1
|
Woodhouse JN, Burford MA, Neilan BA, Jex A, Tichkule S, Sivonen K, Fewer DP, Grossart HP, Willis A. Long-term stability of the genome structure of the cyanobacterium, Dolichospermum in a deep German lake. HARMFUL ALGAE 2024; 133:102600. [PMID: 38485438 DOI: 10.1016/j.hal.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Dolichospermum is a cyanobacterial genus commonly associated with toxic blooms in lakes and brackish water bodies worldwide, and is a long-term resident of Lake Stechlin, northeastern Germany. In recent decades, shifts in the phosphorus loading and phytoplankton species composition have seen increased biomass of Dolichospermum during summer blooms from 1998, peaking around 2005, and declining after 2020. Cyanobacteria are known to rapidly adapt to new environments, facilitated by genome adaptation. To investigate the changes in genomic features that may have occurred in Lake Stechlin Dolichospermum during this time of increased phosphorus loading and higher biomass, whole genome sequence analysis was performed on samples of ten akinetes isolated from ten, 1 cm segments of a sediment core, representing a ∼45-year period from 1970 to 2017. Comparison of these genomes with genomes of extant isolates revealed a clade of Dolichospermum that clustered with the ADA-6 genus complex, with remarkable genome stability, without gene gain or loss events in response to recent environmental changes. The genome characteristics indicate that this species is suited to a deep-chlorophyll maximum, including additional light-harvesting and phosphorus scavenging genes. Population SNP analysis revealed two sub-populations that shifted in dominance as the lake transitioned between oligotrophic and eutrophic conditions. Overall, the results show little change within the population, despite diversity between extant populations from different geographic locations and the in-lake changes in phosphorus concentrations.
Collapse
Affiliation(s)
- J N Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
| | - M A Burford
- Australian Rivers Institute, and School of Environment and Science, Griffith University, Brisbane, Australia
| | - B A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan 2308, NSW, Australia
| | - A Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - S Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - K Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - D P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - H-P Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany; Department of Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
| | - A Willis
- Australian Rivers Institute, and School of Environment and Science, Griffith University, Brisbane, Australia.
| |
Collapse
|
2
|
Santos-Silva RDD, Severiano JDS, Chia MA, Queiroz TM, Cordeiro-Araújo MK, Barbosa JEDL. Unveiling the link between Raphidiopsis raciborskii blooms and saxitoxin levels: Evaluating water quality in tropical reservoirs, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123401. [PMID: 38244903 DOI: 10.1016/j.envpol.2024.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The proliferation of Raphidiopsis raciborskii blooms has sparked concerns regarding potential human exposure to heightened saxitoxins (STXs) levels. Thus, comprehending how environmental elements drive the proliferation of this STXs-producing species can aid in predicting human exposure risks. This study aimed to explore the link between cyanobacteria R. raciborskii, STXs cyanotoxins, and environmental factors in 37 public supply reservoirs in the tropical region and assess potential health hazards these toxins pose in the reservoir waters. A Structural Equation Model was used to assess the impact of environmental factors (water volume and physical and chemical variables) on R. raciborskii biomass and STXs levels. Furthermore, the potential risk of STXs exposure from consuming untreated reservoir water was evaluated. Lastly, the cumulative distribution function (CDF) of STXs across the reservoirs was computed. Our findings revealed a correlation between R. raciborskii biomass and STXs concentrations. Total phosphorus emerged as a critical environmental factor positively influencing species biomass and indirectly affecting STXs levels. pH significantly influenced STXs concentrations, indicating different factors influencing R. raciborskii biomass and STXs. Significantly, for the first time, the risk of STXs exposure was gauged using the risk quotient (HQ) for untreated water consumption from public supply reservoirs in Brazil's semi-arid region. Although the exposure risks were generally low to moderate, the CDF underscored the risk of chronic exposure due to low toxin concentrations in over 90% of samples. These outcomes emphasize the potential expansion of R. raciborskii in tropical settings due to increased phosphorus, amplifying waterborne STXs levels and associated intoxication risks. Thus, this study reinforces the importance of nutrient control, particularly phosphorus regulation, as a mitigation strategy against R. raciborskii blooms and reducing STXs intoxication hazards.
Collapse
Affiliation(s)
- Ranielle Daiana Dos Santos-Silva
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| | - Juliana Dos Santos Severiano
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil.
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu University Bello, 81 0001, Zaria, Nigeria; Department of Ecology, University of Brasília - UnB, Graduate Program in Ecology. Institute of Biological Sciences - IB, Asa Norte, DF, 70910-900, Brasilia, Brazil
| | - Tatiane Medeiros Queiroz
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Cellular Biology, University of Brasília - UnB, Graduate Program in Microbial Biology. Institute of Biological Sciences - IB, Bloco E, s/n, Asa Norte, DF, 70910-900, Brasilia, Brazil
| | - José Etham de Lucena Barbosa
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| |
Collapse
|
3
|
Bashir F, Bashir A, Bouaïcha N, Chen L, Codd GA, Neilan B, Xu WL, Ziko L, Rajput VD, Minkina T, Arruda RS, Ganai BA. Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 2023; 39:241. [PMID: 37394567 DOI: 10.1007/s11274-023-03652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023]
Abstract
Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.
Collapse
Affiliation(s)
- Fahim Bashir
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Arif Bashir
- Department of Clinical Biochemistry and Biotechnology, Government College for Women, Nawa-Kadal, Srinagar, Jammu & Kashmir, India
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic, and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science (SEES), Yunnan University (YNU), 650500, Kunming, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China.
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Geoffrey A Codd
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Brett Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Renan Silva Arruda
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Bashir Ahmad Ganai
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
4
|
Zheng L, Liu Y, Li R, Yang Y, Jiang Y. Recent Advances in the Ecology of Bloom-Forming Raphidiopsis ( Cylindrospermopsis) raciborskii: Expansion in China, Intraspecific Heterogeneity and Critical Factors for Invasion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1984. [PMID: 36767351 PMCID: PMC9915880 DOI: 10.3390/ijerph20031984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Water blooms caused by the invasive cyanobacterium Raphidiopsis raciborskii occur in many reservoirs in the tropical and subtropical regions of China. In recent decades, this species has spread rapidly to temperate regions. Phenotypic plasticity and climate warming are thought to promote the worldwide dispersion of R. raciborskii. However, investigations into the genetic and phenotypic diversities of this species have revealed significant intraspecific heterogeneity. In particular, competition between R. raciborskii and Microcystis aeruginosa was highly strain dependent. Although the concept of an ecotype was proposed to explain the heterogeneity of R. raciborskii strains with different geographic origins, microevolution is more reasonable for understanding the coexistence of different phenotypes and genotypes in the same environment. It has been suggested that intraspecific heterogeneity derived from microevolution is a strong driving force for the expansion of R. raciborskii. Additionally, temperature, nutrient fluctuations, and grazer disturbance are critical environmental factors that affect the population establishment of R. raciborskii in new environments. The present review provides new insights into the ecological mechanisms underlying the invasion of R. raciborskii in Chinese freshwater ecosystems.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yiming Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
5
|
Shi JQ, Ou-Yang T, Yang SQ, Zhao L, Ji LL, Wu ZX. Transcriptomic responses to phosphorus in an invasive cyanobacterium, Raphidiopsis raciborskii: Implications for nutrient management. HARMFUL ALGAE 2022; 111:102150. [PMID: 35016763 DOI: 10.1016/j.hal.2021.102150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is a vital macronutrient associated with the growth and proliferation of Raphidiopsis raciborskii, an invasive and notorious bloom-forming cyanobacterium. However, the molecular mechanisms involved in P acclimation remain largely unexplored for Raphidiopsis raciborskii. Here, transcriptome sequencing of Raphidiopsis raciborskii was conducted to reveal multifaceted mechanisms involved in mimicking dipotassium phosphate (DIP), β-glycerol phosphate (Gly), 2-aminoethylphosphonic acid (AEP), and P-free conditions (NP). Chlorophyll a fluorescence parameters showed significant differences in the NP and AEP groups compared with the DIP and Gly-groups. Expression levels of genes related to phosphate transportation and uptake, organic P utilization, nitrogen metabolism, urea cycling, carbon fixation, amino acid metabolism, environmental information, the ATP-synthesis process in glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway were remarkably upregulated, while those related to photosynthesis, phycobiliproteins, respiration, oxidative phosphorylation, sulfur metabolism, and genetic information were markedly downregulated in the NP group relative to the DIP group. However, the expression of genes involved in organic P utilization, the urea cycle, and genetic information in the Gly-group, and carbon-phosphorus lyase, genetic information and environmental information in the AEP group were significantly increased compared to the DIP group. Together, these results indicate that Raphidiopsis raciborskii exhibits the evolution of coordination of multiple metabolic pathways and certain key genes to adapt to ambient P changes, which implies that if P is reduced to control Raphidiopsis raciborskii bloom, there is a risk that external nutrients (such as nitrogen, amino acids, and urea) will stimulate the growth or metabolism of Raphidiopsis.
Collapse
Affiliation(s)
- Jun-Qiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Tian Ou-Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Song-Qi Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Lu-Lu Ji
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Zhong-Xing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
6
|
Lei L, Lei M, Cheng N, Chen Z, Xiao L, Han BP, Lin Q. Nutrient Regulation of Relative Dominance of Cylindrospermopsin-Producing and Non-cylindrospermopsin-Producing Raphidiopsis raciborskii. Front Microbiol 2021; 12:793544. [PMID: 34899674 PMCID: PMC8664406 DOI: 10.3389/fmicb.2021.793544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Raphidiopsis raciborskii (previously Cylindrospermopsis raciborskii) can produce cylindrospermopsin (CYN) which is of great concern due to its considerable toxicity to human and animals. Its CYN-producing (toxic) and non-CYN-producing (non-toxic) strains co-exist commonly in natural water bodies, while how their relative dominance is regulated has not been addressed. In this study, we combined field investigation with laboratory experiments to assessed the relationship between toxic and non-toxic R. raciborskii abundances under different nutrient levels. The rpoC1- and cyrJ-based qPCR was applied for quantifying total and toxic R. raciborskii abundances, respectively. The field survey showed that toxic R. raciborskii was detected in 97 of 115 reservoirs where its proportion ranged from 0.3% to 39.7% within the R. raciborskii population. Both total and toxic R. raciborskii abundances increased significantly with trophic level of these reservoirs, consistent with our monoculture and co-culture experiments showing in an increase in R. raciborskii growth with increasing nitrogen (N) or phosphorus (P) concentrations. In the monoculture experiments, growth rates of non-toxic and toxic strains from Australia or China were not significantly different under the same culture conditions. On the other hand, in the co-culture experiments, the toxic strains displayed a significantly faster growth than non-toxic strains under nutrient-replete conditions, resulting in an obvious shift toward the dominance by toxic strains from day 3 to the end of the experiments, regardless of the strain originating from Australia or China. The reverse was found under N- or P-limited conditions. Our results indicated that the toxic strains of R. raciborskii have a competitive advantage relative to the non-toxic strains in a more eutrophic world. In parallel to an increase in dominance, both toxic strains grown in the mixed population significantly increased CYN production under nutrient-replete conditions as compared to nutrient-limited conditions, suggesting that CYN may be of significance for ecological advantage of toxic R. raciborskii. These results highlight the importance of nutrient availability in regulating abundances and strain dominance of two genotypes of R. raciborskii. Our findings demonstrated that elevated nutrients would favor the growth of CYN-producing R. raciborskii and CYN production, leading to more blooms with higher toxicity at global scale.
Collapse
Affiliation(s)
- Lamei Lei
- Department of Ecology, Jinan University, Guangzhou, China
| | - Minting Lei
- Department of Ecology, Jinan University, Guangzhou, China
| | - Nan Cheng
- Department of Ecology, Jinan University, Guangzhou, China
| | - Zhijiang Chen
- Department of Ecology, Jinan University, Guangzhou, China
| | - Lijuan Xiao
- Department of Ecology, Jinan University, Guangzhou, China
| | - Bo-Ping Han
- Department of Ecology, Jinan University, Guangzhou, China
| | - Qiuqi Lin
- Department of Ecology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Tan F, Xiao P, Yang JR, Chen H, Jin L, Yang Y, Lin TF, Willis A, Yang J. Precision early detection of invasive and toxic cyanobacteria: A case study of Raphidiopsis raciborskii. HARMFUL ALGAE 2021; 110:102125. [PMID: 34887005 DOI: 10.1016/j.hal.2021.102125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Blooms of the toxic cyanobacterium, Raphidiopsis raciborskii (basionym Cylindrospermopsis raciborskii), are becoming a major environmental issue in freshwater ecosystems globally. Our precision prevention and early detection of R. raciborskii blooms rely upon the accuracy and speed of the monitoring method. A duplex digital PCR (dPCR) monitoring approach was developed and validated to detect the abundance and toxin-producing potential of R. raciborskii simultaneously in both laboratory spiked and environmental samples. Results of dPCR were strongly correlated with traditional real time quantitative PCR (qPCR) and microscopy for both laboratory and environmental samples. However, discrepancies between methods were observed when measuring R. raciborskii at low abundance (1 - 105 cells L - 1), with dPCR showing a higher precision compared to qPCR at low cell concentration. Furthermore, the dPCR assay had the highest detection rate for over two hundred environmental samples especially under low abundance conditions, followed by microscopy and qPCR. dPCR assay had the advantages of simple operation, time-saving, high sensitivity and excellent reproducibility. Therefore, dPCR would be a fast and precise monitoring method for the early warning of toxic bloom-forming cyanobacterial species and assessment of water quality risks, which can improve prediction and prevention of the impacts of harmful cyanobacterial bloom events in inland waters.
Collapse
Affiliation(s)
- Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun R Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Engineering Research Center of Ecology and Agricultural Use of Wetland (Ministry of Education), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yigang Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Hobart 7000, Tasmania, Australia
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
8
|
Tee HS, Wood SA, Bouma-Gregson K, Lear G, Handley KM. Genome Streamlining, Plasticity, and Metabolic Versatility Distinguish Co-occurring Toxic and Nontoxic Cyanobacterial Strains of Microcoleus. mBio 2021; 12:e0223521. [PMID: 34700377 PMCID: PMC8546630 DOI: 10.1128/mbio.02235-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023] Open
Abstract
Harmful cyanobacterial bloom occurrences have increased worldwide due to climate change and eutrophication, causing nuisance and animal deaths. Species from the benthic cyanobacterial genus Microcoleus are ubiquitous and form thick mats in freshwater systems, such as rivers, that are sometimes toxic due to the production of potent neurotoxins (anatoxins). Anatoxin-producing (toxic) strains typically coexist with non-anatoxin-producing (nontoxic) strains in mats, although the reason for this is unclear. To determine the genetic mechanisms differentiating toxic and nontoxic Microcoleus, we sequenced and assembled genomes from 11 cultures and compared these to another 31 Microcoleus genomes. Average nucleotide identities (ANI) indicate that toxic and nontoxic strains are distinct species (ANI, <95%), and only 6% of genes are shared across all 42 genomes, suggesting a high level of genetic divergence among Microcoleus strains. Comparative genomics showed substantial genome streamlining in toxic strains and a potential dependency on external sources for thiamine and sucrose. Toxic and nontoxic strains are further differentiated by an additional set of putative nitrate transporter (nitrogen uptake) and cyanophycin (carbon and nitrogen storage) genes, respectively. These genes likely confer distinct competitive advantages based on nutrient availability and suggest nontoxic strains are more robust to nutrient fluctuations. Nontoxic strains also possess twice as many transposable elements, potentially facilitating greater genetic adaptation to environmental changes. Our results offer insights into the divergent evolution of Microcoleus strains and the potential for cooperative and competitive interactions that contribute to the co-occurrence of toxic and nontoxic species within mats. IMPORTANCE Microcoleus autumnalis, and closely related Microcoleus species, compose a geographically widespread group of freshwater benthic cyanobacteria. Canine deaths due to anatoxin-a poisoning, following exposure to toxic proliferations, have been reported globally. While Microcoleus proliferations are on the rise, the mechanisms underpinning competition between, or coexistence of, toxic and nontoxic strains are unknown. This study identifies substantial genetic differences between anatoxin-producing and non-anatoxin-producing strains, pointing to reduced metabolic flexibility in toxic strains, and potential dependence on cohabiting nontoxic strains. Results provide insights into the metabolic and evolutionary differences between toxic and nontoxic Microcoleus, which may assist in predicting and managing aquatic proliferations.
Collapse
Affiliation(s)
- Hwee Sze Tee
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Keith Bouma-Gregson
- U.S. Geological Survey, California Water Science Center, Sacramento, California, USA
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Effects of Grazing and Nutrients on Phytoplankton Blooms and Microplankton Assemblage Structure in Four Temperate Lakes Spanning a Eutrophication Gradient. WATER 2021. [DOI: 10.3390/w13081085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Phytoplankton assemblage dynamics are sensitive to biotic and abiotic factors, as well as anthropogenic stressors such as eutrophication, and thus are likely to vary between lakes of differing trophic state. We selected four lakes in Washington State, USA, ranging from oligo- to hypereutrophic, to study the separate and interactive effects of enhanced nutrient availability and zooplankton grazing on phytoplankton net growth rates and overall microplankton (phytoplankton and microzooplankton) assemblage structure. We collected water quality and plankton samples monthly in each lake from May to October 2014, and also conducted laboratory incubation experiments using ambient plankton assemblages from each lake with amendments of zooplankton grazers (5× ambient densities) and nutrients (Nitrogen + Phosphorus) in June, August, and October. In each set of monthly experiments, nested two-way ANOVAs were used to test the effects of enhanced grazers and nutrients on net chlorophyll a-based phytoplankton growth rates. Nested PERMANOVAs were used to test the effects of each factor on microplankton assemblage structure. Enhanced grazing reduced phytoplankton net growth in oligotrophic Cle Elum Lake and oligo-mesotrophic Lake Merwin in August (p < 0.001) and Merwin again in October (p < 0.05), while nutrient enhancement increased phytoplankton net growth in Lake Merwin in June (p < 0.01). Changes in microplankton assemblage composition were not detected as a result of either factor, but they were significantly different between sites (p < 0.001) during each month, and varied by month within each lake. Significant effects of both enhanced grazers and nutrients were detected in systems of low, but not high, trophic state, although this varied by season. We suggest that it is critical to consider trophic state when predicting the response of phytoplankton to bottom-up and top-down factors in lakes.
Collapse
|
10
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
11
|
Xiao M, Hamilton DP, Chuang A, Burford MA. Intra-population strain variation in phosphorus storage strategies of the freshwater cyanobacterium Raphidiopsis raciborskii. FEMS Microbiol Ecol 2020; 96:5837077. [DOI: 10.1093/femsec/fiaa092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
ABSTRACT
Several cyanobacteria, including diazotrophic Raphidiopsis raciborskii, can form harmful blooms when dissolved inorganic phosphorus concentrations are very low. We hypothesized that R. raciborskii strains would vary in phosphorus (P) allocations to cell growth and storage, providing resilience of populations to continuously low or variable P supplies. We tested this hypothesis using six toxic strains (producing cylindrospermopsins) isolated from a field population using batch monocultures with and without P and dissolved inorganic nitrogen (DIN). Treatments replete with DIN, irrespective of P addition, had similar exponential growth rates for individual strains. P storage capacity varied 4-fold among strains and was significantly higher in DIN-free treatments than in replete treatments. P was stored by all R. raciborskii strains, in preference to allocation to increase growth rates. P stores decreased with increased growth rate across strains, but weeere not related to the time to P starvation in P-free treatments. The storage capacity of R. raciborskii, combined with strategies to efficiently uptake P, means that P controls may not control R. raciborskii populations in the short term. Intra-population strain variation in P storage capacity will need to be reflected in process-based models to predict blooms of R. raciborskii and other cyanobacteria adapted to low-P conditions.
Collapse
Affiliation(s)
- Man Xiao
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Ann Chuang
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
12
|
Willis A, Chuang AW, Orr PT, Beardall J, Burford MA. Subtropical freshwater phytoplankton show a greater response to increased temperature than to increased pCO 2. HARMFUL ALGAE 2019; 90:101705. [PMID: 31806159 DOI: 10.1016/j.hal.2019.101705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Global increases in atmospheric CO2 and temperatures will impact aquatic systems, with freshwater habitats being affected. Some studies suggest that these conditions will promote cyanobacterial dominance. There is a need for a clearer picture of how algal species and strains within species will respond to higher temperatures and CO2, especially in combination. This study examined two chlorophytes (Monoraphidium and Staurastrum), and two strains of the cyanobacterium Raphidiopsis raciborskii (straight S07 and coiled C03), to determine how the combination of higher temperature and CO2 levels will affect their growth and maximum cell concentrations. Continuous cultures were used to compare the steady state cell concentrations at 28 °C and 30 °C, and CO2 partial pressures (pCO2), 400 and 750 ppm for all cultures, and in addition 1000 ppm at 28 °C for R. raciborskii strains. This study showed that, for all species, water temperature had a greater effect than higher pCO2 on cell concentrations. There were clear differences in response between the chlorophyte species, with Monoraphidium preferring 28 °C and Staurastrum preferring 30 °C. There were also differences in response of the R. raciborskii strains to increasing temperature and pCO2, with S07 having a greater increase in cell concentration. Genome analysis of R. raciborskii showed that the straight strain has five additional carbon acquisition genes (β-CA, chpY, cmpB, cmpD and NdhD4), indicative of increased carbon metabolism. These differences in the strains' response to elevated pCO2 will lead to changes in the species population structure and distribution in the water column. This study shows that it is important to examine the effects of both pCO2 and temperature, and to consider strain variation, to understand how species composition of natural systems may change under future climate conditions.
Collapse
Affiliation(s)
- Anusuya Willis
- Australian Rivers Institute, Griffith University, Nathan Queensland 4111, Australia.
| | - Ann W Chuang
- Australian Rivers Institute, Griffith University, Nathan Queensland 4111, Australia
| | | | - John Beardall
- School of Biological Sciences, Monash University, Clayton Victoria 3800, Australia
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan Queensland 4111, Australia.
| |
Collapse
|
13
|
Kelly LT, Ryan KG, Wood SA. Differential strain response in alkaline phosphatase activity to available phosphorus in Microcoleus autumnalis. HARMFUL ALGAE 2019; 89:101664. [PMID: 31672236 DOI: 10.1016/j.hal.2019.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Toxic, benthic cyanobacterial proliferations have increased in frequency and severity globally and can have negative impacts on aquatic ecosystems, recreation and human health. Microcoleus autumnalis has been associated with numerous animal fatalities and is causing increasing concern. It tends to grow in systems with moderate dissolved inorganic nitrogen and very low dissolved reactive phosphorus. Acquisition of nutrients, particularly phosphorus, from organic sources may explain how M. autumnalis can reach the high biomass in these relatively nutrient deplete environments. In the present study the effect of phosphorus concentration and source on alkaline phosphatase activity was investigated in toxic and non-toxic M. autumnalis strains. Toxic strains exhibited significantly higher alkaline phosphatase activity than non-toxic strains (p < 0.05), and alkaline phosphatase activity increased in all strains under phosphorus-depleted conditions (p < 0.05). Alkaline phosphatase activity was also present in environmental M. autumnalis mats, though at lower levels than in laboratory experiments. The presence of alkaline phosphatase activity indicates that the acquisition of phosphorus from organic phosphorus sources may contribute to the ability of M. autumnalis to grow in systems with low dissolved reactive phosphorus.
Collapse
Affiliation(s)
- Laura T Kelly
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| |
Collapse
|
14
|
Fu Q, Yeung ACY, Fujii M, Neilan BA, Waite TD. Physiological responses of the freshwater N
2
‐fixing cyanobacterium
Raphidiopsis raciborskii
to Fe and N availabilities. Environ Microbiol 2019; 21:1211-1223. [DOI: 10.1111/1462-2920.14545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qing‐Long Fu
- Department of Civil and Environmental Engineering Tokyo Institute of Technology Ookayama, Tokyo Japan
| | - Anna C. Y. Yeung
- School of Civil and Environmental Engineering The University of New South Wales Sydney Australia
| | - Manabu Fujii
- Department of Civil and Environmental Engineering Tokyo Institute of Technology Ookayama, Tokyo Japan
| | - Brett A. Neilan
- School of Environmental and Life Sciences The University of Newcastle Newcastle Australia
| | - T. David Waite
- School of Civil and Environmental Engineering The University of New South Wales Sydney Australia
| |
Collapse
|
15
|
Budzyńska A, Rosińska J, Pełechata A, Toporowska M, Napiórkowska-Krzebietke A, Kozak A, Messyasz B, Pęczuła W, Kokociński M, Szeląg-Wasielewska E, Grabowska M, Mądrecka B, Niedźwiecki M, Alcaraz Parraga P, Pełechaty M, Karpowicz M, Pawlik-Skowrońska B. Environmental factors driving the occurrence of the invasive cyanobacterium Sphaerospermopsis aphanizomenoides (Nostocales) in temperate lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1338-1347. [PMID: 30308820 DOI: 10.1016/j.scitotenv.2018.09.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 05/13/2023]
Abstract
Cyanobacterial blooms are an increasing threat worldwide. Invasions of certain cyanobacterial species, mainly towards higher latitudes, add to this concern as they enrich the pool of potential bloom-formers in the invaded region. Among the numerous causes of this escalating process, climate warming is commonly considered the most crucial factor, but empirical studies of this issue are lacking. The aim of our study was to identify physical, chemical and biological factors related to the occurrence of an invasive cyanobacterium at the northern border of its putative current range, and thus enabling its expansion. This study focuses on the relatively little studied species Sphaerospermopsis aphanizomenoides (Nostocales, Cyanobacteria; synonyms: Aphanizomenon aphanizomenoides, Anabaena aphanizomenoides), which is predicted to become one of the main nuisance species of the future. Forty-nine freshwater lakes located between latitudes 51° and 55°N were examined for the presence of S. aphanizomenoides, and environmental factors that could drive its occurrence were studied simultaneously. To identify factors correlated with the presence of the species, principal component analysis (PCA) and Mann-Whitney U test were performed. Water temperature did not differentiate lakes with or without S. aphanizomenoides, however the study was conducted in a particularly hot summer. Total phosphorus concentration was identified as the primary driving factor of the occurrence of S. aphanizomenoides. The species grew in poor light conditions and high phytoplankton biomass, mainly in shallow lakes. As shown by detrended correspondence analysis (DCA), the species accompanied shade tolerant, eutrophic species of native and invasive cyanobacteria as well as eukaryotic algae. Our results indicate that eutrophication may be the primary factor enabling the increasing occurrence of S. aphanizomenoides in temperate environments, and suggest that this process may stimulate expansion of cyanobacterial species towards high latitudes.
Collapse
Affiliation(s)
- A Budzyńska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland.
| | - J Rosińska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland; Poznan University of Medical Sciences, Faculty of Health Sciences, Department of Environmental Medicine, Rokietnicka 8, 60-806 Poznań, Poland
| | - A Pełechata
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - M Toporowska
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - A Napiórkowska-Krzebietke
- Inland Fisheries Institute, Department of Ichthyology, Hydrobiology and Aquatic Ecology, Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - A Kozak
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland
| | - B Messyasz
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - W Pęczuła
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - M Kokociński
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - E Szeląg-Wasielewska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland
| | - M Grabowska
- University of Białystok, Department of Hydrobiology, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - B Mądrecka
- Poznan University of Technology, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Berdychowo 4, 60-965 Poznań, Poland
| | - M Niedźwiecki
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - P Alcaraz Parraga
- University of Jaén, Department of Animal Biology, Plant Biology and Ecology, Campus Las Lagunillas, 23071 Jaén, Spain
| | - M Pełechaty
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - M Karpowicz
- University of Białystok, Department of Hydrobiology, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - B Pawlik-Skowrońska
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| |
Collapse
|
16
|
Willis A, Chuang AW, Dyhrman S, Burford MA. Differential expression of phosphorus acquisition genes in response to phosphorus stress in two Raphidiopsis raciborskii strains. HARMFUL ALGAE 2019; 82:19-25. [PMID: 30928007 DOI: 10.1016/j.hal.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
The cyanobacterium Raphidiopsis raciborskii is a nuisance in freshwater ecosystems. Strains vary in their physiological responses to environmental drivers, thus a greater understanding of the magnitude of strain variation is required to characterize the species. In this study, two strains of R. raciborskii isolated from a tropical Australian water reservoir were grown with and without phosphorus (P) to determine any relative response to P stress. The strains had the same growth rates and under P free conditions, cells grew at the same rate as P replete conditions until day 9 when cell growth ceased. There was no difference in the alkaline phosphatase activity per cell for the P replete and P free conditions, but the level of activity per cell was greater in CS-505 than CS-506. P acquisition genes were identified from the sequenced genomes; both strains contained the same genes, but with differences in copy number of phoA (7 and 6), phnK (3 and 1) and phnH (2 and 1) between CS-505 and CS-506 (respectively). The expression of P acquisition genes under P stress was measured throughout the experiment and shown to vary in magnitude and timing across strains, and in P replete versus P free cultures. In strain CS-505, upregulation of the pstS1 and phoA genes occurred late in the growth phase and into senescence. These genes are involved in phosphate uptake and use of various forms of organic P. For strain CS-506, there was upregulation of the phosphate uptake gene, pit, and organic P utilization genes, phoA, phoU, phnD and phnK, commencing late in the growth phase. Our study shows that despite the fact that these two strains were isolated from the same waterbody, they differed markedly in their gene expression response to P free conditions. This capacity of R. raciborskii to vary in strain responses to P conditions gives the organism flexibility in responding to environmental change, particularly P stress conditions.
Collapse
Affiliation(s)
- Anusuya Willis
- Australian Rivers Institute, Griffith University, Nathan, 4111 Queensland, Australia.
| | - Ann W Chuang
- Australian Rivers Institute, Griffith University, Nathan, 4111 Queensland, Australia
| | - Sonya Dyhrman
- Department of Earth and Environmental Sciences, and the Lamont-Doherty Earth Observatory, Columbia University, Palisades NY, 10964, USA
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, 4111 Queensland, Australia
| |
Collapse
|
17
|
Panou M, Zervou SK, Kaloudis T, Hiskia A, Gkelis S. A Greek Cylindrospermopsis raciborskii strain: Missing link in tropic invader's phylogeography tale. HARMFUL ALGAE 2018; 80:96-106. [PMID: 30502817 DOI: 10.1016/j.hal.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 06/09/2023]
Abstract
The cyanobacterium Cylindrospermopsis raciborskii represents a challenge for researchers and it is extensively studied for its toxicity and invasive behaviour, which is presumably enhanced by global warming. Biogeography studies indicate a tropical origin for this species, with Greece considered as the expansion route of C. raciborskii in Europe. The widening of its geographic distribution and the isolation of strains showing high optimum growth temperature underline its ecological heterogeneity, suggesting the existence of different ecotypes. The dominance of species like C. raciborskii along with their ecotoxicology and potential human risk related problems, render the establishment of a clear phylogeography model essential. In the context of the present study, the characterization of Cylindrospermopsis raciborskii TAU-MAC 1414 strain, isolated from Lake Karla, with respect to its phylogeography and toxic potential, is attempted. Our research provides new insights on the origin of C. raciborskii in the Mediterranean region; C. raciborskii expanded in Mediterranean from North America, whilst the rest of the European strains may originate from Asia and Australia. Microcystin synthetase genes, phylogenetic closely related with Microcystis strains, were also present in C. raciborskii TAU-MAC 1414. We were unable to unambiguously confirm the presence of MC-LR, using LC-MS/MS. Our results are shedding light on the expansion and distribution of C. raciborskii, whilst they pose further questions on the toxic capacity of this species.
Collapse
Affiliation(s)
- Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Catalytic-Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Athens, Greece
| | - Triantafyllos Kaloudis
- Water Quality Department, Athens Water Supply and Sewerage Company (EYDAP SA), 156 Oropou Str., 11146 Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Catalytic-Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Athens, Greece
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
18
|
Development and Application of a Quantitative PCR Assay to Assess Genotype Dynamics and Anatoxin Content in Microcoleus autumnalis-Dominated Mats. Toxins (Basel) 2018; 10:toxins10110431. [PMID: 30373141 PMCID: PMC6266952 DOI: 10.3390/toxins10110431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
Microcoleus is a filamentous cyanobacteria genus with a global distribution. Some species form thick, cohesive mats over large areas of the benthos in rivers and lakes. In New Zealand Microcoleus autumnalis is an anatoxin producer and benthic proliferations are occurring in an increasing number of rivers nationwide. Anatoxin content in M. autumnalis-dominated mats varies spatially and temporally, making understanding and managing proliferations difficult. In this study a M. autumnalis-specific TaqMan probe quantitative PCR (qPCR) assay targeting the anaC gene was developed. The assay was assessed against 26 non-M. autumnalis species. The assay had a detection range over seven orders of magnitude, with a limit of detection of 5.14 × 10−8 ng μL−1. The anaC assay and a cyanobacterial specific 16S rRNA qPCR were then used to determine toxic genotype proportions in 122 environmental samples collected from 19 sites on 10 rivers in New Zealand. Anatoxin contents of the samples were determined using LC-MS/MS and anatoxin quota per toxic cell calculated. The percentage of toxic cells ranged from 0 to 30.3%, with significant (p < 0.05) differences among rivers. The anatoxin content in mats had a significant relationship with the percentage of toxic cells (R2 = 0.38, p < 0.001), indicating that changes in anatoxin content in M. autumnalis-dominated mats are primarily related to the dominance of toxic strains. When applied to more extensive samples sets the assay will enable new insights into how biotic and abiotic parameters influence genotype composition, and if applied to RNA assist in understanding anatoxin production.
Collapse
|
19
|
Crnkovic CM, May DS, Orjala J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:375-384. [PMID: 30294068 PMCID: PMC6171529 DOI: 10.1007/s10811-017-1275-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 05/20/2023]
Abstract
Cultured cyanobacteria produce secondary metabolites with a wide range of biological activities and are an important source of natural products. In the context of secondary metabolite discovery, microbial culture conditions are expected to support optimum growth, induce maximum chemical diversity, and be suitable for the majority of cyanobacterial strains. We investigated the effect of nitrate and phosphate on biomass production and metabolomic profiles of three filamentous freshwater cyanobacterial strains: cf. Oscillatoria sp. UIC 10045, Scytonema sp. UIC 10036, and Nostoc sp. UIC 10110. A standardized inoculation procedure allowed for the assessment of cell mass production. Dried cyanobacterial cell mass was extracted and analyzed by liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS), followed by comparative metabolomics analysis using XCMS Online. Results showed that low nitrate media significantly reduced cell mass production for all three strains. Low nitrate also induced production of primary metabolites (heterocyst glycolipids) in strains UIC 10036 and UIC 10110. Changes in phosphate levels affected each strain differently. Strain UIC 10110 showed a significant increase in production of merocyclophane C when cultivated in low phosphate, while strain UIC 10036 displayed higher production of tolytoxin under high phosphate. Additionally, these experiments led to the identification of a potentially new peptide produced by strain UIC 10036.
Collapse
Affiliation(s)
- Camila M. Crnkovic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Daniel S. May
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Key Questions and Recent Research Advances on Harmful Algal Blooms in Relation to Nutrients and Eutrophication. ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-70069-4_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Glibert PM. Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes. MARINE POLLUTION BULLETIN 2017; 124:591-606. [PMID: 28434665 DOI: 10.1016/j.marpolbul.2017.04.027] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Eutrophication is a complex process and often associated with not only a change in overall algal biomass but also with a change in biodiversity. Common metrics of eutrophication (e.g., chlorophyll a), total nitrogen (TN) and phosphorus (TP) are not adequate for understanding biodiversity changes, especially those associated with harmful algal bloom (HAB) proliferations. Harmful algae can increase disproportionately with eutrophication, depending on which nutrients change and in what proportion. This paper challenges several classic paradigms in our understanding of eutrophication and associated biodiversity changes. The underlying message is that nutrient proportions and forms can alter biodiversity, even when nutrients are at concentrations in excess of those considered limiting. The global HAB problem is on a trajectory for more blooms, more toxins, more often, in more places. Our approach to management of HABs and eutrophication must consider the broader complexity of nutrient effects at scales ranging from physiological to ecological.
Collapse
Affiliation(s)
- Patricia M Glibert
- University of Maryland Center for Environmental Science, Horn Point Laboratory, PO Box 6775, Cambridge, MD 21613, USA.
| |
Collapse
|
22
|
Casali SP, Dos Santos ACA, de Falco PB, Calijuri MDC. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. JOURNAL OF WATER AND HEALTH 2017; 15:509-518. [PMID: 28771148 DOI: 10.2166/wh.2017.266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Saxitoxins are a class of toxins produced by at least two groups of evolutionarily distant organisms (cyanobacteria and dinoflagellates). While the toxicity of these toxins is relatively well characterized, to date little is known about their drivers and ecological functions, especially in lower latitude tropical and subtropical freshwater ecosystems. In the present study, we aimed to obtain a better understanding of the main drivers of saxitoxin concentrations in aquatic environments. We investigated the relationships among saxitoxin concentrations in a mesotrophic subtropical reservoir dominated by the cyanobacteria Cylindrospermopsis raciborskii with physical, chemical and biological water variables. The highest saxitoxin concentrations were 0.20 μg·L-1, which occurred in the samples with the highest densities of C. raciborskii (maximum of 4.3 × 104 org·mL-1) and the highest concentration of dissolved nutrients (nitrate from 0.2 to 0.8 μg·L-1, ortophosphate from 0.3 to 8.5 μg·L-1). These correlations were confirmed by statistical analyses. However, the highest saxitoxin relative concentrations (per trichome) were associated with lower C. raciborskii densities, suggesting that saxitoxin production or the selection of saxitoxin-producing strains was associated with the adaptation of this species to conditions of stress. Our results indicate that C. raciborskii toxin yields vary depending on the enrichment conditions having potential implications for reservoir management.
Collapse
Affiliation(s)
- Simone Pereira Casali
- Laboratório de Biotoxicologia de Águas Continentais e Efluentes (BIOTACE), Escola de Engenharia do São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400. CEP 13566-590 São Carlos, SP, Brazil
| | - André Cordeiro Alves Dos Santos
- Laboratório de Microbiologia Ambiental, Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Sorocaba, SP, Brazil E-mail:
| | | | - Maria do Carmo Calijuri
- Laboratório de Biotoxicologia de Águas Continentais e Efluentes (BIOTACE), Escola de Engenharia do São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400. CEP 13566-590 São Carlos, SP, Brazil
| |
Collapse
|
23
|
Kokocinski M, Gagala I, Jasser I, Karosiene J, Kasperoviciene J, Kobos J, Koreiviene J, Soininen J, Szczurowska A, Woszczyk M, Mankiewicz-Boczek J. Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiol Ecol 2017; 93:3064889. [PMID: 28334256 DOI: 10.1093/femsec/fix035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/08/2017] [Indexed: 12/25/2022] Open
Abstract
Mechanisms behind expansion of an invasive cyanobacterium Cylindrospermopsis raciborskii have not been fully resolved, and different hypotheses, such as global warming, are suggested. In the East-Central Europe, it is widely occurring in western part of Poland but only in single locations in the East due to some limiting factors. Therefore, broad-scale phytoplankton survey including 117 randomly selected lakes in Poland and Lithuania was conducted. The results showed that C. raciborskii occurred widely in western part of Poland but was absent from other regions and Lithuania except one lake. The regions in which C. raciborskii was present had higher annual mean air temperature, higher maximum air temperature of the warmest month and higher minimum temperature of the coldest month, demonstrating that average air temperature, and indirectly, the duration of growing season might be more important factor driving C. raciborskii distribution than measured in situ water temperature. In turn, the presence of C. raciborskii in single localities may be more related to physiological adaptations of separated ecotype. Collectively, these results provide novel evidence on the influence of temperature on C. raciborskii distribution in East-European regions but also indicate high ecological plasticity of this species.
Collapse
Affiliation(s)
- Mikolaj Kokocinski
- Department of Hydrobiology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Ilona Gagala
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Lódz, Poland
| | - Iwona Jasser
- Department of Microbial Ecology and Environmental Biotechnology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.,Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jurate Karosiene
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Jurate Kasperoviciene
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Justyna Kobos
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdansk, Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Judita Koreiviene
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Agnieszka Szczurowska
- Department of General Ecology, University of Life Sciences in Lublin, ul. Leszczynskiego 58, 20-068 Lublin, Poland
| | - Michal Woszczyk
- Department of Quaternary Geology and Paleogeography, Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dziegielowa 27, 61-680 Poznan, Poland
| | - Joanna Mankiewicz-Boczek
- Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lódz, Banacha 12/16, 90-237 Lódz
| |
Collapse
|
24
|
Xiao M, Willis A, Burford MA. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. HARMFUL ALGAE 2017; 62:84-93. [PMID: 28118895 DOI: 10.1016/j.hal.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/24/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Microcystis aeruginosa and Cylindrospermopsis raciborskii are two cyanobacterial species that dominate freshwaters globally. Multiple strains of each species with different physiology occur, however, many studies have focused only on one or two strains, limiting our understanding of both strain variation and characterisation of the species. Therefore, in this study we examined the variation in growth and morphology of multiple isolates of both species, isolated from two adjacent Australian reservoirs. Four M. aeruginosa strains (=isolates) (one colony-forming, three single-celled morphology) and eight C. raciborskii isolates (five with straight trichomes, three with coiled trichomes) were cultured individually in a factorial designed experiment with four light intensities (L: 10, 30, 50 and 100μmol photons m-2s-1) and two temperatures (T: 20 and 28°C). The specific growth rate (μ), cell volume, and final cell concentration was measured. The light attenuation coefficient (kj), a measure of self-shading, was calculated. The results showed that the intraspecific variation was greater than the interspecific variation. The μ of all isolates of M. aeruginosa and C. raciborskii ranged from 0.16 to 0.55d-1 and 0.15 to 0.70d-1, respectively. However, at a specific light and temperature the mean μ of all M. aeruginosa isolates and C. raciborskii isolates were similar. At the species level, M. aeruginosa had higher growth rates at higher light intensity but lower temperature (L100T20), while straight C. raciborskii had higher growth rates at lower light intensity but higher temperature (L50T28), and coiled C. raciborskii had higher growth rates at higher light intensity and higher temperature (L100T28). The final cell concentrations of M. aeruginosa were higher than C. raciborskii. However, C. raciborskii isolates had greater variation in μ, kj and cell volume than M. aeruginosa. kj varied with light and temperature, and decreased with surface-to-volume ratio within each species. kj was lower for M. aeruginosa compared to C. raciborskii as expected based on cell size, but interestingly, C. raciborskii coiled isolates had lower kj than the straight isolates suggesting lower effect of self-shading. This study highlights the extent of strain variation to environmental conditions and to species variability.
Collapse
Affiliation(s)
- Man Xiao
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia; School of Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| | - Anusuya Willis
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia; School of Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
25
|
Variations of Growth and Toxin Yield in Cylindrospermopsis raciborskii under Different Phosphorus Concentrations. Toxins (Basel) 2016; 9:toxins9010013. [PMID: 28036060 PMCID: PMC5307294 DOI: 10.3390/toxins9010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/03/2022] Open
Abstract
The bloom-forming cyanobacteria, Cylindrospermopsis raciborskii, is a producer of the cytotoxic cylindrospermopsin (CYN). In this study, the growth, toxin yield, and expression of CYN biosynthesis genes of C. raciborskii were examined under varying phosphorus (P) concentrations. The results show the cell number at 0.00 and 0.01 mg·L−1 P was significantly lower than that at higher P concentrations (≥0.5 mg·L−1). The chlorophyll a content, filament length, heterocyst, and akinete numbers at P ≤ 0.05 mg·L−1 were also significantly reduced. The intracellular and extracellular CYN concentrations and the extracellular proportions increased during the culture period, and larger values were observed at higher P concentrations. Total CYN content reached 45.34–63.83 fg·cell−1 and extracellular CYN proportion reached 11.49%–20.44% at the stationary growth phase. A significantly positive correlation was observed between CYN production and cell growth rate. Three cyr genes were expressed constantly even at P-deficient conditions. The transcription of cyr genes at P-replete conditions or after P supplementation increased from 1.18-fold to 8.33-fold. In conclusion, C. raciborskii may rapidly reorganize metabolic processes as an adaptive response to environmental P fluctuations. CYN production and cyr gene expression were constitutive metabolic processes in toxic C. raciborskii.
Collapse
|
26
|
Willis A, Chuang AW, Burford MA. Nitrogen fixation by the diazotroph Cylindrospermopsis raciborskii (Cyanophyceae). JOURNAL OF PHYCOLOGY 2016; 52:854-862. [PMID: 27440068 DOI: 10.1111/jpy.12451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/27/2016] [Indexed: 06/06/2023]
Abstract
Nitrogen fixation has been proposed as a mechanism that allows the diazotrophic cyanobacterium, Cylindrospermopsis raciborskii, to bloom in nitrogen-limited freshwater systems. However, it is unclear whether dinitrogen fixation (N2 fixation) can supplement available dissolved inorganic nitrogen (DIN) for growth, or only provides minimum nitrogen (N) for cell maintenance under DIN deplete conditions. Additionally, the rate at which cells can switch between DIN use and N2 fixation is unknown. This study investigated N2 fixation under a range of nitrate concentrations. Cultures were grown with pretreatments of nitrate replete (single dose 941 μmol NO3- · L-1 ) and N-free conditions and then either received a single dose of 941 μmol NO3- · L-1 (N941), 118 μmol NO3- · L-1 (N118) or 0 N. Heterocysts appeared from days 3 to 5 when treatments of high NO3- were transferred to N free media (N941:N0), and from day 5 in N941 transferred to N118 treatments. Conversely, transferring cells from N0 to N941 resulted in heterocysts being discarded from day 3 and day 5 for N0:N118. Heterocyst appearance correlated with a detectable rate of N2 fixation and up-regulation of nifH gene expression, the discard of heterocysts occurred after sequential reduction of nifH expression and N2 fixation. Nitrate uptake rates were not affected by pretreatment, suggesting no regulation or saturation of this uptake pathway. These data demonstrate that for C. raciborskii, N2 fixation is regulated by the production or discard of heterocysts. In conclusion, this study has shown that N2 fixation only provides enough N to support relatively low growth under N-limited conditions, and does not supplement available nitrate to increase growth rates.
Collapse
Affiliation(s)
- Anusuya Willis
- Australian Rivers Institute, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia
| | - Ann W Chuang
- Australian Rivers Institute, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia
| |
Collapse
|
27
|
Willis A, Chuang AW, Woodhouse JN, Neilan BA, Burford MA. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon 2016; 119:307-10. [DOI: 10.1016/j.toxicon.2016.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/08/2023]
|
28
|
Pacheco ABF, Guedes IA, Azevedo SMFO. Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater? Toxins (Basel) 2016; 8:toxins8060172. [PMID: 27338471 PMCID: PMC4926139 DOI: 10.3390/toxins8060172] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
The wide distribution of cyanobacteria in aquatic environments leads to the risk of water contamination by cyanotoxins, which generate environmental and public health issues. Measurements of cell densities or pigment contents allow both the early detection of cellular growth and bloom monitoring, but these methods are not sufficiently accurate to predict actual cyanobacterial risk. To quantify cyanotoxins, analytical methods are considered the gold standards, but they are laborious, expensive, time-consuming and available in a limited number of laboratories. In cyanobacterial species with toxic potential, cyanotoxin production is restricted to some strains, and blooms can contain varying proportions of both toxic and non-toxic cells, which are morphologically indistinguishable. The sequencing of cyanobacterial genomes led to the description of gene clusters responsible for cyanotoxin production, which paved the way for the use of these genes as targets for PCR and then quantitative PCR (qPCR). Thus, the quantification of cyanotoxin genes appeared as a new method for estimating the potential toxicity of blooms. This raises a question concerning whether qPCR-based methods would be a reliable indicator of toxin concentration in the environment. Here, we review studies that report the parallel detection of microcystin genes and microcystin concentrations in natural populations and also a smaller number of studies dedicated to cylindrospermopsin and saxitoxin. We discuss the possible issues associated with the contradictory findings reported to date, present methodological limitations and consider the use of qPCR as an indicator of cyanotoxin risk.
Collapse
Affiliation(s)
- Ana Beatriz F Pacheco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | - Iame A Guedes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | - Sandra M F O Azevedo
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| |
Collapse
|
29
|
Vico P, Aubriot L, Martigani F, Rigamonti N, Bonilla S, Piccini C. Influence of nitrogen availability on the expression of genes involved in the biosynthesis of saxitoxin and analogs in Cylindrospermopsis raciborskii. HARMFUL ALGAE 2016; 56:37-43. [PMID: 28073495 DOI: 10.1016/j.hal.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 06/06/2023]
Abstract
The development of cyanobacterial blooms in inland aquatic ecosystems is greatly promoted by nutrient availability, especially nitrogen and phosphorous. When blooms are dominated by toxigenic species the harmful effects of nutrient loading becomes particularly relevant. Among toxic species, Cylindrospermopsis raciborskii found in South American ecosystems is characterized by the production of saxitoxin and analogs (Paralytic Shellfish Poisoning, PSP), for which the factors that trigger their production have not been elucidated. In this study, the effect of nitrate availability on the relative transcript abundance of two genes (sxtU and sxtI), both involved in different steps of PSP biosynthetic pathway, was addressed in C. raciborskii MVCC19 by qPCR. The relative transcript abundance of both genes significantly increased from the beginning to the end of growth, independent of nitrate availability in the culture medium. Differences between the genes in terms of the levels of relative expression were also found, implying that during growth in nitrate-rich or nitrate-deprived conditions C. raciborskii MVCC19 has the ability to produce different kind of PSP molecules. The presence of nifH transcripts in the nitrogen-depleted treatment confirmed that in the absence of nitrate C. raciborskii fixed atmospheric N2. Moreover, after transferring filaments to nitrate-rich conditions the synthesis of nifH mRNA continued for few hours, suggesting that cell adjustments enabling the utilization of soluble nitrogen sources are not immediate. Our results show that biosynthesis of saxitoxin and analogs in C. raciborskii is not related to nitrate availability, but rather is linked to cyanobacteria growth rate.
Collapse
Affiliation(s)
- Paula Vico
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay; Grupo de Ecología y Fisiología de Fitoplancton, CSIC, Uruguay
| | - Luis Aubriot
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UDELAR, Uruguay; Grupo de Ecología y Fisiología de Fitoplancton, CSIC, Uruguay
| | - Fátima Martigani
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UDELAR, Uruguay; Grupo de Ecología y Fisiología de Fitoplancton, CSIC, Uruguay
| | - Natalia Rigamonti
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay; Grupo de Ecología y Fisiología de Fitoplancton, CSIC, Uruguay
| | - Sylvia Bonilla
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UDELAR, Uruguay; Grupo de Ecología y Fisiología de Fitoplancton, CSIC, Uruguay
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay; Grupo de Ecología y Fisiología de Fitoplancton, CSIC, Uruguay.
| |
Collapse
|
30
|
Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo SMFOE, Neilan BA. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. HARMFUL ALGAE 2016; 54:44-53. [PMID: 28073481 DOI: 10.1016/j.hal.2015.10.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/14/2015] [Indexed: 05/06/2023]
Abstract
The cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. It is of particular concern because strains in some geographic areas are capable of producing toxins with implications for human and animal health. Studies of this species have increased rapidly in the last two decades, especially in the southern hemisphere where toxic strains are prevalent. A clearer picture is emerging of the strategies adopted by this species to bloom and out-compete other species. This species has a high level of flexibility with respect to light and nutrients, with higher temperatures and carbon dioxide also promoting growth. There are two types of toxins produced by C. raciborskii: cylindrospermopsins (CYNs) and saxitoxins (STXs). The toxins CYNs are constitutively produced irrespective of environmental conditions and the ecological or physiological role is unclear, while STXs appear to serve as protection against high salinity and/or water hardness. It is also apparent that strains of this species can vary substantially in their physiological responses to environmental conditions, including CYNs production, and this may explain discrepancies in findings from studies in different geographical areas. The combination of a flexible strategy with respect to environmental conditions, and variability in strain response makes it a challenging species to manage. Our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology of this species.
Collapse
Affiliation(s)
- Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Anusuya Willis
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
| | - Philip T Orr
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia; School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Valeria F Magalhaes
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Luciana M Rangel
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Sandra M F O E Azevedo
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
31
|
Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. HARMFUL ALGAE 2016; 54:87-97. [PMID: 28073483 DOI: 10.1016/j.hal.2016.01.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/30/2016] [Indexed: 05/03/2023]
Abstract
Historically, phosphorus (P) has been considered the primary limiting nutrient for phytoplankton assemblages in freshwater ecosystems. This review, supported by new findings from Lake Erie, highlights recent molecular, laboratory, and field evidence that the growth and toxicity of some non-diazotrophic blooms of cyanobacteria can be controlled by nitrogen (N). Cyanobacteria such as Microcystis possess physiological adaptations that allow them to dominate low-P surface waters, and in temperate lakes, cyanobacterial densities can be controlled by N availability. Beyond total cyanobacterial biomass, N loading has been shown to selectively promote the abundance of Microcystis and Planktothrix strains capable of synthesizing microcystins over strains that do not possess this ability. Among strains of cyanobacteria capable of synthesizing the N-rich microcystins, cellular toxin quotas have been found to depend upon exogenous N supplies. Herein, multi-year observations from western Lake Erie are presented demonstrating that microcystin concentrations peak in parallel with inorganic N, but not orthophosphate, concentrations and are significantly lower (p<0.01) during years of reduced inorganic nitrogen loading and concentrations. Collectively, this information underscores the importance of N as well as P in controlling toxic cyanobacteria blooms. Furthermore, it supports the premise that management actions to reduce P in the absence of concurrent restrictions on N loading may not effectively control the growth and/or toxicity of non-diazotrophic toxic cyanobacteria such as the cosmopolitan, toxin-producing genus, Microcystis.
Collapse
Affiliation(s)
- Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Hwy, New York 11968, USA.
| | - JoAnn M Burkholder
- Center for Applied Aquatic Ecology, North Carolina State University, Raleigh, NC 27606, USA
| | - Timothy W Davis
- NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, USA
| | - Matthew J Harke
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Hwy, New York 11968, USA
| | - Tom Johengen
- Cooperative Institute for Limnology and Ecosystems Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Craig A Stow
- NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, USA
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Post Office Box 50, Wageningen 6700 AB, The Netherlands
| |
Collapse
|
32
|
Antunes JT, Leão PN, Vasconcelos VM. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front Microbiol 2015; 6:473. [PMID: 26042108 PMCID: PMC4435233 DOI: 10.3389/fmicb.2015.00473] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms.
Collapse
Affiliation(s)
- Jorge T Antunes
- Faculty of Sciences, University of Porto , Porto, Portugal ; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto , Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto , Porto, Portugal
| | - Vítor M Vasconcelos
- Faculty of Sciences, University of Porto , Porto, Portugal ; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto , Porto, Portugal
| |
Collapse
|
33
|
Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Appl Environ Microbiol 2015; 81:3069-76. [PMID: 25724956 DOI: 10.1128/aem.03556-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/12/2015] [Indexed: 11/20/2022] Open
Abstract
Cylindrospermopsin (CYN) and 7-deoxy-cylindrospermopsin (dCYN) are potent hepatotoxic alkaloids produced by numerous species of cyanobacteria, including the freshwater Cylindrospermopsis raciborskii. C. raciborskii is an invasive cyanobacterium, and the study of how environmental parameters drive CYN production has received significant interest from water managers and health authorities. Light and CO2 affect cell growth and physiology in photoautotrophs, and these are potential regulators of cyanotoxin biosynthesis. In this study, we investigated how light and CO2 affect CYN and dCYN pool size as well as the expression of the key genes, cyrA and cyrK, involved in CYN biosynthesis in a toxic C. raciborskii strain. For cells growing at different light intensities (10 and 100 μmol photons m(-2) s(-1)), we observed that the rate of CYN pool size production (μCYN) was coupled to the cell division rate (μc) during batch culture. This indicated that CYN pool size under our experimental conditions is constant and cell quotas of CYN (QCYN) and dCYN (QdCYN) are fixed. Moreover, a lack of correlation between expression of cyrA and total CYN cell quotas (QCYNs) suggests that the CYN biosynthesis is regulated posttranscriptionally. Under elevated CO2 (1,300 ppm), we observed minor effects on QCYN and no effects on expression of cyrA and cyrK. We conclude that the CYN pool size is constitutive and not affected by light and CO2 conditions. Thus, C. raciborskii bloom toxicity is determined by the absolute abundance of C. raciborskii cells within the water column and the relative abundance of toxic and nontoxic strains.
Collapse
|
34
|
Boopathi T, Ki JS. Impact of environmental factors on the regulation of cyanotoxin production. Toxins (Basel) 2014; 6:1951-78. [PMID: 24967641 PMCID: PMC4113735 DOI: 10.3390/toxins6071951] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are capable of thriving in almost all environments. Recent changes in climatic conditions due to increased human activities favor the occurrence and severity of harmful cyanobacterial bloom all over the world. Knowledge of the regulation of cyanotoxins by the various environmental factors is essential for effective management of toxic cyanobacterial bloom. In recent years, progress in the field of molecular mechanisms involved in cyanotoxin production has paved the way for assessing the role of various factors on the cyanotoxin production. In this review, we present an overview of the influence of various environmental factors on the production of major group of cyanotoxins, including microcystins, nodularin, cylindrospermopsin, anatoxins and saxitoxins.
Collapse
Affiliation(s)
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 110-743, Korea.
| |
Collapse
|