1
|
Sow SLS, van de Poll WH, Eveleth R, Rich JJ, Ducklow HW, Rozema PD, Luria CM, Bolhuis H, Meredith MP, Amaral-Zettler LA, Engelmann JC. Spatial and temporal variation of Antarctic microbial interactions: a study around the west Antarctic Peninsula. ENVIRONMENTAL MICROBIOME 2025; 20:21. [PMID: 39923087 PMCID: PMC11807339 DOI: 10.1186/s40793-025-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/03/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND The west Antarctic Peninsula (WAP) is a region of rapid environmental changes, with regional differences in climate warming along the north-south axis of the peninsula. Along the WAP, Palmer corresponds to a warmer region with lesser sea ice extent in the north compared to Rothera ~ 400 km to the south. Comprehensive and comparative, year-round assessments of the WAP microbial community dynamics in coastal surface waters at these two locations are imperative to understand the effects of regional climate warming variations on microbial community dynamics, but this is still lacking. RESULTS We report on the seasonal diversity, taxonomic overview, as well as predicted inter-and intra-domain causal effects (interactions) of the bacterial and microbial eukaryotic communities close to the Palmer station and at the Rothera time-series site between July 2013 and April 2014. Our 16S- and 18S-rRNA gene amplicon sequencing data showed that across all seasons, both bacteria and microbial eukaryotic communities were considerably different between the two sites which could be attributed to seawater temperature, and sea ice coverage in combination with sea ice type differences. Overall, in terms of biotic drivers, causal-effect modelling suggests that bacteria were stronger drivers of ecosystem dynamics at Palmer, while microbial eukaryotes played a stronger role at Rothera. The parasitic taxa Syndiniales persevered at both sites across the seasons, with Palmer and Rothera harbouring different key groups. Up to 62.3% of the negative causal effects were driven by Syndiniales at Rothera compared to only 13.5% at Palmer, suggesting that parasitism drives community dynamics at Rothera more strongly than at Palmer. Conversely, SAR11 Clade II, which was less abundant but persistent year-round at both sites, was the dominant driver at Palmer, evidenced by many (28.2% and 37.4% of positive and negative effects respectively) strong causal effects. Article note: Kindly check first page article notes are correct. CONCLUSIONS Our research has shed light on the dynamics of microbial community composition and correlative interactions at two sampling locations that represent different climate regimes along the WAP.
Collapse
Affiliation(s)
- Swan L S Sow
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, The Netherlands.
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000, Nantes, France.
| | - Willem H van de Poll
- CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Rachel Eveleth
- Department of Geosciences, Oberlin College, Oberlin, OH, USA
| | - Jeremy J Rich
- School of Marine Sciences, Darling Marine Centre, University of Maine, Walpole, ME, USA
| | - Hugh W Ducklow
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Patrick D Rozema
- CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Catherine M Luria
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, The Netherlands
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA.
| | - Julia C Engelmann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, The Netherlands.
| |
Collapse
|
2
|
Xu F, Chen XL, Zhang YZ. Alginate catabolic systems in marine bacteria. Curr Opin Microbiol 2025; 83:102564. [PMID: 39657303 DOI: 10.1016/j.mib.2024.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Brown algae, constituting the second largest group of marine macroalgae, fix significant amounts of inorganic carbon into alginate, the most abundant polysaccharide found in their cell walls. Alginate serves as an important macromolecular carbon source for marine bacteria. The catabolism of alginate by bacteria is an important step in the marine carbon cycle, and this area of research has attracted growing interests over the past decade. Here, we provide an overview of the recent advances in our understanding of marine bacterial alginate catabolic systems, both in individual organisms and within bacterial consortia, discuss the possibility of additional alginate metabolic pathways in light of the present findings, and highlight the future research foci.
Collapse
Affiliation(s)
- Fei Xu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
3
|
Sharma D, Menon VG, Desai M, Niu D, Bates E, Kandel A, Zinser ER, Fields DM, O'Toole GA, Sharma M. Organoclay flocculation as a pathway to export carbon from the sea surface. Sci Rep 2024; 14:28863. [PMID: 39658625 PMCID: PMC11631952 DOI: 10.1038/s41598-024-79912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Marine microorganisms play a critical role in regulating atmospheric CO2 concentration via the biological carbon pump. Deposition of continental mineral dust on the sea surface increases carbon sequestration but the interaction between minerals and marine microorganisms is not well understood. We discovered that the interaction of clay minerals with dissolved organic matter and a γ-proteobacterium in seawater increases Transparent Exopolymer Particle (TEP) concentration, leading to organoclay floc formation. To explore this observation further, we conducted a microcosm experiment using surface seawater collected from the Spring 2023 phytoplankton bloom in the Gulf of Maine. Unfiltered (natural community) and filtered (200 μm and 3 μm) seawater was sprayed with clay (20 mg L- 1 and 60 mg L- 1) and incubated. All clay treatments led to a tenfold increase in TEP concentration. 16S rRNA gene amplicon sequence analyses of seawater and settled organoclay flocs showed the dominance of α-proteobacteria, γ-proteobacteria, and Bacteroidota. The initial seawater phytoplankton community was dominated by dinoflagellates followed by a haptophyte (Phaeocystis sp.) and diatoms. Following clay addition, dinoflagellate cell abundance declined sharply while diatom cell abundance increased. By analyzing organoclay flocs for 18S rRNA we confirmed that dinoflagellates were removed in the flocs. The clay amendment removed as much as 50% of phytoplankton organic carbon. We then explored the fate of organoclay flocs at the next trophic level by feeding clay and phytoplankton (Rhodomonas salina) to Calanus finmarchicus. The copepod ingested R. salina and organoclay flocs and egested denser fecal pellets with 1.8- to 3.6- fold higher sinking velocity compared to controls. Fecal pellet density enhancement could facilitate carbon sequestration through zooplankton diel vertical migration. These findings provide insights into how atmospheric dust-derived clay minerals interact with marine microorganisms to enhance the biological carbon pump, facilitating the burial of organic carbon at depths where it is less likely to exchange with the atmosphere.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Earth Sciences, Dartmouth College, New Hampshire, USA
- Laboratoire d'Océanographie et du Climat, CNRS-IRD MNHN- Sorbonne University, Paris, France
| | - Vignesh Gokuladas Menon
- Department of Earth Sciences, Dartmouth College, New Hampshire, USA
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Manasi Desai
- Department of Earth Sciences, Dartmouth College, New Hampshire, USA
- Bigelow Laboratory of Ocean Sciences, Maine, USA
| | - Danielle Niu
- Department of Earth Sciences, Dartmouth College, New Hampshire, USA
- First-Year Innovation and Research Experience (FIRE), Office of the Senior Vice President and Provost, University of Maryland, College Park, MD, USA
| | - Eleanor Bates
- Department of Earth Sciences, Dartmouth College, New Hampshire, USA
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Annie Kandel
- Department of Earth Sciences, Dartmouth College, New Hampshire, USA
| | - Erik R Zinser
- Department of Microbiology, University of Tennessee, Tennessee, USA
| | | | | | - Mukul Sharma
- Department of Earth Sciences, Dartmouth College, New Hampshire, USA.
| |
Collapse
|
4
|
Ou XL, Ou LJ, Yang YF. Bioavailability of dissolved organic matter (DOM) derived from seaweed Gracilaria lemaneiformis meditated by microorganisms. MARINE POLLUTION BULLETIN 2024; 209:117243. [PMID: 39522397 DOI: 10.1016/j.marpolbul.2024.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Seaweed Gracilaria lemaneiformis, a significant oceanic primary producer, releases substantial dissolved organic matter (DOM) during growth and decay, potentially impacting coastal organic carbon reservoirs and microbial communities. This study aimed to investigate the bioavailability of Gracilaria-derived DOM and its interactions with microbial communities. Laboratory experiments introduced Gracilaria-derived DOM into natural seawater, tracking variations in DOM composition, microbial structure, and eight extracellular enzyme activities over 168 h. The results indicated a rapid breakdown of dissolved organic carbon, nitrogen, and phosphorus, representing 48 % to 90 % of their total concentrations within 168 h, highlighting the high DOM bioavailability. Tryptophan substances were identified as the primary components of Gracilaria-derived DOM, being highly labile and utilized by microorganisms. Within the initial 0-12 h of DOM influx, Proteobacteria significantly increased and dominated in bacterial community, while after 48 h, as DOM decomposed, Desulfobacterota became the dominant group. The labile DOM stimulated bacteria, particularly Proteobacteria, to release substantial extracellular enzymes that peaked within the first 12 h. Subsequent substrate depletion led to decreased enzyme activities. Positive correlations were observed among bacterial abundance, enzyme activities, and tryptophan substances, emphasizing the intricate interplay among microbial communities, labile DOM, and extracellular enzymes. This study underscores the high bioavailability of Gracilaria-derived DOM and its interactions with microbial communities in nearshore environments.
Collapse
Affiliation(s)
- Xiao-Li Ou
- College of Life Science and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510632, China
| | - Lin-Jian Ou
- College of Life Science and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510632, China.
| | - Yu-Feng Yang
- College of Life Science and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Knittel K, Miksch S, Moncada C, Silva-Solar S, Moye J, Amann R, Arnosti C. Distinct actors drive different mechanisms of biopolymer processing in polar marine coastal sediments. Environ Microbiol 2024; 26:e16687. [PMID: 39168162 DOI: 10.1111/1462-2920.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Heterotrophic bacteria in the ocean initiate biopolymer degradation using extracellular enzymes that yield low molecular weight hydrolysis products in the environment, or by using a selfish uptake mechanism that retains the hydrolysate for the enzyme-producing cell. The mechanism used affects the availability of hydrolysis products to other bacteria, and thus also potentially the composition and activity of the community. In marine systems, these two mechanisms of substrate processing have been studied in the water column, but to date, have not been investigated in sediments. In surface sediments from an Arctic fjord of Svalbard, we investigated mechanisms of biopolymer hydrolysis using four polysaccharides and mucin, a glycoprotein. Extracellular hydrolysis of all biopolymers was rapid. Moreover, rapid degradation of mucin suggests that it may be a key substrate for benthic microbes. Although selfish uptake is common in ocean waters, only a small fraction (0.5%-2%) of microbes adhering to sediments used this mechanism. Selfish uptake was carried out primarily by Planctomycetota and Verrucomicrobiota. The overall dominance of extracellular hydrolysis in sediments, however, suggests that the bulk of biopolymer processing is carried out by a benthic community relying on the sharing of enzymatic capabilities and scavenging of public goods.
Collapse
Affiliation(s)
- Katrin Knittel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Chyrene Moncada
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Jannika Moye
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carol Arnosti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Macdonald JFH, Pérez-García P, Schneider YKH, Blümke P, Indenbirken D, Andersen JH, Krohn I, Streit WR. Community dynamics and metagenomic analyses reveal Bacteroidota's role in widespread enzymatic Fucus vesiculosus cell wall degradation. Sci Rep 2024; 14:10237. [PMID: 38702505 PMCID: PMC11068906 DOI: 10.1038/s41598-024-60978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.
Collapse
Affiliation(s)
- Jascha F H Macdonald
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Pablo Pérez-García
- Institute for General Microbiology, Molecular Microbiology, Kiel University, Kiel, Germany
| | - Yannik K-H Schneider
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Patrick Blümke
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Jeanette H Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| |
Collapse
|
7
|
Zhang YS, Zhang YQ, Zhao XM, Liu XL, Qin QL, Liu NH, Xu F, Chen XL, Zhang YZ, Li PY. Metagenomic insights into the dynamic degradation of brown algal polysaccharides by kelp-associated microbiota. Appl Environ Microbiol 2024; 90:e0202523. [PMID: 38259074 PMCID: PMC10880675 DOI: 10.1128/aem.02025-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.
Collapse
Affiliation(s)
- Yi-Shuo Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Qi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiang-Ming Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Lei Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Joint Research Center for Marine Microbiol Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Joint Research Center for Marine Microbiol Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| |
Collapse
|
8
|
Cha QQ, Liu SS, Dang YR, Ren XB, Xu F, Li PY, Chen XL, Wang P, Zhang XY, Zhang YZ, Qin QL. Ecological function and interaction of different bacterial groups during alginate processing in coastal seawater community. ENVIRONMENT INTERNATIONAL 2023; 182:108325. [PMID: 37995388 DOI: 10.1016/j.envint.2023.108325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.
Collapse
Affiliation(s)
- Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Gu X, Cao Z, Zhao L, Seswita-Zilda D, Zhang Q, Fu L, Li J. Metagenomic Insights Reveal the Microbial Diversity and Associated Algal-Polysaccharide-Degrading Enzymes on the Surface of Red Algae among Remote Regions. Int J Mol Sci 2023; 24:11019. [PMID: 37446198 DOI: 10.3390/ijms241311019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Macroalgae and macroalgae-associated bacteria together constitute the most efficient metabolic cycling system in the ocean. Their interactions, especially the responses of macroalgae-associated bacteria communities to algae in different geographical locations, are mostly unknown. In this study, metagenomics was used to analyze the microbial diversity and associated algal-polysaccharide-degrading enzymes on the surface of red algae among three remote regions. There were significant differences in the macroalgae-associated bacteria community composition and diversity among the different regions. At the phylum level, Proteobacteria, Bacteroidetes, and Actinobacteria had a significantly high relative abundance among the regions. From the perspective of species diversity, samples from China had the highest macroalgae-associated bacteria diversity, followed by those from Antarctica and Indonesia. In addition, in the functional prediction of the bacterial community, genes associated with amino acid metabolism, carbohydrate metabolism, energy metabolism, metabolism of cofactors and vitamins, and membrane transport had a high relative abundance. Canonical correspondence analysis and redundancy analysis of environmental factors showed that, without considering algae species and composition, pH and temperature were the main environmental factors affecting bacterial community structure. Furthermore, there were significant differences in algal-polysaccharide-degrading enzymes among the regions. Samples from China and Antarctica had high abundances of algal-polysaccharide-degrading enzymes, while those from Indonesia had extremely low abundances. The environmental differences between these three regions may impose a strong geographic differentiation regarding the biodiversity of algal microbiomes and their expressed enzyme genes. This work expands our knowledge of algal microbial ecology, and contributes to an in-depth study of their metabolic characteristics, ecological functions, and applications.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhe Cao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Luying Zhao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Dewi Seswita-Zilda
- Research Center for Deep Sea, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Jl. Pasir Putih Raya, Pademangan, Jakarta 14430, Indonesia
| | - Qian Zhang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Fu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jiang Li
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
10
|
Qu T, Zhao X, Guan C, Hou C, Chen J, Zhong Y, Lin Z, Xu Y, Tang X, Wang Y. Structure-Function Covariation of Phycospheric Microorganisms Associated with the Typical Cross-Regional Harmful Macroalgal Bloom. Appl Environ Microbiol 2023; 89:e0181522. [PMID: 36533927 PMCID: PMC9888261 DOI: 10.1128/aem.01815-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Unravelling the structure-function variation of phycospheric microorganisms and its ecological correlation with harmful macroalgal blooms (HMBs) is a challenging research topic that remains unclear in the natural dynamic process of HMBs. During the world's largest green tide bloom, causative macroalgae Ulva prolifera experienced dramatic changes in growth state and environmental conditions, providing ideal scenarios for this investment. Here, we assess the phycospheric physicochemical characteristics, the algal host's biology, the phycospheric bacterial constitutive patterns, and the functional potential during the U. prolifera green tide. Our results indicated that (i) variation in the phycosphere nutrient structure was closely related to the growth state of U. prolifera; (ii) stochastic processes govern phycospheric bacterial assembly, and the contribution of deterministic processes to assembly varied among phycospheric seawater bacteria and epiphytic bacteria; (iii) phycospheric seawater bacteria and epiphytic bacteria exhibited significant heterogeneity variation patterns in community composition, structure, and metabolic potential; and (iv) phycospheric bacteria with carbon or nitrogen metabolic functions potentially influenced the nutrient utilization of U. prolifera. Furthermore, the keystone genera play a decisive role in the structure-function covariation of phycospheric bacterial communities. Our study reveals complex interactions and linkages among environment-algae-bacterial communities which existed in the macroalgal phycosphere and highlights the fact that phycospheric microorganisms are closely related to the fate of the HMBs represented by the green tide. IMPORTANCE Harmful macroalgal blooms represented by green tides have become a worldwide marine ecological problem. Unraveling the structure-function variation of phycospheric microorganisms and their ecological correlation with HMBs is challenging. This issue is still unclear in the natural dynamics of HMBs. Here, we revealed the complex interactions and linkages among environment-algae-bacterial communities in the phycosphere of the green macroalgae Ulva prolifera, which causes the world's largest green tides. Our study provides new ideas to increase our understanding of the variation patterns of macroalgal phycospheric bacterial communities and the formation mechanisms and ecological effects of green tides and highlights the importance of phycospheric microorganisms as a robust tool to help understand the fate of HMBs.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Zhang Y, Feng S, Zhu L, Li M, Xiang X. Population dynamics of Brachionus calyciflorus driven by the associated natural bacterioplankton. Front Microbiol 2023; 13:1076620. [PMID: 36726570 PMCID: PMC9884981 DOI: 10.3389/fmicb.2022.1076620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Zooplankton provides bacteria with a complex microhabitat richen in organic and inorganic nutrients, and the bacteria community also changes the physiochemical conditions for zooplankton, where the symbiotic relationship between them plays an important role in the nutrient cycle. However, there are few studies on the effect of associated bacteria on the population dynamics of rotifers. In order to make clear their relationships, we reconstructed the associated bacterial community in Brachionus calyciflorus culture, and examined the life history and population growth parameters, and analyzed the diversity and community composition of the associated bacteria at different growth stages of B. calyciflorus. The results showed that the addition of bacteria from natural water can promote the population growth and asexual reproduction of B. calyciflorus, but has no significant effect on sexual reproduction, exhibited by the improvement of its life expectancy at hatching, net reproduction rates and intrinsic growth rate, no significant effects on the generation time and mixis ratio of offspring. It was found that the B. calyciflorus-associated bacterial community was mainly composed of Proteobacteria, Bacteroidota, Actinobacteriota, Cyanobacteria and Firmicutes. Through correlation network analysis, the members of Burkholderiales, Pseudomonadales, Micrococcales, Caulobacterales and Bifidobacteriales were the keystone taxa of B. calyciflorus-associated bacteria. In addition, the relative abundance of some specific bacteria strains increased as the population density of B. calyciflorus increased, such as Hydrogenophaga, Acidovorax, Flavobacterium, Rheinheimera, Novosphingobium and Limnobacter, and their relative abundance increased obviously during the slow and exponential phases of population growth. Meanwhile, the relative abundance of adverse taxa (such as Elizabethkingia and Rickettsiales) decreased significantly with the increase in rotifer population density. In conclusion, the closely associated bacteria are not sufficient for the best growth of B. calyciflorus, and external bacterioplankton is necessary. Furthermore, the function of keystone and rare taxa is necessary for further exploration. The investigation of the symbiotic relationship between zooplankton-associated bacterial and bacterioplankton communities will contribute to monitoring their roles in freshwater ecosystems, and regulate the population dynamics of the micro-food web.
Collapse
Affiliation(s)
- Yongzhi Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Lingyun Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China,Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui, China,*Correspondence: Xianling Xiang, ✉
| |
Collapse
|
12
|
Synergy of the Two Alginate Lyase Domains of a Novel Alginate Lyase from Vibrio sp. NC2 in Alginate Degradation. Appl Environ Microbiol 2022; 88:e0155922. [PMID: 36394323 PMCID: PMC9746311 DOI: 10.1128/aem.01559-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alginate lyases play a vital role in the degradation of alginate, an important marine carbon source. Alginate is a complex macromolecular substrate, and the synergy of alginate lyases is important for the alginate utilization by microbes and the application of alginate lyases in biotechnology. Although many studies have focused on the synergy between different alginate lyases, the synergy between two alginate lyase domains of one alginate lyase has not been reported. Here, we report the synergism between the two catalytic domains of a novel alginate lyase, AlyC6', from the marine alginate-degrading bacterium Vibrio sp. NC2. AlyC6' contains two PL7 catalytic domains (CD1 and CD2) that have no sequence similarity. While both CD1 and CD2 are endo-lyases with the highest activity at 30°C, pH 8.0, and 1.0 M NaCl, they also displayed some different properties. CD1 was PM-specific, but CD2 was PG-specific. Compared with CD2, CD1 had higher catalytic efficiency, but lower substrate affinity. In addition, CD1 had a smaller minimal substrate than CD2, and the products from CD2 could be further degraded by CD1. These distinctions between the two domains enable them to synergize intramolecularly in alginate degradation, resulting in efficient and complete degradation of various alginate substrates. The bioinformatics analysis revealed that diverse alginate lyases have multiple catalytic domains, which are widespread, especially abundant in Flavobacteriaceae and Alteromonadales, which may secret multimodular alginate lyases for alginate degradation. This study provides new insight into bacterial alginate lyases and alginate degradation and is helpful for designing multimodular enzymes for efficient alginate depolymerization. IMPORTANCE Alginate is a major component in the cell walls of brown algae. Alginate degradation is carried out by alginate lyases. Until now, while most characterized alginate lyases contain one single catalytic domain, only a few have been shown to contain two catalytic domains. Furthermore, the synergy of alginate lyases has attracted increasing attention since it plays important roles in microbial alginate utilization and biotechnological applications. Although many studies have focused on the synergy between different alginate lyases, the synergy between two catalytic domains of one alginate lyase has not been reported. Here, a novel alginate lyase, AlyC6', with two functional alginate lyase domains was biochemically characterized. Moreover, the synergism between the two domains of AlyC6' was revealed. Additionally, the distribution of the alginate lyases with multiple alginate lyase domains was investigated based on the bioinformatics analysis. This study provides new insight into bacterial alginate lyases and alginate degradation.
Collapse
|
13
|
Zhang Y, Feng S, Gao F, Wen H, Zhu L, Li M, Xi Y, Xiang X. The Relationship between Brachionus calyciflorus-Associated Bacterial and Bacterioplankton Communities in a Subtropical Freshwater Lake. Animals (Basel) 2022; 12:ani12223201. [PMID: 36428428 PMCID: PMC9686566 DOI: 10.3390/ani12223201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Zooplankton bodies are organic-rich micro-environments that support fast bacterial growth. Therefore, the abundance of zooplankton-associated bacteria is much higher than that of free-living bacteria, which has profound effects on the nutrient cycling of freshwater ecosystems. However, a detailed analysis of associated bacteria is still less known, especially the relationship between those bacteria and bacterioplankton. In this study, we analyzed the relationships between Brachionus calyciflorus-associated bacterial and bacterioplankton communities in freshwater using high-throughput sequencing. The results indicated that there were significant differences between the two bacterial communities, with only 29.47% sharing OTUs. The alpha diversity of the bacterioplankton community was significantly higher than that of B. calyciflorus-associated bacteria. PCoA analysis showed that the bacterioplankton community gathered deeply, while the B. calyciflorus-associated bacterial community was far away from the whole bacterioplankton community, and the distribution was relatively discrete. CCA analysis suggested that many environmental factors (T, DO, pH, TP, PO43-, NH4+, and NO3-) regulated the community composition of B. calyciflorus-associated bacteria, but the explanatory degree of variability was only 37.80%. High-throughput sequencing revealed that Raoultella and Delftia in Proteobacteria were the dominant genus in the B. calyciflorus-associated bacterial community, and closely related to the biodegradation function. Moreover, several abundant bacterial members participating in carbon and nitrogen cycles were found in the associated bacterial community by network analysis. Predictive results from FAPROTAX showed that the predominant biogeochemical cycle functions of the B. calyciflorus-associated bacterial community were plastic degradation, chemoheterotrophy, and aerobic chemoheterotrophy. Overall, our study expands the current understanding of zooplankton-bacteria interaction and promotes the combination of two different research fields.
Collapse
Affiliation(s)
- Yongzhi Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Fan Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Hao Wen
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lingyun Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241002, China
- Correspondence: author:
| |
Collapse
|
14
|
Castillo DJ, Dithugoe CD, Bezuidt OK, Makhalanyane TP. Microbial ecology of the Southern Ocean. FEMS Microbiol Ecol 2022; 98:6762916. [PMID: 36255374 DOI: 10.1093/femsec/fiac123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 01/21/2023] Open
Abstract
The Southern Ocean (SO) distributes climate signals and nutrients worldwide, playing a pivotal role in global carbon sequestration. Microbial communities are essential mediators of primary productivity and carbon sequestration, yet we lack a comprehensive understanding of microbial diversity and functionality in the SO. Here, we examine contemporary studies in this unique polar system, focusing on prokaryotic communities and their relationships with other trophic levels (i.e. phytoplankton and viruses). Strong seasonal variations and the characteristic features of this ocean are directly linked to community composition and ecosystem functions. Specifically, we discuss characteristics of SO microbial communities and emphasise differences from the Arctic Ocean microbiome. We highlight the importance of abundant bacteria in recycling photosynthetically derived organic matter. These heterotrophs appear to control carbon flux to higher trophic levels when light and iron availability favour primary production in spring and summer. Conversely, during winter, evidence suggests that chemolithoautotrophs contribute to prokaryotic production in Antarctic waters. We conclude by reviewing the effects of climate change on marine microbiota in the SO.
Collapse
Affiliation(s)
- Diego J Castillo
- Department of Biochemistry, Genetics and Microbiology, Microbiome Research Group, University of Pretoria, Pretoria 0028, South Africa.,Department of Science and Innovation/South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Choaro D Dithugoe
- Department of Biochemistry, Genetics and Microbiology, Microbiome Research Group, University of Pretoria, Pretoria 0028, South Africa.,Department of Science and Innovation/South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Oliver K Bezuidt
- Department of Biochemistry, Genetics and Microbiology, Microbiome Research Group, University of Pretoria, Pretoria 0028, South Africa.,Department of Science and Innovation/South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, Microbiome Research Group, University of Pretoria, Pretoria 0028, South Africa.,Department of Science and Innovation/South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
15
|
Diaminopimelic Acid Metabolism by Pseudomonadota in the Ocean. Microbiol Spectr 2022; 10:e0069122. [PMID: 36040174 PMCID: PMC9602339 DOI: 10.1128/spectrum.00691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diaminopimelic acid (DAP) is a unique component of the cell wall of Gram-negative bacteria. It is also an important component of organic matter and is widely utilized by microbes in the world's oceans. However, neither DAP concentrations nor marine DAP-utilizing microbes have been investigated. Here, DAP concentrations in seawater were measured and the diversity of marine DAP-utilizing bacteria and the mechanisms for their DAP metabolism were investigated. Free DAP concentrations in seawater, from surface to a 5,000 m depth, were found to be between 0.61 μM and 0.96 μM in the western Pacific Ocean. DAP-utilizing bacteria from 20 families in 4 phyla were recovered from the western Pacific seawater and 14 strains were further isolated, in which Pseudomonadota bacteria were dominant. Based on genomic and transcriptomic analyses combined with gene deletion and in vitro activity detection, DAP decarboxylase (LysA), which catalyzes the decarboxylation of DAP to form lysine, was found to be a key and specific enzyme involved in DAP metabolism in the isolated Pseudomonadota strains. Interrogation of the Tara Oceans database found that most LysA-like sequences (92%) are from Pseudomonadota, which are widely distributed in multiple habitats. This study provides an insight into DAP metabolism by marine bacteria in the ocean and contributes to our understanding of the mineralization and recycling of DAP by marine bacteria. IMPORTANCE DAP is a unique component of peptidoglycan in Gram-negative bacterial cell walls. Due to the large number of marine Gram-negative bacteria, DAP is an important component of marine organic matter. However, it remains unclear how DAP is metabolized by marine microbes. This study investigated marine DAP-utilizing bacteria by cultivation and bioinformational analysis and examined the mechanism of DAP metabolism used by marine bacteria. The results demonstrate that Pseudomonadota bacteria are likely to be an important DAP-utilizing group in the ocean and that DAP decarboxylase is a key enzyme involved in DAP metabolism. This study also sheds light on the mineralization and recycling of DAP driven by bacteria.
Collapse
|
16
|
Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders. THE ISME JOURNAL 2022; 16:2027-2039. [PMID: 35589967 PMCID: PMC9296495 DOI: 10.1038/s41396-022-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
Macroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans DsijT has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae. Co-cultures experiments with the non-degrading strain Tenacibaculum aestuarii SMK-4T showed that Z. galactanivorans can act as a pioneer that initiates algal breakdown and shares public goods with other bacteria. A comparison of eight Zobellia strains, and strong transcriptomic shifts in Z. galactanivorans cells using fresh macroalgae vs. isolated polysaccharides, revealed potential overlooked traits of pioneer bacteria. Besides brown algal polysaccharide degradation, they notably include oxidative stress resistance proteins, type IX secretion system proteins and novel uncharacterized polysaccharide utilization loci. Overall, this work highlights the relevance of studying fresh macroalga degradation to fully understand the metabolic and ecological strategies of pioneer microbial degraders, key players in macroalgal biomass remineralization.
Collapse
|
17
|
Wang J, Yang Z, Wang G, Shang S, Tang X, Xiao H. Diversity of epiphytic bacterial communities on male and female Sargassum thunbergii. AMB Express 2022; 12:97. [PMID: 35841460 PMCID: PMC9288574 DOI: 10.1186/s13568-022-01439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
The epiphytic bacteria are the most abundant microorganisms on marine macroalga. However, there are few studies on the distribution of these epiphytic bacteria on male and female Sargassum thunbergii. In this study, the composition and diversity of epiphytic bacterial communities on male and female S. thunbergii were investigated by using the traditional culture-based method and 16S rDNA high-throughput sequencing. The results showed that the dominant bacterial phyla and genera were the same on both male and female S. thunbergii. However, there were significant differences in the relative abundance of epiphytic bacteria at the genus level. Furthermore, male and female S. thunbergii had their own indicative species and specific bacteria. In addition, the predicted functions of the epiphytic bacteria mainly differed in transport and metabolism, environmental adaptation and spore development. This study enriches the baseline knowledge of epiphytic bacteria related to dioecious algae and paves the way for further studies of the relationships between epiphytic microbial communities and the sex of algae.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256600, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
18
|
Chen J, Zang Y, Yang Z, Qu T, Sun T, Liang S, Zhu M, Wang Y, Tang X. Composition and Functional Diversity of Epiphytic Bacterial and Fungal Communities on Marine Macrophytes in an Intertidal Zone. Front Microbiol 2022; 13:839465. [PMID: 35369473 PMCID: PMC8972133 DOI: 10.3389/fmicb.2022.839465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Marine macrophytes (seagrasses and macroalgae) and their epiphytic microorganisms play an important role in the ecological and biochemical processes of coastal oceans. However, simultaneous comparative studies on the biodiversity and functions of epiphytic bacteria and fungi associated with marine macrophytes have not been conducted. In this study, high-throughput sequencing technology was used to describe the epiphytic bacterial and fungal communities of 11 common macroalgae and 2 seagrasses from an intertidal zone of northern China and compare them with seawater communities. The results showed that Proteobacteria and Bacteroidota were the dominant bacterial phyla in marine macrophytes, whereas Ascomycota, Chytridiomycota, and Basidiomycota were the dominant fungal phyla. The alpha diversity of the bacterial and fungal communities in seagrasses was the highest of all macrophyte samples. This may have been related to their ability to recruit microorganisms from multiple sources. Host phylogeny may influence bacterial community structure, and geographical differences may influence fungal community structure. The FAPROTAX data indicated that C metabolic microbes were enriched in marine macrophytes, while the FUNGuild data indicated that undefined saprotroph, which participated in organic matter degradation, were also enriched in marine macrophytes. These findings provide a theoretical basis regarding the epiphytic microorganisms of macrophytes and may offer new insights to support the improved ecological restoration of seagrass and macroalgae beds.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiling Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Maki T, Lee KC, Pointing SB, Watanabe K, Aoki K, Archer SDJ, Lacap-Bugler DC, Ishikawa A. Desert and anthropogenic mixing dust deposition influences microbial communities in surface waters of the western Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148026. [PMID: 34119785 DOI: 10.1016/j.scitotenv.2021.148026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/08/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The western Pacific Ocean is particularly affected by dust aerosols due to the transport of desert-natural sand and industrially derived particulate matter with aerodynamic diameter < 2.5 μm (PM2.5) from continental Asia. Both oligotrophic and nutrient-sufficient surface water occurs in this region and these are speculated to support different microbial community dynamics. Here, we report evidence from four shipboard experiments in the western Pacific Ocean supplying oligotrophic and nutrient-sufficient surface waters with aerosol particles obtained from the nearby coastal mountains, to simulate dust and anthropogenic aerosol inputs in the ocean region. A sharp increase in nitrate for surface waters after addition of dust aerosols resulted in large increases in diatom abundance in oligotrophic waters, whilst in nutrient-sufficient waters the response of diatom population was reduced. The increase in organic matter provided by aerosol inputs and/or increase in phytoplankton biomass induced the growth of heterotrophic prokaryotes, such as Rhodobacteraceae and Alteromonadaceae populations, in both oligotrophic and nutrient-sufficient seawater. Anthropogenic and desert-natural dust is an important source of nitrate and organics to oceanic waters and such inputs can directly affect primary production and heterotrophic prokaryotic abundance in the ocean, implying consequences for the carbon cycle in these aerosol-affected waters.
Collapse
Affiliation(s)
- Teruya Maki
- Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| | - Kevin C Lee
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Stephen B Pointing
- Yale-NUS College, National University of Singapore, 16 College Avenue West, 138527, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Koichi Watanabe
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kazuma Aoki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Stephen D J Archer
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | | | - Akira Ishikawa
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
20
|
Thomas F, Le Duff N, Wu TD, Cébron A, Uroz S, Riera P, Leroux C, Tanguy G, Legeay E, Guerquin-Kern JL. Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria. THE ISME JOURNAL 2021; 15:3062-3075. [PMID: 33953365 PMCID: PMC8443679 DOI: 10.1038/s41396-021-00987-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm-3 h-1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.
Collapse
Affiliation(s)
- François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France.
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ting-Di Wu
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| | | | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
| | - Pascal Riera
- Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Cédric Leroux
- CNRS, Sorbonne Université, FR2424, Metabomer, Station Biologique de Roscoff, Roscoff, France
| | - Gwenn Tanguy
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Erwan Legeay
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| |
Collapse
|
21
|
Liang J, Liu J, Zhan Y, Zhou S, Xue CX, Sun C, Lin Y, Luo C, Wang X, Zhang XH. Succession of marine bacteria in response to Ulva prolifera-derived dissolved organic matter. ENVIRONMENT INTERNATIONAL 2021; 155:106687. [PMID: 34144477 DOI: 10.1016/j.envint.2021.106687] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Increasing macroalgal blooms as a consequence of climate warming and coastal eutrophication have profound effects on the marine environment. The outbreaks of Ulva prolifera in the Yellow Sea of China occurring every summer since 2007 to present have formed the world's largest green tide. The green tide releases huge amounts of dissolved organic matter (DOM) to the seawater, causing an organic overload. However, how marine bacteria respond to this issue and the potential impact on the marine environment are still unclear. Here, we monitored the highly temporally resolved dynamics of marine bacterial community that occur in response to Ulva prolifera-derived DOM by performing a 168-h microcosm incubation experiment. DOM inputs significantly increased bacterial abundances within 6 h, decreased bacterial diversity and triggered clear community successions during the whole period of incubation. Vibrio of Gammaproteobacteria robustly and rapidly grew over short timescales (6-24 h), with its relative abundance accounting for up to 52.5% of active bacteria. From 24 to 48 h, some genera of Flavobacteriia grew rapidly, which was more conspicuous at a higher DOM concentration than at a lower concentration. The genus Donghicola of Alphaproteobacteria was predominant at later time points (>48 h). This bacterial community succession was accompanied by significant variations in the activity of 12 different extracellular enzymes, resulting in a rapid reduction of dissolved organic carbon by 74.5% within the first 36 h. In summary, our study demonstrates rapid successions of bacterial community and extracellular enzyme activity after DOM inputs, suggesting that the bacterial response to Ulva prolifera-derived organic matter may contribute to environmental restoration and may pose a health threat due to the bloom of potential pathogenic Vibrio.
Collapse
Affiliation(s)
- Jinchang Liang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuanchao Zhan
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Shun Zhou
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Chun-Xu Xue
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Chuang Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yu Lin
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Chunle Luo
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100, China
| | - Xuchen Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
22
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
23
|
Wolter LA, Mitulla M, Kalem J, Daniel R, Simon M, Wietz M. CAZymes in Maribacter dokdonensis 62-1 From the Patagonian Shelf: Genomics and Physiology Compared to Related Flavobacteria and a Co-occurring Alteromonas Strain. Front Microbiol 2021; 12:628055. [PMID: 33912144 PMCID: PMC8072126 DOI: 10.3389/fmicb.2021.628055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are an important feature of bacteria in productive marine systems such as continental shelves, where phytoplankton and macroalgae produce diverse polysaccharides. We herein describe Maribacter dokdonensis 62–1, a novel strain of this flavobacterial species, isolated from alginate-supplemented seawater collected at the Patagonian continental shelf. M. dokdonensis 62–1 harbors a diverse array of CAZymes in multiple polysaccharide utilization loci (PUL). Two PUL encoding polysaccharide lyases from families 6, 7, 12, and 17 allow substantial growth with alginate as sole carbon source, with simultaneous utilization of mannuronate and guluronate as demonstrated by HPLC. Furthermore, strain 62-1 harbors a mixed-feature PUL encoding both ulvan- and fucoidan-targeting CAZymes. Core-genome phylogeny and pangenome analysis revealed variable occurrence of these PUL in related Maribacter and Zobellia strains, indicating specialization to certain “polysaccharide niches.” Furthermore, lineage- and strain-specific genomic signatures for exopolysaccharide synthesis possibly mediate distinct strategies for surface attachment and host interaction. The wide detection of CAZyme homologs in algae-derived metagenomes suggests global occurrence in algal holobionts, supported by sharing multiple adaptive features with the hydrolytic model flavobacterium Zobellia galactanivorans. Comparison with Alteromonas sp. 76-1 isolated from the same seawater sample revealed that these co-occurring strains target similar polysaccharides but with different genomic repertoires, coincident with differing growth behavior on alginate that might mediate ecological specialization. Altogether, our study contributes to the perception of Maribacter as versatile flavobacterial polysaccharide degrader, with implications for biogeochemical cycles, niche specialization and bacteria-algae interactions in the oceans.
Collapse
Affiliation(s)
- Laura A Wolter
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany.,JST ERATO Nomura Project, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Maximilian Mitulla
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Jovan Kalem
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
24
|
Brunet M, de Bettignies F, Le Duff N, Tanguy G, Davoult D, Leblanc C, Gobet A, Thomas F. Accumulation of detached kelp biomass in a subtidal temperate coastal ecosystem induces succession of epiphytic and sediment bacterial communities. Environ Microbiol 2021; 23:1638-1655. [PMID: 33400326 PMCID: PMC8248336 DOI: 10.1111/1462-2920.15389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 12/30/2022]
Abstract
Kelps are dominant primary producers in temperate coastal ecosystems. Large amounts of kelp biomass can be exported to the seafloor during the algal growth cycle or following storms, creating new ecological niches for the associated microbiota. Here, we investigated the bacterial community associated with the kelp Laminaria hyperborea during its accumulation and degradation on the seafloor. Kelp tissue, seawater and sediment were sampled during a 6-month in situ experiment simulating kelp detritus accumulation. Evaluation of the epiphytic bacterial community abundance, structure, taxonomic composition and predicted functional profiles evidenced a biphasic succession. Initially, dominant genera (Hellea, Litorimonas, Granulosicoccus) showed a rapid and drastic decrease in sequence abundance, probably outcompeted by algal polysaccharide-degraders such as Bacteroidia members which responded within 4 weeks. Acidimicrobiia, especially members of the Sva0996 marine group, colonized the degrading kelp biomass after 11 weeks. These secondary colonizers could act as opportunistic scavenger bacteria assimilating substrates exposed by early degraders. In parallel, kelp accumulation modified bacterial communities in the underlying sediment, notably favouring anaerobic taxa potentially involved in the sulfur and nitrogen cycles. Overall, this study provides insights into the bacterial degradation of algal biomass in situ, an important link in coastal trophic chains.
Collapse
Affiliation(s)
- Maéva Brunet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Gwenn Tanguy
- Sorbonne Université, CNRS, FR2424, Genomer, Station Biologique de RoscoffRoscoff29680France
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Angélique Gobet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDSèteFrance
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| |
Collapse
|
25
|
Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, Amann R. The Biogeochemistry of Marine Polysaccharides: Sources, Inventories, and Bacterial Drivers of the Carbohydrate Cycle. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:81-108. [PMID: 32726567 DOI: 10.1146/annurev-marine-032020-012810] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition. Here, we survey current knowledge, discuss recent advances, and present a new conceptual model linking polysaccharide structural complexity and abundance to microbially driven mechanisms of polysaccharide processing. We conclude by highlighting specific future research foci that will shed light on this central but poorly characterized component of the marine carbon cycle.
Collapse
Affiliation(s)
- C Arnosti
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - M Wietz
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - T Brinkhoff
- Institute for the Chemistry and Biology of the Marine Environment, University of Oldenburg, 26111 Oldenburg, Germany
| | - J-H Hehemann
- MARUM MPG Bridge Group Marine Glycobiology, Center for Marine Environmental Sciences (MARUM), University of Bremen, and Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - D Probandt
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - L Zeugner
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - R Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
26
|
Manna V, Malfatti F, Banchi E, Cerino F, De Pascale F, Franzo A, Schiavon R, Vezzi A, Del Negro P, Celussi M. Prokaryotic Response to Phytodetritus-Derived Organic Material in Epi- and Mesopelagic Antarctic Waters. Front Microbiol 2020; 11:1242. [PMID: 32582131 PMCID: PMC7296054 DOI: 10.3389/fmicb.2020.01242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Particulate organic matter (POM) export represents the underlying principle of the biological carbon pump, driving the carbon flux from the sunlit to the dark ocean. The efficiency of this process is tightly linked to the prokaryotic community, as >70% of POM respiration is carried out by particle-associated prokaryotes. In the Ross Sea, one of the most productive areas of the Southern Ocean, up to 50% of the surface primary production is exported to the mesopelagic ocean as POM. Recent evidence suggests that a significant fraction of the POM in this area is composed of intact phytoplankton cells. During austral summer 2017, we set up bottle enrichment experiments in which we amended free-living surface and deep prokaryotic communities with organic matter pools generated from native microplankton, mimicking the particle export that may derive from mild (1 μg of Chlorophyll a L-1) and intense (10 μg of Chlorophyll a L-1) phytoplankton bloom. Over a course of 4 days, we followed free-living and particle-attached prokaryotes' abundance, the degradation rates of polysaccharides, proteins and lipids, heterotrophic production as well as inorganic carbon utilization and prokaryotic community structure dynamics. Our results showed that several rare or undetected taxa in the initial community became dominant during the time course of the incubations and that different phytodetritus-derived organic matter sources induced specific changes in microbial communities, selecting for peculiar degradation and utilization processes spectra. Moreover, the features of the supplied detritus (in terms of microplankton taxa composition) determined different colonization dynamics and organic matter processing modes. Our study provides insights into the mechanisms underlying the prokaryotic utilization of phytodetritus, a significant pool of organic matter in the dark ocean.
Collapse
Affiliation(s)
- Vincenzo Manna
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Francesca Malfatti
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Elisa Banchi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Federica Cerino
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Fabio De Pascale
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Annalisa Franzo
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Riccardo Schiavon
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Alessandro Vezzi
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Paola Del Negro
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Mauro Celussi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| |
Collapse
|
27
|
Shao Q, Lin Z, Zhou C, Zhu P, Yan X. Succession of bacterioplankton communities over complete Gymnodinium-diatom bloom cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135951. [PMID: 31887501 DOI: 10.1016/j.scitotenv.2019.135951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Shifts in bacterioplankton communities during algal blooms have been widely investigated, but our understanding of their succession over the continuous course of paralytic shellfish poisoning producing Gymnodinium catenatum blooms and diatom (Skeletonema costatum and Chaetoceros curvisetus) blooms in natural bays is highly understudied. Here, we used high-throughput sequencing of bacterioplankton 16S rRNA genes to investigate the composition and successional patterns of bacterioplankton communities during Gymnodinium-diatom bloom cycles. Changes in community compositional patterns were then evaluated in context of environmental and phytoplankton community variation. Bacterioplankton α-diversity significantly decreased during the emergence of the algal blooms, with Flavobacteriaceae, Rhodobacteraceae, Cryomorphaceae, and Saprospiraceae as the dominant bacterial families in waters during the blooms. Bacterioplankton community compositions could be separated into three successive stages according to bloom dynamics, wherein the succession of bacterioplankton communities was correlated with changes in algal species. Environmental variables, and particularly pH, salinity, and nutrient concentrations (e.g., of nitrite, nitrate, and ammonium) were strongly associated with variation in bacterioplankton community structures. Variance partitioning analysis indicated that phytoplankton effects alone could explain more variance than only environmental effects. Moreover, LEfSe analysis was used to identify special bacterioplankton genera as "biomarkers" for bloom stages, such as Tepidisphaera and Pseudarcicella, whose abundances were significantly associated with different stages of the phytoplankton blooms. The phylotype "biomarkers" that were identified hold significant potential as indicators for phytoplankton bloom successional dynamics. Overall, these results may contribute to the understanding of the ecological processes shaping microbial communities during successive Gymnodinium-diatom blooms.
Collapse
Affiliation(s)
- Qianwen Shao
- Key Laboratory of Applied Marine Biotechnology, School of Marine Science, Ministry of education, Ningbo University, Ningbo 315832, China; Ningbo institute of Oceanography, Ningbo 315832, China
| | - Zhongzhou Lin
- Key Laboratory of Applied Marine Biotechnology, School of Marine Science, Ministry of education, Ningbo University, Ningbo 315832, China; Ningbo institute of Oceanography, Ningbo 315832, China
| | - Chengxu Zhou
- Key Laboratory of Applied Marine Biotechnology, School of Marine Science, Ministry of education, Ningbo University, Ningbo 315832, China.
| | - Peng Zhu
- Key Laboratory of Applied Marine Biotechnology, School of Marine Science, Ministry of education, Ningbo University, Ningbo 315832, China; Ningbo institute of Oceanography, Ningbo 315832, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, School of Marine Science, Ministry of education, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
28
|
Jain A, Krishnan KP, Begum N, Singh A, Thomas FA, Gopinath A. Response of bacterial communities from Kongsfjorden (Svalbard, Arctic Ocean) to macroalgal polysaccharide amendments. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104874. [PMID: 31975691 DOI: 10.1016/j.marenvres.2020.104874] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Macroalgae are abundant in coastal Arctic habitats and contain a large amount of polysaccharides. Increased macroalgal productivity due to warmer temperatures and reduced sea-ice cover contribute a significant amount of polysaccharide-rich detritus in the region. To study bacterial degradation of macroalgal polysaccharides and their potential impact on biogeochemical processes we studied the response of bacterial communities from Kongsfjorden, Svalbard (Arctic Ocean) to alginate (AL) and agarose (AG) amendments, using an ex-situ microcosm experiment. Our results show that bacterial communities responded to the increased availability of macroalgal polysaccharides and community shift was congruent with a significant decline in nutrient concentrations. Initially-rare bacterial taxa affiliated with Gammaproteobacteria and Bacteroidia responded to the polysaccharide addition. Each polysaccharide addition incited the growth of certain distinct bacteria taxa. Compared to the un-amended control microcosms (CM), Polaribacter, Colwellia, Pseudoalteromonas, and unclassified Gammaproteobacteria responded to AL addition, whereas Paraglaciecola, Lentimonas, Colwellia, unclassified Gammaproteobacteria, unclassified Alteromonadales, and unclassified Alteromonadaceae responded to the AG addition. These results suggest that polysaccharides shift bacterial community composition towards copiotrophic bacterial taxa, with implications for carbon and nutrient cycling in coastal Svalbard.
Collapse
Affiliation(s)
- Anand Jain
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India.
| | | | - Nazira Begum
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Archana Singh
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Femi Anna Thomas
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Anu Gopinath
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
29
|
Distinct capabilities of different Gammaproteobacterial strains on utilizing small peptides in seawater. Sci Rep 2020; 10:464. [PMID: 31949195 PMCID: PMC6965191 DOI: 10.1038/s41598-019-57189-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/21/2019] [Indexed: 11/23/2022] Open
Abstract
Proteins and peptides account for 20–75% of marine biota biomass, of which a major fraction is metabolized by bacteria, thus deciphering interactions between bacteria and peptides is important in understanding marine carbon and nitrogen cycling. To better understand capabilities of different bacterial strains on peptide decomposition, four Gammaproteobacteria (Pseudoalteromonas atlantica, Alteromonas sp., Marinobacterium jannaschii, Amphritea japonica) were incubated in autoclaved seawater amended with tetrapeptide alanine-valine-phenylalanine-alanine (AVFA), a fragment of RuBisCO. While AVFA was decomposed greatly by Pseudoalteromonas atlantica and Alteromonas sp, it remained nearly intact in the Marinobacterium jannaschii and Amphritea japonica incubations. Pseudoalteromonas and Alteromonas decomposed AVFA mainly through extracellular hydrolysis pathway, releasing 71–85% of the AVFA as hydrolysis products to the surrounding seawater. Overall, this study showed that Gammaproteobacterial strains differ greatly in their capabilities of metabolizing peptides physiologically, providing insights into interactions of bacteria and labile organic matter in marine environments.
Collapse
|
30
|
Fonseca F, Cerqueira R, Fuentes J. Impact of Ocean Acidification on the Intestinal Microbiota of the Marine Sea Bream ( Sparus aurata L.). Front Physiol 2019; 10:1446. [PMID: 31849701 PMCID: PMC6893888 DOI: 10.3389/fphys.2019.01446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Within a scenario of increasing atmospheric CO2 and ocean acidification (OA), it is highly relevant to investigate its impacts not only on fish performance but also on fish intestinal microbiome and how that reflects on host performance and health. The main objective of this study was to establish if the intestinal microbiota of the sea bream (Sparus aurata) was affected by high level of CO2 in line with the predictions for this century. The bacterial communities of the intestinal fluid were characterized in animals kept at the present-day level of CO2 (400 μatm) and in animals switched to high CO2 (1200 μatm) for 1 month. Bacterial taxa identification was based on molecular methods, using the DNA coding for the 16S ribosomal RNA and primers targeting the regions V1-V3. Amplicons obtained from DNA samples of animals in the same tank were combined, cloned to obtain a bacterial DNA library, and the clones were sequenced. No significant differences were found between the two treatments for alpha diversity. However, beta diversity analysis revealed distinct dysbiosis in response to hypercapnia, with phylum Firmicutes absent from the bacterial communities of fish exposed to 1200 μatm CO2, whereas Proteobacteria relative abundance was increased at elevated CO2, due to the presence of Gammaproteobacteria (Vibrionaceae and Alteromonadaceae), a class not present in the control samples. This study provides a first glimpse at the impact of OA in fish intestinal microbiota and highlights potential downstream effects to the general condition of fishes under hypercapnia.
Collapse
Affiliation(s)
- Filomena Fonseca
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Faro, Portugal
| | - Ricardo Cerqueira
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Faro, Portugal
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
31
|
Li AZ, Han XB, Zhang MX, Zhou Y, Chen M, Yao Q, Zhu HH. Culture-Dependent and -Independent Analyses Reveal the Diversity, Structure, and Assembly Mechanism of Benthic Bacterial Community in the Ross Sea, Antarctica. Front Microbiol 2019; 10:2523. [PMID: 31787942 PMCID: PMC6856632 DOI: 10.3389/fmicb.2019.02523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022] Open
Abstract
The benthic bacterial community in Antarctic continental shelf ecosystems are not well-documented. We collected 13 surface sediments from the Ross Sea, a biological hotspot in high-latitude maritime Antarctica undergoing rapid climate change and possible microflora shift, and aimed to study the diversity, structure and assembly mechanism of benthic bacterial community using both culture-dependent and -independent approaches. High-throughput sequencing of 16S rRNA gene amplicons revealed 370 OTUs distributed in 21 phyla and 284 genera. The bacterial community was dominated by Bacteroidetes, Gamma- and Alphaproteobacteria, and constituted by a compact, conserved and positively-correlated group of anaerobes and other competitive aerobic chemoheterotrophs. Null-model test based on βNTI and RCBray indicated that stochastic processes, including dispersal limitation and undominated fractions, were the main forces driving community assembly. On the other hand, environmental factors, mainly temperature, organic matter and chlorophyll, were significantly correlated with bacterial richness, diversity and community structure. Moreover, metabolic and physiological features of the prokaryotic taxa were mapped to evaluate the adaptive mechanisms and functional composition of the benthic bacterial community. Our study is helpful to understand the structural and functional aspects, as well as the ecological and biogeochemical role of the benthic bacterial community in the Ross Sea.
Collapse
Affiliation(s)
- An-Zhang Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xi-Bin Han
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Ming-Xia Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meng Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Grass Science, Guangdong Engineering Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
32
|
Li Y, Sun LL, Sun YY, Cha QQ, Li CY, Zhao DL, Song XY, Wang M, McMinn A, Chen XL, Zhang YZ, Qin QL. Extracellular Enzyme Activity and Its Implications for Organic Matter Cycling in Northern Chinese Marginal Seas. Front Microbiol 2019; 10:2137. [PMID: 31608022 PMCID: PMC6755343 DOI: 10.3389/fmicb.2019.02137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 01/23/2023] Open
Abstract
Extracellular enzymes, initiating the degradation of organic macromolecules, are important functional components of marine ecosystems. Measuring in situ seawater extracellular enzyme activity (EEA) can provide fundamental information for understanding the biogeochemical cycling of organic matter in the ocean. Here we investigate the patterns of EEA and the major factors affecting the seawater EEA of Chinese marginal seas. The geographic distribution of EEA along a latitudinal transect was examined and found to be associated with dissolved organic carbon. Compared with offshore waters, inshore waters had higher enzyme activity. All the tested substrates were hydrolyzed at different rates and phosphatase, β-glucosidase and protease contributed greatly to summed hydrolysis rates. For any particular enzyme activity, the contribution of dissolved to total EEA was strongly heterogenous between stations. Comparisons of hydrolysis rates of the polymers and their corresponding oligomers suggest that molecule size does not necessarily limit the turnover of marine organic matter. In addition, several typical enzyme-producing clades, such as Bacteroidetes, Planctomycetes, Chloroflexi, Roseobacter, Alteromonas, and Pseudoalteromonas, were detected in the in situ environments. These enzyme-producing clades may be responsible for the production of different enzymes. Overall, each enzyme was found to flexibly respond to environmental conditions and were linked to microbial community composition. It is likely that this activity will profoundly affect organic matter cycling in the Chinese marginal seas.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Lin-Lin Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yuan-Yuan Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
33
|
Lindemann SR. Microbial Ecology: Functional 'Modules' Drive Assembly of Polysaccharide-Degrading Marine Microbial Communities. Curr Biol 2019; 29:R330-R332. [PMID: 31063726 DOI: 10.1016/j.cub.2019.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although ecological principles governing the competition of microbes for simple substrates are well-understood, less is known about how complex, structured substrates influence ecological outcomes in microbial communities. A new study sheds light on how marine microbial communities assemble on polysaccharide particles modeling marine snow.
Collapse
Affiliation(s)
- Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA; Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
34
|
Chai Y, Cao Y, Yue M, Tian T, Yin Q, Dang H, Quan J, Zhang R, Wang M. Soil Abiotic Properties and Plant Functional Traits Mediate Associations Between Soil Microbial and Plant Communities During a Secondary Forest Succession on the Loess Plateau. Front Microbiol 2019; 10:895. [PMID: 31105679 PMCID: PMC6499021 DOI: 10.3389/fmicb.2019.00895] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
In the context of secondary forest succession, aboveground-belowground interactions are known to affect the dynamics and functional structure of plant communities. However, the links between soil microbial communities, soil abiotic properties, plant functional traits in the case of semi-arid and arid ecosystems, are unclear. In this study, we investigated the changes in soil microbial species diversity and community composition, and the corresponding effects of soil abiotic properties and plant functional traits, during a ≥150-year secondary forest succession on the Loess Plateau, which represents a typical semi-arid ecosystem in China. Plant community fragments were assigned to six successional stages: 1-4, 4-8, 8-15, 15-50, 50-100, and 100-150 years after abandonment. Bacterial and fungal communities were analyzed by high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene and the internal transcribed spacer (ITS2) region of the rRNA operon, respectively. A multivariate variation-partitioning approach was used to estimate the contributions of soil properties and plant traits to the observed microbial community composition. We found considerable differences in bacterial and fungal community compositions between the early (S1-S3) and later (S4-S6) successional stages. In total, 18 and 12 unique families were, respectively, obtained for bacteria and fungi, as indicators of microbial community succession across the six stages. Bacterial alpha diversity was positively correlated with plant species alpha diversity, while fungal diversity was negatively correlated with plant species diversity. Certain fungal and bacterial taxa appeared to be associated with the occurrence of dominant plant species at different successional stages. Soil properties (pH, total N, total C, NH4-N, NO3-N, and PO4-P concentrations) and plant traits explained 63.80% and 56.68% of total variance in bacterial and fungal community compositions, respectively. These results indicate that soil microbial communities are coupled with plant communities via the mediation of microbial species diversity and community composition over a long-term secondary forest succession in the semi-arid ecosystem. The bacterial and fungal communities show distinct patterns in response to plant community succession, according to both soil abiotic properties and plant functional traits.
Collapse
Affiliation(s)
- Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Ying Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Tingting Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Qiulong Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Han Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Ruichang Zhang
- Department of Plant Ecology, University of Tübingen, Tübingen, Germany
| | - Mao Wang
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
35
|
Koch H, Freese HM, Hahnke RL, Simon M, Wietz M. Adaptations of Alteromonas sp. 76-1 to Polysaccharide Degradation: A CAZyme Plasmid for Ulvan Degradation and Two Alginolytic Systems. Front Microbiol 2019; 10:504. [PMID: 30936857 PMCID: PMC6431674 DOI: 10.3389/fmicb.2019.00504] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Studying the physiology and genomics of cultured hydrolytic bacteria is a valuable approach to decipher the biogeochemical cycling of marine polysaccharides, major nutrients derived from phytoplankton and macroalgae. We herein describe the profound potential of Alteromonas sp. 76-1, isolated from alginate-enriched seawater at the Patagonian continental shelf, to degrade the algal polysaccharides alginate and ulvan. Phylogenetic analyses indicated that strain 76-1 might represent a novel species, distinguished from its closest relative (Alteromonas naphthalenivorans) by adaptations to their contrasting habitats (productive open ocean vs. coastal sediments). Ecological distinction of 76-1 was particularly manifested in the abundance of carbohydrate-active enzymes (CAZymes), consistent with its isolation from alginate-enriched seawater and elevated abundance of a related OTU in the original microcosm. Strain 76-1 encodes multiple alginate lyases from families PL6, PL7, PL17, and PL18 largely contained in two polysaccharide utilization loci (PUL), which may facilitate the utilization of different alginate structures in nature. Notably, ulvan degradation relates to a 126 Kb plasmid dedicated to polysaccharide utilization, encoding several PL24 and PL25 ulvan lyases and monomer-processing genes. This extensive and versatile CAZyme repertoire allowed substantial growth on polysaccharides, showing comparable doubling times with alginate (2 h) and ulvan (3 h) in relation to glucose (3 h). The finding of homologous ulvanolytic systems in distantly related Alteromonas spp. suggests CAZyme plasmids as effective vehicles for PUL transfer that mediate niche gain. Overall, the demonstrated CAZyme repertoire substantiates the role of Alteromonas in marine polysaccharide degradation and how PUL exchange influences the ecophysiology of this ubiquitous marine taxon.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M. Freese
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Richard L. Hahnke
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
36
|
Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, Dittmar T, Freese HM, Becher D, Simon M, Wietz M. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. THE ISME JOURNAL 2019; 13:92-103. [PMID: 30116038 PMCID: PMC6298977 DOI: 10.1038/s41396-018-0252-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/08/2022]
Abstract
Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular Saccharina and Fucus, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among Alteromonas spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct 'carbohydrate utilization types' with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria-algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Alexandra Dürwald
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Beatriz Noriega-Ortega
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Silvia Vidal-Melgosa
- MARUM-MPI Bridge Group for Marine Glycobiology, University of Bremen, Bremen, Germany
| | - Jan-Hendrik Hehemann
- MARUM-MPI Bridge Group for Marine Glycobiology, University of Bremen, Bremen, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
37
|
Shi X, Liu L, Li Y, Xiao Y, Ding G, Lin S, Chen J. Isolation of an algicidal bacterium and its effects against the harmful-algal- bloom dinoflagellate Prorocentrum donghaiense (Dinophyceae). HARMFUL ALGAE 2018; 80:72-79. [PMID: 30502814 DOI: 10.1016/j.hal.2018.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
The relationship between algicidal bacteria and harmful-algal-bloom-forming dinoflagellates is understudied and their action modes are largely uncharacterized. In this study, an algicidal bacterium (FDHY-03) was isolated from a bloom of Prorocentrum donghaiense and the characteristics of its action against P. donghaiense was investigated at physiological, molecular, biochemical and cytological levels. 16S rDNA sequence analysis placed this strain in the genus of Alteromonas in the subclass of γ-proteobacteria. Algicidal activity was detected in the bacterial filtrate, suggesting a secreted algicidal principle from this bacterium. Strain FDHY-03 showed algicidal activity on a broad range of HAB-forming species, but the greatest effect was found on P. donghaiense, which showed 91.7% mortality in 24 h of challenge. Scanning electron microscopic analysis indicated that the megacytic growth zone of P. donghaiense cells was the major target of the algicidal action of FDHY-03. When treated with FDHY-03 culture filtrate, P. donghaiense cell wall polysaccharides decreased steadily, suggesting that the algicidal activity occurred through the digestion of cell wall polysaccharides. To verify this proposition, the expression profile of beta-glucosidase gene in FDHY-03 cultures with or without P. donghaiense cell addition was investigated using reverse-transcription quantitative PCR. The gene expression level increased in the presence of P. donghaiense cells, indicative of beta-glucosidase induction by P. donghaiense and the enzyme's role in this dinoflagellate's demise. This study has isolated a new bacterial strain with a strong algicidal capability, documented its action mode and biochemical mechanism, providing a potential source of bacterial agent to control P. donghaiense blooms.
Collapse
Affiliation(s)
- Xinguo Shi
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Lemian Liu
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Yue Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Yuchun Xiao
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Guangmao Ding
- Monitoring Center of Marine Environment and Fishery Resources, Fujian Province, Fuzhou 350003, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, United States
| | - Jianfeng Chen
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China.
| |
Collapse
|
38
|
Zäncker B, Cunliffe M, Engel A. Bacterial Community Composition in the Sea Surface Microlayer Off the Peruvian Coast. Front Microbiol 2018; 9:2699. [PMID: 30498480 PMCID: PMC6249803 DOI: 10.3389/fmicb.2018.02699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023] Open
Abstract
The sea surface microlayer (SML) is located at the air-sea interface, with microorganisms and organic matter in the SML influencing air-sea exchange processes. Yet understanding of the SML bacterial (bacterioneuston) community composition and assembly remains limited. Availability of organic matter, UV radiation and wind speed have previously been suggested to influence the community composition of bacterioneuston. Another mechanism potentially controlling bacterioneuston dynamics is bacterioplankton attached to gel-like particles that ascend through the water column into the SML. We analyzed the bacterial community composition, Transparent Exopolymer Particles (TEP) abundance and nutrient concentrations in the surface waters of the Peruvian upwelling region. The bacterioneuston and bacterioplankton communities were similar, suggesting a close spatial coupling. Four Bacteroidetes families were significantly enriched in the SML, two of them, the Flavobacteriaceae and Cryomorphaceae, were found to comprise the majority of SML-enriched operational taxonomic units (OTUs). The enrichment of these families was controlled by a variety of environmental factors. The SML-enriched bacterial families were negatively correlated with water temperature and wind speed in the SML and positively correlated with nutrient concentrations, salinity and TEP in the underlying water (ULW). The correlations with nutrient concentrations and salinity suggest that the enriched bacterial families were more abundant at the upwelling stations.
Collapse
Affiliation(s)
- Birthe Zäncker
- GEOMAR - Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom.,Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, United Kingdom
| | - Anja Engel
- GEOMAR - Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
39
|
Fuentes S, Arroyo JI, Rodríguez-Marconi S, Masotti I, Alarcón-Schumacher T, Polz MF, Trefault N, De la Iglesia R, Díez B. Summer phyto- and bacterioplankton communities during low and high productivity scenarios in the Western Antarctic Peninsula. Polar Biol 2018. [DOI: 10.1007/s00300-018-2411-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol 2018; 20:2671-2685. [PMID: 30028074 DOI: 10.1111/1462-2920.14302] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/20/2023]
Abstract
Within the wealth of molecules constituting marine dissolved organic matter, carbohydrates make up the largest coherent and quantifiable fraction. Their main sources are from primary producers, which release large amounts of photosynthetic products - mainly polysaccharides - directly into the surrounding water via passive and active exudation. The organic carbon and other nutrients derived from these photosynthates enrich the 'phycosphere' and attract heterotrophic bacteria. The rapid uptake and remineralization of dissolved free monosaccharides by heterotrophic bacteria account for the barely detectable levels of these compounds. By contrast, dissolved combined polysaccharides can reach high concentrations, especially during phytoplankton blooms. Polysaccharides are too large to be taken up directly by heterotrophic bacteria, instead requiring hydrolytic cleavage to smaller oligo- or monomers by bacteria with a suitable set of exoenzymes. The release of diverse polysaccharides by various phytoplankton taxa is generally interpreted as the deposition of excess organic material. However, these molecules likely also fulfil distinct, yet not fully understood functions, as inferred from their active modulation in terms of quality and quantity when phytoplankton becomes nutrient limited or is exposed to heterotrophic bacteria. This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria.
Collapse
Affiliation(s)
- Marco Mühlenbruch
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Hans-Peter Grossart
- Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany.,Potsdam University, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Falk Eigemann
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Maren Voss
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
41
|
Schultz-Johansen M, Bech PK, Hennessy RC, Glaring MA, Barbeyron T, Czjzek M, Stougaard P. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66 T Encoded in a Sizeable Polysaccharide Utilization Locus. Front Microbiol 2018; 9:839. [PMID: 29774012 PMCID: PMC5943477 DOI: 10.3389/fmicb.2018.00839] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.
Collapse
Affiliation(s)
- Mikkel Schultz-Johansen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pernille K Bech
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rosanna C Hennessy
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel A Glaring
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mirjam Czjzek
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Peter Stougaard
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
42
|
Landa M, Blain S, Harmand J, Monchy S, Rapaport A, Obernosterer I. Major changes in the composition of a Southern Ocean bacterial community in response to diatom-derived dissolved organic matter. FEMS Microbiol Ecol 2018; 94:4935155. [DOI: 10.1093/femsec/fiy034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Affiliation(s)
- Marine Landa
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| | - Stéphane Blain
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| | | | - Sébastien Monchy
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 59 000 Lille, France
| | - Alain Rapaport
- MISTEA, Univ. Montpellier, INRA, Montpellier SupAgro, 2, pl. Viala 34060 Montpellier, France
| | - Ingrid Obernosterer
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| |
Collapse
|
43
|
Hou S, López-Pérez M, Pfreundt U, Belkin N, Stüber K, Huettel B, Reinhardt R, Berman-Frank I, Rodriguez-Valera F, Hess WR. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. ISME JOURNAL 2018; 12:981-996. [PMID: 29335641 PMCID: PMC5864184 DOI: 10.1038/s41396-017-0034-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022]
Abstract
Interactions between co-existing microorganisms deeply affect the physiology of the involved organisms and, ultimately, the function of the ecosystem as a whole. Copiotrophic Alteromonas are marine gammaproteobacteria that thrive during the late stages of phytoplankton blooms in the marine environment and in laboratory co-cultures with cyanobacteria such as Trichodesmium. The response of this heterotroph to the sometimes rapid and transient changes in nutrient supply when the phototroph crashes is not well understood. Here, we isolated and sequenced the strain Alteromonas macleodii str. Te101 from a laboratory culture of Trichodesmium erythraeum IMS101, yielding a chromosome of 4.63 Mb and a single plasmid of 237 kb. Increasing salinities to ≥43 ppt inhibited the growth of Trichodesmium but stimulated growth of the associated Alteromonas. We characterized the transcriptomic responses of both microorganisms and identified the complement of active transcriptional start sites in Alteromonas at single-nucleotide resolution. In replicate cultures, a similar set of genes became activated in Alteromonas when growth rates of Trichodesmium declined and mortality was high. The parallel activation of fliA, rpoS and of flagellar assembly and growth-related genes indicated that Alteromonas might have increased cell motility, growth, and multiple biosynthetic activities. Genes with the highest expression in the data set were three small RNAs (Aln1a-c) that were identified as analogs of the small RNAs CsrB-C in E. coli or RsmX-Z in pathogenic bacteria. Together with the carbon storage protein A (CsrA) homolog Te101_05290, these RNAs likely control the expression of numerous genes in responding to changes in the environment.
Collapse
Affiliation(s)
- Shengwei Hou
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, 03550, Alicante, Spain
| | - Ulrike Pfreundt
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany.,ETH Zürich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Stefano-Franscini-Platz 5, CH-8093, Zürich, Switzerland
| | - Natalia Belkin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Kurt Stüber
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Richard Reinhardt
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, 03550, Alicante, Spain
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany. .,Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, D-79104, Freiburg, Germany.
| |
Collapse
|
44
|
Jin N, Semple KT, Jiang L, Luo C, Zhang D, Martin FL. Spectrochemical analyses of growth phase-related bacterial responses to low (environmentally-relevant) concentrations of tetracycline and nanoparticulate silver. Analyst 2018; 143:768-776. [DOI: 10.1039/c7an01800b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Exposure to environmental insults mostly occur at low levels, making it challenging to measure bacterial responses.
Collapse
Affiliation(s)
- Naifu Jin
- Lancaster Environment Centre
- Lancaster University
- Lancaster LA1 4YQ
- UK
| | - Kirk T. Semple
- Lancaster Environment Centre
- Lancaster University
- Lancaster LA1 4YQ
- UK
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Dayi Zhang
- Lancaster Environment Centre
- Lancaster University
- Lancaster LA1 4YQ
- UK
- School of Environment
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences
- University of Central Lancashire
- Preston PR1 2HE
- UK
| |
Collapse
|
45
|
Thomas F, Bordron P, Eveillard D, Michel G. Gene Expression Analysis of Zobellia galactanivorans during the Degradation of Algal Polysaccharides Reveals both Substrate-Specific and Shared Transcriptome-Wide Responses. Front Microbiol 2017; 8:1808. [PMID: 28983288 PMCID: PMC5613140 DOI: 10.3389/fmicb.2017.01808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
Flavobacteriia are recognized as key players in the marine carbon cycle, due to their ability to efficiently degrade algal polysaccharides both in the open ocean and in coastal regions. The chemical complexity of algal polysaccharides, their differences between algal groups and variations through time and space, imply that marine flavobacteria have evolved dedicated degradation mechanisms and regulation of their metabolism during interactions with algae. In the present study, we report the first transcriptome-wide gene expression analysis for an alga-associated flavobacterium during polysaccharide degradation. Zobellia galactanivorans DsijT, originally isolated from a red alga, was grown in minimal medium with either glucose (used as a reference monosaccharide) or one selected algal polysaccharide from brown (alginate, laminarin) or red algae (agar, porphyran, ι- or κ-carrageenan) as sole carbon source. Expression profiles were determined using whole-genome microarrays. Integration of genomic knowledge with the automatic building of a co-expression network allowed the experimental validation of operon-like transcription units. Differential expression analysis revealed large transcriptomic shifts depending on the carbon source. Unexpectedly, transcriptomes shared common signatures when growing on chemically divergent polysaccharides from the same algal phylum. Together with the induction of numerous transcription factors, this hints at complex regulation events that fine-tune the cell behavior during interactions with algal biomass in the marine environment. The results further highlight genes and loci that may participate in polysaccharide utilization, notably encoding Carbohydrate Active enZymes (CAZymes) and glycan binding proteins together with a number of proteins of unknown function. This constitutes a set of candidate genes potentially representing new substrate specificities. By providing an unprecedented view of global transcriptomic responses during polysaccharide utilization in an alga-associated model flavobacterium, this study expands the current knowledge on the functional role of flavobacteria in the marine carbon cycle and on their interactions with algae.
Collapse
Affiliation(s)
- François Thomas
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique de RoscoffRoscoff, France
| | - Philippe Bordron
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, FR2424, Analysis and Bioinformatics for Marine Science, Station Biologique de RoscoffRoscoff, France.,Mathomics, Center for Mathematical Modeling, Universidad de ChileSantiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de ChileSantiago, Chile
| | - Damien Eveillard
- Université de Nantes, Laboratoire des Sciences du Numérique de Nantes, Centre National de la Recherche Scientifique, ECN, IMTANantes, France
| | - Gurvan Michel
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique de RoscoffRoscoff, France
| |
Collapse
|
46
|
Zhu Y, Thomas F, Larocque R, Li N, Duffieux D, Cladière L, Souchaud F, Michel G, McBride MJ. Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. Environ Microbiol 2017; 19:2164-2181. [PMID: 28205313 DOI: 10.1111/1462-2920.13699] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 11/30/2022]
Abstract
Comprehension of the degradation of macroalgal polysaccharides suffers from the lack of genetic tools for model marine bacteria, despite their importance for coastal ecosystem functions. We developed such tools for Zobellia galactanivorans, an algae-associated flavobacterium that digests many polysaccharides, including alginate. These tools were used to investigate the biological role of AlyA1, the only Z. galactanivorans alginate lyase known to be secreted in soluble form and to have a recognizable carbohydrate-binding domain. A deletion mutant, ΔalyA1, grew as well as the wild type on soluble alginate but was deficient in soluble secreted alginate lyase activity and in digestion of and growth on alginate gels and algal tissues. Thus, AlyA1 appears to be essential for optimal attack of alginate in intact cell walls. alyA1 appears to have been recently acquired via horizontal transfer from marine Actinobacteria, conferring an adaptive advantage that might benefit other algae-associated bacteria by exposing new substrate niches. The genetic tools described here function in diverse members of the phylum Bacteroidetes and should facilitate analyses of polysaccharide degradation systems and many other processes in these common but understudied bacteria.
Collapse
Affiliation(s)
- Yongtao Zhu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P. O. Box 413, Milwaukee, WI, 53201, USA
| | - François Thomas
- Integrative Biology of Marine Models, Sorbonne Université, UPMC, Centre National de la Recherche Scientifique, UMR 8227, Station Biologique de Roscoff, Roscoff, France
| | - Robert Larocque
- Integrative Biology of Marine Models, Sorbonne Université, UPMC, Centre National de la Recherche Scientifique, UMR 8227, Station Biologique de Roscoff, Roscoff, France
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Delphine Duffieux
- Integrative Biology of Marine Models, Sorbonne Université, UPMC, Centre National de la Recherche Scientifique, UMR 8227, Station Biologique de Roscoff, Roscoff, France
| | - Lionel Cladière
- Integrative Biology of Marine Models, Sorbonne Université, UPMC, Centre National de la Recherche Scientifique, UMR 8227, Station Biologique de Roscoff, Roscoff, France
| | - Florent Souchaud
- Integrative Biology of Marine Models, Sorbonne Université, UPMC, Centre National de la Recherche Scientifique, UMR 8227, Station Biologique de Roscoff, Roscoff, France
| | - Gurvan Michel
- Integrative Biology of Marine Models, Sorbonne Université, UPMC, Centre National de la Recherche Scientifique, UMR 8227, Station Biologique de Roscoff, Roscoff, France
| | - Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P. O. Box 413, Milwaukee, WI, 53201, USA
| |
Collapse
|
47
|
Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island. Appl Microbiol Biotechnol 2017; 101:6241-6252. [DOI: 10.1007/s00253-017-8342-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/30/2023]
|
48
|
Jin N, Zhang D, Martin FL. Fingerprinting microbiomes towards screening for microbial antibiotic resistance. Integr Biol (Camb) 2017; 9:406-417. [DOI: 10.1039/c7ib00009j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
49
|
Teira E, Hernando-Morales V, Guerrero-Feijóo E, Varela MM. Leucine, starch and bicarbonate utilization by specific bacterial groups in surface shelf waters off Galicia (NW Spain). Environ Microbiol 2017; 19:2379-2390. [PMID: 28370995 DOI: 10.1111/1462-2920.13748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
The capability of different bacterial populations to degrade abundant polymers, such as algal-derived polysaccharides, or to utilize preferentially polymers over monomers, remains largely unknown. In this study, microautoradiography was combined with fluorescence in situ hybridization (MAR-FISH) to evaluate the ability of Bacteroidetes, SAR11, Roseobacter spp., Gammaproteobacteria and SAR86 cells to use bicarbonate, leucine and starch under natural light conditions at two locations in shelf surface waters off NW Spain. The percentage of cells incorporating bicarbonate was relatively high (mean 32% ± 4%) and was positively correlated with the intensity of solar radiation. The proportion of cells using starch (mean 56% ± 4%) or leucine (mean 47% ± 4%) was significantly higher than that using bicarbonate. On average, SAR11, Roseobacter spp. and Gammaproteobacteria showed a similarly high percentage of cells using leucine (47%-65% of hybridized cells) than using starch (51%-64% of hybridized cells), while Bacteroidetes and SAR86 cells preferentially used starch (53% of hybridized cells) over leucine (34%-40% of hybridized cells). We suggest that the great percentage of bacteria using starch is related to a high ambient availability of polymers associated to algal cell lysis, which, in turn, weakens the short-term coupling between phytoplankton release and bacterial production.
Collapse
Affiliation(s)
- E Teira
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain.,Estación de Ciencias Marinas de Toralla (ECIMAT), Universidad de Vigo, Vigo, 36331, Spain
| | - V Hernando-Morales
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain.,Estación de Ciencias Marinas de Toralla (ECIMAT), Universidad de Vigo, Vigo, 36331, Spain
| | - E Guerrero-Feijóo
- Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, IEO, Apdo. 130, Coruña, 15080- A, Spain
| | - M M Varela
- Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, IEO, Apdo. 130, Coruña, 15080- A, Spain
| |
Collapse
|
50
|
Taylor JD, Cunliffe M. Coastal bacterioplankton community response to diatom-derived polysaccharide microgels. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:151-157. [PMID: 27943607 DOI: 10.1111/1758-2229.12513] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Phytoplankton-derived polysaccharide microgels, including transparent exopolymer particles (TEP), are a major component of the marine organic carbon pool. Previous studies have made correlative links between phytoplankton material and bacterioplankton, and performed experiments that assess general responses to phytoplankton, yet there is a lack of direct empirical evidence of specific bacterioplankton responses to natural phytoplankton polysaccharide microgels. In this study, we used diatom produced TEP in controlled incubation experiments to determine the impact of polysaccharide microgels on a coastal bacterioplankton community. Quantification of bacterial 16S rRNA gene transcripts showed that the addition of TEP caused an increase in bacterioplankton activity. Similarly, high-throughput sequencing of RT-PCR amplified bacterial 16S rRNA gene transcripts showed that active bacterioplankton community structure and diversity also changed in response to microgels. Alteromonadales and Rhodobacterales increased in abundance in response to TEP, suggesting that both bacterioplankton taxa utilize diatom-derived microgels. However, through assessing 13 C-labelled TEP uptake via RNA Stable Isotope Probing, we show that only the Alteromonadales (genus Alteromonas) assimilated the TEP carbon. This study adds utilization of diatom-derived TEP to the metabolic repertoire of the archetypal copiotrophic bacterioplankton Alteromonas, and indicates that the Rhodobacterales may utilize TEP for other purposes (e.g. attachment sites).
Collapse
Affiliation(s)
- Joe D Taylor
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
| | - Michael Cunliffe
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK
| |
Collapse
|