1
|
Shah PN, Maistrou S, van Loon JJA, Dicke M. Effect of the bacterial pathogen Pseudomonas protegens Pf-5 on the immune response of larvae of the black soldier fly, Hermetia illucens L. J Invertebr Pathol 2025; 209:108272. [PMID: 39894339 DOI: 10.1016/j.jip.2025.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
The larvae of the black soldier fly (BSFL), Hermetia illucens L. (Diptera: Stratiomyidae), are exposed to a diverse range of microorganisms within their feeding substrate that is mainly composed of decaying organic matter. In the current study, we evaluated the effect of an interaction with a Gram-negative bacterium, Pseudomonas protegens Pf-5, on the immune responses of the larvae of H. illucens. Five-day-old BSF larvae were injected with one of five doses of bacterial inoculum to assess survival. We observed dose-dependent mortality in BSF larvae to P. protegens infection, with mortality increasing with an increasing pathogen dose. Injection of more than 50 bacterial cells per larva resulted in 100 % larval mortality, while injection of one bacterial cell per larva caused only 20 % mortality. Phenoloxidase activity, an element of the immune response, correlated with the pathogen dose, increasing early for larvae injected with a high pathogen dose (i.e., 5000 bacterial cells per larva) and later for larvae injected with a low bacterial dose (i.e., one cell per larva). The expression of four genes encoding for antimicrobial peptides (AMPs), namely cecropin, defensin-A, defensin-like peptide 4, and attacin-A, displayed a treatment- and dose-specific expression pattern. Injection with either PBS (control) or different bacterial doses initially induced the upregulation of AMP genes; however, expression reduced over time in the control larvae. At high pathogen dose, all tested genes except hsp70 were consistently induced. The expression of all genes, except hsp70, was induced by low pathogen dose at 2 h, then reduced gradually and increased significantly at 15 h. These results collectively indicate that BSF larvae temporally modulate their immune responses, such as phenoloxidase activation and AMP gene expression, to combat a pathogen within their hemolymph.
Collapse
Affiliation(s)
- Parth N Shah
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Sevasti Maistrou
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
2
|
Buchanan D, Mori S, Chadli A, Panda SS. Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications. Biomedicines 2025; 13:240. [PMID: 39857823 PMCID: PMC11763372 DOI: 10.3390/biomedicines13010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Natural cyclic peptides, a diverse class of bioactive compounds, have been isolated from various natural sources and are renowned for their extensive structural variability and broad spectrum of medicinal properties. Over 40 cyclic peptides or their derivatives are currently approved as medicines, underscoring their significant therapeutic potential. These compounds are employed in diverse roles, including antibiotics, antifungals, antiparasitics, immune modulators, and anti-inflammatory agents. Their unique ability to combine high specificity with desirable pharmacokinetic properties makes them valuable tools in addressing unmet medical needs, such as combating drug-resistant pathogens and targeting challenging biological pathways. Due to the typically low concentrations of cyclic peptides in nature, effective synthetic strategies are indispensable for their acquisition, characterization, and biological evaluation. Cyclization, a critical step in their synthesis, enhances metabolic stability, bioavailability, and receptor binding affinity. Advances in synthetic methodologies-such as solid-phase peptide synthesis (SPPS), chemoenzymatic approaches, and orthogonal protection strategies-have transformed cyclic peptide production, enabling greater structural complexity and precision. This review compiles recent progress in the total synthesis and biological evaluation of natural cyclic peptides from 2017 onward, categorized by cyclization strategies: head-to-tail; head-to-side-chain; tail-to-side-chain; and side-chain-to-side-chain strategies. Each account includes retrosynthetic analyses, synthetic advancements, and biological data to illustrate their therapeutic relevance and innovative methodologies. Looking ahead, the future of cyclic peptides in drug discovery is bright. Emerging trends, including integrating computational tools for rational design, novel cyclization techniques to improve pharmacokinetic profiles, and interdisciplinary collaboration among chemists, biologists, and computational scientists, promise to expand the scope of cyclic peptide-based therapeutics. These advancements can potentially address complex diseases and advance the broader field of biological drug development.
Collapse
Affiliation(s)
- Devan Buchanan
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
| | - Ahmed Chadli
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
De la Vega-Camarillo E, Sotelo-Aguilar J, González-Silva A, Hernández-García JA, Mercado-Flores Y, Villa-Tanaca L, Hernández-Rodríguez C. Genomic Insights into Pseudomonas protegens E1BL2 from Giant Jala Maize: A Novel Bioresource for Sustainable Agriculture and Efficient Management of Fungal Phytopathogens. Int J Mol Sci 2024; 25:9508. [PMID: 39273455 PMCID: PMC11395412 DOI: 10.3390/ijms25179508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.
Collapse
Affiliation(s)
- Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Josimar Sotelo-Aguilar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Adilene González-Silva
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Juan Alfredo Hernández-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Yuridia Mercado-Flores
- Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún Km. 20, Rancho Luna, Ex-Hacienda de Santa Bárbara Zempoala, Pachuca 43830, Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
4
|
Poli N, Keel CJ, Garrido-Sanz D. Expanding the Pseudomonas diversity of the wheat rhizosphere: four novel species antagonizing fungal phytopathogens and with plant-beneficial properties. Front Microbiol 2024; 15:1440341. [PMID: 39077740 PMCID: PMC11284033 DOI: 10.3389/fmicb.2024.1440341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Plant-beneficial Pseudomonas bacteria hold the potential to be used as inoculants in agriculture to promote plant growth and health through various mechanisms. The discovery of new strains tailored to specific agricultural needs remains an open area of research. In this study, we report the isolation and characterization of four novel Pseudomonas species associated with the wheat rhizosphere. Comparative genomic analysis with all available Pseudomonas type strains revealed species-level differences, substantiated by both digital DNA-DNA hybridization and average nucleotide identity, underscoring their status as novel species. This was further validated by the phenotypic differences observed when compared to their closest relatives. Three of the novel species belong to the P. fluorescens species complex, with two representing a novel lineage in the Pseudomonas phylogeny. Functional genome annotation revealed the presence of specific features contributing to rhizosphere colonization, including flagella and components for biofilm formation. The novel species have the genetic potential to solubilize nutrients by acidifying the environment, releasing alkaline phosphatases and their metabolism of nitrogen species, indicating potential as biofertilizers. Additionally, the novel species possess traits that may facilitate direct promotion of plant growth through the modulation of the plant hormone balance, including the ACC deaminase enzyme and auxin metabolism. The presence of biosynthetic clusters for toxins such as hydrogen cyanide and non-ribosomal peptides suggests their ability to compete with other microorganisms, including plant pathogens. Direct inoculation of wheat roots significantly enhanced plant growth, with two strains doubling shoot biomass. Three of the strains effectively antagonized fungal phytopathogens (Thielaviopsis basicola, Fusarium oxysporum, and Botrytis cinerea), demonstrating their potential as biocontrol agents. Based on the observed genetic and phenotypic differences from closely related species, we propose the following names for the four novel species: Pseudomonas grandcourensis sp. nov., type strain DGS24T ( = DSM 117501T = CECT 31011T), Pseudomonas purpurea sp. nov., type strain DGS26T ( = DSM 117502T = CECT 31012T), Pseudomonas helvetica sp. nov., type strain DGS28T ( = DSM 117503T = CECT 31013T) and Pseudomonas aestiva sp. nov., type strain DGS32T ( = DSM 117504T = CECT 31014T).
Collapse
Affiliation(s)
| | - Christoph Joseph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Azarnoosh R, Yarahmadi F, Keshavarz-Tohid V, Rajabpour A. Isolation and identification of rhizospheric pseudomonads with insecticidal effects from various crops in Khuzestan Province, Iran. J Invertebr Pathol 2024; 204:108099. [PMID: 38556196 DOI: 10.1016/j.jip.2024.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Pseudomonas bacteria include a variety of species with distinct characteristics. Some species within this genus are known for their ability to stimulate plant growth. Recently, the potential of these bacteria in controlling insect pests has been documented. In this study, 58 bacterial isolates were purified from rhizospheres of wheat, broad bean and canola that were collected from different fields of Khuzestan province in south-west of Iran. With biochemical tests 19 non plant pathogenic pseudomonads strains were detected and their lethal effects on the eggs and larvae of Ephestia keuhniella as an important pest that infests stored products, were evaluated under laboratory conditions. For the bioassays, two concentrations of each strain were administered, and the 5th instar larvae and eggs of the pest were subjected to treatment. Mortality rates were recorded after 24 h. The results showed that all isolated Pseudomonad strains of this study had insecticidal effects against eggs and larvae of E. keuhniella. The strains AWI1, AWI2, AWI7, ABI12, ABI15 and ABI16 displayed the highest mortality rate (91.1 %, 86.2 %, 82.3 %, 84.2, 90.5 % and 90.5 %, respectively). Molecular identification and phylogeny tree according to 16 s rRNA sequencing clarified that AWI1, AWI2 belong to P. plecoglossicida, AWI5 belongs to P. lini, ABI12, ABI15 and ABI16 belong to P. taiwanensis. Moreover, the bacterial efficacy at a suspension concentration of 0.5 OD (80 %) was significantly greater than that at a concentration of 0.2 OD (63.33 %). No significant difference was detected in the response of the pest larvae or eggs to the different strains. Furthermore, olfactory trials revealed that the female parasitoid wasp Habrabracon hebetor actively avoided the infection of the treated larvae by the strains. These findings have practical implications for the development of microbiological pest control strategies.
Collapse
Affiliation(s)
- Roghayeh Azarnoosh
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Khuzestan Province, Iran
| | - Fatemeh Yarahmadi
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Khuzestan Province, Iran.
| | - Vahid Keshavarz-Tohid
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Khuzestan Province, Iran.
| | - Ali Rajabpour
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Khuzestan Province, Iran
| |
Collapse
|
6
|
Jing X, Su L, Yin X, Chen Y, Guan X, Yang D, Sun Y. Genome Analysis of Pseudomonas viciae G166 Conferring Antifungal Activity in Grapevine. J Fungi (Basel) 2024; 10:398. [PMID: 38921384 PMCID: PMC11205049 DOI: 10.3390/jof10060398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Grapevine (Vitis vinifera) is one of the major economic fruit crops but suffers many diseases, causing damage to the quality of grapes. Strain G166 was isolated from the rhizosphere of grapevine and was found to exhibited broad-spectrum antagonistic activities against fungal pathogens on grapes in vitro, such as Coniella diplodiella, Botrytis cinerea, and Colletotrichum gloeosporioides. Whole-genome sequencing revealed that G166 contained a 6,613,582 bp circular chromosome with 5749 predicted coding DNA sequences and an average GC content of 60.57%. TYGS analysis revealed that G166 belongs to Pseudomonas viciae. Phenotype analysis indicated that P. viciae G166 remarkably reduced the severity of grape white rot disease in the grapevine. After inoculation with C. diplodiella, more H2O2 and MDA accumulated in the leaves and resulted in decreases in the Pn and chlorophyll content. Conversely, G166-treated grapevine displayed less oxidative damage with lower H2O2 levels and MDA contents under the pathogen treatments. Subsequently, G166-treated grapevine could sustain a normal Pn and chlorophyll content. Moreover, the application of P. viciae G166 inhibited the growth of mycelia on detached leaves and berries, while more disease symptoms occurred in non-bacterized leaves and berries. Therefore, P. viciae G166 served as a powerful bioagent against grape white rot disease. Using antiSMASH prediction and genome comparisons, a relationship between non-ribosomal peptide synthase clusters and antifungal activity was found in the genome of P. viciae G166. Taken together, P. viciae G166 shows promising antifungal potential to improve fruit quality and yield in ecological agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongyue Yang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.J.); (L.S.); (X.Y.); (Y.C.); (X.G.)
| | - Yuxia Sun
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.J.); (L.S.); (X.Y.); (Y.C.); (X.G.)
| |
Collapse
|
7
|
Paliwal D, Rabiey M, Mauchline TH, Hassani-Pak K, Nauen R, Wagstaff C, Andrews S, Bass C, Jackson RW. Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24. Environ Microbiol 2024; 26:e16604. [PMID: 38561900 DOI: 10.1111/1462-2920.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, UK
| | - Mojgan Rabiey
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | | | | | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Simon Andrews
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, UK
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Awori RM, Hendre P, Amugune NO. The genome of a steinernematid-associated Pseudomonas piscis bacterium encodes the biosynthesis of insect toxins. Access Microbiol 2023; 5:000659.v3. [PMID: 37970093 PMCID: PMC10634486 DOI: 10.1099/acmi.0.000659.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
Several species of soil-dwelling Steinernema nematodes are used in the biocontrol of crop pests, due to their natural capacity to kill diverse lepidopteran species. Although this insect-killing trait is known to be augmented by the nematodes' Xenorhabdus endosymbionts, the role of other steinernematid-associated bacterial genera in the nematode lifecycle remains unclear. This genomic study aimed to determine the potential of Pseudomonas piscis to contribute to the entomopathogenicity of its Steinernema host. Insect larvae were infected with three separate Steinernema cultures. From each of the three treatments, the prevalent bacteria in the haemocoel of cadavers, four days post-infection, were isolated. These three bacterial isolates were morphologically characterised. DNA was extracted from each of the three bacterial isolates and used for long-read genome sequencing and assembly. Assemblies were used to delineate species and identify genes that encode insect toxins, antimicrobials, and confer antibiotic resistance. We assembled three complete genomes. Through digital DNA-DNA hybridisation analyses, we ascertained that the haemocoels of insect cadavers previously infected with Steinernema sp. Kalro, Steinernema sp. 75, and Steinernema sp. 97 were dominated by Xenorhabdus griffiniae Kalro, Pseudomonas piscis 75, and X. griffiniae 97, respectively. X. griffiniae Kalro and X. griffiniae 97 formed a subspecies with other X. griffiniae symbionts of steinernematids from Kenya. P. piscis 75 phylogenetically clustered with pseudomonads that are characterised by high insecticidal activity. The P. piscis 75 genome encoded the production pathway of insect toxins such as orfamides and rhizoxins, antifungals such as pyrrolnitrin and pyoluteorin, and the broad-spectrum antimicrobial 2,4-diacetylphloroglucinol. The P. piscis 75 genome encoded resistance to over ten classes of antibiotics, including cationic lipopeptides. Steinernematid-associated P. piscis bacteria hence have the biosynthetic potential to contribute to nematode entomopathogenicity.
Collapse
Affiliation(s)
- Ryan Musumba Awori
- Elakistos Biosciences, P. O. Box 19301-00100, Nairobi, Kenya
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Prasad Hendre
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Nelson O. Amugune
- Department of Biology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
9
|
Sarkhandia S, Sharma G, Mahajan R, Koundal S, Kumar M, Chadha P, Saini HS, Kaur S. Synergistic and additive interactions of Shewanella sp., Pseudomonas sp. and Thauera sp. with chlorantraniliprole and emamectin benzoate for controlling Spodoptera litura (Fabricius). Sci Rep 2023; 13:14648. [PMID: 37669993 PMCID: PMC10480177 DOI: 10.1038/s41598-023-41641-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The imprudent use of insecticides causes the development of resistance in insect pest populations, contamination of the environment, biological imbalance and human intoxication. The use of microbial pathogens combined with insecticides has been proposed as an alternative strategy for insect pest management. This IPM approach may offer effective ways to control pests, in addition to lowering the risk of chemical residues in the environment. Spodoptera litura (Fabricius) is a major pest of many crops like cotton, maize, tobacco, cauliflower, cabbage, and fodder crops globally. Here, we evaluated the combined effects of new chemistry insecticides (chlorantraniliprole and emamectin benzoate) and entomopathogenic bacterial strains, Shewanella sp. (SS4), Thauera sp. (M9) and Pseudomonas sp. (EN4) against S. litura larvae inducing additive and synergistic interactions under laboratory conditions. Both insecticides produced higher larval mortality when applied in combination with bacterial isolates having maximum mortality of 98 and 96% with LC50 of chlorantraniliprole and emamectin benzoate in combination with LC50 of Pseudomonas sp. (EN4) respectively. The lower concentration (LC20) of both insecticides also induced synergism when combined with the above bacterial isolates providing a valuable approach for the management of insect pests. The genotoxic effect of both the insecticides was also evaluated by conducting comet assays. The insecticide treatments induced significant DNA damage in larval hemocytes that further increased in combination treatments. Our results indicated that combined treatments could be a successful approach for managing S. litura while reducing the inappropriate overuse of insecticides.
Collapse
Affiliation(s)
- Sunaina Sarkhandia
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Geetika Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rohit Mahajan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satish Koundal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manoj Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
10
|
Garrido-Sanz D, Vesga P, Heiman CM, Altenried A, Keel C, Vacheron J. Relation of pest insect-killing and soilborne pathogen-inhibition abilities to species diversification in environmental Pseudomonas protegens. THE ISME JOURNAL 2023; 17:1369-1381. [PMID: 37311938 PMCID: PMC10432460 DOI: 10.1038/s41396-023-01451-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Strains belonging to the Pseudomonas protegens phylogenomic subgroup have long been known for their beneficial association with plant roots, notably antagonising soilborne phytopathogens. Interestingly, they can also infect and kill pest insects, emphasising their interest as biocontrol agents. In the present study, we used all available Pseudomonas genomes to reassess the phylogeny of this subgroup. Clustering analysis revealed the presence of 12 distinct species, many of which were previously unknown. The differences between these species also extend to the phenotypic level. Most of the species were able to antagonise two soilborne phytopathogens, Fusarium graminearum and Pythium ultimum, and to kill the plant pest insect Pieris brassicae in feeding and systemic infection assays. However, four strains failed to do so, likely as a consequence of adaptation to particular niches. The absence of the insecticidal Fit toxin explained the non-pathogenic behaviour of the four strains towards Pieris brassicae. Further analyses of the Fit toxin genomic island evidence that the loss of this toxin is related to non-insecticidal niche specialisation. This work expands the knowledge on the growing Pseudomonas protegens subgroup and suggests that loss of phytopathogen inhibition and pest insect killing abilities in some of these bacteria may be linked to species diversification processes involving adaptation to particular niches. Our work sheds light on the important ecological consequences of gain and loss dynamics for functions involved in pathogenic host interactions of environmental bacteria.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Pilar Vesga
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| | - Clara M Heiman
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Aline Altenried
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Sarkhandia S, Devi M, Sharma G, Mahajan R, Chadha P, Saini HS, Kaur S. Larvicidal, growth inhibitory and biochemical effects of soil bacterium, Pseudomonas sp. EN4 against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol 2023; 23:95. [PMID: 37013477 PMCID: PMC10069027 DOI: 10.1186/s12866-023-02841-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) also known as tobacco caterpillar, is one of the most serious polyphagous pests that cause economic losses to a variety of commercially important agricultural crops. Over the past few years, many conventional insecticides have been used to control this pest. However, the indiscriminate use of these chemicals has led to development of insecticide resistant populations of S. litura in addition to harmful effects on environment. Due to these ill effects, the emphasis is being laid on alternative eco-friendly control measures. Microbial control is one of the important components of integrated pest management. Thus, in search for novel biocontrol agents, the current work was carried out with the aim to evaluate the insecticidal potential of soil bacteria against S. litura. RESULTS Among the tested soil bacterial isolates (EN1, EN2, AA5, EN4 and R1), maximum mortality (74%) was exhibited by Pseudomonas sp. (EN4). The larval mortality rate increased in a dose-dependent manner. Bacterial infection also significantly delayed the larval development, reduced adult emergence, and induced morphological deformities in adults of S. litura. Adverse effects were also detected on various nutritional parameters. The infected larvae showed a significant decrease in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food to biomass. Histopathological studies indicated damage to the midgut epithelial layer of larvae due to the consumption of bacteria treated diet. The infected larvae also showed a significantly decreased level of various digestive enzymes. Furthermore, exposure to Pseudomonas sp. also caused DNA damage in the hemocytes of S. litura larvae. CONCLUSION Adverse effects of Pseudomonas sp. EN4 on various biological parameters of S. litura indicate that this soil bacterial strain may be used as an effective biocontrol agent against insect pests.
Collapse
Affiliation(s)
- Sunaina Sarkhandia
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Meena Devi
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Geetika Sharma
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Rohit Mahajan
- Department of Microbiology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India.
| |
Collapse
|
12
|
Hamze R, Nuvoli MT, Pirino C, Ruiu L. Compatibility of the bacterial entomopathogen Pseudomonas protegens with the natural predator Chrysoperla carnea (Neuroptera: Chrysopidae). J Invertebr Pathol 2022; 194:107828. [PMID: 36087780 DOI: 10.1016/j.jip.2022.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022]
Abstract
The susceptibility of the green lacewing Chrysoperla carnea to the soil-dwelling bacterial entomopathogen Pseudomonas protegens CHA0 was investigated in this study. Laboratory bioassays were conducted on larval instars exposed to different bacterial concentrations by both direct feeding and indirectly by offering a pre-treated insect prey. Potential toxicity was assessed through dose-response bioassays, while possible sublethal effects were evaluated on immature development time and the reproductive performance (fecundity) of adults emerging from treated juveniles. As a result, no significant effects were observed on larval survival and development in a comparison between treated and untreated (control) groups. No significant impact on adult emergence and no detrimental effects on female fecundity were detected. Everything considered, the use of P. protegens in the agroecosystem appears to be compatible with chrysopids.
Collapse
Affiliation(s)
- Rim Hamze
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Maria Tiziana Nuvoli
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Carolina Pirino
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Luca Ruiu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy.
| |
Collapse
|
13
|
Lai X, Niroula D, Burrows M, Wu X, Yan Q. Identification and Characterization of Bacteria-Derived Antibiotics for the Biological Control of Pea Aphanomyces Root Rot. Microorganisms 2022; 10:microorganisms10081596. [PMID: 36014014 PMCID: PMC9416638 DOI: 10.3390/microorganisms10081596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiosis has been proposed to contribute to the beneficial bacteria-mediated biocontrol against pea Aphanomyces root rot caused by the oomycete pathogen Aphanomyces euteiches. However, the antibiotics required for disease suppression remain unknown. In this study, we found that the wild type strains of Pseudomonas protegens Pf-5 and Pseudomonas fluorescens 2P24, but not their mutants that lack 2,4-diacetylphloroglucinol, strongly inhibited A. euteiches on culture plates. Purified 2,4-diacetylphloroglucinol compound caused extensive hyphal branching and stunted hyphal growth of A. euteiches. Using a GFP-based transcriptional reporter assay, we found that expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlAPf-5 is activated by germinating pea seeds. The 2,4-diacetylphloroglucinol producing Pf-5 derivative, but not its 2,4-diacetylphloroglucinol non-producing mutant, reduced disease severity caused by A. euteiches on pea plants in greenhouse conditions. This is the first report that 2,4-diacetylphloroglucinol produced by strains of Pseudomonas species plays an important role in the biocontrol of pea Aphanomyces root rot.
Collapse
Affiliation(s)
- Xiao Lai
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Dhirendra Niroula
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Mary Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (X.W.); (Q.Y.)
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: (X.W.); (Q.Y.)
| |
Collapse
|
14
|
Pronk LJU, Bakker PAHM, Keel C, Maurhofer M, Flury P. The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. Environ Microbiol 2022; 24:3273-3289. [PMID: 35315557 PMCID: PMC9542179 DOI: 10.1111/1462-2920.15968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
Root-colonizing bacteria have been intensively investigated for their intimate relationship with plants and their manifold plant-beneficial activities. They can inhibit growth and activity of pathogens or induce defence responses. In recent years, evidence has emerged that several plant-beneficial rhizosphere bacteria do not only associate with plants but also with insects. Their relationships with insects range from pathogenic to mutualistic and some rhizobacteria can use insects as vectors for dispersal to new host plants. Thus, the interactions of these bacteria with their environment are even more complex than previously thought and can extend far beyond the rhizosphere. The discovery of this secret life of rhizobacteria represents an exciting new field of research that should link the fields of plant-microbe and insect-microbe interactions. In this review, we provide examples of plant-beneficial rhizosphere bacteria that use insects as alternative hosts, and of potentially rhizosphere-competent insect symbionts. We discuss the bacterial traits that may enable a host-switch between plants and insects and further set the multi-host lifestyle of rhizobacteria into an evolutionary and ecological context. Finally, we identify important open research questions and discuss perspectives on the use of these rhizobacteria in agriculture.
Collapse
Affiliation(s)
| | | | - Christoph Keel
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Pascale Flury
- Crop Protection – Phytopathology, Department of Crop SciencesResearch Institute of Organic Agriculture FiBLFrickSwitzerland
| |
Collapse
|
15
|
Lee JH, Anderson AJ, Kim YC. Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Microorganisms 2022; 10:microorganisms10051053. [PMID: 35630495 PMCID: PMC9146382 DOI: 10.3390/microorganisms10051053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Biological control is an important process for sustainable plant production, and this trait is found in many plant-associated microbes. This study reviews microbes that could be formulated into pesticides active against various microbial plant pathogens as well as damaging insects or nematodes. The focus is on the beneficial microbes that colonize the rhizosphere where, through various mechanisms, they promote healthy plant growth. Although these microbes have adapted to cohabit root tissues without causing disease, they are pathogenic to plant pathogens, including microbes, insects, and nematodes. The cocktail of metabolites released from the beneficial strains inhibits the growth of certain bacterial and fungal plant pathogens and participates in insect and nematode toxicity. There is a reinforcement of plant health through the systemic induction of defenses against pathogen attack and abiotic stress in the plant; metabolites in the beneficial microbial cocktail function in triggering the plant defenses. The review discusses a wide range of metabolites involved in plant protection through biocontrol in the rhizosphere. The focus is on the beneficial firmicutes and pseudomonads, because of the extensive studies with these isolates. The review evaluates how culture conditions can be optimized to provide formulations containing the preformed active metabolites for rapid control, with or without viable microbial cells as plant inocula, to boost plant productivity in field situations.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Agricultural Solutions, BASF Korea Ltd., Seoul 04518, Korea;
| | - Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA;
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
- Correspondence:
| |
Collapse
|
16
|
Bando Y, Hou Y, Seyfarth L, Probst J, Götze S, Bogacz M, Hellmich UA, Stallforth P, Mittag M, Arndt H. Total Synthesis and Structure Correction of the Cyclic Lipodepsipeptide Orfamide A. Chemistry 2022; 28:e202104417. [PMID: 35199896 PMCID: PMC9311703 DOI: 10.1002/chem.202104417] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/15/2022]
Abstract
A total synthesis of the cyclic lipodepsipeptide natural product orfamide A was achieved. By developing a synthesis format using an aminoacid ester building block and SPPS protocol adaptation, a focused library of target compounds was obtained, in high yield and purity. Spectral and LC-HRMS data of all library members with the isolated natural product identified the 5 Leu residue to be d- and the 3'-OH group to be R-configured. The structural correction of orfamide A by chemical synthesis and analysis was confirmed by biological activity comparison in Chlamydomonas reinhardtii, which indicated compound configuration to be important for bioactivity. Acute toxicity was also found against Trypanosoma brucei, the parasite causing African sleeping sickness.
Collapse
Affiliation(s)
- Yuko Bando
- Friedrich Schiller University JenaInstitute for Organic Chemistry and Macromolecular ChemistryHumboldtstr. 1007743JenaGermany
| | - Yu Hou
- Friedrich Schiller University Jena Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyAm Planetarium 107743JenaGermany
| | - Lydia Seyfarth
- Friedrich Schiller University JenaInstitute for Organic Chemistry and Macromolecular ChemistryHumboldtstr. 1007743JenaGermany
| | - Jannik Probst
- Friedrich Schiller University JenaInstitute for Organic Chemistry and Macromolecular ChemistryHumboldtstr. 1007743JenaGermany
| | - Sebastian Götze
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll InstituteDepartment of PaleobiotechnologyBeutenbergstraße 11a07745JenaGermany
| | - Marta Bogacz
- Friedrich Schiller University JenaInstitute for Organic Chemistry and Macromolecular ChemistryHumboldtstr. 1007743JenaGermany
| | - Ute A. Hellmich
- Friedrich Schiller University JenaInstitute for Organic Chemistry and Macromolecular ChemistryHumboldtstr. 1007743JenaGermany
| | - Pierre Stallforth
- Friedrich Schiller University JenaInstitute for Organic Chemistry and Macromolecular ChemistryHumboldtstr. 1007743JenaGermany
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll InstituteDepartment of PaleobiotechnologyBeutenbergstraße 11a07745JenaGermany
| | - Maria Mittag
- Friedrich Schiller University Jena Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyAm Planetarium 107743JenaGermany
| | - Hans‐Dieter Arndt
- Friedrich Schiller University JenaInstitute for Organic Chemistry and Macromolecular ChemistryHumboldtstr. 1007743JenaGermany
| |
Collapse
|
17
|
Hemmerling F, Piel J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov 2022; 21:359-378. [PMID: 35296832 DOI: 10.1038/s41573-022-00414-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Bacteria provide a rich source of natural products with potential therapeutic applications, such as novel antibiotic classes or anticancer drugs. Bioactivity-guided screening of bacterial extracts and characterization of biosynthetic pathways for drug discovery is now complemented by the availability of large (meta)genomic collections, placing researchers into the postgenomic, big-data era. The progress in next-generation sequencing and the rise of powerful computational tools provide unprecedented insights into unexplored taxa, ecological niches and 'biosynthetic dark matter', revealing diverse and chemically distinct natural products in previously unstudied bacteria. In this Review, we discuss such sources of new chemical entities and the implications for drug discovery with a particular focus on the strategies that have emerged in recent years to identify and access novelty.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
18
|
Insecticidal and growth inhibitory activity of gut microbes isolated from adults of Spodoptera litura (Fab.). BMC Microbiol 2022; 22:71. [PMID: 35272633 PMCID: PMC8908599 DOI: 10.1186/s12866-022-02476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) commonly known as tobacco caterpillar is a polyphagous pest that causes significant damage to many agricultural crops. The extensive use of chemical insecticides against S. litura has resulted in development of resistance. In order to find potential biocontrol agents, gut microbes were investigated for insecticidal potential. These microbes live in a diverse relationship with insects that may vary from beneficial to pathogenic. RESULTS Enterococcus casseliflavus, Enterococcus mundtii, Serratia marcescens, Klebsiella pneumoniae, Pseudomonas paralactis and Pantoea brenneri were isolated from adults of S. litura. Screening of these microbial isolates for insecticidal potential against S. litura showed higher larval mortality due to K. pneumoniae and P. paralactis. These bacteria also negatively affected the development of insect along with significant decline in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food of insect. The bacteria significantly decreased the reproductive potential of insect. Perturbations in the composition of gut microbiome and damage to gut epithelium were also observed that might be associated with decreased survival of this insect. CONCLUSIONS Our study reveals the toxic effects of K. pneumoniae and P. paralactis on biology of S. litura. These bacteria may be used as potential candidates for developing ecofriendly strategies to manage this insect pest.
Collapse
|
19
|
Oni FE, Esmaeel Q, Onyeka JT, Adeleke R, Jacquard C, Clement C, Gross H, Ait Barka E, Höfte M. Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules 2022; 27:372. [PMID: 35056688 PMCID: PMC8777863 DOI: 10.3390/molecules27020372] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host-microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy-molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant-pathogen interactions and in the enhancement of plant innate immunity.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
- Department of Biological Sciences, Faculty of Science, Anchor University, Ayobo P.M.B 00001, Lagos State, Nigeria
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Joseph Tobias Onyeka
- Plant Pathology Unit, National Root Crops Research Institute (NRCRI), Umudike 440001, Abia State, Nigeria;
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Cedric Jacquard
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Christophe Clement
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tubingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| |
Collapse
|
20
|
Oral Toxicity of Pseudomonas protegens against Muscoid Flies. Toxins (Basel) 2021; 13:toxins13110772. [PMID: 34822556 PMCID: PMC8621253 DOI: 10.3390/toxins13110772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
The bioinsecticidal action of Pseudomonas protegens has so far been reported against some target insects, and the mode of action remains unclear. In this study, the pathogenicity potential of a recently isolated strain of this bacterial species against fly larvae of medical and veterinary interest was determined. Preliminary experiments were conducted to determine the biocidal action by ingestion against Musca domestica and Lucilia caesar larvae, which highlighted a concentration-dependent effect, with LC50 values of 3.6 and 2.5 × 108 CFU/mL, respectively. Bacterial septicaemia was observed in the body of insects assuming bacterial cells by ingestion. Such rapid bacterial reproduction in the hemolymph supports a toxin-mediated mechanism of action involving the intestinal barrier overcoming. In order to gain more information on the interaction with the host, the relative time-course expression of selected P. protegens genes associated with virulence and pathogenicity, was determined by qPCR at the gut level during the first infection stage. Among target genes, chitinase D was the most expressed, followed by pesticin and the fluorescent insecticidal toxin fitD. According to our observations and to the diversity of metabolites P. protegens produces, the pathogenic interaction this bacterium can establish with different targets appears to be complex and multifactorial.
Collapse
|
21
|
Kang S, Lumactud R, Li N, Bell TH, Kim HS, Park SY, Lee YH. Harnessing Chemical Ecology for Environment-Friendly Crop Protection. PHYTOPATHOLOGY 2021; 111:1697-1710. [PMID: 33908803 DOI: 10.1094/phyto-01-21-0035-rvw] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy reliance on synthetic pesticides for crop protection has become increasingly unsustainable, calling for robust alternative strategies that do not degrade the environment and vital ecosystem services. There are numerous reports of successful disease control by various microbes used in small-scale trials. However, inconsistent efficacy has hampered their large-scale application. A better understanding of how beneficial microbes interact with plants, other microbes, and the environment and which factors affect disease control efficacy is crucial to deploy microbial agents as effective and reliable pesticide alternatives. Diverse metabolites produced by plants and microbes participate in pathogenesis and defense, regulate the growth and development of themselves and neighboring organisms, help maintain cellular homeostasis under various environmental conditions, and affect the assembly and activity of plant and soil microbiomes. However, research on the metabolites associated with plant health-related processes, except antibiotics, has not received adequate attention. This review highlights several classes of metabolites known or suspected to affect plant health, focusing on those associated with biocontrol and belowground plant-microbe and microbe-microbe interactions. The review also describes how new insights from systematic explorations of the diversity and mechanism of action of bioactive metabolites can be harnessed to develop novel crop protection strategies.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rhea Lumactud
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ningxiao Li
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
22
|
Rose MM, Scheer D, Hou Y, Hotter VS, Komor AJ, Aiyar P, Scherlach K, Vergara F, Yan Q, Loper JE, Jakob T, van Dam NM, Hertweck C, Mittag M, Sasso S. The bacterium Pseudomonas protegens antagonizes the microalga Chlamydomonas reinhardtii using a blend of toxins. Environ Microbiol 2021; 23:5525-5540. [PMID: 34347373 DOI: 10.1111/1462-2920.15700] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/24/2021] [Accepted: 07/31/2021] [Indexed: 11/27/2022]
Abstract
The unicellular alga Chlamydomonas reinhardtii and the bacterium Pseudomonas protegens serve as a model to study the interactions between photosynthetic and heterotrophic microorganisms. P. protegens secretes the cyclic lipopeptide orfamide A that interferes with cytosolic Ca2+ homeostasis in C. reinhardtii resulting in deflagellation of the algal cells. Here, we studied the roles of additional secondary metabolites secreted by P. protegens using individual compounds and co-cultivation of algae with bacterial mutants. Rhizoxin S2, pyrrolnitrin, pyoluteorin, 2,4-diacetylphloroglucinol (DAPG) and orfamide A all induce changes in cell morphology and inhibit the growth of C. reinhardtii. Rhizoxin S2 exerts the strongest growth inhibition, and its action depends on the spatial structure of the environment (agar versus liquid culture). Algal motility is unaffected by rhizoxin S2 and is most potently inhibited by orfamide A (IC50 = 4.1 μM). Pyrrolnitrin and pyoluteorin both interfere with algal cytosolic Ca2+ homeostasis and motility whereas high concentrations of DAPG immobilize C. reinhardtii without deflagellation or disturbance of Ca2+ homeostasis. Co-cultivation with a regulatory mutant of bacterial secondary metabolism (ΔgacA) promotes algal growth under spatially structured conditions. Our results reveal how a single soil bacterium uses an arsenal of secreted antialgal compounds with complementary and partially overlapping activities.
Collapse
Affiliation(s)
- Magdalena M Rose
- Institute of Biology, Leipzig University, Leipzig, Germany.,Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Scheer
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Yu Hou
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Vivien S Hotter
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Anna J Komor
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Prasad Aiyar
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Fredd Vergara
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Torsten Jakob
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Severin Sasso
- Institute of Biology, Leipzig University, Leipzig, Germany.,Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Chalivendra S. Microbial Toxins in Insect and Nematode Pest Biocontrol. Int J Mol Sci 2021; 22:ijms22147657. [PMID: 34299280 PMCID: PMC8303606 DOI: 10.3390/ijms22147657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Invertebrate pests, such as insects and nematodes, not only cause or transmit human and livestock diseases but also impose serious crop losses by direct injury as well as vectoring pathogenic microbes. The damage is global but greater in developing countries, where human health and food security are more at risk. Although synthetic pesticides have been in use, biological control measures offer advantages via their biodegradability, environmental safety and precise targeting. This is amply demonstrated by the successful and widespread use of Bacillusthuringiensis to control mosquitos and many plant pests, the latter by the transgenic expression of insecticidal proteins from B. thuringiensis in crop plants. Here, I discuss the prospects of using bacterial and fungal toxins for pest control, including the molecular basis of their biocidal activity.
Collapse
|
24
|
Vesga P, Augustiny E, Keel C, Maurhofer M, Vacheron J. Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insect-killing abilities and genetic variations in insecticidal factors. Environ Microbiol 2021; 23:5378-5394. [PMID: 34190383 PMCID: PMC8519069 DOI: 10.1111/1462-2920.15623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two‐partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Eva Augustiny
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Helfrich EJN, Ueoka R, Chevrette MG, Hemmerling F, Lu X, Leopold-Messer S, Minas HA, Burch AY, Lindow SE, Piel J, Medema MH. Evolution of combinatorial diversity in trans-acyltransferase polyketide synthase assembly lines across bacteria. Nat Commun 2021; 12:1422. [PMID: 33658492 PMCID: PMC7930024 DOI: 10.1038/s41467-021-21163-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Trans-acyltransferase polyketide synthases (trans-AT PKSs) are bacterial multimodular enzymes that biosynthesize diverse pharmaceutically and ecologically important polyketides. A notable feature of this natural product class is the existence of chemical hybrids that combine core moieties from different polyketide structures. To understand the prevalence, biosynthetic basis, and evolutionary patterns of this phenomenon, we developed transPACT, a phylogenomic algorithm to automate global classification of trans-AT PKS modules across bacteria and applied it to 1782 trans-AT PKS gene clusters. These analyses reveal widespread exchange patterns suggesting recombination of extended PKS module series as an important mechanism for metabolic diversification in this natural product class. For three plant-associated bacteria, i.e., the root colonizer Gynuella sunshinyii and the pathogens Xanthomonas cannabis and Pseudomonas syringae, we demonstrate the utility of this computational approach for uncovering cryptic relationships between polyketides, accelerating polyketide mining from fragmented genome sequences, and discovering polyketide variants with conserved moieties of interest. As natural combinatorial hybrids are rare among the more commonly studied cis-AT PKSs, this study paves the way towards evolutionarily informed, rational PKS engineering to produce chimeric trans-AT PKS-derived polyketides.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
- Institute for Molecular Bio Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Xiaowen Lu
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Stefan Leopold-Messer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Hannah A Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Adrien Y Burch
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
27
|
In Silico Studies of Lamiaceae Diterpenes with Bioinsecticide Potential against Aphis gossypii and Drosophila melanogaster. Molecules 2021; 26:molecules26030766. [PMID: 33540716 PMCID: PMC7867283 DOI: 10.3390/molecules26030766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The growing demand for agricultural products has led to the misuse/overuse of insecticides; resulting in the use of higher concentrations and the need for ever more toxic products. Ecologically, bioinsecticides are considered better and safer than synthetic insecticides; they must be toxic to the target organism, yet with low or no toxicity to non-target organisms. Many plant extracts have seen their high insecticide potential confirmed under laboratory conditions, and in the search for plant compounds with bioinsecticidal activity, the Lamiaceae family has yielded satisfactory results. Objective: The aim of our study was to develop computer-assisted predictions for compounds with known insecticidal activity against Aphis gossypii and Drosophila melanogaster. Results and conclusion: Structure analysis revealed ent-kaurane, kaurene, and clerodane diterpenes as the most active, showing excellent results. We also found that the interactions formed by these compounds were more stable, or presented similar stability to the commercialized insecticides tested. Overall, we concluded that the compounds bistenuifolin L (1836) and bistenuifolin K (1931), were potentially active against A. gossypii enzymes; and salvisplendin C (1086) and salvixalapadiene (1195), are potentially active against D. melanogaster. We observed and highlight that the diterpenes bistenuifolin L (1836), bistenuifolin K (1931), salvisplendin C (1086), and salvixalapadiene (1195), present a high probability of activity and low toxicity against the species studied.
Collapse
|
28
|
Vesga P, Flury P, Vacheron J, Keel C, Croll D, Maurhofer M. Transcriptome plasticity underlying plant root colonization and insect invasion by Pseudomonas protegens. THE ISME JOURNAL 2020; 14:2766-2782. [PMID: 32879461 PMCID: PMC7784888 DOI: 10.1038/s41396-020-0729-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Pseudomonas protegens shows a high degree of lifestyle plasticity since it can establish both plant-beneficial and insect-pathogenic interactions. While P. protegens protects plants against soilborne pathogens, it can also invade insects when orally ingested leading to the death of susceptible pest insects. The mechanism whereby pseudomonads effectively switch between lifestyles, plant-beneficial or insecticidal, and the specific factors enabling plant or insect colonization are poorly understood. We generated a large-scale transcriptomics dataset of the model P. protegens strain CHA0 which includes data from the colonization of wheat roots, the gut of Plutella xylostella after oral uptake and the Galleria mellonella hemolymph after injection. We identified extensive plasticity in transcriptomic profiles depending on the environment and specific factors associated to different hosts or different stages of insect infection. Specifically, motor-activity and Reb toxin-related genes were highly expressed on wheat roots but showed low expression within insects, while certain antimicrobial compounds (pyoluteorin), exoenzymes (a chitinase and a polyphosphate kinase), and a transposase exhibited insect-specific expression. We further identified two-partner secretion systems as novel factors contributing to pest insect invasion. Finally, we use genus-wide comparative genomics to retrace the evolutionary origins of cross-kingdom colonization.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Pascale Flury
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Crop Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
29
|
Liniger M, Neuhaus CM, Altmann KH. Ring-Closing Metathesis Approaches towards the Total Synthesis of Rhizoxins. Molecules 2020; 25:E4527. [PMID: 33023218 PMCID: PMC7582377 DOI: 10.3390/molecules25194527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
Efforts are described towards the total synthesis of the bacterial macrolide rhizoxin F, which is a potent tubulin assembly and cancer cell growth inhibitor. A significant amount of work was expanded on the construction of the rhizoxin core macrocycle by ring-closing olefin metathesis (RCM) between C(9) and C(10), either directly or by using relay substrates, but in no case was ring-closure achieved. Macrocycle formation was possible by ring-closing alkyne metathesis (RCAM) at the C(9)/C(10) site. The requisite diyne was obtained from advanced intermediates that had been prepared as part of the synthesis of the RCM substrates. While the direct conversion of the triple bond formed in the ring-closing step into the C(9)-C(10) E double bond of the rhizoxin macrocycle proved to be elusive, the corresponding Z isomer was accessible with high selectivity by reductive decomplexation of the biscobalt hexacarbonyl complex of the triple bond with ethylpiperidinium hypophosphite. Radical-induced double bond isomerization, full elaboration of the C(15) side chain, and directed epoxidation of the C(11)-C(12) double bond completed the total synthesis of rhizoxin F.
Collapse
Affiliation(s)
| | | | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zürich, Switzerland; (M.L.); (C.M.N.)
| |
Collapse
|
30
|
Wang S, Cui J, Bilal M, Hu H, Wang W, Zhang X. Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Crit Rev Biotechnol 2020; 40:1232-1249. [PMID: 32907412 DOI: 10.1080/07388551.2020.1809990] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, there has been increasing interest in microbial biotechnology for the production of value-added compounds from renewable resources. Pseudomonas species have been proposed as a suitable workhorse for high-value secondary metabolite production because of their unique characteristics for fast growth on sustainable carbon sources, a clear inherited background, versatile intrinsic metabolism with diverse enzymatic capacities, and their robustness in an extreme environment. It has also been demonstrated that metabolically engineered Pseudomonas strains can produce several industrially valuable aromatic chemicals and natural products such as phenazines, polyhydroxyalkanoates, rhamnolipids, and insecticidal proteins from renewable feedstocks with remarkably high yields suitable for commercial application. In this review, we summarize cell factory construction in Pseudomonas for the biosynthesis of native and non-native bioactive compounds in P. putida, P. chlororaphis, P. aeruginosa, as well as pharmaceutical proteins production by P. fluorescens. Additionally, some novel strategies together with metabolic engineering strategies in order to improve the biosynthetic abilities of Pseudomonas as an ideal chassis are discussed. Finally, we proposed emerging opportunities, challenges, and essential strategies to enable the successful development of Pseudomonas as versatile microbial cell factories for the bioproduction of diverse bioactive compounds.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Wu L, Wang Z, Guan Y, Huang X, Shi H, Liu Y, Zhang X. The (p)ppGpp-mediated stringent response regulatory system globally inhibits primary metabolism and activates secondary metabolism in Pseudomonas protegens H78. Appl Microbiol Biotechnol 2020; 104:3061-3079. [PMID: 32009198 DOI: 10.1007/s00253-020-10421-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 01/08/2023]
Abstract
Pseudomonas protegens H78 produces multiple secondary metabolites, including antibiotics and iron carriers. The guanosine pentaphosphate or tetraphosphate ((p)ppGpp)-mediated stringent response is utilized by bacteria to survive during nutritional starvation and other stresses. RelA/SpoT homologues are responsible for the biosynthesis and degradation of the alarmone (p)ppGpp. Here, we investigated the global effect of relA/spoT dual deletion on the transcriptomic profiles, physiology, and metabolism of P. protegens H78 grown to mid- to late log phase. Transcriptomic profiling revealed that relA/spoT deletion globally upregulated the expression of genes involved in DNA replication, transcription, and translation; amino acid metabolism; carbohydrate and energy metabolism; ion transport and metabolism; and secretion systems. Bacterial growth was partially increased, while the cell survival rate was significantly reduced by relA/spoT deletion in H78. The utilization of some nutritional elements (C, P, S, and N) was downregulated due to relA/spoT deletion. In contrast, relA/spoT mutation globally inhibited the expression of secondary metabolic gene clusters (plt, phl, prn, ofa, fit, pch, pvd, and has). Correspondingly, antibiotic and iron carrier biosynthesis, iron utilization, and antibiotic resistance were significantly downregulated by the relA/spoT mutation. This work highlights that the (p)ppGpp-mediated stringent response regulatory system plays an important role in inhibiting primary metabolism and activating secondary metabolism in P. protegens.
Collapse
Affiliation(s)
- Lingyu Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yejun Guan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Huimin Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujie Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
32
|
Thomashow LS, Kwak YS, Weller DM. Root-associated microbes in sustainable agriculture: models, metabolites and mechanisms. PEST MANAGEMENT SCIENCE 2019; 75:2360-2367. [PMID: 30868729 DOI: 10.1002/ps.5406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Since the discovery of penicillin in 1928 and throughout the 'age of antibiotics' from the 1940s until the 1980s, the detection of novel antibiotics was restricted by lack of knowledge about the distribution and ecology of antibiotic producers in nature. The discovery that a phenazine compound produced by Pseudomonas bacteria could suppress soilborne plant pathogens, and its recovery from rhizosphere soil in 1990, provided the first incontrovertible evidence that natural metabolites could control plant pathogens in the environment and opened a new era in biological control by root-associated rhizobacteria. More recently, the advent of genomics, the availability of highly sensitive bioanalytical instrumentation, and the discovery of protective endophytes have accelerated progress toward overcoming many of the impediments that until now have limited the exploitation of beneficial plant-associated microbes to enhance agricultural sustainability. Here, we present key developments that have established the importance of these microbes in the control of pathogens, discuss concepts resulting from the exploration of classical model systems, and highlight advances emerging from ongoing investigations. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linda S Thomashow
- USDA, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Youn-Sig Kwak
- Department of Plant Medicine and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - David M Weller
- USDA, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
33
|
Helfrich EJN, Ueoka R, Dolev A, Rust M, Meoded RA, Bhushan A, Califano G, Costa R, Gugger M, Steinbeck C, Moreno P, Piel J. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol 2019; 15:813-821. [PMID: 31308532 PMCID: PMC6642696 DOI: 10.1038/s41589-019-0313-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/23/2019] [Indexed: 12/01/2022]
Abstract
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are among the most complex known enzymes from secondary metabolism and are responsible for the biosynthesis of highly diverse bioactive polyketides. However, most of these metabolites remain uncharacterized, since trans-AT PKSs frequently occur in poorly studied microbes and feature a remarkable array of non-canonical biosynthetic components with poorly understood functions. As a consequence, genome-guided natural product identification has been challenging. To enable de novo structural predictions for trans-AT PKS-derived polyketides, we developed the trans-AT PKS polyketide predictor (TransATor). TransATor is a versatile bio- and chemoinformatics web application that suggests informative chemical structures for even highly aberrant trans-AT PKS biosynthetic gene clusters, thus permitting hypothesis-based, targeted biotechnological discovery and biosynthetic studies. We demonstrate the applicative scope in several examples, including the characterization of new variants of bioactive natural products as well as structurally new polyketides from unusual bacterial sources.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Alon Dolev
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Roy A Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Gianmaria Califano
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Rodrigo Costa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK
| | - Pablo Moreno
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland.
| |
Collapse
|
34
|
Johnson DM, Weeks ENI, LoVullo ED, Shirk PD, Geden CJ. Mortality Effects of Three Bacterial Pathogens and Beauveria bassiana When Topically Applied or Injected Into House Flies (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:774-783. [PMID: 30576458 DOI: 10.1093/jme/tjy218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 06/09/2023]
Abstract
The house fly, Musca domestica L., is a global pest of public health and agricultural importance. The efficacy of conventional management has been waning due to increasing insecticide resistance. A potential management tool is the entomopathogenic fungus, Beauveria bassiana Vuillemin (Hypocreales: Cordycipitaceae) (strain L90), although time-to-death is slower than desired by potential users. This research investigated the effectiveness of three gram-negative bacteria (Pseudomonas protegens Ramette (Psuedomonadales: Pseudomonadaceae) pf-5, Photorhabdus temperata Fischer-Le Saux (Enterobacteriales: Enterobacteriaceae) NC19, and Serratia marcescens Bizio (Enterobacteriales: Enterobacteriaceae) DB11) on house fly mortality when topically applied, compared to B. bassiana. Each pathogen's virulence was measured by injection into adult female house flies or by topical applications to their thorax. All bacterial strains were highly virulent after injection with 1 × 104 colony forming units (cfu), causing fly mortality within 24 h. Beauveria bassiana resulted in high mortality, 3 d postinjection at the high dose of 1 × 104 conidia/µl. Mortality due to topical treatments of P. temperata and S. marcescens was low even at the highest dose of 1 × 106 cfu/µl. Mortality after topical treatments with P. protegens was evident 4 d after application of 1 × 106 cfu/µl. Mortality from B. bassiana was low at 4 d but increased at 5 d. These results imply that P. protegens holds great potential as a biological control agent for incorporation into an integrated pest management program against adult house flies.
Collapse
Affiliation(s)
| | - Emma N I Weeks
- Department of Entomology, University of Florida, Gainesville
| | | | | | | |
Collapse
|
35
|
Vacheron J, Péchy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M, Maurhofer M, Keel C. T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME JOURNAL 2019; 13:1318-1329. [PMID: 30683920 DOI: 10.1038/s41396-019-0353-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/31/2022]
Abstract
Pseudomonas protegens are multi-talented plant-colonizing bacteria that suppress plant pathogens and stimulate plant defenses. In addition, they are capable of invading and killing agriculturally important plant pest insects that makes them promising candidates for biocontrol applications. Here we assessed the role of type VI secretion system (T6SS) components of type strain CHA0 during interaction with larvae of the cabbage pest Pieris brassicae. We show that the T6SS core apparatus and two VgrG modules, encompassing the respective T6SS spikes (VgrG1a and VgrG1b) and associated effectors (RhsA and Ghh1), contribute significantly to insect pathogenicity of P. protegens in oral infection assays but not when bacteria are injected directly into the hemolymph. Monitoring of the colonization levels of P. protegens in the gut, hemolymph, and excrements of the insect larvae revealed that the invader relies on T6SS and VgrG1a module function to promote hemocoel invasion. A 16S metagenomic analysis demonstrated that T6SS-supported invasion by P. protegens induces significant changes in the insect gut microbiome affecting notably Enterobacteriaceae, a dominant group of the commensal gut bacteria. Our study supports the concept that pathogens deploy T6SS-based strategies to disrupt the commensal microbiota in order to promote host colonization and pathogenesis.
Collapse
Affiliation(s)
- Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Maria Péchy-Tarr
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Silvia Brochet
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marina Stojiljkovic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
36
|
Flury P, Vesga P, Dominguez-Ferreras A, Tinguely C, Ullrich CI, Kleespies RG, Keel C, Maurhofer M. Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME JOURNAL 2018; 13:860-872. [PMID: 30504899 DOI: 10.1038/s41396-018-0317-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022]
Abstract
The discovery of insecticidal activity in root-colonizing pseudomonads, best-known for their plant-beneficial effects, raised fundamental questions about the ecological relevance of insects as alternative hosts for these bacteria. Since soil bacteria are limited in their inherent abilities of dispersal, insects as vectors might be welcome vehicles to overcome large distances. Here, we report on the transmission of the root-colonizing, plant-beneficial and insecticidal bacterium Pseudomonas protegens CHA0 from root to root by the cabbage root fly, Delia radicum. Following ingestion by root-feeding D. radicum larvae, CHA0 persisted inside the insect until the pupal and adult stages. The emerging flies were then able to transmit CHA0 to a new plant host initiating bacterial colonization of the roots. CHA0 did not reduce root damages caused by D. radicum and had only small effects on Delia development suggesting a rather commensal than pathogenic relationship. Interestingly, when the bacterium was fed to two highly susceptible lepidopteran species, most of the insects died, but CHA0 could persist throughout different life stages in surviving individuals. In summary, this study investigated for the first time the interaction of P. protegens CHA0 and related strains with an insect present in their rhizosphere habitat. Our results suggest that plant-colonizing pseudomonads have different strategies for interaction with insects. They either cause lethal infections and use insects as food source or they live inside insect hosts without causing obvious damages and might use insects as vectors for dispersal, which implies a greater ecological versatility of these bacteria than previously thought.
Collapse
Affiliation(s)
- Pascale Flury
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Camille Tinguely
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Cornelia I Ullrich
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, Darmstadt, Germany
| | - Regina G Kleespies
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, Darmstadt, Germany
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
37
|
Kang BR, Anderson AJ, Kim YC. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite. Can J Microbiol 2018; 65:185-190. [PMID: 30398901 DOI: 10.1139/cjm-2018-0372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A biocontrol bacterium, Pseudomonas chlororaphis O6 promotes plant health through multifaceted mechanisms. In this study, we used P. chlororaphis O6 mutants to examine metabolites with aphicidal activity. Direct application of intact P. chlororaphis cells to the surface of second-instar nymphs of the green peach aphid resulted in no mortality. However, nymphs died when exposed only to the volatiles produced by the P. chlororaphis O6 wild-type strain grown on rich media. Mutants lacking the production of two antibiotics, phenazine and pyrrolnitrin, or the insect toxin FitD retained the aphicidal potential of the wild-type strain. However, the volatiles produced by mutants deficient in the production of hydrogen cyanide (HCN) or defective in the synthesis of the global regulator GacS, which regulates HCN synthesis, showed no aphicidal activity. Direct application of potassium cyanide caused mortality of green peach aphid nymphs. These results indicate that HCN production by a plant probiotic is involved in preventing insect growth.
Collapse
Affiliation(s)
- Beom Ryong Kang
- a Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Anne J Anderson
- b Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA
| | - Young Cheol Kim
- a Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
38
|
Geudens N, Martins JC. Cyclic Lipodepsipeptides From Pseudomonas spp. - Biological Swiss-Army Knives. Front Microbiol 2018; 9:1867. [PMID: 30158910 PMCID: PMC6104475 DOI: 10.3389/fmicb.2018.01867] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclic lipodepsipeptides produced by Pseudomonas spp. (Ps-CLPs) are biosurfactants that constitute a diverse class of versatile bioactive natural compounds with promising application potential. While chemically diverse, they obey a common structural blue-print, allowing the definition of 14 distinct groups with multiple structurally homologous members. In addition to antibacterial and antifungal properties the reported activity profile of Ps-CLPs includes their effect on bacterial motility, biofilm formation, induced defense responses in plants, their insecticidal activity and anti-proliferation effects on human cancer cell-lines. To further validate their status of potential bioactive substances, we assessed the results of 775 biological tests on 51 Ps-CLPs available from literature. From this, a fragmented view emerges. Taken as a group, Ps-CLPs present a broad activity profile. However, reports on individual Ps-CLPs are often much more limited in the scope of organisms that are challenged or activities that are explored. As a result, our analysis shows that the available data is currently too sparse to allow biological function to be correlated to a particular group of Ps-CLPs. Consequently, certain generalizations that appear in literature with respect to the biological activities of Ps-CLPs should be nuanced. This notwithstanding, the data for the two most extensively studied Ps-CLPs does indicate they can display activities against various biological targets. As the discovery of novel Ps-CLPs accelerates, current challenges to complete and maintain a useful overview of biological activity are discussed.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Shahid I, Malik KA, Mehnaz S. A decade of understanding secondary metabolism in Pseudomonas spp. for sustainable agriculture and pharmaceutical applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Gómez-Lama Cabanás C, Legarda G, Ruano-Rosa D, Pizarro-Tobías P, Valverde-Corredor A, Niqui JL, Triviño JC, Roca A, Mercado-Blanco J. Indigenous Pseudomonas spp. Strains from the Olive ( Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes. Front Microbiol 2018. [PMID: 29527195 PMCID: PMC5829093 DOI: 10.3389/fmicb.2018.00277] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive (Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae, were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the “Pseudomonas mandelii subgroup,” within the “Pseudomonas fluorescens group,” Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the “Pseudomonas aeruginosa group,” Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive rhizobacteria was assessed, providing valuable information for the future development of formulations based on these strains. A set of actions, from rhizosphere isolation to genome analysis, is proposed and discussed for selecting indigenous rhizobacteria as effective BCAs.
Collapse
Affiliation(s)
| | | | - David Ruano-Rosa
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| | - Paloma Pizarro-Tobías
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | | | - José L Niqui
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | - Juan C Triviño
- Bioinformatics Department, Sistemas Genómicos S.L., Valencia, Spain
| | - Amalia Roca
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| |
Collapse
|
41
|
Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in Pseudomonas protegens. mBio 2018; 9:mBio.01845-17. [PMID: 29339425 PMCID: PMC5770548 DOI: 10.1128/mbio.01845-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac− mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac− mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac− mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac− mutants: a reduced proportion of Gac− mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens, assessed by the accumulation of Gac− mutants. Many microorganisms produce antibiotics, which contribute to ecologic fitness in natural environments where microbes constantly compete for resources with other organisms. However, biosynthesis of antibiotics is costly due to the metabolic burdens of the antibiotic-producing microorganism. Our results provide an example of the fitness trade-off associated with antibiotic production. Under noncompetitive conditions, antibiotic biosynthesis led to accumulation of spontaneous mutants lacking a master regulator of antibiotic production. However, relatively few of these spontaneous mutants accumulated when a competitor was present. Results from this work provide information on the evolution of antibiotic biosynthesis and provide a framework for their discovery and regulation.
Collapse
|
42
|
Yan Q, Philmus B, Chang JH, Loper JE. Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. eLife 2017; 6. [PMID: 28262092 PMCID: PMC5395296 DOI: 10.7554/elife.22835] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/16/2017] [Indexed: 12/02/2022] Open
Abstract
Metabolic co-regulation between biosynthetic pathways for secondary metabolites is common in microbes and can play an important role in microbial interactions. Here, we describe a novel mechanism of metabolic co-regulation in which an intermediate in one pathway is converted into signals that activate a second pathway. Our study focused on the co-regulation of 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, two antimicrobial metabolites produced by the soil bacterium Pseudomonas protegens. We show that an intermediate in DAPG biosynthesis, phloroglucinol, is transformed by a halogenase encoded in the pyoluteorin gene cluster into mono- and di-chlorinated phloroglucinols. The chlorinated phloroglucinols function as intra- and inter-cellular signals that induce the expression of pyoluteorin biosynthetic genes, pyoluteorin production, and pyoluteorin-mediated inhibition of the plant-pathogenic bacterium Erwinia amylovora. This metabolic co-regulation provides a strategy for P. protegens to optimize the deployment of secondary metabolites with distinct roles in cooperative and competitive microbial interactions. DOI:http://dx.doi.org/10.7554/eLife.22835.001 Bacteria live almost everywhere on Earth and often compete with one another for limited resources, like space or nutrients. Certain bacteria produce molecules that are toxic to other microorganisms to give themselves a competitive advantage. These toxic molecules are more commonly referred as antibiotics, and are perhaps best known for their importance in medicine. Yet, antibiotics benefit the bacteria that produce them in other ways too. Some bacteria, for example, use antibiotics as chemical signals to communicate with one another and coordinate their activities. Some bacteria produce many antibiotics with different toxic and signaling activities. These bacteria often coordinate the production of different antibiotics such that the production of one antibiotic shuts down the production of another. This kind of coordination would allow the bacterium to focus its energy on producing only the antibiotic that gives it a competitive advantage at that time. Yet, in most cases, it was not known how the bacterial cell coordinates the production of two different antibiotics. Pseudomonas protegens is a species of bacteria that lives in soil, and produces many antibiotics that are toxic to other bacteria or fungi. The antibiotics are made via distinct pathways of chemical reactions that are catalyzed by different enzymes. However, the production of two antibiotics, called 2,4-diacetylphloroglucinol and pyoluteorin, is tightly coordinated in some strains of P. protegens. Now, Yan et al. have discovered how P. protegens coordinates the production of these two antibiotics. It turns out that the bacterium produces an enzyme that adds chlorine atoms onto one of the intermediate building blocks used to make 2,4-diacetylphloroglucinol. These “chlorinated derivatives” then activate the genes required to make the second antibiotic, pyoluteorin. The derivatives also signal to other P. protegens cells and trigger them to produce pyoluteorin too. Lastly, Yan et al. confirmed that pyoluteorin could inhibit the growth of another species of bacteria called Erwinia amylovora. These new findings highlight an important role played by chemicals that might have previously been considered as merely stepping stones in other biochemical reactions. An important challenge for the future will be to evaluate if other microbes use chemical intermediates in similar ways. Understanding the natural role of more antibiotics and their intermediates should help us to more wisely use existing antibiotics, and might eventually lead to new treatments for infections in humans and other animals. DOI:http://dx.doi.org/10.7554/eLife.22835.002
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, United States
| |
Collapse
|
43
|
Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N, Kupferschmied KP, Kupferschmied P, Metla Z, Ma Z, Siegfried S, de Weert S, Bloemberg G, Höfte M, Keel CJ, Maurhofer M. Antimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0, CMR12a, and PCL1391 Contribute to Insect Killing. Front Microbiol 2017; 8:100. [PMID: 28217113 PMCID: PMC5289993 DOI: 10.3389/fmicb.2017.00100] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/13/2017] [Indexed: 01/30/2023] Open
Abstract
Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few virulence factors discovered so far, points to a highly multifactorial nature of insecticidal activity. Antimicrobial compounds produced by fluorescent pseudomonads are effective weapons against a vast diversity of organisms such as fungi, oomycetes, nematodes, and protozoa. Here, we investigated whether these compounds also contribute to insecticidal activity. We tested mutants of the highly insecticidal strains Pseudomonas protegens CHA0, Pseudomonas chlororaphis PCL1391, and Pseudomonas sp. CMR12a, defective for individual or multiple antimicrobial compounds, for injectable and oral activity against lepidopteran insect larvae. Moreover, we studied expression of biosynthesis genes for these antimicrobial compounds for the first time in insects. Our survey revealed that hydrogen cyanide and different types of cyclic lipopeptides contribute to insecticidal activity. Hydrogen cyanide was essential to full virulence of CHA0 and PCL1391 directly injected into the hemolymph. The cyclic lipopeptide orfamide produced by CHA0 and CMR12a was mainly important in oral infections. Mutants of CMR12a and PCL1391 impaired in the production of the cyclic lipopeptides sessilin and clp1391, respectively, showed reduced virulence in injection and feeding experiments. Although virulence of mutants lacking one or several of the other antimicrobial compounds, i.e., 2,4-diacetylphloroglucinol, phenazines, pyrrolnitrin, or pyoluteorin, was not reduced, these metabolites might still play a role in an insect background since all investigated biosynthetic genes for antimicrobial compounds of strain CHA0 were expressed at some point during insect infection. In summary, our study identified new factors contributing to insecticidal activity and extends the diverse functions of antimicrobial compounds produced by fluorescent pseudomonads from the plant environment to the insect host.
Collapse
Affiliation(s)
- Pascale Flury
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
| | - Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
| | - Maria Péchy-Tarr
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Nora Aellen
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
| | - Francesca Dennert
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
| | - Nicolas Hofer
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
| | | | - Peter Kupferschmied
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Zane Metla
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
- Laboratory of Experimental Entomology, Institute of Biology, University of LatviaRiga, Latvia
| | - Zongwang Ma
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Sandra Siegfried
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
| | - Sandra de Weert
- Microbial Biotechnology and Health, Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Guido Bloemberg
- Microbial Biotechnology and Health, Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Christoph J. Keel
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürich, Switzerland
| |
Collapse
|
44
|
Rangel LI, Henkels MD, Shaffer BT, Walker FL, Davis EW, Stockwell VO, Bruck D, Taylor BJ, Loper JE. Characterization of Toxin Complex Gene Clusters and Insect Toxicity of Bacteria Representing Four Subgroups of Pseudomonas fluorescens. PLoS One 2016; 11:e0161120. [PMID: 27580176 PMCID: PMC5006985 DOI: 10.1371/journal.pone.0161120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/29/2016] [Indexed: 11/30/2022] Open
Abstract
Ten strains representing four lineages of the Pseudomonas fluorescens group (P. chlororaphis, P. corrugata, P. koreensis, and P. fluorescens subgroups) were evaluated for toxicity to the tobacco hornworm Manduca sexta and the common fruit fly Drosophila melanogaster. The three strains within the P. chlororaphis subgroup exhibited both oral and injectable toxicity to the lepidopteran M. sexta. All three strains have the gene cluster encoding the FitD insect toxin and a ΔfitD mutant of P. protegens strain Pf-5 exhibited diminished oral toxicity compared to the wildtype strain. Only one of the three strains, P. protegens Pf-5, exhibited substantial levels of oral toxicity against the dipteran D. melanogaster. Three strains in the P. fluorescens subgroup, which lack fitD, consistently showed significant levels of injectable toxicity against M. sexta. In contrast, the oral toxicity of these strains against D. melanogaster was variable between experiments, with only one strain, Pseudomonas sp. BG33R, causing significant levels of mortality in repeated experiments. Toxin complex (Tc) gene clusters, which encode insecticidal properties in Photorhabdus luminescens, were identified in the genomes of seven of the ten strains evaluated in this study. Within those seven genomes, six types of Tc gene clusters were identified, distinguished by gene content, organization and genomic location, but no correlation was observed between the presence of Tc genes and insect toxicity of the evaluated strains. Our results demonstrate that members of the P. fluorescens group have the capacity to kill insects by both FitD-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Lorena I. Rangel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Marcella D. Henkels
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Brenda T. Shaffer
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Francesca L. Walker
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Edward W. Davis
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Virginia O. Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Denny Bruck
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Barbara J. Taylor
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
45
|
Keel C. A look into the toolbox of multi-talents: insect pathogenicity determinants of plant-beneficial pseudomonads. Environ Microbiol 2016; 18:3207-3209. [DOI: 10.1111/1462-2920.13462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christoph Keel
- Department of Fundamental Microbiology; University of Lausanne; Lausanne Switzerland
| |
Collapse
|