (N) deposition influence grassland ecosystem functions when they are considered together, especially in complex field conditions. To explore the response of the Leymus chinensis meadow ecosystem to manipulated extreme drought (45 days), N addition and their interaction, we measured leaf photosynthetic characteristics, aboveground phytomass on the community level and ecosystem C exchange in different treatments at the middle and the end of the drought period. The extreme drought treatment decreased the leaf net CO2 assimilation rate and ecosystem C exchange [gross ecosystem productivity (GEP), ecosystem respiration and net ecosystem CO2 exchange]. In contrast, the N addition treatment increased aboveground phytomass, GEP and net ecosystem CO2 exchange. The effects of N addition on the drought susceptibility of the L. chinensis meadow ecosystem varied with drought severity. The N addition treatment alleviated drought-induced suppression of CO2 exchange at the leaf and ecosystem levels in the middle of the drought period, whereas it exacerbated drought-induced suppression of the CO2 exchange and aboveground phytomass on the community level at the end of the drought period. Given that dominance by L. chinensis is a characteristic of the studied ecosystem, knowledge of the traits of L. chinensis and its response to multiple global change drivers will be crucial for predicting future ecosystem functions. Furthermore, increasing N deposition may affect the response of the L. chinensis meadow ecosystem to further droughts by increasing carbon allocation to roots and therefore root-shoot ratios.
Collapse
Affiliation(s)
- Baoku Shi
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yunbo Wang
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Meng
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Shangzhi Zhong
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- *Correspondence: Wei Sun,
| |
Collapse
|
18
|
Schuster MJ, Dukes JS. Rainfall variability counteracts N addition by promoting invasive Lonicera maackii and extending phenology in prairie. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1555-1563. [PMID: 28370632 DOI: 10.1002/eap.1547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
Although encroaching woody plants have reduced the global extent of grasslands, continuing increases in soil nitrogen availability could slow this trend by favoring resident herbaceous species. At the same time, projected increases in rainfall variability could promote woody encroachment by aligning spatiotemporal patterns of soil moisture availability with the needs of woody species. We evaluated the responses of two deciduous woody species to these simulated environmental changes by planting seedlings of Quercus palustris and Lonicera maackii into tallgrass prairie communities grown under a factorial combination of increased rainfall variability and nitrogen addition. Lonicera maackii growth was reduced 20% by nitrogen addition, and increased rainfall variability led to 33% larger seedlings, despite greater competition for light and soil resources. In contrast, Q. palustris growth showed little response to either treatment. Increased rainfall variability allowed both species to retain their leaves for an additional 6.5 d in autumn, potentially in response to wetter end-of-season shallow soils. Our findings suggest increases in rainfall variability will counteract the inhibitory effect of nitrogen deposition on growth of L. maackii, extend autumn phenology, and promote the encroachment of some woody species into grasslands.
Collapse
Affiliation(s)
- Michael J Schuster
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, Indiana, 47907, USA
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, St. Paul, Minnesota, 55108, USA
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, Indiana, 47907, USA
- Department of Biological Sciences, Purdue University, 715 West State Street, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
19
|
Abstract
As the atmosphere warms, precipitation events are becoming less frequent but more intense. A three-year experiment in Kruger National Park, South Africa, found that fewer, more intense precipitation events encouraged woody plant encroachment. To test whether or not these treatment responses persisted over time, here, we report results from all five years of that experiment. Grass growth, woody plant growth, total fine root number and area and hydrologic tracer uptake by grasses and woody plants were measured in six treated plots (8 m by 8 m) and six control plots. Treatment effects on soil moisture were measured continuously in one treated and one control plot. During the fourth year, increased precipitation intensity treatments continued to decrease water flux in surface soils (0–10 cm), increase water flux in deeper soils (20+ cm), decrease grass growth and increase woody plant growth. Greater root numbers at 20–40 cm and greater woody plant uptake of a hydrological tracer from 45–60 cm suggested that woody plants increased growth by increasing root number and activity (but not root area) in deeper soils. During the fifth year, natural precipitation events were large and intense so treatments had little effect on precipitation intensity or plant available water. Consistent with this effective treatment removal, there was no difference in grass or woody growth rates between control and treated plots, although woody plant biomass remained higher in treated than control plots due to treatment effects in the previous four years. Across the five years of this experiment, we found that 1) small increases in precipitation intensity can result in large increases in deep (20–130 cm) soil water availability, 2) plant growth responses to precipitation intensity are rapid and disappear quickly, and 3) because woody plants accumulate biomass, occasional increases in precipitation intensity can result in long-term increases in woody plant biomass (i.e., shrub encroachment). While results are likely to be site-specific, they provide experimental evidence of large ecohydrological responses to small changes in precipitation intensity.
Collapse
|
20
|
Grant K, Kreyling J, Beierkuhnlein C, Jentsch A. Importance of Seasonality for the Response of a Mesic Temperate Grassland to Increased Precipitation Variability and Warming. Ecosystems 2017. [DOI: 10.1007/s10021-017-0122-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|