1
|
Tayh G, Srairi S, Selmi R, Ben Chehida F, Mamlouk A, Daaloul-Jedidi M, Messadi L. Risk for public health of multiresistant Shiga toxin-producing Escherichia coli (STEC) in wild boar (Sus scrofa) in Tunisia. Microb Pathog 2025; 201:107366. [PMID: 39947355 DOI: 10.1016/j.micpath.2025.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Wild boar (Sus scrofa) is increasingly implicated as a reservoir of various pathogens, such as Shiga toxin-producing E. coli (STEC) that are transmissible to other wildlife, domestic animals and humans. This represents risks to both human and animal health by causing food-borne infections. This investigation set out to evaluate the antibiotic resistance profiles and virulence factor rates of STEC strains isolated from wild boars. MATERIAL AND METHODS A total of 110 fecal samples were taken from postmortem carcasses of wild boar that were collected during the hunting campaign. PCR was used to check for the presence of the STEC virulence genes stx1, while stx2, eaeA, and ehxA in E. coli isolates. The detection of STEC serogroups was carried out by PCR amplification. Additional virulence genes, phylogenetic groups and integrons were determined in the STEC strains. Antibiotic resistance was assessed in the isolates against 21 antimicrobial agents by disk-diffusion method. RESULTS STEC isolates were identified in 10.9 % (12/110) of the E. coli isolates and the serogroups were O157, O145, O45 and O26. Of the strains, 75 % contained the Shiga toxin-1 gene (stx1), stx2 and ehxA were identified in 66.7 % and 33.3 % respectively. Other virulence factors fimH, traT, iutA, cdt3, ibeA, aer and fyuA were found in 100 %, 50 %, 41.7 %, 41.7 %, 33.3 %, 25 % and 8.3 % of the strains, respectively. Integrons classes 1 and 2 were found in 58.3 % and 8.3 % of the strains, respectively. The majority of STEC isolates belonged to phylogroup B1 (58.4 %), followed by E (25 %), A (8.3 %), and D (8.3 %). CONCLUSIONS Our findings suggest that wild boars are an important reservoir of STEC isolates. Based on the presence of virulence factors encoding for toxins (stx1 and stx2), adhesins, and invasion among STEC strains in association with integrons as mobile genetic elements, these strains may have a high potential to cause human disease.
Collapse
Affiliation(s)
- Ghassan Tayh
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia.
| | - Sinda Srairi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Rachid Selmi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Faten Ben Chehida
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Aymen Mamlouk
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Monia Daaloul-Jedidi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia
| | - Lilia Messadi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, LR16AGR01, Sidi Thabet, 2020, Tunisia.
| |
Collapse
|
2
|
Lapid R, Motro Y, Craddock H, Salah I, King R, Winner K, Kahila Bar-Gal G, Moran-Gilad J. Abundance of clinically relevant antimicrobial resistance genes in the golden jackal ( Canis aureus) gut. mSphere 2025; 10:e0081924. [PMID: 39945541 PMCID: PMC11934335 DOI: 10.1128/msphere.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (Canis aureus) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (blaTEM, blaCTX-M15, and blaSHV), qnrS and int1. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (blaTEM-1, 96.4%; blaCTX-M-15, 51.4%, blaSHV, 15.3%), fluoroquinolone resistance (qnrS, 87.4%), and class 1 integrons (Int1, 94.6%). The blaTEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface. IMPORTANCE The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface.
Collapse
Affiliation(s)
- Roi Lapid
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yair Motro
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Hillary Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Ikram Salah
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Roni King
- Science and Conservation Division, Israel Nature and Parks Authority, Jerusalem, Israel
| | - Katherine Winner
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gila Kahila Bar-Gal
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
3
|
Lechleiter N, Wedemeyer J, Schütz A, Sehl-Ewert J, Schaufler K, Homeier-Bachmann T. Metagenomic analysis of the faecal microbiota and AMR in roe deer in Western Pomerania. Sci Rep 2025; 15:9288. [PMID: 40102546 PMCID: PMC11920406 DOI: 10.1038/s41598-025-93602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
As an integral part of the global wellbeing, the health of wild animals should be regarded just as important as that of humans and livestock. The investigation of wildlife health, however, is limited by the availability of samples. In an attempt to implement a method with little invasiveness and broad areas of application, shotgun metagenomics were utilised to investigate the faecal microbiome and its antimicrobial resistance genes (AMRG) in roe deer. These genes can facilitate antimicrobial resistances (AMR) in bacteria and are therefore of increasing importance in global health. Accordingly, the abundance in potential vectors like wildlife needs to be assessed. The samples were additionally investigated for ESBL-E. coli, an antibiotic resistant pathogen of global concern, via cultivation. Twenty-seven hunt-harvested animals in Western Pomerania were sampled. This study is the first to our knowledge to describe the faecal microbiome of the European roe deer (Capreolus capreolus), providing insights into the bacterial and archaeal composition. Among the animals, the microbiome was mostly similar and showed a comparable composition to what has been reported in related species, with a ratio of 1.76 between Bacillota and Bacteroidota. The normalised abundance of AMR genes was found to be 0.035 on average, which is similar to other investigations on wild ruminants. Selective cultivation found no ESBL-E. coli in the animals. The prevalence of AMRG in roe deer of Western Pomerania was found to be in line with previous results. The use of shotgun metagenomics allowed for the simultaneous investigation of composition and AMR genes in the faecal microbiome of roe deer, which suggests it as a promising method for the health monitoring of wildlife. This study is the first to describe the prokaryotic assemblage in the faeces of roe deer and its differences to the microbiomes published on other cervids were discussed.
Collapse
Affiliation(s)
- Nele Lechleiter
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Island of Riems, Germany.
| | - Judith Wedemeyer
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Island of Riems, Germany
| | - Anne Schütz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Island of Riems, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Island of Riems, Germany
| | - Katharina Schaufler
- Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Fleischmannstraße 42, 17489, Greifswald, Germany
- University Medicine Greifswald, Fleischmannstr. 8, 17475, Greifswald, Germany
| | - Timo Homeier-Bachmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Island of Riems, Germany
| |
Collapse
|
4
|
Smoglica C, Carcagnì A, Angelucci S, Di Tana F, Marsilio F, López-Olvera JR, Di Francesco CE. Systematic review and meta-analysis of antimicrobial resistant bacteria in free-ranging wild mammals. BMC Vet Res 2025; 21:150. [PMID: 40050801 PMCID: PMC11887149 DOI: 10.1186/s12917-025-04548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Bacterial antimicrobial resistance is a significant global threat to public health, closely linked to the misuse of antimicrobials in human and veterinary medicine, aquaculture, and agriculture. The consequences of antimicrobial resistance overcome species boundaries and require a holistic approach for mitigation actions. The study of antimicrobial resistance in wildlife is thus increasingly relevant to understand the spread of antimicrobial resistance in the environment and the animal community, as well as to investigate the role of wildlife either as a carrier, reservoir, spillover, or indicator of antimicrobial resistance. The aim of this study is to describe the prevalence and type of antimicrobial resistance in bacterial isolates from wild mammals through systematic review and meta-analysis of the available literature, following the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. RESULTS Out of 5052 collected documents, 3795 were screened, and finally 139 studies on antimicrobial resistance in free-ranging wild mammals were included in the meta-analysis. The studies covered 37 countries, mostly European. The Enterobacterales Escherichia coli and Salmonella spp., as well as Campylobacter spp., were the most frequently targeted bacterial species, mainly in the Artiodactyla order and specifically in the Suidae and Cervidae families. Low to moderate prevalences of antimicrobial resistance were found in all the continents, countries, bacteria, host taxa, and antimicrobials included in the meta-analysis, even for critically important antimicrobials as defined by the World Health Organisation, with higher values in Africa and Asia, in carnivores, and in animal species with high adaptability to diverse habitats. CONCLUSION This meta-analysis showed that antimicrobial resistance in wild mammals is widespread and variable according to taxonomy, trophic source, and geographic location. The meta-analysis highlighted methodological gaps that need to be addressed to improve the interpretation and conclusions obtained from the data. Genetic analyses on antimicrobial resistance and population ecological data should be included in future analysis to achieve a standardised methodology and overcome current limitations. To date, wildlife appears to be an environmental indicator of antimicrobial resistance and should be included in antimicrobial resistance surveillance plans not only because this sentinel role but also to monitor potential spill-back to livestock and/or humans.
Collapse
Affiliation(s)
- Camilla Smoglica
- Department of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy.
| | - Antonella Carcagnì
- Epidemiology and Biostatistics Facility, G-STeP Generator, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Angelucci
- Wildlife Research Center, Maiella National Park, Caramanico Terme, 65023, Italy
| | - Fabrizia Di Tana
- Wildlife Research Center, Maiella National Park, Caramanico Terme, 65023, Italy
| | - Fulvio Marsilio
- Department of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy
| | - Jorge Ramón López-Olvera
- Wildlife Ecology and Health Groupand, Departament de MedicinaICirurgia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, 08193, Spain
| | | |
Collapse
|
5
|
Doyle C, Wall K, Fanning S, McMahon BJ. Making sense of sentinels: wildlife as the One Health bridge for environmental antimicrobial resistance surveillance. J Appl Microbiol 2025; 136:lxaf017. [PMID: 39805713 DOI: 10.1093/jambio/lxaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025]
Abstract
Antimicrobial resistance (AMR), arising from decades of imprudent anthropogenic use of antimicrobials in healthcare and agriculture, is considered one of the greatest One Health crises facing healthcare globally. Antimicrobial pollutants released from human-associated sources are intensifying resistance evolution in the environment. Due to various ecological factors, wildlife interact with these polluted ecosystems, acquiring resistant bacteria and genes. Although wildlife are recognized reservoirs and disseminators of AMR in the environment, current AMR surveillance systems still primarily focus on clinical and agricultural settings, neglecting this environmental dimension. Wildlife can serve as valuable sentinels of AMR in the environment, reflecting ecosystem health, and the effectiveness of mitigation strategies. This review explores knowledge gaps surrounding the ecological factors influencing AMR acquisition and dissemination in wildlife, and highlights limitations in current surveillance systems and policy instruments that do not sufficiently address the environmental component of AMR. We discuss the underutilized opportunity of using wildlife as sentinel species in a holistic, One Health-centred AMR surveillance system. By better integrating wildlife into systematic AMR surveillance and policy, and leveraging advances in high-throughput technologies, we can track and predict resistance evolution, assess the ecological impacts, and better understand the complex dynamics of environmental transmission of AMR across ecosystems.
Collapse
Affiliation(s)
- Caoimhe Doyle
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katie Wall
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Rybak B, Jarzembowski T, Daca A, Krawczyk B, Piechowicz L. Genetic Determinants and Biofilm Properties Useful in Estimation of UTI Pathogenicity of the Escherichia coli Strains Isolated from Free-Living Birds. Antibiotics (Basel) 2025; 14:32. [PMID: 39858318 PMCID: PMC11762073 DOI: 10.3390/antibiotics14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: According to the One Health concept, wild birds can be indicators of ecosystem pollution and disease incidence. Escherichia coli strains are widespread worldwide, but there are still few reports on the association of human infections with a potential reservoir of highly pathogenic human strains in wild birds. Fecal E. coli with uropathogenic potential (UPEC) can be transmitted between birds and humans and may be a risk factor for urinary tract infections (UTIs). Results: The results showed that above 50% of the isolates were grouped as highly pathogenic, according to Clermont phylogroup classification. Such strains were found to be stronger biofilm producers, with a higher adherence of monocytes than low pathogenic. However, the highest cytotoxicity was observed for strains described as aquatic environmental. Convergence of the results of the analysis of monocyte activation by E. coli strains and the ability to form biofilm by individual phylogroups of the strains tested was demonstrated. Genetic determinants of the uropathogenicity of E. coli (UPEC) correlate with the evidence of strain pathogenicity during monocyte activation in in vitro assays. Methods: In this study, we assessed the virulence potential of environmental strains isolated from wild waterfowl using genetic analysis (Clermont phylogroup classification) and phenotypic methods, including analysis of the human monocyte response to biofilm formation. The estimation of the ability to form biofilms was tested using crystal violet, and the pathogenic potential of strains by monocyte activation assay including changes in morphology, adhesion and cytotoxicity. Conclusions: In conclusion, the virulence of E. coli strains isolated from free-living birds is significant, and they can be considered environmental reservoirs of pathogenic strains. According to our observations, they can be responsible for the dissemination of uropathogenic strains among humans.
Collapse
Affiliation(s)
- Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23 A, 80-204 Gdańsk, Poland
| | - Tomasz Jarzembowski
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdańsk, Poland; (T.J.); (L.P.)
| | - Agnieszka Daca
- Department of Physiopathology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdańsk, Poland; (T.J.); (L.P.)
| |
Collapse
|
7
|
Rojas-Sanchez E, Munoz-Vargas L, Jimenez-Soto M. PHENOTYPIC RESISTANCE PROFILES OF SALMONELLA ENTERICA ISOLATED FROM WILD FELIDS IN COSTA RICA BETWEEN 2021 AND 2022. J Zoo Wildl Med 2024; 55:1071-1075. [PMID: 39699153 DOI: 10.1638/2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 12/20/2024] Open
Abstract
Salmonella spp. are one of the leading causes of illness, and in the last years there is an increasing interest in the role of different wild animals as reservoir of Salmonella enterica, especially multidrug resistant strains. To establish preventive and action strategies, it is essential to monitor bacterial resistance profiles and systematically collect information. This study aims to report Salmonella enterica and their resistance profile isolated from feces of wild felids that receive veterinary cares by the Hospital de Especies Menores y Silvestres, Costa Rica in 2021 and 2022. Overall, 100% (7/7) of Salmonella spp. isolates exhibited resistance against cefazoline, followed by 71% (5/7) to ciprofloxacin, and 43% (3/7) to nitrofurantoin. A single isolate was found to be multidrug resistant against Ampicillin/Sulbactam-Cefazolin-Ceftriaxone-Gentamicin-Ciprofloxacin-Nitrofurantoin. These resistant profiles highlight that Salmonella enterica isolation can represent a threat to public health and wildlife conservation, especially for those organisms expressing resistant phenotypes to drugs commonly used in clinical settings. Fluoroquinolone resistant Salmonella spp. have been called by the World Health Organization a high priority for research. As these organisms are expanding beyond livestock and hospital associated environments, to understand the epidemiology and impact of fluoroquinolone-resistant Salmonella spp. we require a One Health approach.
Collapse
Affiliation(s)
- Ernesto Rojas-Sanchez
- Hospital de Especies Menores y Silvestres, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, 40104, Costa Rica,
- Laboratorio de Salud Pública e Inocuidad de Alimentos, Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, 40104, Costa Rica
| | - Lohendy Munoz-Vargas
- Laboratorio de Salud Pública e Inocuidad de Alimentos, Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, 40104, Costa Rica
| | - Mauricio Jimenez-Soto
- Hospital de Especies Menores y Silvestres, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, 40104, Costa Rica
| |
Collapse
|
8
|
Masarikova M, Sukkar I, Jamborova I, Medvecky M, Papousek I, Literak I, Cizek A, Dolejska M. Antibiotic-resistant Escherichia coli from treated municipal wastewaters and Black-headed Gull nestlings on the recipient river. One Health 2024; 19:100901. [PMID: 39399230 PMCID: PMC11470789 DOI: 10.1016/j.onehlt.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Wastewaters belong among the most important sources of environmental pollution, including antibiotic-resistant bacteria. The aim of the study was to evaluate treated wastewaters as a possible transmission pathway for bacterial colonisation of gulls occupying the receiving river. A collection of antibiotic-resistant Escherichia coli originating both from treated municipal wastewaters discharged to the river Svratka (Czech Republic) and nestlings of Black-headed Gull (Chroicocephalus ridibundus) living 35 km downstream of the outlet was obtained using selective cultivation. Isolates were further characterised by various phenotyping and genotyping methods. From a total of 670 E. coli isolates (450 from effluents, 220 from gulls), 86 isolates (41 from effluents, 45 from gulls) showed identical antibiotic resistance phenotype and genotype and were further analysed for clonal relatedness using pulsed-field gel electrophoresis (PFGE). Despite the overall high diversity of the isolates, 21 isolates from both sources showed similar PFGE profiles. Isolates belonging to epidemiologically important sequence types (ST131, 15 isolates; ST23, three isolates) were subjected to whole-genome sequencing. Subsequent phylogenetic analysis did not reveal any close clonal relationship between the isolates from the effluents and gulls' nestlings with the closest strains showing 90 SNPs difference. Although our study did not provide direct evidence of transmission of antibiotic-resistant E. coli to wild gulls via treated wastewaters, we observed gull chicks as carriers of diverse multi-resistant E. coli, including high-risk clones, posing risk of further bacterial contamination of the surrounding environment.
Collapse
Affiliation(s)
- Martina Masarikova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Ivana Jamborova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Matej Medvecky
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Ivo Papousek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Ivan Literak
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Czech Republic
| |
Collapse
|
9
|
Tallon AK, Smith RK, Rush S, Naveda-Rodriguez A, Brooks JP. The role of New World vultures as carriers of environmental antimicrobial resistance. BMC Microbiol 2024; 24:487. [PMID: 39567868 PMCID: PMC11577912 DOI: 10.1186/s12866-024-03621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Although antibiotics have significantly improved human and animal health, their intensive use leads to the accumulation of antimicrobial resistance (AMR) in the environment. Moreover, certain waste management practices create the ideal conditions for AMR development while providing predictable resources for wildlife. Here, we investigated the role of landfills in the potentiation of New World vultures to disseminate environmental AMR. We collected 107 samples (soil, water, and feces) between 2023 and 2024, in different bird use sites (roosts, landfills and boneyards). RESULTS We isolated enterococci (EN), Escherichia coli (EC), and Salmonella spp. (SM), performed antibiotic susceptibility tests, and quantified the presence of antibiotic resistance genes (ARGs) within all samples. We identified EN, EC, and SM, in 50, 37, and 26 samples, from the three vulture use areas, respectively. AMR was mainly to aminoglycoside, cephalosporin, and tetracycline, and the prevalence of multidrug resistance (MDR) was 5.3% (EC), 78.2% (EN), and 17.6% (SM). Variations in bacterial abundance and AMR/MDR profiles were found based on the season, use site, and sample types, which was corroborated by ARG analyses. CONCLUSIONS Our study suggests that landfills constitute a source of zoonotic pathogens and AMR for wildlife, due to readily available refuse input. Using non-invasive molecular methods, we highlight an often-ignored ecosystem within the One Health paradigm.
Collapse
Affiliation(s)
- Anaïs K Tallon
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HiFMB), Ammerländer, Heerstrasse 231, 26121, Oldenburg, Germany.
| | - Renotta K Smith
- USDA-ARS, Genetics and Sustainable Agriculture Unit, 150 Twelve Lane, Mississippi State, MS, 39762-5367, USA
| | - Scott Rush
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, P.O. Box 9690, Mississippi State, MS, 39762, USA
| | - Adrian Naveda-Rodriguez
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, P.O. Box 9690, Mississippi State, MS, 39762, USA
| | - John P Brooks
- USDA-ARS, Genetics and Sustainable Agriculture Unit, 150 Twelve Lane, Mississippi State, MS, 39762-5367, USA.
| |
Collapse
|
10
|
Bertelloni F, Cagnoli G, Ebani VV. Survey on the Occurrence of Zoonotic Bacterial Pathogens in the Feces of Wolves ( Canis lupus italicus) Collected in a Protected Area in Central Italy. Microorganisms 2024; 12:2367. [PMID: 39597755 PMCID: PMC11596315 DOI: 10.3390/microorganisms12112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Previous investigations have explored the involvement of wolves in parasitic and viral diseases, but data on the zoonotic bacteria are limited. The aim of this study was to assess the occurrence of bacterial zoonotic agents in 16 wolf (Canis lupus italicus) fecal samples collected in a protected area in Central Italy. Campylobacter spp., Salmonella spp., Yersinia spp., Listeria monocytogenes, and Shiga Toxin-Producing Escherichia coli (STEC) were investigated by culture, while polymerase chain reaction (PCR) was employed to detect Coxiella burnetii, Mycobacterium spp., Brucella spp., and Francisella tularensis. The presence of Extended Spectrum β-Lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae was also evaluated, using selective isolation media and detection of antimicrobial resistance genes. All samples were negative for Campylobacter spp., Salmonella spp., C. burnetii, Mycobacterium spp., Brucella spp., F. tularensis, and carbapenemase-producing Enterobacteriaceae. One sample tested positive for Yersinia aldovae and three for Yersinia enterocolitica BT1A. One L. monocytogenes (serogroup IIa) and one STEC, carrying the stx1 gene, were isolated. Two ESBL isolates were detected: one Serratia fonticola, carrying blaFONA-3/6 gene, and one Escherichia coli, carrying blaCTX-M-1 gene. Both ESBL isolates were resistant to different antimicrobials and therefore classified as multi-drug-resistant. Our data suggest that wolves are potential carriers of zoonotic bacteria and may contribute to the environmental contamination through their feces.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
| | - Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
| | - Valentina Virginia Ebani
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
- Centre for Climate Change Impact, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
11
|
Quintelas M, Silva V, Araújo S, Tejedor-Junco MT, Pereira JE, Igrejas G, Poeta P. Klebsiella in Wildlife: Clonal Dynamics and Antibiotic Resistance Profiles, a Systematic Review. Pathogens 2024; 13:945. [PMID: 39599498 PMCID: PMC11597104 DOI: 10.3390/pathogens13110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Klebsiella spp. are a genus of Gram-negative, opportunistic bacteria frequently found in the flora of the mucosal membranes of healthy animals and humans, and in the environment. Species of this group can cause serious infections (meningitis, sepsis, bacteraemia, urinary tract infections, liver damage) and possible death in immunocompromised organisms (and even in immunocompetent ones in the case of hypervirulent K. pneumoniae) that are exposed to them. K. pneumoniae is part of the ESKAPE organisms, and so it is important to understand this genus in terms of multidrug-resistant bacteria and as a carrier of antibiotic resistance mechanisms. As it is a durable bacterium, it survives well even in hostile environments, making it possible to colonize all kinds of habitats, even the mucosal flora of wildlife. This systematic review explores the prevalence of Klebsiella spp. bacteria in wild animals, and the possibility of transmission to humans according to the One Health perspective. The isolates found in this review proved to be resistant to betalactams (blaTEM, blaOXA-48…), aminoglycosides (strAB, aadA2…), fosfomycin, tetracyclines, sulphonamides, trimethoprim, phenicols (catB4), and polymyxins (mcr4).
Collapse
Affiliation(s)
- Micaela Quintelas
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sara Araújo
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
Li X, Mowlaboccus S, Jackson B, Cai C, Coombs GW. Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Int J Antimicrob Agents 2024; 64:107251. [PMID: 38906487 DOI: 10.1016/j.ijantimicag.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed.
Collapse
Affiliation(s)
- Xing Li
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia
| | - Bethany Jackson
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Chang Cai
- School of Information Technology, College of Science, Technology, Engineering and Mathematics, Murdoch University, Perth, Australia
| | - Geoffrey Wallace Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia.
| |
Collapse
|
13
|
Siddi G, Piras F, Gymoese P, Torpdahl M, Meloni MP, Cuccu M, Migoni M, Cabras D, Fredriksson-Ahomaa M, De Santis EPL, Scarano C. Pathogenic profile and antimicrobial resistance of Escherichia coli, Escherichia marmotae and Escherichia ruysiae detected from hunted wild boars in Sardinia (Italy). Int J Food Microbiol 2024; 421:110790. [PMID: 38878707 DOI: 10.1016/j.ijfoodmicro.2024.110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The objective of this study was to evaluate the occurrence of E. coli in hunted wild boars in Sardinia (Italy) and to further characterize the isolates with Whole Genome Sequencing to assess the genetic relatedness and the presence of virulence and antimicrobial resistance (AMR) genes. Samples were taken from 66 wild boars between 2020 and 2022 slaughtered in five hunting houses. A total of 181 samples were tested, including 66 samples from mesenteric lymph nodes, 66 samples from colon content and 49 samples from carcass surface. Isolates referable to Escherichia species were detected in all of the wild boars sampled. On a selection of 61 isolates, sequencing was conducted and antimicrobial susceptibility was tested. Among these, three isolates were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III). E. coli pathotypes identified were UPEC (13 %), ExPEC-UPEC (5.6 %) and ETEC (3.7 %). Moreover, 3/6 E. marmotae isolates had typical ExPEC genes. Genetic similarity was observed in isolates collected from animals slaughtered in the same hunting house; this suggests epidemiological links deriving from the presence of animals infected with closely related strains or the result of cross-contamination. Antimicrobial resistance genes were detected in three non-pathogenic E. coli isolates: one isolate had sul2, tet(B), aph(6)-ld and aph(3″)-lb resistance genes and two had the fosA7 gene. This study confirmed that wild boars can act as reservoirs and spreaders of pathogenic Escherichia species and it provides information for future comparative genomic analysis in wildlife. Although isolates showed a limited resistome, the detection of resistance in non-pathogenic isolates underlines the need to monitor antimicrobial resistance in the wild boar population. To the best of our knowledge, this is the first detection of E. mamotae and E. ruysiae isolates in wild boars in Italy and the presence of this pathogen in wildlife and livestock need to be investigated further.
Collapse
Affiliation(s)
- Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Pernille Gymoese
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Mia Torpdahl
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Maria Pina Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Mario Cuccu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Mattia Migoni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Daniela Cabras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI 00014 Helsinki, Finland
| | | | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
14
|
Esposito E, Pace A, Affuso A, Oliviero M, Iaccarino D, Paduano G, Maffucci F, Fusco G, De Carlo E, Hochscheid S, Di Nocera F. Antibiotic Resistance of Bacteria Isolated from Clinical Samples and Organs of Rescued Loggerhead Sea Turtles ( Caretta caretta) in Southern Italy. Animals (Basel) 2024; 14:2103. [PMID: 39061565 PMCID: PMC11273476 DOI: 10.3390/ani14142103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance affects all environments, endangering the health of numerous species, including wildlife. Increasing anthropic pressure promotes the acquisition and dissemination of antibiotic resistance by wild animals. Sea turtles, being particularly exposed, are considered sentinels and carriers of potential zoonotic pathogens and resistant strains. Therefore, this study examined the antibiotic resistance profiles of bacteria isolated from loggerhead sea turtles hospitalised in a rescue centre of Southern Italy over a 9-year period. Resistance to ceftazidime, doxycycline, enrofloxacin, flumequine, gentamicin, oxytetracycline and sulfamethoxazole-trimethoprim was evaluated for 138 strains isolated from the clinical samples or organs of 60 animals. Gram-negative families were the most isolated: Vibrionaceae were predominant, followed by Shewanellaceae, Pseudomonadaceae, Enterobacteriaceae and Morganellaceae. These last three families exhibited the highest proportion of resistance and multidrug-resistant strains. Among the three Gram-positive families isolated, Enterococcaceae were the most represented and resistant. The opportunistic behaviour of all the isolated species is particularly concerning for diseased sea turtles, especially considering their resistance to commonly utilised antibiotics. Actually, the multiple antibiotic resistance was higher when the sea turtles were previously treated. Taken together, these findings highlight the need to improve antimicrobial stewardship and monitor antibiotic resistance in wildlife, to preserve the health of endangered species, along with public and environmental health.
Collapse
Affiliation(s)
- Emanuele Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Antonino Pace
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, Italy; (A.A.); (F.M.); (S.H.)
| | - Andrea Affuso
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, Italy; (A.A.); (F.M.); (S.H.)
| | - Maria Oliviero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Doriana Iaccarino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Gianluigi Paduano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Fulvio Maffucci
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, Italy; (A.A.); (F.M.); (S.H.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Sandra Hochscheid
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, Italy; (A.A.); (F.M.); (S.H.)
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| |
Collapse
|
15
|
Byrne AW, Morgan ER. Emerging and Endemic Infections in Wildlife: Epidemiology, Ecology and Management in a Changing World. Pathogens 2024; 13:513. [PMID: 38921810 PMCID: PMC11207017 DOI: 10.3390/pathogens13060513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The importance of gaining a greater understanding of the infectious diseases of wild animal populations and the impact of emerging and re-emerging pathogens has never been more sharply in focus than in the current post-COVID-19 world [...].
Collapse
Affiliation(s)
- Andrew W. Byrne
- One-Health Scientific Support Unit, Department of Agriculture, Food and the Marine, Agriculture House, D02 WK12 Dublin, Ireland
| | - Eric R. Morgan
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| |
Collapse
|
16
|
Klümper U, Gionchetta G, Catão E, Bellanger X, Dielacher I, Elena AX, Fang P, Galazka S, Goryluk-Salmonowicz A, Kneis D, Okoroafor U, Radu E, Szadziul M, Szekeres E, Teban-Man A, Coman C, Kreuzinger N, Popowska M, Vierheilig J, Walsh F, Woegerbauer M, Bürgmann H, Merlin C, Berendonk TU. Environmental microbiome diversity and stability is a barrier to antimicrobial resistance gene accumulation. Commun Biol 2024; 7:706. [PMID: 38851788 PMCID: PMC11162449 DOI: 10.1038/s42003-024-06338-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
When antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG. To test this hypothesis, a pan-European sampling campaign was performed for structured forest soil and dynamic riverbed environments of low anthropogenic impact. In soils, higher diversity, evenness and richness were significantly negatively correlated with relative abundance of >85% of ARGs. Furthermore, the number of detected ARGs per sample were inversely correlated with diversity. However, no such effects were present in the more dynamic riverbeds. Hence, microbiome diversity can serve as a barrier towards antimicrobial resistance dissemination in stationary, structured environments, where long-term, diversity-based resilience against immigration can evolve.
Collapse
Affiliation(s)
- Uli Klümper
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Giulia Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | - Elisa Catão
- Université de Lorraine, Villers-lès-Nancy, France
- Université de Toulon, Toulon, France
| | | | - Irina Dielacher
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
| | - Alan Xavier Elena
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Peiju Fang
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Sonia Galazka
- AGES - Austrian Agency for Health and Food Safety, Department for Integrative Risk Assessment, Division for Risk Assessment, Data and Statistics, Vienna, Austria
| | - Agata Goryluk-Salmonowicz
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
- Warsaw University of Life Sciences, Institute of Biology, Department of Biochemistry and Microbiology, Warsaw, Poland
| | - David Kneis
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Uchechi Okoroafor
- Maynooth University, Department of Biology, Kathleen Lonsdale Institute for Human Health, Maynooth, Co. Kildare, Ireland
| | - Elena Radu
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
- Romanian Academy of Science, Institute of Virology Stefan S. Nicolau, Bucharest, Romania
| | - Mateusz Szadziul
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
| | - Edina Szekeres
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Adela Teban-Man
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristian Coman
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Norbert Kreuzinger
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
| | - Magdalena Popowska
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
| | - Julia Vierheilig
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Fiona Walsh
- Maynooth University, Department of Biology, Kathleen Lonsdale Institute for Human Health, Maynooth, Co. Kildare, Ireland
| | - Markus Woegerbauer
- AGES - Austrian Agency for Health and Food Safety, Department for Integrative Risk Assessment, Division for Risk Assessment, Data and Statistics, Vienna, Austria
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | | | | |
Collapse
|
17
|
Thibodeau AJ, Barret M, Mouchet F, Nguyen VX, Pinelli E. The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123894. [PMID: 38599270 DOI: 10.1016/j.envpol.2024.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.
Collapse
Affiliation(s)
- Alexandre J Thibodeau
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France.
| | - Maialen Barret
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Florence Mouchet
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Van Xuan Nguyen
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Eric Pinelli
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| |
Collapse
|
18
|
Wilson TK, Zishiri OT, El Zowalaty ME. Molecular detection of multidrug and methicillin resistance in Staphylococcus aureus isolated from wild pigeons ( Columba livia) in South Africa. One Health 2024; 18:100671. [PMID: 38737528 PMCID: PMC11082500 DOI: 10.1016/j.onehlt.2023.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus aureus is an important human and veterinary pathogen. The present study aimed to determine the prevalence of antibiotic resistance among S. aureus isolated from samples obtained from free-flying wild pigeons and houseflies from different locations surrounding a local hospital in the Greater Durban area in KwaZulu-Natal Province, South Africa. Environmental fecal samples were obtained from wild pigeons that inhabits the grounds of a local public hospital located on the South Beach area, Durban, South Africa. Housefly samples were collected from three different locations (Kenneth Stainbank Nature Reserve, Montclair/Clairwood, and Glenwood/Berea) in the greater Durban area, all within a close proximity to the hospital. Following enrichment, identification, and antimicrobial resistance profiling, S. aureus isolates were subjected to DNA extraction using the boiling method. It was found that 57 out of 252 samples (22.62%) were positive for S. aureus. The Kirby-Bauer disk diffusion method of antibiotic susceptibility testing was performed and revealed that antibiotic resistance rates to penicillin and rifampicin were the most common, with both returning 48 (84.2%) out of the 57 S. aureus isolates being resistant to penicillin and rifampicin. Antibiotic resistance rates to clindamycin, linezolid, erythromycin, tetracycline, cefoxitin, and ciprofloxacin were 82.5%, 78.9%, 73.7%, 63.2%, 33.3%, and 15.8% respectively. Antibiotic resistance genes were detected using primer-specific PCR and it was found that the prevalence rates of tetM, aac(6')-aph(2″), mecA, tetK, ermc, and blaZ genes were 66.7%, 40.4%, 40.4%, 38.6%, 24.6%, and 3.51% respectively. Statistical analysis revealed significant (p < 0.05) relationships between the tetM, aac(6')-aph(2″), and ermC genes and all parameters tested. A significant correlation between the aac(6')-aph(2″) gene and the tetM (0.506) and ermC (-0.386) genes was identified. It was found that 23 (40.3%) S. aureus isolates were mecA positive, of which 10 (52.6%) out of 19 cefoxitin-resistant isolates were mecA positive and 13 (35.1%) out of 37 cefoxitin-sensitive isolates were mecA positive. The results of the present study demonstrated the detection of methicillin and multidrug resistant S. aureus isolated from samples obtained from wild pigeons and houseflies in the surroundings of a local public hospital in the Greater Durban area in South Africa. The findings of the study may account for the emergence of multidrug-resistant staphylococcal infections. The findings highlight the significant role of wild pigeons and houseflies in the spread of drug-resistant pathogenic S. aureus including MRSA. The conclusions of the present study highlight the improtant role of wildlife and the environment as interconnected contributors of One Health.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences, Faculty of Health Sciences, Abu Dhabi Women's Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
19
|
Di Francesco A, Salvatore D, Ranucci A, Gobbi M, Morandi B. Antimicrobial resistance in wildlife: detection of antimicrobial resistance genes in Apennine wolves (Canis lupus italicus Altobello, 1921) from Central Italy. Vet Res Commun 2024; 48:1941-1947. [PMID: 38499909 PMCID: PMC11147935 DOI: 10.1007/s11259-024-10354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
The aim of this study was to molecularly investigate the presence of antimicrobial resistance genes (ARGs) in organ samples from 11 Apennine wolves (Canis lupus italicus) collected in Central Italy. Samples from lung, liver, spleen, kidney, tongue and intestine were investigated by PCRs targeting the following genes: tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tetA(P), tet(Q), tet(S), tet(X), sul1, sul2, sul3, blaCTX-M, blaSHV, blaTEM and mcr-1. A PCR positivity was highlighted for 13 out of the 21 tested genes; no positive results were obtained for tet(C), tet(D), tet(E), tet(G), sul3, blaCTX, blaSHV and mcr-1 genes. All 11 animals sampled showed positivity for one or more resistance genes. The results confirm the potential role of the wolf as an indicator and/or vector of antimicrobial-resistant bacteria or ARGs.
Collapse
Affiliation(s)
- A Di Francesco
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell' Emilia (BO), Bologna, Italy.
| | - D Salvatore
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell' Emilia (BO), Bologna, Italy
| | - A Ranucci
- Istituto Zooprofilattico dell'Umbria e delle Marche 'Togo Rosati' Perugia, Perugia, Italy
| | - M Gobbi
- Istituto Zooprofilattico dell'Umbria e delle Marche 'Togo Rosati' Perugia, Perugia, Italy
| | - B Morandi
- Istituto Zooprofilattico dell'Umbria e delle Marche 'Togo Rosati' Perugia, Perugia, Italy
| |
Collapse
|
20
|
Devanathan N, Mukhopadhyay HK, Sihag KK, Terence Nathan A, Chakkaravarthi A, Srinivasan L, Srinivas MV, Vasu J, Shanmugam VP, Rahi M, Devaraju P. Synanthropic rodents and shrews are reservoirs of zoonotic bacterial pathogens and act as sentinels for antimicrobial resistance spillover in the environment: A study from Puducherry, India. One Health 2024; 18:100759. [PMID: 38784598 PMCID: PMC11111835 DOI: 10.1016/j.onehlt.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global public health concern and needs to be monitored for control. In this study, synanthropic rodents trapped from humans and animal habitats in Puducherry, India, were screened as sentinels for bacterial pathogens of public health importance and antimicrobial resistance spillover. From the trapped rodents and shrews (n = 100) pathogens viz., Staphylococcus sp, E. coli and Salmonella sp were isolated from oropharyngeal and rectal swabs on Mannitol salt, Mac Conkey and Xylose lysine deoxycholate media respectively. The AMR genes in these isolates were screened by PCR. A total of 76, S. aureus and 19, Staphylococcus non aureus were isolated. E. coli was isolated in 89 samples and among the Salmonella sp (n = 59), 16, were S. enteritidis and 29, were S. typhimurium. A total of 46 MRSA isolates with mec A (n = 40) and mec C (n = 6) were detected. Also, 36.84% and 5.3% Staphylococcus non aureus isolates were tested to have mec A and mec C genes. AMR genes encoding ESBL [blaTEM in 21, blaSHV in 45 and blaCTX-M in 11] was tested positive in 77 E. coli isolates. Among, Salmonella isolates 44/45 were screened to have AMR genes [tet in 13, sul3 & sul4 in 20 and qnrA in 11]. Antibiotic sensitivity test confirmed the antimicrobial resistance. Isolation of pathogens of public health importance and demonstration of genetic elements conferring antimicrobial resistance in the synanthropic rodents confirms that they act as reservoirs and appropriate sentinels to monitor AMR spillover in the environment.
Collapse
Affiliation(s)
- Nivedha Devanathan
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Hirak Kumar Mukhopadhyay
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Krishan Kumar Sihag
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - A. Terence Nathan
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Aravindasamy Chakkaravarthi
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Lakshmy Srinivasan
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Mouttou Vivek Srinivas
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Jayalakshmi Vasu
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Venkatesa Perumal Shanmugam
- Department of Veterinary Biochemistry, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Manju Rahi
- The Director, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Panneer Devaraju
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| |
Collapse
|
21
|
Fernandes R, Abreu R, Serrano I, Such R, Garcia-Vila E, Quirós S, Cunha E, Tavares L, Oliveira M. Resistant Escherichia coli isolated from wild mammals from two rescue and rehabilitation centers in Costa Rica: characterization and public health relevance. Sci Rep 2024; 14:8039. [PMID: 38580725 PMCID: PMC10997758 DOI: 10.1038/s41598-024-57812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
This study aimed to characterize the antimicrobial resistance (AMR) and virulence profiles of 67 Escherichia coli isolates obtained from faecal samples of 77 wild mammals from 19 different species, admitted in two rescue and rehabilitation centers in Costa Rica. It was possible to classify 48% (n = 32) of the isolates as multidrug-resistant, and while the highest resistance levels were found towards commonly prescribed antimicrobials, resistance to fluoroquinolones and third generation cephalosporins were also observed. Isolates obtained from samples of rehabilitated animals or animals treated with antibiotics were found to have significantly higher AMR levels, with the former also having a significant association with a multidrug-resistance profile. Additionally, the isolates displayed the capacity to produce α-haemolysins (n = 64, 96%), biofilms (n = 51, 76%) and protease (n = 21, 31%). Our results showed that AMR might be a widespread phenomenon within Costa Rican wildlife and that both free-ranging and rehabilitated wild mammals are potential carriers of bacteria with important resistance and virulence profiles. These results highlight the need to study potential sources of resistance determinants to wildlife, and to determine if wild animals can disseminate resistant bacteria in the environment, potentially posing a significant threat to public health and hindering the implementation of a "One Health" approach.
Collapse
Affiliation(s)
- Rita Fernandes
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Raquel Abreu
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Isa Serrano
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | | | | | - Sandy Quirós
- Alturas Wildlife Sanctuary, Puntarenas, Costa Rica
| | - Eva Cunha
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Luís Tavares
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal.
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal.
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
22
|
Gutiérrez J, González-Acuña D, Fuentes-Castillo D, Fierro K, Hernández C, Zapata L, Verdugo C. Antibiotic resistance in wildlife from Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170340. [PMID: 38278249 DOI: 10.1016/j.scitotenv.2024.170340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Although considered one of the most pristine ecosystems, Antarctica has been largely influenced by human activities during the last 50 years, affecting its unique biodiversity. One of the major global threats to health is the emergence of antibiotic-resistant bacteria that may be actively transferred to wildlife. We cultured and tested for antibiotic resistance in 137 cloacal and fresh fecal samples of several avian and marine mammal species from the Antarctic Peninsula, the most impacted area in Antarctica. Alarmingly, 80 % of the isolates showed antibiotic resistance, either phenotypically or genotypically. Most of the resistant bacteria, such as Enterobacteriaceae and Enterococcus species, are part of local gastrointestinal microbiota. Penguins and pinnipeds harbored a great diversity of antibiotic resistance and must be eligible as sentinels for future studies. These results show that antibiotic resistance has rapidly transferred to bacteria in Antarctic wildlife, which is a global matter of concern.
Collapse
Affiliation(s)
- Josefina Gutiérrez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Center of Surveillance and Evolution of Infectious Diseases, Universidad Austral de Chile, Valdivia, Chile
| | | | - Danny Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Universidad de Concepción, Chillán, Chile
| | - Karina Fierro
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Hernández
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Loreto Zapata
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Verdugo
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Center of Surveillance and Evolution of Infectious Diseases, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
23
|
McDougall FK, Speight N, Funnell O, Boardman WSJ, Power ML. Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. MICROBIAL ECOLOGY 2024; 87:39. [PMID: 38332161 PMCID: PMC10853082 DOI: 10.1007/s00248-024-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Fiona K McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA, 5001, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Michelle L Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
24
|
Arnold KE, Laing G, McMahon BJ, Fanning S, Stekel DJ, Pahl O, Coyne L, Latham SM, McIntyre KM. The need for One Health systems-thinking approaches to understand multiscale dissemination of antimicrobial resistance. Lancet Planet Health 2024; 8:e124-e133. [PMID: 38331529 DOI: 10.1016/s2542-5196(23)00278-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/29/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024]
Abstract
Although the effects of antimicrobial resistance (AMR) are most obvious at clinical treatment failure, AMR evolution, transmission, and dispersal happen largely in environmental settings, for example within farms, waterways, livestock, and wildlife. We argue that systems-thinking, One Health approaches are crucial for tackling AMR, by understanding and predicting how anthropogenic activities interact within environmental subsystems, to drive AMR emergence and transmission. Innovative computational methods integrating big data streams (eg, from clinical, agricultural, and environmental monitoring) will accelerate our understanding of AMR, supporting decision making. There are challenges to accessing, integrating, synthesising, and interpreting such complex, multidimensional, heterogeneous datasets, including the lack of specific metrics to quantify anthropogenic AMR. Moreover, data confidentiality, geopolitical and cultural variation, surveillance gaps, and science funding cause biases, uncertainty, and gaps in AMR data and metadata. Combining systems-thinking with modelling will allow exploration, scaling-up, and extrapolation of existing data. This combination will provide vital understanding of the dynamic movement and transmission of AMR within and among environmental subsystems, and its effects across the greater system. Consequently, strategies for slowing down AMR dissemination can be modelled and compared for efficacy and cost-effectiveness.
Collapse
Affiliation(s)
- Kathryn E Arnold
- Department of Environment and Geography, University of York, York, UK.
| | | | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Ireland
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK; Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
| | - Ole Pahl
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK
| | - Lucy Coyne
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; National Office of Animal Health, Stevenage, UK
| | - Sophia M Latham
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - K Marie McIntyre
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Modelling, Evidence and Policy group, School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
25
|
Hall L, Nichols C, Martelli F, Leng J, Shuttleworth C, La Ragione R. Significant differences in the caecal bacterial microbiota of red and grey squirrels in Britain. J Med Microbiol 2024; 73. [PMID: 38354038 DOI: 10.1099/jmm.0.001793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction. Red squirrel populations have declined in the UK since the introduction of the grey squirrel, due to resource competition and grey squirrels carrying a squirrelpox virus that is fatal to red squirrels.Hypothesis/Gap Statement. It is not known if the gut microbiota of the two species is similar and if this could impact the survival of red squirrels.Aim. The aim of this study was to profile the caecal microbiota of red and grey squirrels obtained opportunistically from a conservation programme in North Wales.Methodology. Bacterial DNA was extracted from ten red and ten grey squirrels and sent for 16S rRNA sequencing. Three samples from red squirrels returned less than 5000 reads, and so were not carried forward for further analyses.Results. Samples taken from the caeca of red squirrels had significantly lower bacterial diversity and a higher percentage of Bacilli bacteria when compared to samples from grey squirrels. When the abundance of bacterial groups across all levels of phylogenetic classifications was compared between the two groups of squirrels, grey squirrels had a higher abundance of bacteria belonging to the families S24-7, RF39 and Rikenellaceae. Escherichia coli with resistance to amoxicillin/clavulanic acid was identified in all samples. Cefotaxime resistance was identified in two samples from grey squirrels along with sulfamethoxazole/trimethoprim in one of these samples.Conclusion. Clear differences between the caecal microbiota of the two species of squirrel were identified, which could potentially impact their overall health and ability to compete for resources.
Collapse
Affiliation(s)
- Lucy Hall
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK
| | | | - Francesca Martelli
- Department of Bacteriology, Animal and Plant Health Agency (APHA -Weybridge), Addlestone, UK
| | - Joy Leng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Craig Shuttleworth
- School of Natural Science, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Roberto La Ragione
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK
- School of Biosciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
26
|
Terentjeva M, Ķibilds J, Avsejenko J, Cīrulis A, Labecka L, Bērziņš A. Antimicrobial Resistance in Enterococcus spp. Isolates from Red Foxes ( Vulpes vulpes) in Latvia. Antibiotics (Basel) 2024; 13:114. [PMID: 38391500 PMCID: PMC10885957 DOI: 10.3390/antibiotics13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is an emerging public health threat and is one of the One Health priorities for humans, animals, and environmental health. Red foxes (Vulpes vulpes) are a widespread predator species with great ecological significance, and they may serve as a sentinel of antimicrobial resistance in the general environment. The present study was carried out to detect antimicrobial resistance, antimicrobial resistance genes, and genetic diversity in faecal isolates of red foxes (Vulpes vulpes). In total, 34 Enterococcus isolates, including E. faecium (n = 17), E. faecalis (n = 12), E. durans (n = 3), and E. hirae (n = 2), were isolated. Antimicrobial resistance to 12 antimicrobial agents was detected with EUVENC panels using the minimum inhibitory concentration (MIC). The presence of antimicrobial resistance genes (ARGs) was determined using whole-genome sequencing (WGS). Resistance to tetracycline (6/34), erythromycin (3/34), ciprofloxacin (2/34), tigecycline (2/34), and daptomycin (2/34) was identified in 44% (15/34) of Enterococcus isolates, while all the isolates were found to be susceptible to ampicillin, chloramphenicol, gentamicin, linezolid, teicoplanin, and vancomycin. No multi-resistant Enterococcus spp. were detected. A total of 12 ARGs were identified in Enterococcus spp., with the presence of at least 1 ARG in every isolate. The identified ARGs encoded resistance to aminoglycosides (aac(6')-I, ant(6)-Ia, aac(6')-Iih and spw), tetracyclines (tet(M), tet(L) and tet(S)), and macrolide-lincosamide-streptogramin AB (lnu(B,G), lsa(A,E), and msr(C)), and their presence was associated with phenotypical resistance. Core genome multilocus sequence typing (cgMLST) revealed the high diversity of E. faecalis and E. faecium isolates, even within the same geographical area. The distribution of resistant Enterococcus spp. in wild foxes in Latvia highlights the importance of a One Health approach in tackling AMR.
Collapse
Affiliation(s)
- Margarita Terentjeva
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Rīga, Latvia
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Rīga, Latvia
| | - Jeļena Avsejenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Rīga, Latvia
| | - Aivars Cīrulis
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Rīga, Latvia
- Faculty of Biology, University of Latvia, LV-1004 Rīga, Latvia
| | - Linda Labecka
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Rīga, Latvia
| | - Aivars Bērziņš
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Rīga, Latvia
| |
Collapse
|
27
|
Guitart-Matas J, Espunyes J, Illera L, Gonzalez-Escalona N, Ribas MP, Marco I, Migura-Garcia L. High-risk lineages of extended spectrum cephalosporinase producing Escherichia coli from Eurasian griffon vultures (Gyps fulvus) foraging in landfills in north-eastern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168625. [PMID: 37977396 DOI: 10.1016/j.scitotenv.2023.168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Extended-spectrum cephalosporinase producing (ESC) E. coli are regarded as key indicator microorganisms of antimicrobial resistance (AMR), calling for a One Health integrated global surveillance strategy. Wildlife is exposed to antibiotic contaminants and/or resistant bacteria that have been released into the environment, potentially acting as reservoirs and spreaders of resistance genes as well as sentinels of anthropogenic pressure. Monitoring AMR in wildlife has become crucial in determining anthropogenic environmental impacts as well as transmission routes. In this study, we determined the occurrence and potential sources of ESC E. coli in 218 Eurasian griffon vultures (Gyps fulvus) foraging regularly on human waste disposed at a dumpsite in north-eastern Spain. Minimal inhibitory concentration for 14 different antimicrobials was performed to evaluate the phenotype of the isolates, and whole genome sequencing was carried out to investigate lineages and plasmids harbouring ESC genes. Our sequences were compared to previously published Spanish sequences of human, animal, and wildlife origin. We report a high prevalence of CTX-M-15, as well as the presence of other resistance genes such as OXA-10, CTX-M-27, and CTX-M-65 which are rarely described in European livestock, suggesting a human origin. The isolates also carried a diverse range of additional AMR genes for a broad spectrum of drug families, with the majority being multi-drug resistant. The phylogenomic analyses suggests the transmission of high-risk lineages from humans to vultures, with 49 % of our isolates matching the most common extraintestinal pathogenic E. coli (ExPEC) lineages described in humans worldwide, including ST131, ST10 and ST58. We conclude that anthropogenically altered habitats, such as landfills, are hotspots for the acquisition and spread of high-risk ESC E. coli lineages associated with hospital infections. Measures must be implemented to limit their spread into natural environments.
Collapse
Affiliation(s)
- Judith Guitart-Matas
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain; Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain
| | - Johan Espunyes
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Lucia Illera
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | | | - Maria Puig Ribas
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Ignasi Marco
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Lourdes Migura-Garcia
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain; Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain.
| |
Collapse
|
28
|
Smoglica C, Graziosi G, De Angelis D, Lupini C, Festino A, Catelli E, Vergara A, Di Francesco CE. Wild Birds as Drivers of Salmonella Braenderup and Multidrug Resistant Bacteria in Wetlands of Northern Italy. Transbound Emerg Dis 2024; 2024:6462849. [PMID: 40303189 PMCID: PMC12016999 DOI: 10.1155/2024/6462849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 05/02/2025]
Abstract
In this study, the antimicrobial resistance profiles of bacterial strains obtained from wild avian species recovered in wetlands of Northern Italy were described. Cloacal swabs collected from 67 aquatic birds, hunted or found dead in two private hunting grounds, were submitted to microbiological investigations and antimicrobial susceptibility testing using the Vitek 2 system, while specific PCR protocols were applied to screen for genes associated with the resistance. One hundred fifty-seven bacterial strains were characterized. The most frequent isolates were Enterococcus faecalis (36/157; 22.9%) and Escherichia coli (23/157; 14.6%). Seventy-seven isolates (77/157; 49%) were resulted resistant to at least one antibiotic, and eight isolates (8/157; 5%) were classified as multidrug resistant bacteria. Resistance for critically important antibiotics (linezolid, vancomycin, carbapenems, third-generation cephalosporins, and fluoroquinolones) was also described. Salmonella spp. was obtained from a Eurasian teal (Anas crecca), and it was subsequently analyzed by whole genome sequencing, revealing the serovar Salmonella Braenderup ST22. The phylogenetic analysis, performed with all ST22 described in 2021 and 2022, placed the strain under study in a large clade associated with human salmonellosis cases. These results suggest that migratory aquatic birds may be considered as relevant carriers of critically important antibiotic resistant bacteria and zoonotic food-borne pathogens potentially able to impact public health.
Collapse
Affiliation(s)
- Camilla Smoglica
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Damiano De Angelis
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Annarita Festino
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | | |
Collapse
|
29
|
Siddi G, Piras F, Meloni MP, Gymoese P, Torpdahl M, Fredriksson-Ahomaa M, Migoni M, Cabras D, Cuccu M, De Santis EPL, Scarano C. Hunted Wild Boars in Sardinia: Prevalence, Antimicrobial Resistance and Genomic Analysis of Salmonella and Yersinia enterocolitica. Foods 2023; 13:65. [PMID: 38201093 PMCID: PMC10778173 DOI: 10.3390/foods13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this investigation was to evaluate Salmonella and Yersinia enterocolitica prevalence in wild boars hunted in Sardinia and further characterize the isolates and analyse antimicrobial resistance (AMR) patterns. In order to assess slaughtering hygiene, an evaluation of carcasses microbial contamination was also carried out. Between 2020 and 2022, samples were collected from 66 wild boars hunted during two hunting seasons from the area of two provinces in northern and central Sardinia (Italy). Samples collected included colon content samples, mesenteric lymph nodes samples and carcass surface samples. Salmonella and Y. enterocolitica detection was conducted on each sample; also, on carcass surface samples, total aerobic mesophilic count and Enterobacteriaceae count were evaluated. On Salmonella and Y. enterocolitica isolates, antimicrobial susceptibility was tested and whole genome sequencing was applied. Salmonella was identified in the colon content samples of 3/66 (4.5%) wild boars; isolates were S. enterica subs. salamae, S. ser. elomrane and S. enterica subs. enterica. Y. enterocolitica was detected from 20/66 (30.3%) wild boars: in 18/66 (27.3%) colon contents, in 3/66 (4.5%) mesenteric lymph nodes and in 3/49 (6.1%) carcass surface samples. In all, 24 Y. enterocolitica isolates were analysed and 20 different sequence types were detected, with the most common being ST860. Regarding AMR, no resistance was detected in Salmonella isolates, while expected resistance towards β-lactams (blaA gene) and streptogramin (vatF gene) was observed in Y. enterocolitica isolates (91.7% and 4.2%, respectively). The low presence of AMR is probably due to the low anthropic impact in the wild areas. Regarding the surface contamination of carcasses, values (mean ± standard deviation log10 CFU/cm2) were 2.46 ± 0.97 for ACC and 1.07 ± 1.18 for Enterobacteriaceae. The results of our study confirm that wild boars can serve as reservoirs and spreaders of Salmonella and Y. enterocolitica; the finding of Y. enterocolitica presence on carcass surface highlights how meat may become superficially contaminated, especially considering that contamination is linked to the conditions related to the hunting, handling and processing of game animals.
Collapse
Affiliation(s)
- Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Maria Pina Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Pernille Gymoese
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; (P.G.); (M.T.)
| | - Mia Torpdahl
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; (P.G.); (M.T.)
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Mattia Migoni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Daniela Cabras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Mario Cuccu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Enrico Pietro Luigi De Santis
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| |
Collapse
|
30
|
Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect Drug Resist 2023; 16:7515-7545. [PMID: 38089962 PMCID: PMC10715026 DOI: 10.2147/idr.s428837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 07/04/2024] Open
Abstract
Antimicrobial resistance, referring to microorganisms' capability to subsist and proliferate even when there are antimicrobials is a foremost threat to public health globally. The appearance of antimicrobial resistance can be ascribed to anthropological, animal, and environmental factors. Human-related causes include antimicrobial overuse and misuse in medicine, antibiotic-containing cosmetics and biocides utilization, and inadequate sanitation and hygiene in public settings. Prophylactic and therapeutic antimicrobial misuse and overuse, using antimicrobials as feed additives, microbes resistant to antibiotics and resistance genes in animal excreta, and antimicrobial residue found in animal-origin food and excreta are animals related contributive factors for the antibiotic resistance emergence and spread. Environmental factors including naturally existing resistance genes, improper disposal of unused antimicrobials, contamination from waste in public settings, animal farms, and pharmaceutical industries, and the use of agricultural and sanitation chemicals facilitatet its emergence and spread. Wildlife has a plausible role in the antimicrobial resistance spread. Adopting a one-health approach involving using antimicrobials properly in animals and humans, improving sanitation in public spaces and farms, and implementing coordinated governmental regulations is crucial for combating antimicrobial resistance. Collaborative and cooperative involvement of stakeholders in public, veterinary and ecological health sectors is foremost to circumvent the problem effectively.
Collapse
Affiliation(s)
- Habtamu Endale
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wachemo University, Wachemo, Ethiopia
| | - Debela Abdeta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
31
|
McDougall FK, Boardman WS, Speight N, Stephenson T, Funnell O, Smith I, Graham PL, Power ML. Carriage of antibiotic resistance genes to treatments for chlamydial disease in koalas ( Phascolarctos cinereus): A comparison of occurrence before and during catastrophic wildfires. One Health 2023; 17:100652. [PMID: 38024267 PMCID: PMC10665209 DOI: 10.1016/j.onehlt.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Growing reports of diverse antibiotic resistance genes in wildlife species around the world symbolises the extent of this global One Health issue. The health of wildlife is threatened by antimicrobial resistance in situations where wildlife species develop disease and require antibiotics. Chlamydial disease is a key threat for koalas in Australia, with infected koalas frequently entering wildlife hospitals and requiring antibiotic therapy, typically with chloramphenicol or doxycycline. This study investigated the occurrence and diversity of target chloramphenicol and doxycycline resistance genes (cat and tet respectively) in koala urogenital and faecal microbiomes. DNA was extracted from 394 urogenital swabs and 91 faecal swabs collected from koalas in mainland Australia and on Kangaroo Island (KI) located 14 km off the mainland, before (n = 145) and during (n = 340) the 2019-2020 wildfires. PCR screening and DNA sequencing determined 9.9% of samples (95%CI: 7.5% to 12.9%) carried cat and/or tet genes, with the highest frequency in fire-affected KI koalas (16.8%) and the lowest in wild KI koalas sampled prior to fires (6.5%). The diversity of cat and tet was greater in fire-affected koalas (seven variants detected), compared to pre-fire koalas (two variants detected). Fire-affected koalas in care that received antibiotics had a significantly higher proportion (p < 0.05) of cat and/or tet genes (37.5%) compared to koalas that did not receive antibiotics (9.8%). Of the cat and/or tet positive mainland koalas, 50.0% were Chlamydia-positive by qPCR test. Chloramphenicol and doxycycline resistance genes in koala microbiomes may contribute to negative treatment outcomes for koalas receiving anti-chlamydial antibiotics. Thus a secondary outcome of wildfires is increased risk of acquisition of cat and tet genes in fire-affected koalas that enter care, potentially exacerbating the already significant threat of chlamydial disease on Australia's koalas. This study highlights the importance of considering impacts to wildlife health within the One Health approach to AMR and identifies a need for greater understanding of AMR ecology in wildlife.
Collapse
Affiliation(s)
- Fiona K. McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Wayne S.J. Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Tamsyn Stephenson
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA 5001, Australia
| | - Ian Smith
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
- Zoos South Australia, Frome Rd, Adelaide, SA 5001, Australia
| | - Petra L. Graham
- School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Michelle L. Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
32
|
Carlos GC, Beatriz ML, Carles C, Raquel CC, Emmanuel S, Josep Maria LM, Jordi SC, Santiago L, Jorge Ramón LO. Assessing the epidemiological risk at the human-wild boar interface through a one health approach using an agent-based model in Barcelona, Spain. One Health 2023; 17:100598. [PMID: 37520846 PMCID: PMC10372376 DOI: 10.1016/j.onehlt.2023.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Wild boar (WB, Sus scrofa) populations are increasing in urban areas, posing an epidemiological risk for zoonotic pathogens such as hepatitis E virus (HEV) and antimicrobial-resistant Campylobacter (AMR-CAMP), as well as non-zoonotic pathogens such as African swine fever virus (ASFV). An epidemiological extension of a validated Agent-Based Model (ABM) was developed to assess the one-year epidemiological scenarios of HEV, AMR-CAMP, and ASFV in the synurbic WB-human interface in Barcelona, Spain. The predicted citizen exposure was similar for HEV and AMR-CAMP, at 0.79% and 0.80% of the human population in Barcelona, respectively, despite AMR-CAMP being more prevalent in the WB population than HEV. This suggests a major role of faeces in pathogen transmission to humans in urban areas, resulting in a non-negligible public health risk. The ASFV model predicted that the entire WB population would be exposed to the virus through carcasses (87.6%) or direct contact (12.6%) in 51-71 days after the first case, with an outbreak lasting 71-124 days and reducing the initial WB population by 95%. The ABM predictions are useful for animal and public health risk assessments and to support risk-based decision-making. The study underscores the need for interdisciplinary cooperation among animal, public, and environmental health managers, and the implementation of the One Health approach to address the epidemiological and public health risks posed by the synurbization of WB in urban areas. The spatially explicit epidemiological predictions of the ABM can be adapted to other diseases and scenarios at the wildlife-livestock-human interface.
Collapse
Affiliation(s)
- González-Crespo Carlos
- Wildlife Ecology & Health Group and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Center for Animal Disease Modeling and Surveillance, Department of Medicine and Epidemiology, University of California, Davis, Davis, CA, USA
| | - Martínez-López Beatriz
- Center for Animal Disease Modeling and Surveillance, Department of Medicine and Epidemiology, University of California, Davis, Davis, CA, USA
| | - Conejero Carles
- Wildlife Ecology & Health Group and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Castillo-Contreras Raquel
- Wildlife Ecology & Health Group and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Serrano Emmanuel
- Wildlife Ecology & Health Group and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - López-Martín Josep Maria
- Department of Climatic Action, Food and Rural Agenda, Generalitat de Catalunya, Barcelona, Spain
| | - Serra-Cobo Jordi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Institut de Recerca de la Biodiversitat, Barcelona, Spain
| | - Lavín Santiago
- Wildlife Ecology & Health Group and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - López-Olvera Jorge Ramón
- Wildlife Ecology & Health Group and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| |
Collapse
|
33
|
Brown P, Hernandez K, Parsons C, Chen Y, Gould N, DePerno CS, Niedermeyer J, Kathariou S. Tetracycline resistance in Listeria monocytogenes and L. innocua from wild black bears ( Ursus americanus) in the United States is mediated by novel transposable elements. Appl Environ Microbiol 2023; 89:e0120523. [PMID: 37888979 PMCID: PMC10686073 DOI: 10.1128/aem.01205-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Listeria monocytogenes causes severe foodborne illness and is the only human pathogen in the genus Listeria. Previous surveys of AMR in Listeria focused on clinical sources and food or food processing environments, with AMR in strains from wildlife and other natural ecosystems remaining under-explored. We analyzed 185 sequenced strains from wild black bears (Ursus americanus) from the United States, including 158 and 27 L. monocytogenes and L. innocua, respectively. Tetracycline resistance was the most prevalent resistance trait. In L. monocytogenes, it was encountered exclusively in serotype 4b strains with the novel Tn916-like element Tn916.1039. In contrast, three distinct, novel tetracycline resistance elements (Tn5801.UAM, Tn5801.551, and Tn6000.205) were identified in L. innocua. Interestingly, Tn5801.551 was identical to elements in L. monocytogenes from a major foodborne outbreak in the United States in 2011. The findings suggest the importance of wildlife and non-pathogenic Listeria species as reservoir for resistance elements in Listeria.
Collapse
Affiliation(s)
- Phillip Brown
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kevin Hernandez
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Cameron Parsons
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Yi Chen
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Nicholas Gould
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher S. DePerno
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeffrey Niedermeyer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Sophia Kathariou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
34
|
Rojas-Sereno ZE, Streicker DG, Suarez-Yana T, Lineros M, Yung V, Godreuil S, Benavides JA. Detection of antimicrobial-resistant Enterobacterales in insectivorous bats from Chile. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231177. [PMID: 38026036 PMCID: PMC10645110 DOI: 10.1098/rsos.231177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
Enterobacterales of clinical importance for humans and domestic animals are now commonly detected among wildlife worldwide. However, few studies have investigated their prevalence among bats, particularly in bat species living near humans. In this study, we assessed the occurrence of Extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-resistant (CR) Enterobacterales in rectal swabs of bats submitted to the Chilean national rabies surveillance program from 2021 to 2022. From the 307 swabs screened, 47 (15%) harboured cefotaxime-resistant Enterobacterales. Bats carrying these bacteria originated from 9 out of the 14 Chilean regions. Most positive samples were obtained from Tadarida brasiliensis (n = 42), but also Lasiurus varius, L. cinereus and Histiotus macrotus. No Enterobacterales were resistant to imipenem. All ESBL-Enterobacterales were confirmed as Rahnella aquatilis by MALDI-TOF. No other ESBL or CR Enterobacterales were detected. To our knowledge, this is the first screening of antibiotic-resistant bacteria in wild bats of Chile, showing the bat faecal carriage of R. aquatilis naturally resistant to cephalosporins, but also including acquired resistance to important antibiotics for public health such as amoxicillin with clavulanic acid. Our results suggest unknown selective pressures on R. aquatilis, but low or no carriage of ESBL or CR Escherichia coli and Klebsiella spp. Future studies should assess the zoonotic and environmental implications of R. aquatilis, which are likely present in the guano left by bats roosting in human infrastructures.
Collapse
Affiliation(s)
- Zulma Esperanza Rojas-Sereno
- Centro de Investigación para la Sustentabilidad y Doctorado en Medicina de la Conservación /Facultad Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago 8320000, Chile
| | - Daniel G. Streicker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Tania Suarez-Yana
- Centro de Investigación para la Sustentabilidad y Doctorado en Medicina de la Conservación /Facultad Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago 8320000, Chile
| | - Michelle Lineros
- Sección Rabia, Departamento Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago 8320000, Chile
| | - Verónica Yung
- Sección Rabia, Departamento Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago 8320000, Chile
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier 34295, France
- Laboratoire Mixte International, DRISA, IRD, Montpellier 34394, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier 34394, France
| | - Julio A. Benavides
- Centro de Investigación para la Sustentabilidad y Doctorado en Medicina de la Conservación /Facultad Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago 8320000, Chile
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier 34394, France
| |
Collapse
|
35
|
Gionchetta G, Snead D, Semerad S, Beck K, Pruden A, Bürgmann H. Dynamics of antibiotic resistance markers and Escherichia coli invasion in riverine heterotrophic biofilms facing increasing heat and flow stagnation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164658. [PMID: 37321511 DOI: 10.1016/j.scitotenv.2023.164658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
As motivation to address environmental dissemination of antimicrobial resistance (AMR) is mounting, there is a need to characterize mechanisms by which AMR can propagate under environmental conditions. Here we investigated the effect of temperature and stagnation on the persistence of wastewater-associated antibiotic resistance markers in riverine biofilms and the invasion success of genetically-tagged Escherichia coli. Biofilms grown on glass slides incubated in-situ downstream of a wastewater treatment plant effluent discharge point were transferred to laboratory-scale flumes fed with filtered river water under potentially stressful temperature and flow conditions: recirculation flow at 20 °C, stagnation at 20 °C, and stagnation at 30 °C. After 14 days, quantitative PCR and amplicon sequencing were used to quantify bacteria, biofilms diversity, resistance markers (sul1, sul2, ermB, tetW, tetM, tetB, blaCTX-M-1, intI1) and E. coli. Resistance markers significantly decreased over time regardless of the treatment applied. Although invading E. coli were initially able to colonize the biofilms, its abundance subsequently declined. Stagnation was associated with a shift in biofilm taxonomic composition, but there was no apparent effect of flow conditions or the simulated river-pool warming (30 °C) on AMR persistence or invasion success of E. coli. Results however indicated that antibiotic resistance markers in the riverine biofilms decreased under the experimental conditions in the absence of exposure to external inputs of antibiotics and AMR.
Collapse
Affiliation(s)
- G Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - D Snead
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - S Semerad
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - K Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - A Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - H Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland.
| |
Collapse
|
36
|
Mantegazza L, De Pascali AM, Munoz O, Manes C, Scagliarini A, Capua I. Circular Health: exploiting the SDG roadmap to fight AMR. Front Cell Infect Microbiol 2023; 13:1185673. [PMID: 37424780 PMCID: PMC10324666 DOI: 10.3389/fcimb.2023.1185673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 07/11/2023] Open
Abstract
Circular Health is a novel approach to address complex health issues that is based on the expansion of the One Health Paradigm. Circular health recognizes the need for a multidisciplinary convergence effort to complement the biomedical dimension of health. Antimicrobial resistance (AMR) is one of the greatest global concerns for public health that is likely on the rise, given the extensive use of antibiotics during the early Covid-19 years. Prior to the Covid-19 pandemic, an expert group chaired by Jim O'Neill published "The Review on Antimicrobial Resistance", which contains a final report and recommendations on how to tackle AMR. The report, for the first time, considers AMR from a multi-perspective viewpoint highlighting how it cannot be successfully addressed unless there is a converging approach encompassing many dimensions of the problem. In this perspective, we propose to include the recommendations from that seminal report and other more recent reviews which include the lessons learnt from the Covid-19 pandemic, into the operational framework of the sustainable development goals (SDGs). AMR represents a perfect case study to explore how the SDG roadmap has the potential of becoming the driving force and implementation tool to address complex health issues by pursuing the optimization of resources and actions via a convergent and multi-stakeholder approach. The implementation of health-related policies through the whole spectrum of the SDGs could be both a novel and a well-established framework to inform multi-dimensional policies for more sustainable health in the future.
Collapse
Affiliation(s)
- Luca Mantegazza
- One Health Center of Excellence, University of Florida, Gainesville, FL, United States
| | - Alessandra Mistral De Pascali
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Olga Munoz
- One Health Center of Excellence, University of Florida, Gainesville, FL, United States
| | - Costanza Manes
- One Health Center of Excellence, University of Florida, Gainesville, FL, United States
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, United States
| | - Alessandra Scagliarini
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, FL, United States
- Johns Hopkins University, SAIS Europe, Bologna, Italy
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
37
|
Uea-Anuwong T, Byers KA, Wahl LC, Nekouei O, Grohn YT, Magouras I. Antimicrobial resistance in bacteria isolated from peridomestic Rattus species: A scoping literature review. One Health 2023; 16:100522. [PMID: 37363213 PMCID: PMC10288048 DOI: 10.1016/j.onehlt.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Rattus spp. may acquire and disseminate antimicrobial resistant bacteria or antimicrobial resistance (AMR) genes. We conducted a scoping review to synthesize available research findings on AMR in Rattus spp. and to describe the size and scope of available literature on AMR epidemiology in Rattus spp. The review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR). The search focused on scientific peer-reviewed publications focusing on AMR in peridomestic Rattus spp. The review was limited to publications in English available in PubMed, Web of Science and Scopus between 2000 and 2021. The results were summarized descriptively. Thirty-four studies conducted in twenty-one countries were included in this scoping review. Twelve bacterial species with AMR were identified with Escherichia coli and Staphylococcus aureus being the two most commonly reported. The resistant bacteria were isolated from species of peridomestic Rattus spp. in which R. norvegicus and R. rattus were the two most commonly studied. Rats were also found to carry multi-drug resistant (MDR) bacteria including extended-spectrum beta (β)-lactamase (ESBL), methicillin-resistant Staphylococcus aureus (MRSA), colistin-resistant Enterobacteriaceae (CoRE), and vancomycin-resistant Enterococci (VRE). This scoping review suggests that peridomestic Rattus spp. can carry multiple antimicrobial resistant bacteria, indicating their potential to serve as reservoirs and spreaders of AMR thus posing a threat to human and animal health.
Collapse
Affiliation(s)
- Theethawat Uea-Anuwong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Kaylee A. Byers
- Canadian Wildlife Health Cooperative, Animal Health Centre, Abbotsford, British Columbia, Canada
- Pacific Institute on Pathogens, Pandemics and Society, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lloyd Christian Wahl
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Yrjo Tapio Grohn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
- Veterinary Public Health Institute, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Smoglica C, Angelucci S, Di Tana F, Antonucci A, Marsilio F, Di Francesco CE. Antibiotic Resistance in the Apennine Wolf ( Canis lupus italicus): Implications for Wildlife and Human Health. Antibiotics (Basel) 2023; 12:950. [PMID: 37370269 DOI: 10.3390/antibiotics12060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Apennine wolf (Canis lupus italicus) is a subspecies of gray wolf that is widespread throughout Italy. Due to hunting and habitat loss, their population declined dramatically in the late 19th and early 20th centuries, but conservation efforts improved to restore the species to an estimated population of 3300 individuals. The presence of antibiotic-resistant bacteria in Apennine Wolf may pose a risk to its health and survival, as well as the health of other animals in its environment. In this study, we investigated the antibiotic resistance profiles of bacteria collected from Apennine wolves admitted to the Wildlife Research Center of Maiella National Park (Italy) in 2022. A total of 12 bacteria collected from four wolves were isolated and tested for susceptibility to antibiotics used in veterinary medicine and to critically important antibiotics for human health by means of the Vitek 2 system. All isolates were resistant to at least one antibiotic, and six bacteria were multidrug resistant to critically important antibiotics (third-generation cephalosporins, carbapenems and fluoroquinolones). The results of this pilot study have allowed for the characterization of resistant profiles in Escherichia coli, Enterococcus faecalis and other bacterial species not previously reported in Apennine wolves. Our findings provide important insights into antibiotic resistance in wildlife and its potential implications for the conservation of biodiversity and public health.
Collapse
Affiliation(s)
- Camilla Smoglica
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| | - Simone Angelucci
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Fabrizia Di Tana
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Antonio Antonucci
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Fulvio Marsilio
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| | - Cristina Esmeralda Di Francesco
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| |
Collapse
|
39
|
Vittecoq M, Elguero E, Brazier L, Renaud N, Blanchon T, Roux F, Renaud F, Durand P, Thomas F. Antimicrobial-Resistant Bacteria Carriage in Rodents According to Habitat Anthropization. ECOHEALTH 2023:10.1007/s10393-023-01638-7. [PMID: 37140742 DOI: 10.1007/s10393-023-01638-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/10/2023] [Indexed: 05/05/2023]
Abstract
It is increasingly suggested that the dynamics of antimicrobial-resistant bacteria in the wild are mostly anthropogenically driven, but the spatial and temporal scales at which these phenomena occur in landscapes are only partially understood. Here, we explore this topic by studying antimicrobial resistance in the commensal bacteria from micromammals sampled at 12 sites from a large heterogenous landscape (the Carmargue area, Rhone Delta) along a gradient of anthropization: natural reserves, rural areas, towns, and sewage-water treatment plants. There was a positive relationship between the frequency of antimicrobial-resistant bacteria and the level of habitat anthropization. Although low, antimicrobial resistance was also present in natural reserves, even in the oldest one, founded in 1954. This study is one of the first to support the idea that rodents in human-altered habitats are important components of the environmental pool of resistance to clinically relevant antimicrobials and also that a "One Health" approach is required to assess issues related to antimicrobial resistance dynamics in anthropized landscapes.
Collapse
Affiliation(s)
- Marion Vittecoq
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France.
| | - Eric Elguero
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| | - Lionel Brazier
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| | - Nicolas Renaud
- SYNLAB Midi, Parc 2000, 127 Rue Maurice Béjart, 34080, Montpellier, France
| | - Thomas Blanchon
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - François Roux
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - François Renaud
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| | - Patrick Durand
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| | - Frédéric Thomas
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| |
Collapse
|
40
|
Rojas-Sánchez E, Jiménez-Soto M, Barquero-Calvo E, Duarte-Martínez F, Mollenkopf DF, Wittum TE, Muñoz-Vargas L. Prevalence Estimation, Antimicrobial Susceptibility, and Serotyping of Salmonella enterica Recovered from New World Non-Human Primates ( Platyrrhini), Feed, and Environmental Surfaces from Wildlife Centers in Costa Rica. Antibiotics (Basel) 2023; 12:antibiotics12050844. [PMID: 37237747 DOI: 10.3390/antibiotics12050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Concern about zoonoses and wildlife has increased. Few studies described the role of wild mammals and environments in the epidemiology of Salmonella. Antimicrobial resistance is a growing problem associated with Salmonella that threatens global health, food security, the economy, and development in the 21st century. The aim of this study is to estimate the prevalence and identify antibiotic susceptibility profiles and serotypes of non-typhoidal Salmonella enterica recovered from non-human primate feces, feed offered, and surfaces in wildlife centers in Costa Rica. A total of 180 fecal samples, 133 environmental, and 43 feed samples from 10 wildlife centers were evaluated. We recovered Salmonella from 13.9% of feces samples, 11.3% of environmental, and 2.3% of feed samples. Non-susceptibility profiles included six isolates from feces (14.6%): four non-susceptible isolates (9.8%) to ciprofloxacin, one (2.4%) to nitrofurantoin, and one to both ciprofloxacin and nitrofurantoin (2.4%). Regarding the environmental samples, one profile was non-susceptible to ciprofloxacin (2.4%) and two to nitrofurantoin (4.8%). The serotypes identified included Typhimurium/I4,[5],12:i:-, S. Braenderup/Ohio, S. Newport, S. Anatum/Saintpaul, and S. Westhampton. The epidemiological surveillance of Salmonella and antimicrobial resistance can serve in the creation of strategies for the prevention of the disease and its dissemination throughout the One Health approach.
Collapse
Affiliation(s)
- Ernesto Rojas-Sánchez
- Laboratorio de Salud Pública e Inocuidad de Alimentos, Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
- Hospital de Especies Menores y Silvestres, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Mauricio Jiménez-Soto
- Hospital de Especies Menores y Silvestres, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Elias Barquero-Calvo
- Laboratorio de Bacteriología, Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Francisco Duarte-Martínez
- Laboratorio de Genómica y Biología Molecular, Centro Nacional de Referencia de Inocuidad Microbiológica de Alimentos, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Cartago 30301, Costa Rica
| | - Dixie F Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Thomas E Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Lohendy Muñoz-Vargas
- Laboratorio de Salud Pública e Inocuidad de Alimentos, Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| |
Collapse
|
41
|
Werkneh AA, Islam MA. Post-treatment disinfection technologies for sustainable removal of antibiotic residues and antimicrobial resistance bacteria from hospital wastewater. Heliyon 2023; 9:e15360. [PMID: 37123966 PMCID: PMC10130869 DOI: 10.1016/j.heliyon.2023.e15360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
The World Health Organization (WHO) has identified antimicrobial resistance bacteria and its spread as one of the most serious threats to public health and the environment in the twenty-first century. Different treatment scenarios are found in several countries, each with their own regulations and selection criteria for the effluent quality and management practices of hospital wastewater. To prevent the spread of disease outbreaks and other environmental threats, the development of sustainable treatment techniques that remove all antibiotics and antimicrobial resistant bacteria and genes should be required. Although few research based articles published focusing this issues, explaining the drawbacks and effectiveness of post-treatment disinfection strategies for eliminating antibiotic residues and antimicrobial resistance from hospital wastewater is the reason of this review. The application of conventional activated sludge (CAS) in large scale hospital wastewater treatments poses high energy supply needs for aeration, capital and operational costs. Membrane bioreactors (MBR) have also progressively replaced the CAS treatment systems and achieved better treatment potential, but membrane fouling, energy cost for aeration, and membrane permeability loss restrict their performance at large scale operations. In addition, the membrane process alone doesn't completely remove/degrade these micropollutants; as a substitute, the pollutants are being concentrated in a smaller volume, which requires further post-treatment. Therefore, these drawbacks should be solved by developing advanced techniques to be integrated into any of these or other secondary wastewater treatment systems, aiming for the effective removal of these micropollutants. The purpose of this paper is to review the performances of post-treatment disinfection technologies in the removal of antibiotics, antimicrobial resistant bacteria and their gens from hospital wastewater. The performance of advanced disinfection technologies (such as granular and powered activated carbon adsorption, ozonation, UV, disinfections, phytoremediation), and other integrated post-treatment techniques are primarily reviewed. Besides, the ecotoxicology and public health risks of hospital wastewater, and the development, spreading and mechanisms of antimicrobial resistant and the protection of one health are also highlighted.
Collapse
Affiliation(s)
- Adhena Ayaliew Werkneh
- Department of Environmental Health, School of Public Health, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
- Corresponding author. ;
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| |
Collapse
|
42
|
The first detection of two Aeromonas strains in mice of the genus Apodemus. Sci Rep 2023; 13:4315. [PMID: 36922567 PMCID: PMC10017686 DOI: 10.1038/s41598-023-31306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Aeromonas spp. are gram-negative facultatively anaerobic bacilli recovered mainly from aquatic environments. Aeromonas spp. were reported to be associated with infections primarily in aquatic and to a lesser extent in terrestrial animals as well as in humans. Up-to-date little is known about aeromonads associated with wild animals, especially with rodents. This study reported the first isolation and characterization of two Aeromonas spp. from internal organs of apparently healthy wild rodents Apodemus uralensis and Apodemus flavicollis captured in the wild environment in the European part of Russia. Isolates were identified as A. hydrophila M-30 and A. encheleia M-2 using the multilocus sequence analysis (MLSA) approach. The isolation of the A. encheleia from rodents is the first described case. Both strains demonstrated beta-hemolytic activity towards human erythrocytes. Antimicrobial susceptibility testing showed that both Aeromonas strains were resistant and intermediate to carbapenems and piperacillin-tazobactam, which was caused by the expression of the genus-specific CphA carbapenemases. A. hydrophila M-30 also demonstrated trimethoprim resistant phenotype. This is usually caused by the carriage of the dfrA or dfrB genes in aeromonads which are frequently associated with integron class I. The latter however was absent in both isolates. Our results expand our understanding of possible aeromonad reservoirs and demonstrate the likelihood of the formation of natural foci of Aeromonas infection and a new link in the chain of the spread of antimicrobial resistance as well.
Collapse
|
43
|
Abdullahi IN, Lozano C, Juárez-Fernández G, Höfle U, Simón C, Rueda S, Martínez A, Álvarez-Martínez S, Eguizábal P, Martínez-Cámara B, Zarazaga M, Torres C. Nasotracheal enterococcal carriage and resistomes: detection of optrA-, poxtA- and cfrD-carrying strains in migratory birds, livestock, pets, and in-contact humans in Spain. Eur J Clin Microbiol Infect Dis 2023; 42:569-581. [PMID: 36890281 PMCID: PMC10105672 DOI: 10.1007/s10096-023-04579-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
This study determined the carriage rates and antimicrobial resistance (AMR) genes of enterococci from nasotracheal samples of three healthy animal species and in-contact humans. Nasal samples were collected from 27 dog-owning households (34 dogs, 41 humans) and 4 pig-farms (40 pigs, 10 pig-farmers), and they were processed for enterococci recovery (MALDI-TOF-MS identification). Also, a collection of 144 enterococci previously recovered of tracheal/nasal samples from 87 white stork nestlings were characterized. The AMR phenotypes were determined in all enterococci and AMR genes were studied by PCR/sequencing. MultiLocus-Sequence-Typing was performed for selected isolates. About 72.5% and 60% of the pigs and pig-farmers, and 29.4% and 4.9%, of healthy dogs and owners were enterococci nasal carriers, respectively. In storks, 43.5% of tracheal and 69.2% of nasal samples had enterococci carriages. Enterococci carrying multidrug-resistance phenotype was identified in 72.5%/40.0%/50.0%/23.5%/1.1% of pigs/pig-farmers/dogs/dogs' owners/storks, respectively. Of special relevance was the detection of linezolid-resistant enterococci (LRE) in (a) 33.3% of pigs (E. faecalis-carrying optrA and/or cfrD of ST59, ST330 or ST474 lineages; E. casseliflavus-carrying optrA and cfrD); (b) 10% of pig farmers (E. faecalis-ST330-carrying optrA); (c) 2.9% of dogs (E. faecalis-ST585-carrying optrA); and (d) 1.7% of storks (E. faecium-ST1736-carrying poxtA). The fexA gene was found in all optrA-positive E. faecalis and E. casseliflavus isolates, while fexB was detected in the poxtA-positive E. faecium isolate. The enterococci diversity and AMR rates from the four hosts reflect differences in antimicrobial selection pressure. The detection of LRE carrying acquired and transferable genes in all the hosts emphasizes the need to monitor LRE using a One-Health approach.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Guillermo Juárez-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Ursula Höfle
- Spanish Wildlife Research Institute IREC (CSIC-UCLM-JCCM), SaBio (Health and Biotechnology) Research Group, Ciudad Real, Spain
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Silvia Rueda
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Angela Martínez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Sandra Álvarez-Martínez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Paula Eguizábal
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Beatriz Martínez-Cámara
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain.
| |
Collapse
|
44
|
Antimicrobial Resistance in Physiological and Potentially Pathogenic Bacteria Isolated in Southern Italian Bats. Animals (Basel) 2023; 13:ani13060966. [PMID: 36978508 PMCID: PMC10044454 DOI: 10.3390/ani13060966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
The spread of antimicrobial resistance is one of the major health emergencies of recent decades. Antimicrobial-resistant bacteria threaten not only humans but also populations of domestic and wild animals. The purpose of this study was to evaluate the distribution of antibiotic resistance (AMR) and multidrug resistance (MDR) in bacterial strains isolated from six Southern-Italian bat populations. Using the disk diffusion method, we evaluated the antimicrobial susceptibility of 413 strains of Gram-negative bacteria and 183 strains of Gram-positive bacteria isolated from rectal (R), oral (O) and conjunctival (C) swabs of 189 bats belonging to 4 insectivorous species (Myotis capaccinii, Myotis myotis, Miniopterus schreibersii and Rhinolophus hipposideros). In all bat species and locations, numerous bacterial strains showed high AMR levels for some of the molecules tested. In both Gram-negative and Gram-positive strains, the resistance patterns ranged from one to thirteen. MDR patterns varied significantly across sites, with Grotta dei Pipistrelli in Pantalica displaying the highest levels of MDR (77.2% of isolates). No significant differences were found across different bat species. Monitoring antibiotic resistance in wildlife is a useful method of evaluating the impact of anthropic pressure and environmental pollution. Our analysis reveals that anthropic contamination may have contributed to the spread of the antibiotic resistance phenomenon among the subjects we examined.
Collapse
|
45
|
Abdullahi IN, Juárez-Fernández G, Höfle Ú, Cardona-Cabrera T, Mínguez D, Pineda-Pampliega J, Lozano C, Zarazaga M, Torres C. Nasotracheal Microbiota of Nestlings of Parent White storks with Different Foraging Habits in Spain. ECOHEALTH 2023; 20:105-121. [PMID: 37060390 DOI: 10.1007/s10393-023-01626-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/11/2023] [Indexed: 06/11/2023]
Abstract
Migratory storks could be vectors of transmission of bacteria of public health concern mediated by the colonization, persistence and excretion of such bacteria. This study aims to determine genera/species diversity, prevalence, and co-colonization indices of bacteria obtained from tracheal (T) and nasal (N) samples from storks in relation to exposure to point sources through foraging. One-hundred and thirty-six samples from 87 nestlings of colonies of parent white storks with different foraging habits (natural habitat and landfills) were obtained (84 T-samples and 52 N-samples) and processed. Morphologically distinct colonies (up to 12/sample) were randomly selected and identified by MALDI-TOF-MS. About 87.2% of the total 806 isolates recovered were identified: 398 from T-samples (56.6%) and 305 from N-samples (43.4%). Among identified isolates, 17 genera and 46 species of Gram-positive and Gram-negative bacteria were detected, Staphylococcus (58.0%) and Enterococcus (20.5%) being the most prevalent genera. S. sciuri was the most prevalent species from T (36.7%) and N (34.4%) cavities of total isolates, followed by E. faecalis (11.1% each from T and N), and S. aureus [T (6.5%), N (13.4%)]. Of N-samples, E. faecium was significantly associated with nestlings of parent storks foraging in landfills (p = 0.018). S. sciuri (p = 0.0034) and M. caseolyticus (p = 0.032) from T-samples were significantly higher among nestlings of parent storks foraging in natural habitats. More than 80% of bacterial species in the T and N cavities showed 1-10% co-colonization indices with one another, but few had ≥ 40% indices. S. sciuri and E. faecalis were the most frequent species identified in the stork nestlings. Moreover, they were highly colonized by other diverse and potentially pathogenic bacteria. Thus, storks could be sentinels of point sources and vehicles of bacterial transmission across the "One Health" ecosystems.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Guillermo Juárez-Fernández
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Úrsula Höfle
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Teresa Cardona-Cabrera
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - David Mínguez
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Javier Pineda-Pampliega
- Department of Biology, Lund University, Lund, Sweden
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Carmen Lozano
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain.
| |
Collapse
|
46
|
Bats Are Carriers of Antimicrobial-Resistant Staphylococcaceae in Their Skin. Antibiotics (Basel) 2023; 12:antibiotics12020331. [PMID: 36830242 PMCID: PMC9952117 DOI: 10.3390/antibiotics12020331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bats have emerged as potential carriers of zoonotic viruses and bacteria, including antimicrobial-resistant bacteria. Staphylococcaceae has been isolated from their gut and nasopharynx, but there is little information about Staphylococcaceae on bat skin. Therefore, this study aimed to decipher the Staphylococci species in bat skin and their antimicrobial susceptibility profile. One hundred and forty-seven skin swabs were collected from bats during the spring and summer of 2021 and 2022. Bats were captured in different areas of the Metropolitan Region of São Paulo, Brazil, according to the degree of anthropization: Area 1 (Forested), Area 2 (Rural), Area 3 (Residential-A), Area 4 (Slum-- up to two floors), Area 5 (Residential-B-condo buildings), and Area 6 (Industrial). Swabs were kept in peptone water broth at 37 °C for 12 h when bacterial growth was streaked in Mannitol salt agar and incubated at 37 °C for 24 h. The disc-diffusion test evaluated antimicrobial susceptibility. Staphylococcaceae were isolated from 42.8% of bats, mostly from young, from the rural area, and during summer. M. sciuri was the most frequent species; S. aureus was also isolated. About 95% of isolates were resistant to at least one drug, and most strains were penicillin resistant. Eight isolates were methicillin resistant, and the mecA gene was detected in one isolate (S. haemolyticus). Antimicrobial resistance is a One Health issue that is not evaluated enough in bats. The results indicate that bats are carriers of clinically meaningful S. aureus and antimicrobial-resistant bacteria. Finally, the results suggest that we should intensify action plans to control the spread of resistant bacteria.
Collapse
|
47
|
Staphylococcus aureus Host Spectrum Correlates with Methicillin Resistance in a Multi-Species Ecosystem. Microorganisms 2023; 11:microorganisms11020393. [PMID: 36838358 PMCID: PMC9964919 DOI: 10.3390/microorganisms11020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Although antibiotic resistance is a major issue for both human and animal health, very few studies have investigated the role of the bacterial host spectrum in its dissemination within natural ecosystems. Here, we assessed the prevalence of methicillin resistance among Staphylococcus aureus (MRSA) isolates from humans, non-human primates (NHPs), micromammals and bats in a primatology center located in southeast Gabon, and evaluated the plausibility of four main predictions regarding the acquisition of antibiotic resistance in this ecosystem. MRSA strain prevalence was much higher in exposed species (i.e., humans and NHPs which receive antibiotic treatment) than in unexposed species (micromammals and bats), and in NHP species living in enclosures than those in captivity-supporting the assumption that antibiotic pressure is a risk factor in the acquisition of MRSA that is reinforced by the irregularity of drug treatment. In the two unexposed groups of species, resistance prevalence was high in the generalist strains that infect humans or NHPs, supporting the hypothesis that MRSA strains diffuse to wild species through interspecific transmission of a generalist strain. Strikingly, the generalist strains that were not found in humans showed a higher proportion of MRSA strains than specialist strains, suggesting that generalist strains present a greater potential for the acquisition of antibiotic resistance than specialist strains. The host spectrum is thus a major component of the issue of antibiotic resistance in ecosystems where humans apply strong antibiotic pressure.
Collapse
|
48
|
Pinnell LJ, Kuiper G, Huebner KL, Doster E, Parker JK, Alekozai N, Powers JG, Wallen RL, Belk KE, Morley PS. More than an anthropogenic phenomenon: Antimicrobial resistance in ungulates from natural and agricultural environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159789. [PMID: 36309273 DOI: 10.1016/j.scitotenv.2022.159789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Widely considered an anthropogenic phenomenon, antimicrobial resistance (AMR) is a naturally occurring mechanism that microorganisms use to gain competitive advantage. AMR represents a significant threat to public health and has generated criticism towards the overuse of antimicrobial drugs. Livestock have been proposed as important reservoirs for AMR accumulation. Here, we show that assemblages of AMR genes in cattle and ungulates from natural environments (Yellowstone and Rocky Mountain National Parks) are all dominated by genes conferring resistance to tetracyclines. However, cattle feces contained higher proportions of erm(A-X) genes conferring resistance to macrolide antibiotics. Medically important AMR genes differed between cattle and natural ungulates, but cumulatively were more predominant in natural soils. Our findings suggest that the commonly described predominance of tetracycline resistance in cattle feces is a natural phenomenon among multiple ungulate species and not solely a result of antimicrobial drug exposure. Yet, the virtual absence of macrolide resistance genes in natural ungulates suggests that macrolide usage in agriculture may enrich these genes in cattle. Our results show that antimicrobial use in agriculture may be promoting a potential reservoir for specific types of AMR (i.e., macrolide resistance) but that a significant proportion of the ungulate resistome appears to have natural origins.
Collapse
Affiliation(s)
- Lee J Pinnell
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA
| | - Grace Kuiper
- Colorado State University, Fort Collins, CO 80523, USA
| | | | - Enrique Doster
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA; Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Jenny G Powers
- Biological Resources Division, National Park Service, Fort Collins, CO 80521, USA
| | - Rick L Wallen
- Yellowstone National Park, National Park Service, Mammoth, WY 82190, USA
| | - Keith E Belk
- Colorado State University, Fort Collins, CO 80523, USA
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA.
| |
Collapse
|
49
|
Antibiotic-Resistant Bacteria Dissemination in the Wildlife, Livestock, and Water of Maiella National Park, Italy. Animals (Basel) 2023; 13:ani13030432. [PMID: 36766321 PMCID: PMC9913102 DOI: 10.3390/ani13030432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global health concern that has been linked to humans, animals, and the environment. The One Health approach highlights the connection between humans, animals, and the environment and suggests that a multidisciplinary approached be used in studies investigating AMR. The present study was carried out to identify and characterize the antimicrobial resistance profiles of bacteria isolated from wildlife and livestock feces as well as from surface water samples in Maiella National Park, Italy. Ecological and georeferenced data were used to select two sampling locations, one where wildlife was caught within livestock grazing areas (sympatric group) and one where wildlife was caught outside of livestock grazing areas (non-sympatric group). Ninety-nine bacterial isolates from 132 feces samples and seven isolates from five water samples were collected between October and December 2019. The specimens were examined for species identification, antibiotic susceptibility and molecular detection of antibiotic resistance. Forty isolates were identified as Escherichia coli, forty-eight as Enterococcus spp., eight as Streptococcus spp. and ten as other gram-negative bacteria. Phenotypic antibiotic resistance to at least one antimicrobial agent, including some antibiotics that play a critical role in human medicine, was detected in 36/106 (33.9%, 95% CI: 25-43) isolates and multidrug resistance was detected in 9/106 isolates (8.49%, 95% CI: 3.9-15.5). In addition, genes associated with antibiotic resistance were identified in 61/106 (57.55%, 95% CI: 47.5-67) isolates. The samples from sympatric areas were 2.11 (95% CI: 1.2-3.5) times more likely to contain resistant bacterial isolates than the samples from non-sympatric areas. These data suggest that drug resistant bacteria may be transmitted in areas where wildlife and livestock cohabitate. This emphasizes the need for further investigations focusing on the interactions between humans, wildlife, and the environment, the results of which can aid in the early detection of emerging AMR profiles and possible transmission routes.
Collapse
|
50
|
Di Francesco A, Salvatore D, Bertelloni F, Ebani VV. Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Animals (Basel) 2022; 13:ani13010076. [PMID: 36611686 PMCID: PMC9817859 DOI: 10.3390/ani13010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Wild animals are less likely to be exposed directly to clinical antimicrobial agents than domestic animals or humans, but they can acquire antimicrobial-resistant bacteria through contact with humans, animals, and the environment. In the present study, 254 dead free-living birds belonging to 23 bird species were examined by PCR for the presence of tetracycline resistance (tet) genes. A fragment of the spleen was collected from each bird carcass. A portion of the intestine was also taken from 73 of the 254 carcasses. Extracted DNA was subjected to PCR amplification targeting the tet(L), tet(M), and tet(X) genes. In total, 114 (45%) of the 254 birds sampled belonging to 17 (74%) of the 23 bird species tested were positive for one or more tet genes. The tet(M) gene showed a higher frequency than the other tested genes, both in the spleen and in the intestine samples. These results confirm the potential role of wild birds as reservoirs, dispersers, or bioindicators of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Antonietta Di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
- Correspondence:
| | - Daniela Salvatore
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | | |
Collapse
|