1
|
Hao X, Song H, Su X, Li J, Ye Y, Wang C, Xu X, Pang G, Liu W, Li Z, Luo T. Prophylactic effects of nutrition, dietary strategies, exercise, lifestyle and environment on nonalcoholic fatty liver disease. Ann Med 2025; 57:2464223. [PMID: 39943720 PMCID: PMC11827040 DOI: 10.1080/07853890.2025.2464223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease and its prevalence has risen sharply. However, whether nutrition, dietary strategies, exercise, lifestyle and environment have preventive value for NAFLD remains unclear. METHODS Through searching 4 databases (PubMed, Web of Science, Embase and the Cochrane Library) from inception to January 2025, we selected studies about nutrition, dietary strategies, exercise, lifestyle and environment in the prevention of NAFLD and conducted a narrative review on this topic. RESULTS Reasonable nutrient intake encompassing macronutrients and micronutrients have an independent protective relationship with NAFLD. Besides, proper dietary strategies including mediterranean diet, intermittent fasting diet, ketogenic diet, and dietary approaches to stop hypertension diet have their inhibitory effects on the developmental process of NAFLD. Moreover, right exercises including walking, jogging, bicycling, and swimming are recommended for the prevention of NAFLD because they could effectively reduce weight, which is an important risk factor for NAFLD, and improve liver function. In addition, embracing a healthy lifestyle including reducing sedentary behavior, not smoking, sleeping well and brushing teeth regularly is integral since it not only could reduce the risk of NAFLD but also significantly contribute to overall prevention and control. Finally, the environment, including the social and natural environments, plays a potential role in NAFLD prevention. CONCLUSION Nutrition, dietary strategies, exercise, lifestyle and environment play an important role in the prevention of NAFLD. Moreover, this review offers comprehensive prevention recommendations for people at high risk of NAFLD.
Collapse
Affiliation(s)
- Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Hao Song
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xin Su
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Jian Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Youbao Ye
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Cailiu Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xiao Xu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Guanglong Pang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Wenxiu Liu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Zihan Li
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Tian Luo
- The Institute for Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Gao HX, Chen N, He Q, Zeng WC. A novel microemulsion loaded with Ligustrum robustum (Rxob.) Blume polyphenols: Preparation, characterization, and application. Food Chem 2025; 476:143495. [PMID: 39986085 DOI: 10.1016/j.foodchem.2025.143495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The low solubility of phenolic compounds in oils limits their protective effect on oil quality. In the present study, novel microemulsions were designed and prepared with Ligustrum robustum (Rxob.) Blume polyphenols extract (LRE) using soybean oil as the oil phase, a combination of Tween80 and Span80 as surfactants, and ethanol as the co-surfactant, and subsequently characterized and evaluated their properties and performance in oil. Results showed that the amount of LRE dissolved in prepared microemulsions could reach 0.025 g/g oil. According to the droplet size, rheology, differential scanning calorimetry, and transmission electron microscopy measurements, LRE had no negative effects on microemulsion structure and increased the particle size, viscosity, and interfacial strength of microemulsion. Moreover, LRE exhibited remarkable antioxidant activities, and the LRE-loaded microemulsions showed no obvious cytotoxicity on Caco-2 cells. Furthermore, the LRE-loaded microemulsions exhibited superior effectiveness in inhibiting oil oxidation during storage, compared to the direct addition of LRE. All results suggest that the microemulsion has the potential used as an embedded material for natural antioxidants in food industry.
Collapse
Affiliation(s)
- Hao-Xiang Gao
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Klein L, Lenz C, Krüger K, Lorkowski S, Kipp K, Dawczynski C. Comparative analysis of fatty acid profiles across omnivorous, flexitarians, vegetarians, and vegans: insights from the NuEva study. Lipids Health Dis 2025; 24:133. [PMID: 40205391 PMCID: PMC11983864 DOI: 10.1186/s12944-025-02517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Different dietary choices can influence blood fatty acid profiles, which are crucial for maintaining physiological health and reducing disease risk. In particular, the exclusion of animal foods in vegetarian diets is associated with a higher risk of undersupply of long-chain omega (n)-3 fatty acids, which could, potentially, have a negative effect on inflammation. This study aimed to examine differences in plasma and erythrocyte fatty acid profiles as well as inflammation-related biomarkers between various plant-based diets and a regular omnivores diet. METHODS The Nutritional Evaluation (NuEva) study is a is a parallel-designed trial. Here screening data was used to investigate differences in plasma and erythrocyte fatty acid profiles across omnivores (Western diet; n = 62), flexitarians (n = 69), vegetarians (n = 64) and vegans (n = 57). Furthermore, markers associated with inflammation are investigated and correlated with selected fatty acids. RESULTS Flexitarians showed lower erythrocyte saturated fatty acids (SFA) than omnivores, while vegans had the lowest plasma SFA. Vegans had higher erythrocyte monounsaturated fatty acids proportions, like oleic acid, than flexitarians and vegetarians. n-6 fatty acids, particularly linoleic acid, were highest in vegans and vegetarians. Conversely, omnivores had higher arachidonic acid in erythrocytes. Vegans had lower n-3 fatty acids in both plasma and erythrocytes, also reflected in a lower n-3 index (eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)) values, indicating a trend with restriction of animal foods: omnivores/flexitarians > vegetarians > vegans. While interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor (TNF)-α and high-sensitive C-reactive protein (hsCRP) did not differ between groups, and vegans had lower leptin levels compared to omnivores. CONCLUSIONS The NuEva study revealed significant impact of dietary patterns on fatty acid profiles, with vegans and vegetarians displaying lower concentrations of SFA and n-3 fatty acids, including EPA and DHA, compared to omnivores and flexitarians. Despite the clear differences in fatty acid profiles across the diets, the inflammatory markers measured in our healthy collective are comparable. TRIAL REGISTRATION Registered under ClinicalTrials.gov Identifier no. NCT03582020.
Collapse
Affiliation(s)
- Lea Klein
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Claudia Lenz
- Institute for Sports Science, Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394, Giessen, Germany
| | - Karsten Krüger
- Institute for Sports Science, Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394, Giessen, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743, Jena, Germany
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Kristin Kipp
- Department for Pediatrics, University Hospital Jena, Jena, Germany
| | - Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743, Jena, Germany.
| |
Collapse
|
4
|
Wei M, Zhou Z, Lin K, Deng Z, Li J. Absorption, metabolism, and bioconversion of trans-palmitoleic acid in C57BL/6J mice: Implications for lipid metabolism. J Dairy Sci 2025:S0022-0302(25)00169-9. [PMID: 40139365 DOI: 10.3168/jds.2024-25913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Trans-palmitoleic acid (TPA), a naturally occurring trans fatty acid found in ruminant-derived products such as dairy, has been associated with various potential health benefits. However, its digestion, absorption, tissue distribution, and metabolic properties following oral administration remain insufficiently understood. Here, we conducted pharmacokinetic analyses in C57BL/6J mice to evaluate the absorption, tissue distribution, and metabolism of TPA following oral administration. Our data showed that the plasma concentration of TPA peaked at 9.1 µg • mL-1 at 15 min post-administration, with a terminal elimination half-life of 201.1 min. Moreover, TPA was efficiently distributed to the heart, lung, liver, kidney, brain and adipose tissue, reaching peak concentrations within 30 to 60 min. These results indicate that TPA is rapidly digested, absorbed, and distributed across multiple tissues in mice, while exhibiting slow metabolic clearance and an extended residence time in vivo. Within 0 to 480 min following oral administration, TPA underwent bioconversion to trans-vaccenic acid (TVA) and cis-9, trans-11 conjugated linoleic acid (9c11t-CLA), both of which are recognized for their extensive health benefits. The bioconversion rates were 71.57-72.44% for TVA and 44.05-53.23% for 9c11t-CLA. Furthermore, TPA significantly reduced triglyceride and total cholesterol levels in steatosis hepatocytes. Notably, inhibiting the bioconversion of TPA to TVA and 9c11t-CLA did not impair its ability to reduce lipid accumulation in hepatocytes, suggesting that the beneficial effects of TPA on lipid metabolism are independent of its bioconversion to TVA and 9c11t-CLA. This study provides a reference for dairy fat intake and establishes a foundation for further exploration of the physiological effects of TPA.
Collapse
Affiliation(s)
- Meng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zeqiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Kequn Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China; International Institute of Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
5
|
Li Y, Du X, Wu Y, Xu X, Chen S, Cao Z, Wang J, Huang Y, Rong S, Zhong VW. Estimates and projections in the economic impacts of fifteen dietary risk factors for two hundred four countries and territories from 2020 to 2050: A health-augmented macroeconomic modeling study. Am J Clin Nutr 2025:S0002-9165(25)00128-5. [PMID: 40054623 DOI: 10.1016/j.ajcnut.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Suboptimal diet results in significant health and economic burdens. However, the global economic costs of dietary risks remain unclear. OBJECTIVES This study aimed to estimate the macroeconomic burden of 15 dietary risk factors in 204 countries and territories from 2020 to 2050. METHODS This health-augmented macroeconomic modeling study assessed the macroeconomic burden that accounted for the decrease in labor supply across different education levels due to mortality and morbidity, as well as the impact of healthcare expenses on investment and savings. Country-specific data were drawn from publicly accessible databases. The cumulative difference in the aggregate output between a realistic scenario without intervention and a counterfactual scenario assuming complete disease elimination was quantified as the macroeconomic burden attributable to diseases. The proportion of disease burden attributed to dietary risk factors was quantified using population-attributable fractions derived from the global burden of disease study 2019, which was integrated into the health-augmented macroeconomic model. Estimates were converted to 2017 international dollars (INT $). RESULTS The estimated global macroeconomic burden attributable to dietary risks from 2020 to 2050 was INT $15,491 [uncertainty interval 13078, 18742] billion, representing 0.34% (uncertainty interval 0.29%, 0.41%) of the total gross domestic product. The macroeconomic burden was unevenly distributed across countries, regions, income groups, disease types, and dietary risk factors. The United States (INT $3972 billion), China (INT $2764 billion), and India (INT $1300 billion) had the largest macroeconomic burden. Ischemic heart disease (INT $9384 billion), diabetes (INT $2392 billion), and stroke (INT $1954 billion) accounted for ∼90% of the overall macroeconomic burden. A diet low in whole grains (INT $3808 billion) incurred the highest cost, followed by a diet high in sodium (INT $2812 billion) and red meat (INT $2337 billion). CONCLUSIONS The global macroeconomic burden attributable to dietary risks was substantial and varied across countries, regions, income groups, disease types, and individual dietary risk factors.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xihao Du
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Wu
- School of Public Economics and Administration, Shanghai University of Finance and Economics, Shanghai, China
| | - Xiangyun Xu
- School of International Trade and Economics, Anhui University of Finance and Economics, Bengbu, China
| | - Simiao Chen
- Heidelberg Institute of Global Health, Faculty of Medicine, University Hospital, Heidelberg University, Heidelberg, Germany; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhong Cao
- Heidelberg Institute of Global Health, Faculty of Medicine, University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jingxuan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Rong
- Division of Life Sciences and Medicine, Department of Clinical Nutrition, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Victor W Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Fu W, Ma RX, Hu JQ, Wang CC, Cao C, Qi SQ, Dong X, Wang L, Zhang XL, Liu GH, Gao YD. Industrial Trans Fatty Acids Promote the Development of Food Allergy in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2025; 17:252-270. [PMID: 40204509 PMCID: PMC11982643 DOI: 10.4168/aair.2025.17.2.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 04/11/2025]
Abstract
PURPOSE The rising prevalence of food allergy (FA) has prompted investigations into dietary factors such as trans fatty acids (TFAs). While ruminant TFAs may protect against allergies, the role of industrial TFAs remains unclear. This study evaluated the effects of industrial TFAs on FA in a murine model. METHODS 20 Balb/c mice were divided into 4 groups: control (standard diet), OVA (ovalbumin-sensitized, standard diet), TFAs (industrial TFA-enriched diet), and TFAs+OVA (TFA diet + OVA sensitization). After two weeks, OVA and TFAs+OVA groups underwent OVA sensitization/challenge. Symptoms (anal temperature drop, diarrhea), serum immunoglobulin E (tIgE, OVA-sIgE), cytokines, immune cell profiles, and gut microbiota were analyzed. RESULTS The incidence rates of anal temperature drop and diarrhea, the serum levels of tIgE, OVA-sIgE, interleukin-4 were significantly higher in the OVA and TFAs+OVA groups compared to the control group. The TFAs+OVA group had a higher degree of anal temperature drop and diarrhea score, and higher serum levels of tIgE and OVA-sIgE compared to the OVA group. The expression of interferon-γ mRNA and the numbers of Th1 cells increased in the spleen of the TFAs and TFAs+OVA group compared to the control group, whereas the numbers of spleen Th2 cells were significantly elevated in the TFAs, OVA, and TFAs+OVA groups compared to the control group. In addition, the numbers of mast cells (MCs) in the esophagus and intestinal mucosa, and the serum concentrations of MCs protease-1 were significantly increased in TFAs, OVA, and TFAs+OVA groups compared to the control group. Cecal microflora among these groups exhibited distinct patterns of differential diversity and composition. CONCLUSIONS Industrial TFAs may promote OVA-induced FA, Th1 and Th2-associated inflammation in mouse model, accompanied by the activation of MCs and intestinal microbiome dysbiosis.
Collapse
Affiliation(s)
- Wei Fu
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ru-Xue Ma
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia-Qian Hu
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang-Chang Wang
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Can Cao
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi-Quan Qi
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Dong
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Wang
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ya-Dong Gao
- Department of Allergy, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Woodman R, Mangoni AA, Cohen-Woods S, Mori TA, Beilin L, Murphy K, Hodgson J. Patterns of Dietary Fatty Acids and Fat Spreads in Relation to Blood Pressure, Lipids and Insulin Resistance in Young Adults: A Repeat Cross-Sectional Study. Nutrients 2025; 17:869. [PMID: 40077737 PMCID: PMC11901904 DOI: 10.3390/nu17050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Determining whether dietary fatty acids and the use of fat spreads are associated with cardiovascular risk factors is difficult due to the multicollinearity of fatty acids and the consumption of multiple spread types. Methods: We applied clustering methodologies using data on 31 different fatty acids and 5 different types of fat spreads (high fat: butter, blended butters, and margarines; lower fat: polyunsaturated and monounsaturated) and investigated associations with blood pressure, serum lipid patterns and insulin resistance in the Raine Study Gen2 participants in Western Australia, at 20 and 22 years of age. Results: Amongst n = 785 participants, there were eight distinct clusters formed from the fatty acid data and ten distinct clusters formed from the fat spread data. Male participants had higher systolic blood pressure than females (122.2 ± 11.6 mmHg versus 111.7 ± 10.3, p < 0.001 at age 20 and 123.4 ± 10.6 versus 113.9 ± 9.8, p < 0.001 at age 22). Males consuming exclusively butter as a fat spread had significantly higher SBP (+4.3 mmHg) compared with males not using spreads. Males consuming a high intake of margarine had significantly higher SBP (+6.6 mmHg), higher DBP (+3.4 mmHg) and higher triglycerides (+30.5%). Amongst females, four patterns of fatty acid intake were associated with lower levels of HDL cholesterol compared with the low-saturated-fat/high n-3 reference group (p = 0.017 after adjustment for relevant confounders, range = -10.1% to -16.0%, p = 0.017). There were no associations between clusters and HOMA-IR or other serum lipids for males or females. Conclusions: Compared to using no fat spreads, amongst males, a high intake of margarine was characterised by higher systolic and diastolic blood pressure and higher serum triglycerides, whilst the use of butter also was associated with higher SBP. Diets low in n-3s or high in trans fats were associated with sub-optimal HDL levels amongst females.
Collapse
Affiliation(s)
- Richard Woodman
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5001, Australia;
| | - Arduino A. Mangoni
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5001, Australia;
- Flinders Medical Centre, Adelaide SA 5001, Australia
| | - Sarah Cohen-Woods
- College of Education, Psychology and Social Work, Flinders University, Adelaide, SA 5001, Australia;
- Flinders Institute for Mental Health and Wellbeing, Flinders University, Adelaide, SA 5001, Australia
| | - Trevor A. Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth 6000, Australia; (T.A.M.); (L.B.); (J.H.)
| | - Lawrence Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth 6000, Australia; (T.A.M.); (L.B.); (J.H.)
| | - Karen Murphy
- Clinical and Health Sciences, Alliance for Research in Exercise, Nutrition & Activity, University of South Australia, Adelaide, SA 5001, Australia;
| | - Jonathan Hodgson
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth 6000, Australia; (T.A.M.); (L.B.); (J.H.)
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6919, Australia
| |
Collapse
|
8
|
Sawant N, Chandra S, Appukuttan D, Singh H. In silico analysis of non-conventional gene targets for genetic interventions to enhance fatty acid production: a review. Mol Biol Rep 2025; 52:182. [PMID: 39888537 DOI: 10.1007/s11033-025-10308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Since the 1990s, fatty acids (FA) have drawn significant industrial attention due to their diverse applications creating a demand for biological systems capable of producing high FA titers. While various strategies have been explored to achieve this, many of the conventional approaches rely on extensive genetic manipulations, which often result in strain instability, thus limiting its potential to yield better FA titers. Moreover, stresses such as pH, osmotic, and oxidative imbalances generated during FA production aggravate these challenges, further limiting FA titers. Under stress conditions, the cellular system responds by regulating stress-response proteins to bring about homeostasis. Recent findings suggest that transmembrane proteins, regulators of two-component systems, and cytoplasmic regulators can be strategically leveraged to address the problems related to stress-induced strain instability. Thus, non-conventional genetic targets, like chaperones (e.g., heat shock proteins) and DNA-binding transcriptional regulators (e.g., RcdA), which are not directly involved in FA metabolism, represent promising candidates to enhance strain stability and FA yields. Tools like Opt-Box and Weighted Gene Co-expression Network Analysis (WGCNA) serve as excellent platforms for understanding the cross-talk between these regulators and downstream enzymes. This review emphasizes the need for a shift towards identifying novel genetic targets by employing advanced in silico analysis and explains several molecular techniques that can aid in strain construction. Lastly, it discusses certain non-conventional gene targets that can help to overcome strain instability arising due to various stresses generated during/due to FA production.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India
| | - Sudeshna Chandra
- Hanse-Wissenschaftskolleg - Institute for Advanced Study (HWK), Delmenhorst, Lower Saxony, Germany
| | - Deepti Appukuttan
- Biosystems Engineering Lab, Department of Chemical Engineering, IIT Bombay, Mumbai, 400076, India.
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
9
|
Obi J, Sakamoto T, Furihata K, Sato S, Honda M. Vegetables containing sulfur compounds promote trans-isomerization of unsaturated fatty acids in triacylglycerols during the cooking process. Food Res Int 2025; 200:115425. [PMID: 39779165 DOI: 10.1016/j.foodres.2024.115425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Growing evidence indicates that the intake of trans-fatty acids (TFAs) has been associated with a higher risk of cardiovascular disease; therefore, various industrial measures have been taken to reduce the amount of TFAs consumed. However, research on TFAs formed during cooking is limited. Isothiocyanates and polysulfides, which are widely distributed in various vegetables, have recently been shown to promote the cis-trans isomerization of double bonds. However, the effects of these sulfur compounds on unsaturated fatty acids (UFAs) comprising edible oils (triacylglycerols) are unknown. To further reduce the intake of TFAs, a better understanding of the effect of the presence of these sulfur compounds on the formation of TFAs under cooking conditions is important. This study investigated the isomerization characteristics of UFAs in the presence of isothiocyanates and polysulfides in model systems using high-purity compounds as well under simulated cooking conditions using food samples. The outcomes of the model system indicated that these sulfur compounds significantly enhance the thermal isomerization, especially at temperatures ≥140 °C. Furthermore, the addition of antioxidants substantially inhibited the isomerization enhancement effect of isothiocyanates, whereas that of polysulfides was marginally moderated. A similar trend was observed under simulated cooking conditions. The results suggest that cooking with sulfur-compound-rich vegetables, especially garlic and onion, which are rich in polysulfides, can potentially result in increased trans fatty acid intake.
Collapse
Affiliation(s)
- Junji Obi
- Tokyo Innovation Center, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan.
| | - Taro Sakamoto
- Tokyo Innovation Center, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Kiyomi Furihata
- Tokyo Innovation Center, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Seizo Sato
- Tokyo Innovation Center, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Masaki Honda
- Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan.
| |
Collapse
|
10
|
Li T, Jiang N, Liang X, Li X, Li Y, Huang Y, Wang Y. Association between plasma trans fatty acid levels and rheumatoid arthritis: a cross-sectional study using NHANES 1999-2000 and 2009-2010 data in US adults. Front Nutr 2024; 11:1413091. [PMID: 39726872 PMCID: PMC11670744 DOI: 10.3389/fnut.2024.1413091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Objective While earlier research has indicated that trans fatty acids (TFAs) are detrimental to cardiovascular health as well as other conditions, the purpose of this study is to look into any possible connections between trans fatty acids and rheumatoid arthritis (RA). Methods The NHANES database provided the data for this study, covering two periods: 1999-2000 and 2009-2010. The correlation between plasma TFAs (linolelaidic acid, vaccenic acid, palmitelaidic acid, and elaidic acid) and RA was examined using weighted univariate and multivariate regression analyses as well as analysis of subgroups. Additionally, this study used restricted cubic spline curves to investigate the non-linear relationship between them. Results This study included 2,938 patients, of whom 222 (7.56%) had RA. Multivariate logistic regression analysis showed that levels of linolelaidic acid were linked to a higher risk of RA (odds ratio = 1.39, 95% confidence interval = 1.05-1.85, p = 0.025) after accounting for all other variables. No significant effect on this association was found in interaction tests. A linear association between linolelaidic acid and RA was demonstrated in the limited cubic spline regression model. For RA, linolelaidic acid exhibited a critical value of 0.98. Conclusion Findings suggesting a possible link between elevated plasma TFA levels and an increased risk of RA offer fresh perspectives on RA prevention through dietary interventions.
Collapse
Affiliation(s)
- Tanjian Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Na Jiang
- School of Health, Binzhou Polytechnic, Binzhou, China
| | - Xin Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Xinya Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Yaqin Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Yuting Huang
- School of Nursing, Jinan University, Guangzhou, China
| | - Yu Wang
- School of Nursing, Jinan University, The First Affiliated Hospital of Jinan University, The Community Health Service Center of Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Paliwal BK, Wan M. Elimination of industrial Trans Fatty Acids from the food supply chain: With a focus on India. FOOD CHEMISTRY ADVANCES 2024; 5:100802. [DOI: 10.1016/j.focha.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Miró-Colmenárez PJ, Illán-Marcos E, Díaz-Cruces E, Rocasolano MM, Martínez-Hernandez JM, Zamora-Ledezma E, Zamora-Ledezma C. Current Insights into Industrial Trans Fatty Acids Legal Frameworks and Health Challenges in the European Union and Spain. Foods 2024; 13:3845. [PMID: 39682917 DOI: 10.3390/foods13233845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The presence of industrial trans-fatty acids (iTFAs) in processed foods poses significant public health concerns, necessitating comprehensive regulatory frameworks. In this study, the current legal landscape governing iTFA in the European Union and Spain is analyzed, with a particular focus on regulatory effectiveness and implementation challenges. The research methodology combines a systematic review of existing regulations, including EU Regulation No. 1169/2011 and Spanish Law 17/2011, with the analysis of the scientific literature on iTFA health impacts. The results reveal significant regulatory gaps, particularly in enforcement mechanisms and iTFA detection methods. Key challenges are also identified in the present study, including inconsistent compliance monitoring, varying analytical methods for iTFA detection, and contradictions between EU and Spanish regulatory frameworks. Additionally, in this work, the need for harmonized approaches to ultra-processed food regulation is emphasized. Further, the conclusion is that despite the current regulations providing a foundation for iTFA control, it is compulsory to enhance the monitoring systems, and clearer regulatory guidelines are necessary. These would contribute valuable insights for policymakers, food industry stakeholders, and public health professionals working towards effective iTFA regulation.
Collapse
Affiliation(s)
- Pablo Javier Miró-Colmenárez
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Esther Illán-Marcos
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - María Méndez Rocasolano
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Manuel Martínez-Hernandez
- Department of Nutrition and Food Technology, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ezequiel Zamora-Ledezma
- Ecosystem Functioning & Climate Change Team-FAGROCLIM, Faculty of Agriculture Engineering, Universidad Técnica de Manabí (UTM), Lodana 13132, Ecuador
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Cañada, 28691 Madrid, Spain
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
13
|
Deepali D, Mishra P, Das AB. Structural and rheological characterization of starch-based eutecto-oleogel. Int J Biol Macromol 2024; 279:135484. [PMID: 39250994 DOI: 10.1016/j.ijbiomac.2024.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
The study aimed to develop a novel eutecto-oleogel and its characterizations. Using starch, beeswax, oil, and natural deep eutectic solvents (NADES), an oleogel with low hardness and high liquid fat was developed. The addition of starch and NADES in oleogels caused the formation of new intra or intermolecular hydrogen bonding and improved the oil binding capacity, thermal behavior, and texture of the oleogels. The oleogel with 1 % starch formed a strong gel with the most favorable functional, textural, flow properties and a high fanning factor. Complementary tests of the oleogel exhibited shear thinning and frequency-independent behavior, with zero residual effect. Non-isothermal crystallization and melting analysis of the oleogels showed noticeable differences among the various oleogels. These results contribute to a better understanding of oleo gelation in rice bran oil-based oleogels with NADES, and beeswax for formulating food, pharmaceutical, and personal care products with desired physical properties.
Collapse
Affiliation(s)
- Deepali Deepali
- Department of Food Engineering and Technology, Tezpur University, India
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, India.
| | - Amit Baran Das
- Department of Food Engineering and Technology, Tezpur University, India; Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, West Bengal, India.
| |
Collapse
|
14
|
Vignesh A, Amal TC, Vasanth K. Food contaminants: Impact of food processing, challenges and mitigation strategies for food security. Food Res Int 2024; 191:114739. [PMID: 39059927 DOI: 10.1016/j.foodres.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Food preparation involves the blending of various food ingredients to make more convenient processed food products. It is a long chain process, where each stage posing a risk of accumulating hazardous contaminants in these food systems. Protecting the public health from contaminated foods has become a demanding task in ensuring food safety. This review focused on the causes, types, and health risks of contaminants or hazardous chemicals during food processing. The impact of cooking such as frying, grilling, roasting, and baking, which may lead to the formation of hazardous by-products, including polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HCAs), acrylamide, advanced glycation end products (AGEs), furan, acrolein, nitrosamines, 5-hydroxymethylfurfural (HMF) and trans-fatty acids (TFAs). Potential health risks such as carcinogenicity, genotoxicity, neurotoxicity, and cardiovascular effects are emerging as a major problem in the modern lifestyle era due to the increased uptakes of contaminants. Effects of curing, smoking, and fermentation of the meat products led to affect the sensory and nutritional characteristics of meat products. Selecting appropriate cooking methods include temperature, time and the consumption of the food are major key factors that should be considered to avoid the excess level intake of hazardous contaminants. Overall, this study underscores the importance of understanding the risks associated with food preparation methods, strategies for minimizing the formation of harmful compounds during food processing and highlights the need for healthy dietary choices to mitigate potential health hazards.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Pollachi 642 001, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore 641 003, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
15
|
Vargas-Vargas MA, González-Montoya M, Torres-Isidro O, García-Berumen CI, Ortiz-Avila O, Calderón-Cortés E, Cortés-Rojo C. Assessing the impact of concurrent high-fructose and high-saturated fat diets on pediatric metabolic syndrome: A review. World J Clin Pediatr 2024; 13:91478. [PMID: 38947987 PMCID: PMC11212767 DOI: 10.5409/wjcp.v13.i2.91478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
High-saturated fat (HF) or high-fructose (HFr) consumption in children predispose them to metabolic syndrome (MetS). In rodent models of MetS, diets containing individually HF or HFr lead to a variable degree of MetS. Nevertheless, simultaneous intake of HF plus HFr have synergistic effects, worsening MetS outcomes. In children, the effects of HF or HFr intake usually have been addressed individually. Therefore, we have reviewed the outcomes of HF or HFr diets in children, and we compare them with the effects reported in rodents. In humans, HFr intake causes increased lipogenesis, hypertriglyceridemia, obesity and insulin resistance. On the other hand, HF diets promote low grade-inflammation, obesity, insulin resistance. Despite the deleterious effects of simultaneous HF plus HFr intake on MetS development in rodents, there is little information about the combined effects of HF plus HFr intake in children. The aim of this review is to warn about this issue, as individually addressing the effects produced by HF or HFr may underestimate the severity of the outcomes of Western diet intake in the pediatric population. We consider that this is an alarming issue that needs to be assessed, as the simultaneous intake of HF plus HFr is common on fast food menus.
Collapse
Affiliation(s)
- Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Marcela González-Montoya
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Olin Torres-Isidro
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Claudia Isabel García-Berumen
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Omar Ortiz-Avila
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| |
Collapse
|
16
|
Basso M, Zorzan I, Johnstone N, Barberis M, Cohen Kadosh K. Diet quality and anxiety: a critical overview with focus on the gut microbiome. Front Nutr 2024; 11:1346483. [PMID: 38812941 PMCID: PMC11133642 DOI: 10.3389/fnut.2024.1346483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/05/2024] [Indexed: 05/31/2024] Open
Abstract
Anxiety disorders disproportionally affect females and are frequently comorbid with eating disorders. With the emerging field of nutritional psychiatry, focus has been put on the impact of diet quality in anxiety pathophysiology and gut microbiome underlying mechanisms. While the relationship between diet and anxiety is bidirectional, improving dietary habits could better facilitate the actions of pharmacological and psychological therapies, or prevent their use. A better understanding of how gut bacteria mediate and moderate such relationship could further contribute to develop personalized programs and inform probiotics and prebiotics manufacturing. To date, studies that look simultaneously at diet, the gut microbiome, and anxiety are missing as only pairwise relationships among them have been investigated. Therefore, this study aims at summarizing and integrating the existing knowledge on the dietary effects on anxiety with focus on gut microbiome. Findings on the effects of diet on anxiety are critically summarized and reinterpreted in relation to findings on (i) the effects of diet on the gut microbiome composition, and (ii) the associations between the abundance of certain gut bacteria and anxiety. This novel interpretation suggests a theoretical model where the relationship between diet and anxiety is mediated and/or modulated by the gut microbiome through multiple mechanisms. In parallel, this study critically evaluates methodologies employed in the nutritional field to investigate the effects of diet on anxiety highlighting a lack of systematic operationalization and assessment strategies. Therefore, it ultimately proposes a novel evidence-based approach that can enhance studies validity, reliability, systematicity, and translation to clinical and community settings.
Collapse
Affiliation(s)
- Melissa Basso
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Irene Zorzan
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| | - Nicola Johnstone
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matteo Barberis
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
17
|
Dhiman A, Chopra R, Singh PK, Homroy S, Chand M, Talwar B. Amelioration of nutritional properties of bakery fat using omega-3 fatty acid-rich edible oils: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3175-3184. [PMID: 38105390 DOI: 10.1002/jsfa.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Bakery products have gained prominence in modern diets due to their convenience and accessibility, often serving as staple meals across diverse regions. However, the fats used in these products are rich in saturated fatty acids and often comprise trans fatty acids, which are considered as a major biomarker for non-communicable diseases like cardiovascular disorders, obesity and diabetes. Additionally, these fats lack the essential omega-3 fatty acids, which are widely known for their therapeutic benefits. They play a major role in lowering the risk of cardiovascular diseases, cancer and diabetes. Thus, there is need for incorporating these essential fatty acids into bakery fats. Nevertheless, fortifying food products with polyunsaturated fatty acids (PUFAs) poses several challenges due to their high susceptibility to oxidation. This oxidative deterioration leads to not only the formation of undesirable flavors, but also a loss of nutritional value in the final products. This review focuses on the development of healthier trans-fat-free bakery fat enriched with omega-3 fatty acids and its effect on the physicochemical, functional, sensory and nutritional properties of bakery fats and products. Further, the role of various technologies like physical blending, enzymatic interesterification and encapsulation to improve the stability of PUFA-rich bakery fat is discussed, where microencapsulation emerged as a novel and effective technology to enhance the stability and shelf life. By preventing deteriorative changes, microencapsulation ensures that the nutritional, physicochemical and sensory properties of food products remain intact. Novel modification methods like interesterification and microencapsulation used for developing PUFA-rich bakery fats have a potential to address the health risks occurring due to consumption of bakery fat having higher amount of saturated and trans fatty acids. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| |
Collapse
|
18
|
Hatem O, Kaçar ÖF, Kaçar HK, Szentpéteri JL, Marosvölgyi T, Szabó É. Trans isomeric fatty acids in human milk and their role in infant health and development. Front Nutr 2024; 11:1379772. [PMID: 38515522 PMCID: PMC10954868 DOI: 10.3389/fnut.2024.1379772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
It is well known that long chain polyunsaturated fatty acids (LCPUFAs) play an important role in neurodevelopment in the perinatal life. The most important source of these fatty acids is the diet, however, they can also be formed in the human body from their shorter chain precursors, the essential fatty acids. Since the WHO recommends exclusive breastfeeding for the first six months after birth, the exclusive source of these fatty acids for breastfed infants is human milk, which can be influenced by the mother's diet. Unsaturated fatty acids can have either cis or trans configuration double bond in their chain with distinct physiological effects. Cis isomeric unsaturated fatty acids have several beneficial effects, while trans isomers are mostly detrimental, because of their similar structure to saturated fatty acids. Trans fatty acids (TFAs) can be further subdivided into industrial (iTFA) and ruminant-derived trans fatty acids (rTFA). However, the physiological effects of these two TFA subgroups may differ. In adults, dietary intake of iTFA has been linked to atherosclerosis, insulin resistance, obesity, chronic inflammation, and increased development of certain cancers, among other diseases. However, iTFAs can have a negative impact on health not only in adulthood but in childhood too. Results from previous studies have shown that iTFAs have a significant negative effect on LCPUFA levels in the blood of newborns and infants. In addition, iTFAs can affect the growth and development of infants, and animal studies suggest that they might even have lasting negative effects later in life. Since the only source of TFAs in the human body is the diet, the TFA content of breast milk may determine the TFA supply of breastfed infants and thus affect the levels of LCPUFAs important for neurodevelopment and the health of infants. In this review, we aim to provide an overview of the TFA content in human milk available in the literature and their potential effects on infant health and development.
Collapse
Affiliation(s)
- Okba Hatem
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ömer Furkan Kaçar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Hüsna Kaya Kaçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya, Türkiye
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
19
|
Ding S, Chen X, Ouyang B, Yang B, Wang W, Wang Y. Exploring Diacylglycerol Oil-Based Oleogels as Effective Stabilizers in Peanut Butter: Performance, Structural Insights, and Sensory Evaluation. J Oleo Sci 2024; 73:135-145. [PMID: 38311404 DOI: 10.5650/jos.ess23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
In the pursuit of reducing oil separation in peanut butter, oleogels synthesized from diacylglycerol (DAG)-rich peanut oils, using glycerol monostearate (GMS) as the gelator, were examined as alternative stabilizers. In comparison to triacylglycerol (TAG)-rich peanut oils, the DAG oil-based oleogels exhibited better oil-binding capacities across increasing GMS concentrations. Intriguingly, thermal and rheological assessments pointed to a weaker network structure in DAG oil oleogels, as evidenced by their lower crystallization temperatures and reduced viscoelastic parameters (G' and G''). Insight from infrared spectroscopy revealed that this could stem from heightened intermolecular hydrogen bonding between the DAG oil and the gelator. When applied to peanut butter, DAG oil oleogels demonstrated efficacy in minimizing oil separation. Extended storage trials affirmed the long-term stability of peanut butter formulations incorporating these oleogels. Furthermore, sensory evaluations by panelists underscored favorable impressions, suggesting potential consumer acceptance. Overall, this study illuminates the promising role of DAG oleogels as effective, alternative stabilizers in peanut butter formulations.
Collapse
Affiliation(s)
- Siliang Ding
- College of Bioscience and Bioengineering, South China University of Technology
| | - Xiaohan Chen
- College of Food Science and Technology, South China University of Technology
| | - Bo Ouyang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences
| | - Bo Yang
- College of Bioscience and Bioengineering, South China University of Technology
| | - Weifei Wang
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences
| | - Yonghua Wang
- College of Food Science and Technology, South China University of Technology
- Guangdong Yue-shan Special Nutrition Technology Co., Ltd
| |
Collapse
|
20
|
Desjardins LC, Rudkowska I. Novel high-oleic oil consumption for cardiometabolic health: a narrative review. Crit Rev Food Sci Nutr 2023; 64:10903-10911. [PMID: 38069579 DOI: 10.1080/10408398.2023.2283719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Several cardiometabolic disorders are risk factors for cardiovascular diseases (CVDs), and prevention is imperative in reducing the burden of these diseases on the healthcare system. Although novel high-oleic acid oils (HOOs) are now commonly used for high-temperature frying in both foodservice and the manufacture of processed foods, there are still limited data regarding their effects on CVD risk. This narrative review aims to clarify these effects by comparing HOOs with saturated fatty acid (SFA)-rich and polyunsaturated fatty acid (PUFA)-rich oils, first regarding their physicochemical properties and then concerning their effects on CVD risk factors using recent randomized controlled trials (RCTs). Overall, although HOOs are more stable than PUFA-rich oils, they do not have the same high-temperature stability as SFA-rich oils. RCTs demonstrate that HOO consumption improves the plasma lipid profile compared with SFA-rich oils while showing similar effects to those of PUFA-rich oils on CVD risk factors. Finally, the current literature lacks information on the actual consumption of HOOs, their long-term effects on cardiometabolic health, and the impact of prolonged heating of these oils on CVD risk factors. In sum, the short-term intake of HOOs may be beneficial for cardiometabolic health; however, more research is needed.
Collapse
Affiliation(s)
- Louis-Charles Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
- Centre Nutrition, santé et société (NUTRISS), Laval University, Quebec, Canada
- School of Nutrition, Laval University, Quebec, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Canada
- Department of Kinesiology, Laval University, Quebec, Canada
| |
Collapse
|
21
|
Zhang J, Zhang M, Chen K, Deng D. Improvement strategies for fats and oils used in future food processing based on health orientation and sustainability: research progress, challenges and solutions. Crit Rev Food Sci Nutr 2023; 65:47-63. [PMID: 39722463 DOI: 10.1080/10408398.2023.2266835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
As the third largest source of energy in addition to carbohydrates and proteins, lipids provide the body with more than twice as much energy as carbohydrates and proteins and are the accumulated "fuel bank" of the body. They are widely stored in animals, plants and microorganisms and are effectively extracted for dietary use by improved and novel technologies. Under the pressure of the current environment, we should immediately look for new strategies to improve or develop dietary lipids that are compatible with the development of the future food industry, in order to mitigate the environmental and climatic degradation caused by the lipid-producing activities of the animal husbandry industry, to avoid the contradiction between the demand for high quality of human beings and the strain on the resources, and to reduce the health risks caused by saturated fats and trans-fats in meat products. At present, workers concerned are opening up new avenues for the future edible lipids, for example, researches into fat and oil substitutes, the use of biotechnology in lipids and the value-added reuse of waste products is in full swing. The article therefore began with a detailed overview of the known lipids available, understanding their origins and the ways in which they were classified by region. Secondly, possible trends and potential strategies for dietary lipids for use in future foods were presented. Finally, constructive comments are made on the problems and challenges that may be encountered in the research and subsequent industrialization process.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co. R&D Center, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Campanelli-Morais Y, Silva CHF, Dantas MRDN, Sabry DA, Sassaki GL, Moreira SMG, Rocha HAO. A Blend Consisting of Agaran from Seaweed Gracilaria birdiae and Chromium Picolinate Is a Better Antioxidant Agent than These Two Compounds Alone. Mar Drugs 2023; 21:388. [PMID: 37504919 PMCID: PMC10381178 DOI: 10.3390/md21070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
A blend refers to the combination of two or more components to achieve properties that are superior to those found in the individual products used for their production. Gracilaria birdiae agaran (SPGb) and chromium picolinate (ChrPic) are both antioxidant agents. However, there is no documentation of blends that incorporate agarans and ChrPic. Hence, the objective of this study was to generate blends containing SPGb and ChrPic that exhibit enhanced antioxidant activity compared to SPGb or ChrPic alone. ChrPic was commercially acquired, while SPGb was extracted from the seaweed. Five blends (B1; B2; B3; B4; B5) were produced, and tests indicated B5 as the best antioxidant blend. B5 was not cytotoxic or genotoxic. H2O2 (0.6 mM) induced toxicity in fibroblasts (3T3), and this effect was abolished by B5 (0.05 mg·mL-1); neither ChrPic nor SPGb showed this effect. The cells also showed no signs of toxicity when exposed to H2O2 after being incubated with B5 and ChrPic for 24 h. In another experiment, cells were incubated with H2O2 and later exposed to SPGb, ChrPic, or B5. Again, SPGb was not effective, while cells exposed to ChrPic and B5 reduced MTT by 100%. The data demonstrated that B5 has activity superior to SPGb and ChrPic and points to B5 as a product to be used in future in vivo tests to confirm its antioxidant action. It may also be indicated as a possible nutraceutical agent.
Collapse
Affiliation(s)
- Yara Campanelli-Morais
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Cynthia Haynara Ferreira Silva
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Marina Rocha do Nascimento Dantas
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Diego Araujo Sabry
- Dapartamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Susana Margarida Gomes Moreira
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
- Dapartamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| |
Collapse
|
23
|
Kahraman E, Dağlioğlu O, Yilmaz İ. Physicochemical and sensory characteristics of traditional Kırklareli meatballs with added cowpea (Vigna unguiculata) flour. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [DOI: 10.1186/s43014-022-00120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractThe effects of cowpea (Vigna unguiculata) flour on some physical, chemical, textural and sensory properties of Kırklareli meatballs were investigated. For this purpose, cowpea flour was added to the traditional Kırklareli meatball formulation in four different proportions (2, 4, 6 and 8%). As a result of the analysis on cowpea flour; pH, water activity (aw), moisture, protein, fat, ash, carbohydrate, acidity, starch, total dietary fiber, total monounsaturated fatty acids, total polyunsaturated fatty acids, total unsaturated fatty acids and total saturated fatty acids were found as 6.25, 0.52, 10.20, 20.35, 0.53, 2.94, 65.43%, 0.06, 45.09, 20.90, 5.86, 59.88, 65.74 and 34.26%, respectively. Depending on the increase in incorporation rate of cowpea flour, changes in L* (43,40-53,88), b* (13,92-18,11), pH (5,83-5,94), aw (0,96-0,98), moisture (44,03-50,63%), protein (17,70-21,89%), fat (19,49-22,97%), carbohydrate (6,77-12,11%), salt (1,28-1,74%), total dietary fiber (2,81-5,08%) values of the raw samples and a* (5,64-9,44), b* (9,77-18,06), moisture (39,27-45,24%), protein (19,92-23,45%), fat (23,08-26,19%), carbohydrate (5,92-11,30%), total dietary fiber (3,28-5,40%) values of the cooked Kırklareli meatball samples were statistically significant (P < 0.05), while the changes in weight loss, ash, free fatty acidity, texture and sensory results were found insignificant (P > 0.05). Total saturated, total unsaturated and trans fatty acid contents of cowpea flour added meatball samples were significantly (P < 0.05) different from the control samples. In the sensory analysis, meatball samples with 4% cowpea flour received the highest general acceptability score. According to the obtained data, cowpea flour can be added up to 4% on basic meat values without changing the textural and sensory properties of Kırklareli meatballs. Cowpea flour could be added as a functional ingredient in meatballs.
Graphical Abstract
Collapse
|
24
|
Guo Q, Li T, Qu Y, Liang M, Ha Y, Zhang Y, Wang Q. New research development on trans fatty acids in food: Biological effects, analytical methods, formation mechanism, and mitigating measures. Prog Lipid Res 2023; 89:101199. [PMID: 36402189 DOI: 10.1016/j.plipres.2022.101199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The trans fatty acids (TFAs) in food are mainly generated from the ruminant animals (meat and milk) and processed oil or oil products. Excessive intake of TFAs (>1% of total energy intake) caused more than 500,000 deaths from coronary heart disease and increased heart disease risk by 21% and mortality by 28% around the world annually, which will be eliminated in industrially-produced trans fat from the global food supply by 2023. Herein, we aim to provide a comprehensive overview of the biological effects, analytical methods, formation and mitigation measures of TFAs in food. Especially, the research progress on the rapid, easy-to-use, and newly validated analytical methods, new formation mechanism, kinetics, possible mitigation mechanism, and new or improved mitigation measures are highlighted. We also offer perspectives on the challenges, opportunities, and new directions for future development, which will contribute to the advances in TFAs research.
Collapse
Affiliation(s)
- Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| | - Tian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yang Qu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Manzhu Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yiming Ha
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, PR China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| |
Collapse
|
25
|
Igenbayev A, Amirkhanov S, Ospankulova G, Kardenov S, Baytukenova S, Ali Shariati M. Determination of the fatty acid composition and fatty acids trans-isomers in the horse, stall horse, mutton, beef and pork meat. POTRAVINARSTVO 2022. [DOI: 10.5219/1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study, we have focussed on the fatty acid composition of the meat of various animals raised in the Republic of Kazakhstan. We have analyzed pasture horse meat, stall horse meat, lamb, beef, and pork meat. Samples from four carcass muscles (back, hip, rib, and neck) were tested. Comparative analysis of the content of trans isomers of fatty acids (TFA) was performed. The analysis of the obtained samples showed that the TFA content is significantly (p <0.05) different in different parts of the carcasses of all animals. Their highest content was observed in the mutton sample, which reached 79.56-82.04%. The beef was next after mutton (6.20-9.64%). Less than in mutton and beef, but more than in pork and TFAs were contained in stall horse meat (2.75-5.52%). Of the two types of horse meat, there was less TFA in horse meat of pasture content (1.85-3.46%). Compared to all studied samples, the lowest level of trans fatty acids was in pork (0.91-1.39%). In horse meat of both types, TFAs were present in trans-9-C16: 1. More types of TFA were found in the meat of other animals: in mutton (trans-9-C14: 1; trans-9-C16: 1; trans-9-C18: 1; trans-11 C18: 1; trans-9-trans- 12-C18: 2), in beef (trans-9-C16: 1; trans-9-C18: 1; trans-11-C18: 1; trans-9-trans-12-C18: 2), in pork (trans-9-C16: 1). In addition to TFA, an analysis was made of the ratio of omega-6 and omega-3 (ω-6: ω-3). Considering that the lower the ratio of ω-6: ω-3 in fat, the healthier it is for the human body, the most optimal among the studied samples in terms of the ratio of ω-6: ω-3 fatty acids was mutton (1.83-2.35) and horse meat of stall keeping (1.76-6.53). The most unfavourable ratios were in the pork samples (17.46-35.69). The ratio ω-6: ω-3 in other animals was within the following limits: beef (5.35-9.13), horse meat of pasture content (7.08-10.50).
Collapse
|
26
|
Manolis AS, Manolis TA, Manolis AA, Melita H. Diet and Sudden Death: How to Reduce the Risk. Curr Vasc Pharmacol 2022; 20:383-408. [PMID: 35726434 DOI: 10.2174/1570161120666220621090343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023]
Abstract
In addition to the association of dietary patterns, specific foods and nutrients with several diseases, including cardiovascular disease and mortality, there is also strong emerging evidence of an association of dietary patterns with the risk of sudden cardiac death (SCD). In this comprehensive review, data are presented and analyzed about foods and diets that mitigate the risk of ventricular arrhythmias (VAs) and SCD, but also about arrhythmogenic nutritional elements and patterns that seem to enhance or facilitate potentially malignant VAs and SCD. The antiarrhythmic or protective group comprises fish, nuts and other foods enriched in omega-3 polyunsaturated fatty acids, the Mediterranean and other healthy diets, vitamins E, A and D and certain minerals (magnesium, potassium, selenium). The arrhythmogenic-food group includes saturated fat, trans fats, ketogenic and liquid protein diets, the Southern and other unhealthy diets, energy drinks and excessive caffeine intake, as well as heavy alcohol drinking. Relevant antiarrhythmic mechanisms include modification of cell membrane structure by n-3 polyunsaturated fatty acids, their direct effect on calcium channels and cardiomyocytes and their important role in eicosanoid metabolism, enhancing myocyte electric stability, reducing vulnerability to VAs, lowering heart rate, and improving heart rate variability, each of which is a risk factor for SCD. Contrarily, saturated fat causes calcium handling abnormalities and calcium overload in cardiomyocytes, while a high-fat diet causes mitochondrial dysfunction that dysregulates a variety of ion channels promoting VAs and SCD. Free fatty acids have been considered proarrhythmic and implicated in facilitating SCD; thus, diets increasing free fatty acids, e.g., ketogenic diets, should be discouraged and replaced with diets enriched with polyunsaturated fatty acids, which can also reduce free fatty acids. All available relevant data on this important topic are herein reviewed, large studies and meta-analyses and pertinent advisories are tabulated, while protective (antiarrhythmic) and arrhythmogenic specific diet constituents are pictorially illustrated.
Collapse
Affiliation(s)
- Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | | | | | - Helen Melita
- Central Laboratories, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
27
|
Niforou A, Magriplis E, Klinaki E, Niforou K, Naska A. On account of trans fatty acids and cardiovascular disease risk - There is still need to upgrade the knowledge and educate consumers. Nutr Metab Cardiovasc Dis 2022; 32:1811-1818. [PMID: 35753860 DOI: 10.1016/j.numecd.2022.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
AIMS Trans fatty acids (TFAs) are unsaturated lipids either of industrial origin or naturally occurring in ruminant meat and milk. TFAs generated through food processing (industrial) is the main source in our diet and studies provide converging evidence on their negative effect on cardiovascular health. Since April 2021, the European Commission has put into effect a regulation for TFAs providing maximum 2% of total fat in all industrially produced foods. In light of this development, we review the evidence regarding the health attributes of different types of TFAs, their dietary sources and current intakes, and we describe the history of TFA-related legislative actions in an attempt to anticipate the efficiency of new measures. DATA SYNTHESIS The PubMed database was searched including original research (observational and intervention studies), systematic reviews and meta-analyses. Scientific reports of competent authorities and organizations have also been screened. CONCLUSIONS Trans-fat elimination provides a fine example of how evidence has led to the application of horizontal regulatory measures regarding legal food ingredients in order to protect consumers' health. In EU Member States, TFAs currently provide on average less than 1% of energy (1%E) and intakes marginally exceed recommendations primarily among young adults. Large dietary surveys however provide evidence for additional, less-well known sources of TFAs in the diet. Raising public awareness of "hidden" trans-fat found naturally in foods such as cheese, as well as of the trans-fat generated through traditional cooking practices is needed, if the goal to eliminate trans-fat from the diet is to be met.
Collapse
Affiliation(s)
- A Niforou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - E Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - E Klinaki
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - K Niforou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
28
|
Nwaru BI, Dierkes J, Ramel A, Arnesen EK, Thorisdottir B, Lamberg-Allardt C, Söderlund F, Bärebring L, Åkesson A. Quality of dietary fat and risk of Alzheimer’s disease and dementia in adults aged ≥50 years: a systematic review. Food Nutr Res 2022; 66:8629. [PMID: 35950105 PMCID: PMC9338447 DOI: 10.29219/fnr.v66.8629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Objective To identify, critically appraise, and synthesize evidence on the effect of quality of dietary fat intake and different classes of fatty acids on the risk of Alzheimer’s disease (AD) and dementia in adults aged ≥50 years. Methods We searched MEDLINE, EMBASE, Cochrane Central of Controlled Trials, and Scopus for clinical trials and prospective cohort studies published until May 2021. Two reviewers independently screened retrieved literature, extracted relevant data, and performed risk of bias assessment. Classes of fatty acids included were saturated fatty acids (SFAs), trans fatty acids (TFAs), monounsaturated fatty acids (MUFAs), poly-unsaturated fatty acids (PUFAs), and their subtypes and sources. Given between-study heterogeneity, we did not perform meta-analyses but narratively described findings from the studies. Results From 4,491 identified records, five articles (based on four prospective cohort studies) met the inclusion criteria. Three studies had an overall serious risk of bias, while one study had a moderate risk. Overall, we found no robust association between intake of any fatty acids type and the development of AD and dementia. For example, for SFA and TFA, there was contradictory associations reported on AD: one study found that each unit increase in energy-adjusted intake of SFA (risk ratio [RR] 0.83, 95%CI 0.70–0.98) and TFA (RR 0.80, 95%CI 0.65–0.97) was associated with a decreased risk of AD, but not dementia. For PUFA, one study found that higher quintile intake of marine-based n-3 PUFA was associated with a decreased risk of AD. The intake of other fatty acids was not associated with the outcomes. The certainty of the overall evidence was inconclusive. Conclusion We found no clear association between the intake of various classes of fatty acids and the risk of AD and dementia in adults. More well-designed prospective studies are required to clarify these findings.
Collapse
Affiliation(s)
- Bright I Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Alfons Ramel
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Erik Kristoffer Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Birna Thorisdottir
- Faculty of Sociology, Anthropology and Folkloristics & Health Science Institute, University of Iceland, Reykjavik, Iceland
| | | | - Fredrik Söderlund
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|