1
|
Quevedo‐Caraballo S, de Vega C, Lievens B, Fukami T, Álvarez‐Pérez S. Tiny but mighty? Overview of a decade of research on nectar bacteria. THE NEW PHYTOLOGIST 2025; 245:1897-1910. [PMID: 39716780 PMCID: PMC11798911 DOI: 10.1111/nph.20369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
An emerging focus of research at the intersection of botany, zoology, and microbiology is the study of floral nectar as a microbial habitat, referred to as the nectar microbiome, which can alter plant-pollinator interactions. Studies on these microbial communities have primarily focused on yeasts, and it was only about a decade ago that bacteria began to be studied as widespread inhabitants of floral nectar. This review aims to give an overview of the current knowledge on nectar bacteria, with emphasis on evolutionary origin, dispersal mode, effects on nectar chemistry and plant-animal interactions, community assembly, agricultural applications, and their use as model systems in ecological research. We further outline gaps in our understanding of the ecological significance of these microorganisms, their response to environmental changes, and the potential cascading effects.
Collapse
Affiliation(s)
| | - Clara de Vega
- Departamento de Biología Vegetal y EcologíaUniversidad de Sevilla41012SevillaSpain
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular SystemsKU LeuvenB‐3001LeuvenBelgium
| | - Tadashi Fukami
- Department of BiologyStanford UniversityStanfordCA94305‐5020USA
- Department of Earth System ScienceStanford UniversityStanfordCA94305‐5020USA
| | - Sergio Álvarez‐Pérez
- Department of Animal HealthComplutense University of Madrid28040MadridSpain
- Department of BiologyStanford UniversityStanfordCA94305‐5020USA
| |
Collapse
|
2
|
Muleshkova T, Bazukyan I, Papadimitriou K, Gotcheva V, Angelov A, Dimov SG. Exploring the Multifaceted Genus Acinetobacter: the Facts, the Concerns and the Oppoptunities the Dualistic Geuns Acinetobacter. J Microbiol Biotechnol 2025; 35:e2411043. [PMID: 40081886 PMCID: PMC11925754 DOI: 10.4014/jmb.2411.11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/16/2025]
Abstract
In recent years, the research community has been interested in members of the Acinetobacter genus mainly because of their role as causative agents of nosocomial infections. However, this rich-in-species genus has been proven to play a significant role in several biotechnological processes, such as bioremediation and fermented foods production. To partially fill the lack of information on Acinetobacter's dualistic nature, in this review, based on literature data, we attempt to summarize the available information on the different roles the members of the genus play by considering their genetic constitution and metabolic properties. We analyzed reports of genetic divergence between the pathogenic and non-pathogenic species and isolates, which can be explained by their high adaptability to the different ecological niches. In turn, this adaptability could result from intrinsic genetic variability due to mechanisms of horizontal genetic transfer, as well as high mutability determined by the expression of error-prone DNA polymerases. Yet, we concluded that further studies are needed, especially whole-genome sequencing of non-pathogenic isolates, which for the moment are relatively scarce.
Collapse
Affiliation(s)
- Tsvetana Muleshkova
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Department of Genetics, 8, Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| | - Inga Bazukyan
- Yerevan State University, Faculty of Biology, Department of Biochemistry, Microbiology and Biotechnology, 1, Alex Manoogian str., 0025 Yerevan, Armenia
| | - Konstantinos Papadimitriou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera Odos 75, Athina 118 55, Greece
| | - Velitchka Gotcheva
- University of Food Technologies in Plovdiv, Faculty of Technology, Department of Biotechnology, 26, Maritza blvd., 4002 Plovdiv, Bulgaria
| | - Angel Angelov
- Center of Competence "Agrofood Systems and Bioeconomy", 26, Maritza blvd., 4002 Plovdiv, Bulgaria
| | - Svetoslav G Dimov
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Department of Genetics, 8, Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
3
|
Benison KC, Hallsworth JE, Zalar P, Glavina M, Gunde-Cimerman N. Extremophilic and common fungi in acid brines and their halite. Extremophiles 2025; 29:15. [PMID: 39934511 DOI: 10.1007/s00792-025-01382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
Studies of microorganisms in extreme Mars-analog environments have generally overlooked fungi. Here, we document fungi in lake waters, slime, and halite of the acid-saline Lakes Magic and Gneiss in Western Australia with pH 1.4-3.5 and 7-32% total dissolved solids (TDS). Both extremotolerant fungi, including ascomycete Parengyodontium torokii, and relatively common fungi (mesophilic), including Penicillium breviocompactum and Trametes pubescens, were present. Our discovery of P. torokii in halite is among the first known fungal examples of such preservation, and we propose that it has the biological traits of a generalist species. Nine strains of the dominant P. torokii fungi were tested for growth on diverse salts. The presence of mesophilic fungal saprotrophs in these lakes, along with extremophilic fungi, algae, bacteria, and archaea, suggests transport of the former into indigenous lake populations. This reveals a distinction between habitability and preservation potential; not all biosignatures in lake waters or their halite represent organisms that were active in situ. Our results suggest that searches for biosignatures in extreme waters and salt minerals on Earth and Mars should include the possibility of fungi. Additionally, interpretations of microbial communities in both modern brines and the rock record should consider the likelihood of mixed indigenous and transported taxa.
Collapse
Affiliation(s)
- Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, West Virginia, USA.
| | - John E Hallsworth
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Polona Zalar
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Glavina
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
4
|
Thomas K. Pints of the past, flavours for the future. Fungal Biol 2024; 128:2503-2512. [PMID: 39653496 DOI: 10.1016/j.funbio.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 12/17/2024]
Abstract
The recreation of historic beverages is possible via contemporary fermentations carried out with microbes revived form the past. Advanced molecular techniques have recently provided opportunities to investigate historic samples, such as those from beer found in shipwrecks, and provide data on their character as well as identifying differences with contemporary products. In some cases, isolates of yeasts and bacteria create the possibility for authentic recreations of fermented beverages that can have cultural and nostalgic interest. They may also provide insights into the relationship between humans and microbes. The authenticity of recreations, however, can be limited by difficulties in recipe interpretation, differences in water composition and ingredients, possible genetic changes of the retrieved microbes, and from advances in production processes and equipment. Such organisms may also be used to produce novel foods and for other new industrial (non-food) applications. Microorganisms in nature are known to survive geological time-periods. Nevertheless, the survival of some copiotrophic 'fermentation' microbes for a century or more suggests a robust stress biology. Moreover, it facilitates the exciting prospect of recreating fermented products once enjoyed by our predecessors.
Collapse
Affiliation(s)
- Keith Thomas
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Science Complex, City Campus, SUNDERLAND, SR1 3SD, UK; Brewlab Limited, Unit 1 West Quay Court, Sunderland Enterprise Park, Sunderland, Tyne and Wear, SR5 2TE, UK.
| |
Collapse
|
5
|
Gargouri S, Masiello M, Somma S, Haidukowski M, Khaterchi R, Chekali S, Derouich S, Balmas V, Moretti A. Maize-fusarium interactions: Tunisian insights into mycotoxin ecology. Fungal Biol 2024; 128:2460-2470. [PMID: 39653492 DOI: 10.1016/j.funbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/11/2024] [Accepted: 07/04/2024] [Indexed: 01/05/2025]
Abstract
Maize is a worldwide crop yet can be associated with mycotoxigenic fungi, much investigated in humid tropical and cooler, wet temperate regions. However, in hot, arid/semi-arid regions data on their occurrence are poor. In this paper, we focused on interactions between maize and Fusarium fungal species in Tunisia, which has a Mediterranean climate, with hot, dry summers and milder, damper winters. Maize kernels, stalks, and roots were sampled from 19 agricultural fields and 56, 72, and 88 % of samples, respectively, yielded Fusarium isolates. Based on molecular identifications, these were mainly F. verticillioides (67 %), and other species of Fusarium fujikuroi species complex and members of Fusarium incarnatum-equiseti-, oxysporum-, burgessii-, solani- and concolor species complexes. In addition, five isolates were identified as Clonostachys rosea. Fusarium verticilloides and Fusarium proliferatum, that produce fumonisins, suspected carcinogenic compounds, were isolated from all kinds of samples, whereas the other species were isolated only from root and stems. Fumonisin B1 was higher in kernels than in silage, while deoxynivalenol, potent protein synthesis inhibiting compound, was detected (at low levels) in grains and silage. A subset of selected strains, representative of all species identified, was also used to evaluate their ability to produce mycotoxins.Fusarium verticillioides, Fusariumproliferatum and Fusarium nygamai produced high levels of fumonisin B1in vitro, as well as beauvericin and enniatins. These findings confirm that, even in hot arid regions, which generally do not favour fungal growth, mycotoxin-producing fungi can be reason of concern for human and animal health.
Collapse
Affiliation(s)
- Samia Gargouri
- Institut National de la Recherche Agronomique de Tunisie, rue HédiKarray, 2049, Tunisia
| | - Mario Masiello
- Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy.
| | - Stefania Somma
- Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy
| | - Miriam Haidukowski
- Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy
| | - Rihab Khaterchi
- Institut National de la Recherche Agronomique de Tunisie, rue HédiKarray, 2049, Tunisia
| | - Samira Chekali
- Institut National de la Recherche Agronomique de Tunisie, rue HédiKarray, 2049, Tunisia
| | - Sonia Derouich
- Institut National de la Recherche Agronomique de Tunisie, rue HédiKarray, 2049, Tunisia
| | - Virgilio Balmas
- Department of Agriculture, University of Sassari, Via E. De Nicola, 9071, Sassari, Italy
| | - Antonio Moretti
- Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy
| |
Collapse
|
6
|
Ramakrishnan DK, Jauernegger F, Hoefle D, Berg C, Berg G, Abdelfattah A. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems. BMC Microbiol 2024; 24:417. [PMID: 39425049 PMCID: PMC11490174 DOI: 10.1186/s12866-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND While substantial research has explored rhizosphere and phyllosphere microbiomes, knowledge on flower microbiome, particularly in wild plants remains limited. This study explores into the diversity, abundance, and composition of bacterial and fungal communities on leaves and flowers of wild flowering plants in their natural alpine habitat, considering the influence of environmental factors. METHODS We investigated 50 wild flowering plants representing 22 families across seven locations in Austria. Sampling sites encompassed varied soil types (carbonate/silicate) and altitudes (450-2760 m). Amplicon sequencing to characterize bacterial and fungal communities and quantitative PCR to assess microbial abundance was applied, and the influence of biotic and abiotic factors assessed. RESULTS Our study revealed distinct bacterial and fungal communities on leaves and flowers, with higher diversity and richness on leaves (228 fungal and 91 bacterial ASVs) than on flowers (163 fungal and 55 bacterial ASVs). In addition, Gammaproteobacteria on flowers and Alphaproteobacteria on leaves suggests niche specialization for plant compartments. Location significantly shaped both community composition and fungal diversity on both plant parts. Notably, soil type influenced community composition but not diversity. Altitude was associated with increased fungal species diversity on leaves and flowers. Furthermore, significant effects of plant family identity emerged within a subset of seven families, impacting bacterial and fungal abundance, fungal Shannon diversity, and bacterial species richness, particularly on flowers. CONCLUSION This study provides novel insights into the specific microbiome of wild flowering plants, highlighting adaptations to local environments and plant-microbe coevolution. The observed specificity indicates a potential role in plant health and resilience, which is crucial for predicting how microbiomes respond to changing environments, ultimately aiding in the conservation of natural ecosystems facing climate change pressures.
Collapse
Affiliation(s)
- Dinesh Kumar Ramakrishnan
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Franziska Jauernegger
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Daniel Hoefle
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Christian Berg
- Institute of Biology, Department of Plant Sciences, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
7
|
Peng J, Wang D, He P, Wei P, Zhang L, Lan W, Li Y, Chen W, Zhao Z, Jiang L, Zhou L. Exploring the environmental influences and community assembly processes of bacterioplankton in a subtropical coastal system: Insights from the Beibu Gulf in China. ENVIRONMENTAL RESEARCH 2024; 259:119561. [PMID: 38972345 DOI: 10.1016/j.envres.2024.119561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Due to rapid urbanization, the Beibu Gulf, a semi-closed gulf in the northwestern South China Sea, faces escalating ecological and environmental threats. Understanding the assembly mechanisms and driving factors of bacterioplankton in the Beibu Gulf is crucial for preserving its ecological functions and services. In the present study, we investigated the spatiotemporal dynamics of bacterioplankton communities and their assembly mechanisms in the Beibu Gulf based on the high-throughput sequencing of the bacterial 16 S rRNA gene. Results showed significantly higher bacterioplankton diversity during the wet season compared to the dry season. Additionally, distinct seasonal variations in bacterioplankton composition were observed, characterized by an increase in Cyanobacteria and Thermoplasmatota and a decrease in Proteobacteria and Bacteroidota during the wet season. Null model analysis revealed that stochastic processes governed bacterioplankton community assembly in the Beibu Gulf, with drift and homogenizing dispersal dominating during the dry and wet seasons, respectively. Enhanced deterministic assembly of bacterioplankton was also observed during the wet season. Redundancy and random forest model analyses identified the physical properties (e.g., temperature) and nutrient content (e.g., nitrate) of water as primary environmental drivers influencing bacterioplankton dynamics. Moreover, variation partitioning and distance-decay of similarity revealed that environmental filtering played a significant role in shaping bacterioplankton variations in this rapidly developed coastal ecosystem. These findings advance our understanding of bacterioplankton assembly in coastal ecosystems and establish a theoretical basis for effective ecological health management amidst ongoing global changes.
Collapse
Affiliation(s)
- Jinxia Peng
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Dapeng Wang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Pingping He
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Pinyuan Wei
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Li Zhang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, 536000, China
| | - Yusen Li
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Wenjian Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Linyuan Jiang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China.
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Ferluga M, Avesani M, Lorenzini M, Zapparoli G. Assessing variability among culturable phylloplane basidiomycetous yeasts from Italian agroecosystems. World J Microbiol Biotechnol 2024; 40:335. [PMID: 39358571 PMCID: PMC11446951 DOI: 10.1007/s11274-024-04147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
This study analysed basidiomycetous yeasts isolated from the phylloplane of crops and spontaneous plants in Italian agroecosystems. A total of 25 species belonging to 17 genera were recognized by analysing 83 isolates from vineyards and orchards, that are not treated with synthetic fungicides, and adjacent natural areas. Rhodotorula graminis and Filobasidium magnum were the most frequent species but 13 others were represented by a single isolate (e.g., Buckleyzyma salicina, Pseudozyma prolifica, and Moniliella megachiliensis). Preliminary analysis of (GTG)5-PCR fingerprinting revealed high genetic intraspecific heterogeneity. All isolates were characterized by their production of extracellular hydrolytic enzymes and their sensitivity to six commercial fungicides used in Italy. The isolates displayed great variability in these phenotypic traits, which play an important role in the survival of yeast populations in agroecosystems. Most of them exhibited lipolytic, proteolytic, β-glucosidase and pectinolytic activities, but only three (F. magnum, Kwoniella mangroviensis and Ps. prolifica) also had cellulolytic and amylolytic activity. Most isolates were sensitive to four fungicides, and one R. graminis isolate was resistant to all six. This heterogeneity was not related to the geographical origin of the isolates. The lack of selective factors (i.e. pesticide treatments) in the sampling fields and the presence of adjacent natural areas may have favored the maintenance of an elevated level of strain diversity. This study provides new information on phylloplane basidiomycetous yeasts in agroecosystems and opens the way to further investigations into the impact of agricultural practices on the microbial diversity of these natural habitats.
Collapse
Affiliation(s)
- Matteo Ferluga
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Michele Avesani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | | | - Giacomo Zapparoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy.
| |
Collapse
|
9
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
10
|
Maurer ML, Goyco-Blas JF, Kohl KD. Dietary tannins alter growth, behavior, and the gut microbiome of larval amphibians. Integr Zool 2024; 19:585-595. [PMID: 37551631 DOI: 10.1111/1749-4877.12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Research has shown that leached plant toxins negatively impact the growth and development of larval amphibians. However, tadpoles may encounter these same toxins in food material, and differential exposure routes and distribution of toxic chemicals can yield variable downstream effects on animals. To date, most research understanding the interactions between dietary plant toxins and herbivores has been conducted in terrestrial systems. Despite the abundance of plant toxins in food and water sources, the effects of dietary plant toxins on larval amphibians have not been studied, and tannins could negatively affect these species. Here, green frog tadpoles (Lithobates clamitans) were fed diets with or without 2% tannic acid to test how their growth, development, behavior, and gut microbiome respond to dietary tannins. At the end of the trial, we conducted a behavioral assay to measure tadpole activity and boldness and inventoried the gut microbiome using 16S rRNA sequencing. Dietary tannins significantly decreased body mass by 66% and length by 28%, without influencing tadpole developmental stage. We found significant differences in exploratory behavior and boldness during the first minute of our behavioral assay, demonstrating that tannins have the potential to influence behavior during novel or stressful events. Finally, tannins significantly sculpted the gut microbiome, with an increase in the measurement of Shannon entropy. We observed 7 microbial phyla and 153 microbial genera that exhibited significantly differential abundances differences between control and tannic acid-fed tadpoles. Collectively, our results demonstrate that dietary tannins have the potential to alter amphibian growth, behavior, and microbiome.
Collapse
Affiliation(s)
- Maya L Maurer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - José F Goyco-Blas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Du S, Yao L, Zhong B, Qin J, He S, Liu Y, Wu Z. Enhancing synthesis of ethyl lactate in rice baijiu fermentation by adding recovered granular cells. J Biosci Bioeng 2024; 137:388-395. [PMID: 38461104 DOI: 10.1016/j.jbiosc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
Ethyl lactate is the most abundant ester in semi-solid rice baijiu fermentation, affecting the flavor of baijiu to a great extent. The present study aimed to investigate the spatial distribution and formation contributor of ethyl lactate by removing the microorganisms and extracellular enzymes from the upper, middle, and lower fermentation broth during the later fermentation stage. The removal of suspended substances by centrifugation did not affect the ethyl lactate content in the top and middle fermentation broth containing free cells, enzymes, and starch particles. After day 5 of fermentation, only the lower fermentation broth containing granular cells attached to the starch could continue to accumulate lactic acid, thereby increasing the ethyl lactate content. The results showed that the chemical reactions were the main contributor to the increased ethyl lactate content at the anaphase of fermentation rather than enzymatic catalysis or microbial metabolism. Sequencing of granular cells revealed the main lactic acid producers at different fermentation stages. Lactobacillus helveticus showed the highest abundance of 94.45-95.40% on day 5, which decreased to 29.58-30.20% on day 15, while Lactobacillus acetotolerans showed the highest abundance of 47.93-49.72% at day 15. Additionally, the granular cells were recovered and used for supplementary inoculation in the next batch, which significantly increased the ethyl lactate content. This study provided a novel strategy for improving the ethyl lactate content in semi-solid baijiu fermentation.
Collapse
Affiliation(s)
- Shoujie Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liucui Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China
| | - Bin Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Junwei Qin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Songgui He
- Guangdong Jiujiang Distillery Co., Ltd., Foshan 528203, China
| | - Youqiang Liu
- Guangdong Jiujiang Distillery Co., Ltd., Foshan 528203, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Zhang Y, Zhang H, Xu T, Zeng L, Liu F, Huang X, Liu Q. Interactions among microorganisms open up a new world for anti-infectious therapy. FEBS J 2024; 291:1615-1631. [PMID: 36527169 DOI: 10.1111/febs.16705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The human microbiome, containing bacteria, fungi, and viruses, is a community that coexists peacefully with humans most of the time, but with the potential to cause disease under certain conditions. When the environment changes or certain stimuli are received, microbes may interact with each other, causing or increasing the severity of disease in a host. With the appropriate methods, we can make these microbiota work for us, creating new applications for human health. This review discusses the wide range of interactions between microorganisms that result in an increase in susceptibility to, severity of, and mortality of diseases, and also briefly introduces how microorganisms interact with each other directly or indirectly. The study of microbial interactions and their mechanisms has revealed a new world of treatments for infectious disease. The regulation of the balance between intestinal flora, the correct application of probiotics, and the development of effective drugs by symbiosis all demonstrate the great contributions of the microbiota to human health and its powerful potential value. Consequently, the study of interactions between microorganisms plays an essential role in identifying the causes of diseases and the development of treatments.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Hanchi Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
- The First Clinical Medical College, Nanchang University, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Lingbing Zeng
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
- The First Clinical Medical College, Nanchang University, China
| | - Fadi Liu
- The Department of Clinical Laboratory, Children's Hospital of Jiangxi Province, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
13
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
14
|
Sun Y, Zhang Y, Hao X, Zhang X, Ma Y, Niu Z. A novel marine bacterium Exiguobacterium marinum a-1 isolated from in situ plastisphere for degradation of additive-free polypropylene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122390. [PMID: 37597737 DOI: 10.1016/j.envpol.2023.122390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
As the ecological niche most closely associated with polymers, microorganisms in the 'plastisphere' have great potential for plastics degradation. Microorganisms isolated from the 'plastisphere' could colonize and degrade commercial plastics containing different additives, but the observed weight loss and surface changes were most likely caused by releasing the additives rather than actual degradation of the plastics itself. Unlike commercial plastics that contain additives, whether marine microorganisms in the 'plastisphere' have adapted to additive-free plastics as a surface to colonize and potentially degrade is not yet known. Herein, a novel marine bacterium, Exiguobacterium marinum a-1, was successfully isolated from mature 'plastisphere' that had been deployed in situ for up to 20 months. Strain a-1 could use additive-free polypropylene (PP) films as its primary energy and carbon source. After strain a-1 was incubated with additive-free PP films for 80 days, the weight of films decreased by 9.2%. The ability of strain a-1 to rapidly form biofilms and effectively colonize the surface of additive-free PP films was confirmed by Scanning Electron Microscopy (SEM), as reflected by the increase in roughness and visible craters on the surface of additive-free PP films. Additionally, the functional groups of -CO, -C-H, and -OH were identified on the treated additive-free PP films according to Fourier Transform Infrared (FTIR). Genomic data from strain a-1 revealed a suite of key genes involved in biosurfactant synthesis, flagellar assembly, and cellular chemotaxis, contributing to its rapid biofilm formation on hydrophobic polymer surfaces. In particular, key enzymes that may be responsible for the degradation of additive-free PP films, such as glutathione peroxidase, cytochrome p450 and esterase were also recognized. This study highlights the potential of microorganisms present in the 'plastisphere' to metabolize plastic polymers and points to the intrinsic importance of the new strain a-1 in the mitigation of plastic pollution.
Collapse
Affiliation(s)
- Yueling Sun
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaohan Hao
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China; International Joint Institute of Tianjin University, Fuzhou, Fuzhou, 350205, China.
| |
Collapse
|
15
|
Fadiji AE, Ayangbenro AS, Akanmu AO, Babalola OO. Draft genome sequence of Acinetobacter sp. AYS6, a potential plant growth-promoting endophyte. Microbiol Resour Announc 2023; 12:e0046423. [PMID: 37737613 PMCID: PMC10586108 DOI: 10.1128/mra.00464-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
Here, we report the draft genome sequence of Acinetobacter sp. AYS6, an endophyte isolated from the roots of maize plant in Mafikeng, South Africa. The genome was 7,072,605 bp and exhibited a GC content of 45.6% and 3,654 genes with 3,539 coding sequences, 64 rRNA, 60 tRNAs, and 2 CRISPR.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Akinlolu Olalekan Akanmu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| |
Collapse
|
16
|
Gerard LM, Corrado MB, Davies CV, Soldá CA, Dalzotto MG, Esteche S. Isolation and identification of native yeasts from the spontaneous fermentation of grape musts. Arch Microbiol 2023; 205:302. [PMID: 37550458 DOI: 10.1007/s00203-023-03646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Recently, there has been growing interest in the characterization of native yeasts for their use in production of wines with regional characteristics. This study aimed to investigate Saccharomyces and non-Saccharomyces yeasts present in the spontaneous fermentation of Tannat and Marselan grape musts collected from Concordia (Entre Ríos, Argentina) over 2019, 2020, and 2021 vintages. The evolution of these fermentative processes was carried out by measuring total soluble solids, total acidity, volatile acidity, pH, ethanol concentration, and total carbon content. Isolated Saccharomyces and non-Saccharomyces yeasts were identified based on colony morphology in WL medium, 5.8S-ITS-RFLP analysis, and 26S rDNA D1/D2 gene sequencing. Two hundred and ten yeast colonies were isolated and identified as Pichia kudriavzevii, Saccharomyces cerevisiae, Hanseniaspora uvarum, Metschnikowia pulcherrima, Candida albicans, Candida parapsilosis, Pichia occidentalis, Pichia bruneiensis, Hanseniaspora opuntiae, Issatchenkia terricola, and Hanseniaspora vineae. P. kudriavzevii isolated from all vintages was associated with the spontaneous fermentation of grape musts from the Concordia region.
Collapse
Affiliation(s)
- Liliana Mabel Gerard
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina.
| | - María Belén Corrado
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - Cristina Verónica Davies
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - Carina Alejandra Soldá
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - María Gabriela Dalzotto
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Concordia, Argentina
| | - Sofía Esteche
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| |
Collapse
|
17
|
Nadal-Molero F, Campos-Lopez A, Tur-Moya J, Martin-Cuadrado AB. Microbial community on industrial salty bovine hides: From the slaughterhouse to the salting. Syst Appl Microbiol 2023; 46:126421. [PMID: 37229965 DOI: 10.1016/j.syapm.2023.126421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
The leather-making industry is an age-old industry and desiccation with salt has been one of the most used methodologies for obtaining valuable skins. However, halophiles may proliferate and affect the integrity of the hide-collagen structure, as well as leading to undesirable red colorations or less-frequent purple stains. To understand the basis of these industrial hide contaminations, the microbial community from raw hide samples, salt-cured samples and four different industrial salts, was analyzed by 16S rRNA gene metabarcoding together with standard cultivation methods. Comparison of raw hides and correctly cured hides revealed a core microbiome that was absent from contaminated hides. In addition, archaea were missing from well-cured hides, whereas Psychrobacter and Acinetobacter were highly represented (23 % and 17.4 %, respectively). In damaged hides, only a few operational taxonomic units (OTUs), from among the hundreds detected, were able to proliferate and, remarkably, a single Halomonas OTU represented 57.66 % of the reads. Halobacteria, mainly Halovenus, Halorubrum and Halovivax, increased by up to 36.24-39.5 % in the red- and purple-affected hides. The major contaminants were isolated and hide infections, together with collagenase activity, were evaluated. The results showed that hides enriched with the non-pigmented isolate Halomonas utahensis COIN160 damaged the collagen fibers similarly to Halorubrum, and together they were considered to be one of the major causes. Putative degrading inhibitors were also identified from among the Alkalibacillus isolates. It was concluded that hide contaminations were driven by clonal outbreaks of a few specific microbes, which may have been non-pigmented collagen degraders. Acinetobacter and Alkalibacillus, members of the core microbiome of raw and well-cured salted hides, are suggested as hide contaminant inhibitors that need further analysis.
Collapse
Affiliation(s)
| | | | - Juan Tur-Moya
- Hide Consultant, Dpt. Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | | |
Collapse
|
18
|
Timmis K, Verstraete W, Regina VR, Hallsworth JE. The Pareto principle: To what extent does it apply to resource acquisition in stable microbial communities and thereby steer their geno-/ecotype compositions and interactions between their members? Environ Microbiol 2023. [PMID: 37308155 DOI: 10.1111/1462-2920.16438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The Pareto principle, or 20:80 rule, describes resource distribution in stable communities whereby 20% of community members acquire 80% of a key resource. In this Burning Question, we ask to what extent the Pareto principle applies to the acquisition of limiting resources in stable microbial communities; how it may contribute to our understanding of microbial interactions, microbial community exploration of evolutionary space, and microbial community dysbiosis; and whether it can serve as a benchmark of microbial community stability and functional optimality?
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of Microbiology, Technical University, Braunschweig, Germany
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Belgium
| | | | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
| |
Collapse
|
19
|
Hallsworth JE, Udaondo Z, Pedrós‐Alió C, Höfer J, Benison KC, Lloyd KG, Cordero RJB, de Campos CBL, Yakimov MM, Amils R. Scientific novelty beyond the experiment. Microb Biotechnol 2023; 16:1131-1173. [PMID: 36786388 PMCID: PMC10221578 DOI: 10.1111/1751-7915.14222] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Höfer
- Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Kathleen C. Benison
- Department of Geology and GeographyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Karen G. Lloyd
- Microbiology DepartmentUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Radamés J. B. Cordero
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Claudia B. L. de Campos
- Institute of Science and TechnologyUniversidade Federal de Sao Paulo (UNIFESP)São José dos CamposSPBrazil
| | | | - Ricardo Amils
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Nicolás Cabrera n° 1, Universidad Autónoma de MadridMadridSpain
- Department of Planetology and HabitabilityCentro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| |
Collapse
|
20
|
Anand S, Hallsworth JE, Timmis J, Verstraete W, Casadevall A, Ramos JL, Sood U, Kumar R, Hira P, Dogra Rawat C, Kumar A, Lal S, Lal R, Timmis K. Weaponising microbes for peace. Microb Biotechnol 2023; 16:1091-1111. [PMID: 36880421 PMCID: PMC10221547 DOI: 10.1111/1751-7915.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
There is much human disadvantage and unmet need in the world, including deficits in basic resources and services considered to be human rights, such as drinking water, sanitation and hygiene, healthy nutrition, access to basic healthcare, and a clean environment. Furthermore, there are substantive asymmetries in the distribution of key resources among peoples. These deficits and asymmetries can lead to local and regional crises among peoples competing for limited resources, which, in turn, can become sources of discontent and conflict. Such conflicts have the potential to escalate into regional wars and even lead to global instability. Ergo: in addition to moral and ethical imperatives to level up, to ensure that all peoples have basic resources and services essential for healthy living and to reduce inequalities, all nations have a self-interest to pursue with determination all available avenues to promote peace through reducing sources of conflicts in the world. Microorganisms and pertinent microbial technologies have unique and exceptional abilities to provide, or contribute to the provision of, basic resources and services that are lacking in many parts of the world, and thereby address key deficits that might constitute sources of conflict. However, the deployment of such technologies to this end is seriously underexploited. Here, we highlight some of the key available and emerging technologies that demand greater consideration and exploitation in endeavours to eliminate unnecessary deprivations, enable healthy lives of all and remove preventable grounds for competition over limited resources that can escalate into conflicts in the world. We exhort central actors: microbiologists, funding agencies and philanthropic organisations, politicians worldwide and international governmental and non-governmental organisations, to engage - in full partnership - with all relevant stakeholders, to 'weaponise' microbes and microbial technologies to fight resource deficits and asymmetries, in particular among the most vulnerable populations, and thereby create humanitarian conditions more conducive to harmony and peace.
Collapse
Affiliation(s)
- Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya College, University of DelhiDelhiIndia
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - James Timmis
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Arturo Casadevall
- Department of MedicineJohns Hopkins School of Public Health and School of MedicineBaltimoreMarylandUSA
| | | | - Utkarsh Sood
- Department of ZoologyKirori Mal College, University of DelhiDelhiIndia
| | - Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBiharIndia
| | - Princy Hira
- Department of ZoologyMaitreyi College, University of DelhiNew DelhiIndia
| | | | - Abhilash Kumar
- Department of ZoologyRamjas College, University of DelhiDelhiIndia
| | - Sukanya Lal
- PhiXgen Pvt. LtdGurugram, GurgaonHaryanaIndia
| | - Rup Lal
- Acharya Narendra Dev College, University of DelhiGovindpuri, Kalkaji, New DelhiIndia
| | - Kenneth Timmis
- Institute of Microbiology, Technical University BraunschweigBraunschweigGermany
| |
Collapse
|
21
|
Noel D, Hallsworth JE, Gelhaye E, Darnet S, Sormani R, Morel-Rouhier M. Modes-of-action of antifungal compounds: Stressors and (target-site-specific) toxins, toxicants, or Toxin-stressors. Microb Biotechnol 2023. [PMID: 37191200 DOI: 10.1111/1751-7915.14242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 05/17/2023] Open
Abstract
Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as Toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and Toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.
Collapse
Affiliation(s)
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | | | | |
Collapse
|
22
|
Vázquez J, Mislata AM, Vendrell V, Moro C, de Lamo S, Ferrer-Gallego R, Andorrà I. Enological Suitability of Indigenous Yeast Strains for 'Verdejo' Wine Production. Foods 2023; 12:foods12091888. [PMID: 37174426 PMCID: PMC10177759 DOI: 10.3390/foods12091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The use of indigenous yeasts for the production of wines is a tool to defend the typicity of a particular region. The selection of appropriate indigenous yeasts ensures the maintenance of oenological characteristics by simulating spontaneous alcoholic fermentation (AF) while avoiding the risks of stuck or sluggish fermentations. In this study, autochthonous yeasts from Verdejo grape juice (Appellation of Origin Rueda) were selected, identified, and characterized to exploit the characteristics of the 'terroir'. The fermentation capacity of seven strains was studied individually at the laboratory scale. The most suitable strains (Saccharomyces cerevisiae: Sacch 1, Sacch 2, Sacch 4, and Sacch 6) and Sacch 6 co-inoculated with Metschnikowia pulcherrima were characterized at the pilot scale. The fermentation kinetics, bioproduct release, volatile composition, and sensory profile of the wines were evaluated. Significant differences were found, especially in the aroma profile. In particular, Sacch 6 and Sacch 6 co-inoculated with M. pulcherrima produced higher amounts of ethyl esters and acetates and lower amounts of higher alcohols than the spontaneous AF. Wines inoculated with indigenous yeasts had higher sensory scores for fruit aromas and overall rating. The selection of indigenous yeasts improved the aroma of Verdejo wines and could contribute to determining the wine typicity of the wine region.
Collapse
Affiliation(s)
| | | | - Victor Vendrell
- Bodega Emina Rueda (Bodega Matarromera, S.L.), Ctra. Medina del Campo-Olmedo. Km 1.4, 47400 Medina del Campo, Valladolid, Spain
| | - Carlos Moro
- Bodega Emina Rueda (Bodega Matarromera, S.L.), Ctra. Medina del Campo-Olmedo. Km 1.4, 47400 Medina del Campo, Valladolid, Spain
| | - Sergi de Lamo
- VITEC, Wine Technology Centre, 43730 Falset, Tarragona, Spain
| | | | - Imma Andorrà
- VITEC, Wine Technology Centre, 43730 Falset, Tarragona, Spain
| |
Collapse
|
23
|
Zhao X, Zhu D, Tan J, Wang R, Qi G. Cooperative Action of Fulvic Acid and Bacillus paralicheniformis Ferment in Regulating Soil Microbiota and Improving Soil Fertility and Plant Resistance to Bacterial Wilt Disease. Microbiol Spectr 2023; 11:e0407922. [PMID: 36861975 PMCID: PMC10100657 DOI: 10.1128/spectrum.04079-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
Excessive continuous cropping and soil degradation, such as acidification, hardening, fertility decline, and the degradation of microbial community, lead to the epidemic of soilborne diseases and cause great loss in agriculture production. Application of fulvic acid can improve the growth and yield of various crops and effectively suppress soilborne plant diseases. Bacillus paralicheniformis strain 285-3 producing poly-gamma-glutamic acid is used to remove the organic acid that can cause soil acidification and increase the fertilizer effect of fulvic acid and the effect of improving soil quality and inhibiting soilborne disease. In field experiments, the application of fulvic acid and Bacillus paralicheniformis ferment effectively reduced the incidence of bacterial wilt disease and improved soil fertility. Both fulvic acid powder and B. paralicheniformis ferment improved soil microbial diversity and increased the complexity and stability of the microbial network. For B. paralicheniformis ferment, the molecular weight of poly-gamma-glutamic acid became smaller after heating, which could better improve the soil microbial community and network structure. In fulvic acid and B. paralicheniformis ferment-treated soils, the synergistic interaction between microorganisms increased and the number of keystone microorganisms increased, which included antagonistic bacteria and plant growth-promoting bacteria. Changes in the microbial community and network structure were the main reason for the reduced incidence of bacterial wilt disease. Application of fulvic acid and Bacillus paralicheniformis ferment improved soil physicochemical properties and effectively controlled bacterial wilt disease by changing microbial community and network structure and enriching antagonistic and beneficial bacteria. IMPORTANCE Continuous cropping tobacco has led to soil degradation and caused soilborne bacterial wilt disease. Fulvic acid as a biostimulator was applied to restore soil and control bacterial wilt disease. For improving its effect, fulvic acid was fermented with Bacillus paralicheniformis strain 285-3 producing poly-gamma-glutamic acid. Fulvic acid and B. paralicheniformis ferment inhibited bacterial wilt disease, improved soil quality, enriched beneficial bacteria, and increased microbial diversity and microbial network complexity. Some keystone microorganisms in fulvic acid and B. paralicheniformis ferment-treated soils had potential antimicrobial activity and plant growth-promoting attributes. Fulvic acid and B. paralicheniformis 285-3 ferment could be used to restore soil quality and microbiota and control bacterial wilt disease. This study found new biomaterial to control soilborne bacterial disease by combining fulvic acid and poly-gamma-glutamic acid application.
Collapse
Affiliation(s)
- Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Di Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Tan
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Rui Wang
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Wang L, Huang G, Ma W, Jin G. Preparation and Application of Directed Vat Set Indigenous Freeze-Drying Lentilactobacillus hilgardii Q19 Starter in Winemaking. Foods 2023; 12:foods12051053. [PMID: 36900570 PMCID: PMC10000753 DOI: 10.3390/foods12051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
In order to prepare a better direct vat set for malolactic fermentation (MLF) in high ethanol and low pH wines, the high-ethanol- and low-temperature-tolerant strain Lentilactobacillus hilgardii Q19, which was isolated from the eastern foothill of the Helan Mountain wine region in China, was used to prepare a direct vat set by vacuum freeze-drying. A superior freeze-dried lyoprotectant was obtained to create the starting culture by selecting, combining, and optimizing numerous lyoprotectants with higher protection for Q19 by using a single-factor experiment and response surface approach. Finally, the Lentilactobacillus hilgardii Q19 direct vat set was inoculated in Cabernet Sauvignon wine to carry out MLF on a pilot scale, with commercial starter culture Oeno1 as control. The volatile compounds, biogenic amines, and ethyl carbamate content were analyzed. The results showed that a combination of 8.5 g/100 mL skimmed milk powder, 14.5 g/100 mL yeast extract powder, and 6.0 g/100 mL sodium hydrogen glutamate offered better protection; with this lyoprotectant, there were (4.36 ± 0.34) × 1011 CFU/g cells after freeze-drying, and it showed an excellent ability to degrade L-malic acid and could successfully finish MLF. In addition, in terms of aroma and wine safety, compared with Oeno1, the quantity and complexity of volatile compounds were increased after MLF, and biogenic amines and ethyl carbamate were produced less during MLF. We conclude that the Lentilactobacillus hilgardii Q19 direct vat set could be applied as a new MLF starter culture in high-ethanol wines.
Collapse
Affiliation(s)
- Ling Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Gang Huang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China
| | - Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China
- Correspondence:
| |
Collapse
|
25
|
Taudien S, Leszczynski W, Mayer T, Loderstädt U, Bader O, Kaase M, Scheithauer S. Misidentification as Pseudomonas aeruginosa in hospital water supply samples. J Hosp Infect 2023; 133:23-27. [PMID: 36584942 DOI: 10.1016/j.jhin.2022.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Drinking water in hospitals is often tested for Pseudomonas aeruginosa because of its virulence potential. This article describes a case where, based on EN ISO 16266, seven of 11 (64%) samples taken simultaneously from the drinking water system at a single hospital tested positive for P. aeruginosa. This resulted in extensive investigations and interventions, and a number of measures were implemented. However, supplementary analyses with more discriminatory power (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, 16S-rRNA sequencing) ruled out P. aeruginosa completely. The authors wish to raise awareness of this problem, and suggest that diagnostic uncertainty of results obtained by EN ISO 16266 should be indicated on laboratory reports. Wrongly assuming the presence of P. aeruginosa in hospital water supply systems can lead to unnecessary control measures, as analytical uncertainty massively influences the health risk assessment and the remediation measures initiated in medical environments.
Collapse
Affiliation(s)
- S Taudien
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany.
| | - W Leszczynski
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - T Mayer
- Technical Building Management, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - U Loderstädt
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - O Bader
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - M Kaase
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - S Scheithauer
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Colazza S, Peri E, Cusumano A. Chemical Ecology of Floral Resources in Conservation Biological Control. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:13-29. [PMID: 36130040 DOI: 10.1146/annurev-ento-120220-124357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conservation biological control aims to enhance populations of natural enemies of insect pests in crop habitats, typically by intentional provision of flowering plants as food resources. Ideally, these flowering plants should be inherently attractive to natural enemies to ensure that they are frequently visited. We review the chemical ecology of floral resources in a conservation biological control context, with a focus on insect parasitoids. We highlight the role of floral volatiles as semiochemicals that attract parasitoids to the food resources. The discovery that nectar-inhabiting microbes can be hidden players in mediating parasitoid responses to flowering plants has highlighted the complexity of the interactions between plants and parasitoids. Furthermore, because food webs in agroecosystems do not generally stop at the third trophic level, we also consider responses of hyperparasitoids to floral resources. We thus provide an overview of floral compounds as semiochemicals from a multitrophic perspective, and we focus on the remaining questions that need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Stefano Colazza
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| | - Ezio Peri
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| | - Antonino Cusumano
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| |
Collapse
|
27
|
Micheluz A, Pinzari F, Rivera-Valentín EG, Manente S, Hallsworth JE. Biophysical Manipulation of the Extracellular Environment by Eurotium halophilicum. Pathogens 2022; 11:1462. [PMID: 36558795 PMCID: PMC9781259 DOI: 10.3390/pathogens11121462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Eurotium halophilicum is psychrotolerant, halophilic, and one of the most-extreme xerophiles in Earth's biosphere. We already know that this ascomycete grows close to 0 °C, at high NaCl, and-under some conditions-down to 0.651 water-activity. However, there is a paucity of information about how it achieves this extreme stress tolerance given the dynamic water regimes of the surface habitats on which it commonly occurs. Here, against the backdrop of global climate change, we investigated the biophysical interactions of E. halophilicum with its extracellular environment using samples taken from the surfaces of library books. The specific aims were to examine its morphology and extracellular environment (using scanning electron microscopy for visualisation and energy-dispersive X-ray spectrometry to identify chemical elements) and investigate interactions with water, ions, and minerals (including analyses of temperature and relative humidity conditions and determinations of salt deliquescence and water activity of extracellular brine). We observed crystals identified as eugsterite (Na4Ca(SO4)3·2H2O) and mirabilite (Na2SO4·10H2O) embedded within extracellular polymeric substances and provide evidence that E. halophilicum uses salt deliquescence to maintain conditions consistent with its water-activity window for growth. In addition, it utilizes a covering of hair-like microfilaments that likely absorb water and maintain a layer of humid air adjacent to the hyphae. We believe that, along with compatible solutes used for osmotic adjustment, these adaptations allow the fungus to maintain hydration in both space and time. We discuss these findings in relation to the conservation of books and other artifacts within the built environment, spoilage of foods and feeds, the ecology of E. halophilicum in natural habitats, and the current episode of climate change.
Collapse
Affiliation(s)
- Anna Micheluz
- Conservation Science Department, Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy, Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Sabrina Manente
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 30170 Venice, Italy
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
28
|
Filth Flies As Carriers of Intestinal Parasites And Fungi in a Tertiary Institution in Ghana. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
29
|
de Dios R, Gadar K, McCarthy RR. A high-efficiency scar-free genome-editing toolkit for Acinetobacter baumannii. J Antimicrob Chemother 2022; 77:3390-3398. [PMID: 36216579 PMCID: PMC9704439 DOI: 10.1093/jac/dkac328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The current mutagenesis tools for Acinetobacter baumannii leave selection markers or residual sequences behind, or involve tedious counterselection and screening steps. Furthermore, they are usually adapted for model strains, rather than for MDR clinical isolates. OBJECTIVES To develop a scar-free genome-editing tool suitable for chromosomal and plasmid modifications in MDR A. baumannii AB5075. METHODS We prove the efficiency of our adapted genome-editing system by deleting the multidrug efflux pumps craA, cmlA5 and resistance island 2 (RI2), as well as curing plasmid p1AB5075, and combining these mutations. We then characterized the susceptibility of the mutants compared with the WT to different antibiotics (i.e. chloramphenicol, amikacin and tobramycin) by disc diffusion assays and determined the MIC for each strain. RESULTS We successfully adapted the genome-editing protocol to A. baumannii AB5075, achieving a double recombination frequency close to 100% and routinely securing the construction of a mutant within 10 working days. Furthermore, we show that both CraA and p1AB5075 are involved in chloramphenicol resistance, and that RI2 and p1AB5075 play a role in resistance to amikacin and tobramycin. CONCLUSIONS We have developed a versatile and highly efficient genome-editing tool for A. baumannii. We have demonstrated it can be used to modify both the chromosome and native plasmids. By challenging the method, we show the role of CraA and p1AB5075 in antibiotic resistance.
Collapse
Affiliation(s)
- Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Kavita Gadar
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | | |
Collapse
|
30
|
Braga GÚL, Silva-Junior GJ, Brancini GTP, Hallsworth JE, Wainwright M. Photoantimicrobials in agriculture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112548. [PMID: 36067596 DOI: 10.1016/j.jphotobiol.2022.112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Classical approaches for controlling plant pathogens may be impaired by the development of pathogen resistance to chemical pesticides and by limited availability of effective antimicrobial agents. Recent increases in consumer awareness of and/or legislation regarding environmental and human health, and the urgent need to improve food security, are driving increased demand for safer antimicrobial strategies. Therefore, there is a need for a step change in the approaches used for controlling pre- and post-harvest diseases and foodborne human pathogens. The use of light-activated antimicrobial substances for the so-called antimicrobial photodynamic treatment is known to be effective not only in a clinical context, but also for use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate foodborne human pathogens from seeds, sprouted seeds, fruits, and vegetables. Here, we take a holistic approach to review and re-evaluate recent findings on: (i) the ecology of naturally-occurring photoantimicrobials, (ii) photodynamic processes including the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-induced photosensitization of plants. The inhibitory mechanisms of both natural and synthetic light-activated substances, known as photosensitizers, are discussed in the contexts of microbial stress biology and agricultural biotechnology. Their modes-of-antimicrobial action make them neither stressors nor toxins/toxicants (with specific modes of poisonous activity), but a hybrid/combination of both. We highlight the use of photoantimicrobials for the control of plant-pathogenic fungi and quantify their potential contribution to global food security.
Collapse
Affiliation(s)
- Gilberto Ú L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | | | - Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, United Kingdom.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
31
|
Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol 2022; 13:999988. [PMID: 36204627 PMCID: PMC9530320 DOI: 10.3389/fmicb.2022.999988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
Collapse
Affiliation(s)
- Ismail Mahdi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Nidal Fahsi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
32
|
Impact of high pressure treatment on shelf life and microbial profile of wild harvested Ascophyllum nodosum and aquacultured Alaria esculenta during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Thompson TP, Megaw J, Kelly SA, Hopps J, Gilmore BF. Microbial communities of halite deposits and other hypersaline environments. ADVANCES IN APPLIED MICROBIOLOGY 2022; 120:1-32. [PMID: 36243451 DOI: 10.1016/bs.aambs.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Large regions of Earth's surface are underlain by salt deposits that evaporated from ancient oceans and are populated by extreme halophilic microbes. While the microbiology of ancient evaporites has been well studied, the ecology of halite deposits and more recently formed NaCl "salticle" stalactite structures (speleothems) in a Triassic halite mine are less well characterized. The microbiome of Kilroot Salt Mine was profiled using conventional and enhanced culturing techniques. From this, 89 halophilic archaeal isolates from six known genera, and 55 halophilic or halotolerant bacterial isolates from 18 genera were obtained. Culture-independent metagenomic approaches also revealed that culturing techniques were inadvertently biased toward specific taxa, and the need for optimized isolation procedures are required to enhance cultivation diversity. Speleothems formed from saturated brines are unique structures that have the potential to entomb haloarchaea cells for thousands of years within fluid inclusions. The presence of such fluid inclusions, alongside the high abundance of genes related to glycerol metabolism, biofilm formation, and persister cell formation is highly suggestive of an environmental niche that could promote longevity and survivability. Finally, previous studies reporting the discovery of novel biocatalysts from the Kilroot mine microbiome, suggests that this environment may be an untapped source of chemical diversity with high biodiscovery potential.
Collapse
Affiliation(s)
- Thomas P Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom.
| | - Julianne Megaw
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen A Kelly
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Jason Hopps
- Irish Salt Mining & Exploration Company Ltd., Carrickfergus, United Kingdom
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| |
Collapse
|
34
|
Félix CR, Nascimento BEDS, Valente P, Landell MF. Different plant compartments, different yeasts: the example of the bromeliad phyllosphere. Yeast 2022; 39:363-400. [PMID: 35715939 DOI: 10.1002/yea.3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
The plant phyllosphere is one of the largest sources of microorganisms, including yeasts. In bromeliads, the knowledge of yeasts is dispersed and still incipient. To understand the extent of our knowledge on the subject, this review proposes to compile and synthesize existing knowledge, elucidating possible patterns, biotechnological and taxonomic potentials, bringing to light new knowledge, and identifying information gaps. For such, we systematically review scientific production on yeasts in bromeliads using various databases. The results indicated that the plant compartments flowers, fruits, leaves, and water tank (phytotelma) have been studied when focusing on the yeast community in the bromeliad phyllosphere. More than 180 species of yeasts and yeast-like fungi were recorded from the phyllosphere, 70% were exclusively found in one of these four compartments and only 2% were shared among all. In addition, most of the community had a low frequency of occurrence, and approximately half of the species had a single record. Variables such as bromeliad subfamilies and functional types, as well as plant compartments, were statistically significant, though inconclusive and with low explanatory power. At least 50 yeast species with some biotechnological potentials have been isolated from bromeliads. More than 90% of these species were able to produce extracellular enzymes. In addition, other biotechnological applications have also been recorded. Moreover, new species have been described, though yeasts were only exploited in approximately 1% of the existing bromeliads species, which highlights that there is still much to be explored. Nevertheless, it appears that we are still far from recovering the completeness of the diversity of yeasts in this host. Furthermore, bromeliads proved to be a good ecological model for prospecting new yeasts and for studies on the interaction between plants and yeasts. In addition, the yeast community diverged among plant compartments, establishing bromeliads as a microbiologically complex and heterogeneous mosaic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ciro Ramon Félix
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, AL, Brazil.,Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | - Patrícia Valente
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, RS, Brazil
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, AL, Brazil
| |
Collapse
|
35
|
Polyphasic Characterization of Four Aspergillus Species as Potential Biocontrol Agents for White Mold Disease of Bean. J Fungi (Basel) 2022; 8:jof8060626. [PMID: 35736109 PMCID: PMC9224856 DOI: 10.3390/jof8060626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Aspergillus comprises several species that play pivotal roles in agriculture. Herein, we morphologically and physiologically characterized four genetically distinct Aspergillus spp., namely A. japonicus, A. niger, A. flavus, and A. pseudoelegans, and examined their ability to suppress the white mold disease of bean caused by Sclerotinia sclerotiorum in vitro and under greenhouse conditions. Seriation type of Aspergillus spp. correlates with conidiospores discharge as detected on the Petri glass lid. Members of Nigri section cover their conidial heads with hard shells after prolonged incubation. In addition, sporulation of the tested Aspergillus isolates is temperature sensitive as it becomes inhibited at low temperatures and the colonies become white. Examined Aspergillus spp. were neither infectious to legumes nor aflatoxigenic as confirmed by HPLC except for A. flavus and A. pseudoelegans which, secreted 5 and 1 ppm of aflatoxin B1, respectively. Co-inoculations of Sclerotinia’s mycelium or sclerotia with a spore suspension of Aspergillus spp. inhibited their germination on PDA at 18 °C and 28 °C, and halted disease onset on detached common bean and soybean leaves. Similarly, plants treated with A. japonicus and A. niger showed the highest survival rates compared to untreated plants. In conclusion, black Aspergillus spp. are efficient biocides and safe alternatives for the management of plant diseases, particularly in organic farms.
Collapse
|
36
|
Zhou H, Zhao D, Zhang S, Xue Q, Zhang M, Yu H, Zhou J, Li M, Kumar S, Xiang H. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ Microbiol 2022; 24:2239-2258. [PMID: 35048500 DOI: 10.1111/1462-2920.15899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
The KTK 4A-related Thermoplasmata thrives in the sediment of saline lakes; however, systematic research on its taxonomy, environmental adaptation and metabolism is lacking. Here, we detected this abundant lineage in the sediment of five artificially separated ponds (salinity 7.0%-33.0%) within a Chinese soda-saline lake using culture-independent metagenomics and archaeal 16S rRNA gene amplicons. The phylogenies based on the 16S rRNA gene, and 122 archaeal ubiquitous single-copy proteins and genome-level identity analyses among the metagenome-assembled genomes demonstrate this lineage forming a novel order, Candidatus Haloplasmatales, comprising four genera affiliated with the identical family. Isoelectric point profiles of predicted proteomes suggest that most members adopt the energetically favourable 'salt-in' strategy. Functional prediction indicates the lithoheterotrophic nature with the versatile metabolic potentials for carbohydrate and organic acids as well as carbon monoxide and hydrogen utilization. Additionally, hydrogenase genes hdrABC-mvhADG are linked with incomplete reductive citrate cycle genes in the genomes, suggesting their functional connection. Comparison with the coupling of HdrABC-MvhADG and methanogenesis pathway provides new insights into the compatibility of laterally acquired methanogenesis with energy metabolism in the related order Methanomassiliicoccales. Globally, our research sheds light on the taxonomy, environmental adaptative mechanisms, metabolic potentials and evolutional significance of Ca. Haloplasmatales.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Manqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Deroo W, De Troyer L, Dumoulin F, De Saeger S, De Boevre M, Vandenabeele S, De Gelder L, Audenaert K. A Novel In Planta Enrichment Method Employing Fusarium graminearum-Infected Wheat Spikes to Select for Competitive Biocontrol Bacteria. Toxins (Basel) 2022; 14:toxins14030222. [PMID: 35324719 PMCID: PMC8954829 DOI: 10.3390/toxins14030222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/26/2022] Open
Abstract
This work introduces an alternative workflow for the discovery of novel bacterial biocontrol agents in wheat against Fusarium head blight (FHB). Unlike the mass testing of isolate collections, we started from a diverse inoculum by extracting microbiomes from ears of field-grown plants at grain filling stage. Four distinct microbial communities were generated which were exposed to 3 14-day culture-independent experimental enrichments on detached wheat spikes infected with F. graminearum PH1. We found that one bacterial community reduced infection symptoms after 3 cycles, which was chosen to subsequently isolate bacteria through limiting dilution. All 94 isolates were tested in an in vitro and in planta assay, and a selection of 14 isolates was further tested on detached ears. The results seem to indicate that our enrichment approach resulted in bacteria with different modes-of-action in regard to FHB control. Erwinia persicina isolate C3 showed a significant reduction in disease severity (Fv/Fm), and Erwinia persicina C3 and Pseudomonas sp. B3 showed a significant reduction in fungal biomass (cGFP). However, the mycotoxin analysis of both these treatments showed no reduction in DON levels. Nevertheless, Pantoea ananatis H3 and H11 and Erwinia persicina H2 were able to reduce DON concentrations by more than 50%, although these effects were not statistically significant. Lastly, Erwinia persicina H2 also showed a significantly greater glucosylation of DON to the less phytotoxic DON-3G. The bacterial genera isolated through the enrichment cycles have been reported to dominate microbial communities that develop in open habitats, showing strong indications that the isolated bacteria can reduce the infection pressure of F. graminearum on the spike phyllosphere.
Collapse
Affiliation(s)
- Waldo Deroo
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Correspondence:
| | - Larissa De Troyer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.T.); (K.A.)
| | - Fréderic Dumoulin
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (F.D.); (S.D.S.); (M.D.B.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (F.D.); (S.D.S.); (M.D.B.)
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (F.D.); (S.D.S.); (M.D.B.)
| | | | - Leen De Gelder
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.T.); (K.A.)
| |
Collapse
|
38
|
Obando JMC, dos Santos TC, Bernardes M, Nascimento N, Villaça RC, Teixeira VL, Barbarino E, Cavalcanti DN. Chemical variation and analysis of diterpenes from seaweed Dictyota menstrualis under controlled conditions. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Antimicrobial Activity of Zymomonas mobilis Is Related to Its Aerobic Catabolism and Acid Resistance. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zymomonas mobilis is an ethanologenic, facultatively anaerobic alpha-proteobacterium, known for its inhibitory effect on the growth of a wide variety of microorganisms. This property might be interesting for the design of novel antimicrobials, yet it has negative implications for biotechnology, as it hinders the use of Z. mobilis as a producer microorganism in cocultivation. So far, the chemical nature of its inhibitory compound(s) has not been established. In the present study, we demonstrate that the putative inhibitor is a low-molecular-weight (below 3 kDa), thermostable compound, resistant to protease treatment, which is synthesized under aerobic conditions in Z. mobilis strains via the active respiratory chain. It is also synthesized by aerated nongrowing, glucose-consuming cells in the presence of chloramphenicol, thus ruling out its bacteriocin-like peptide nature. The inhibitory activity is pH-dependent and strongly correlated with the accumulation of propionate and acetate in the culture medium. Although, in Z. mobilis, the synthesis pathways of these acids still need to be identified, the acid production depends on respiration, and is much less pronounced in the non-respiring mutant strain, which shows low inhibitory activity. We conclude that propionate and acetate play a central role in the antimicrobial effects of Z. mobilis, which itself is known to bear high resistance to organic acids.
Collapse
|
40
|
Amundson KK, Borton MA, Daly RA, Hoyt DW, Wong A, Eder E, Moore J, Wunch K, Wrighton KC, Wilkins MJ. Microbial colonization and persistence in deep fractured shales is guided by metabolic exchanges and viral predation. MICROBIOME 2022; 10:5. [PMID: 35034639 PMCID: PMC8762873 DOI: 10.1186/s40168-021-01194-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Microbial colonization of subsurface shales following hydraulic fracturing offers the opportunity to study coupled biotic and abiotic factors that impact microbial persistence in engineered deep subsurface ecosystems. Shale formations underly much of the continental USA and display geographically distinct gradients in temperature and salinity. Complementing studies performed in eastern USA shales that contain brine-like fluids, here we coupled metagenomic and metabolomic approaches to develop the first genome-level insights into ecosystem colonization and microbial community interactions in a lower-salinity, but high-temperature western USA shale formation. RESULTS We collected materials used during the hydraulic fracturing process (i.e., chemicals, drill muds) paired with temporal sampling of water produced from three different hydraulically fractured wells in the STACK (Sooner Trend Anadarko Basin, Canadian and Kingfisher) shale play in OK, USA. Relative to other shale formations, our metagenomic and metabolomic analyses revealed an expanded taxonomic and metabolic diversity of microorganisms that colonize and persist in fractured shales. Importantly, temporal sampling across all three hydraulic fracturing wells traced the degradation of complex polymers from the hydraulic fracturing process to the production and consumption of organic acids that support sulfate- and thiosulfate-reducing bacteria. Furthermore, we identified 5587 viral genomes and linked many of these to the dominant, colonizing microorganisms, demonstrating the key role that viral predation plays in community dynamics within this closed, engineered system. Lastly, top-side audit sampling of different source materials enabled genome-resolved source tracking, revealing the likely sources of many key colonizing and persisting taxa in these ecosystems. CONCLUSIONS These findings highlight the importance of resource utilization and resistance to viral predation as key traits that enable specific microbial taxa to persist across fractured shale ecosystems. We also demonstrate the importance of materials used in the hydraulic fracturing process as both a source of persisting shale microorganisms and organic substrates that likely aid in sustaining the microbial community. Moreover, we showed that different physicochemical conditions (i.e., salinity, temperature) can influence the composition and functional potential of persisting microbial communities in shale ecosystems. Together, these results expand our knowledge of microbial life in deep subsurface shales and have important ramifications for management and treatment of microbial biomass in hydraulically fractured wells. Video Abstract.
Collapse
Affiliation(s)
- Kaela K. Amundson
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Mikayla A. Borton
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Rebecca A. Daly
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - David W. Hoyt
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | - Allison Wong
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | - Elizabeth Eder
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | | | | | - Kelly C. Wrighton
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Michael J. Wilkins
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
41
|
Zeng L, Huang J, Feng P, Zhao X, Si Z, Long X, Cheng Q, Yi Y. Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2022; 38:34. [PMID: 34989900 DOI: 10.1007/s11274-021-03222-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/26/2021] [Indexed: 12/23/2022]
Abstract
Formic acid is a representative small molecule acid in lignocellulosic hydrolysate that can inhibit the growth of Saccharomyces cerevisiae cells during alcohol fermentation. However, the mechanism of formic acid cytotoxicity remains largely unknown. In this study, RNA-Seq technology was used to study the response of S. cerevisiae to formic acid stress at the transcriptional level. Scanning electron microscopy and Fourier transform infrared spectroscopy were conducted to observe the surface morphology of yeast cells. A total of 1504 genes were identified as being differentially expressed, with 797 upregulated and 707 downregulated genes. Transcriptomic analysis showed that most genes related to glycolysis, glycogen synthesis, protein degradation, the cell cycle, the MAPK signaling pathway, and redox regulation were significantly induced under formic acid stress and were involved in protein translation and synthesis amino acid synthesis genes were significantly suppressed. Formic acid stress can induce oxidative stress, inhibit protein biosynthesis, cause cells to undergo autophagy, and activate the intracellular metabolic pathways of energy production. The increase of glycogen and the decrease of energy consumption metabolism may be important in the adaptation of S. cerevisiae to formic acid. In addition, formic acid can also induce sexual reproduction and spore formation. This study through transcriptome analysis has preliminarily reveal the molecular response mechanism of S. cerevisiae to formic acid stress and has provided a basis for further research on methods used to improve the tolerance to cell inhibitors in lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Lingjie Zeng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Jinxiang Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Pixue Feng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xuemei Zhao
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Zaiyong Si
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xiufeng Long
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Qianwei Cheng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Yi Yi
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China.
| |
Collapse
|
42
|
Aspergillus niger Culture Filtrate (ACF) Mediated Biocontrol of Enteric Pathogens in Wastewater. WATER 2022. [DOI: 10.3390/w14010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Robust control of pathogens in sewage facilitates safe reuse of wastewater rich in valuable nutrients for potential valorization through biological means. Aspergillus niger is widely reported in bioremediation of wastewater but studies on control of enteric pathogens in sewage are very sparse. So, this study aimed at exploring the antibacterial and nematicidal activity of A. niger culture filtrate (ACF). Antibacterial activity of ACF on enteric pathogens (Klebsiella pneumoniae, Pseudomonas aeruginosa, Vibrio cholerae, Salmonella enterica, Shigella dysenteriae, Escherichia coli, Staphylococcus aureus, Klebsiella variicola) was determined by spectrophotometric growth analysis, resazurin based viability assay and biofilm formation assay. ACF showed inhibition against all enteric pathogens except Pseudomonas aeruginosa. Nematicidal studies on Caenorhabditis elegans showed 85% egg hatch inhibition and 52% mortality of L1 larvae. Sewage treatment with ACF at 1:1 (v/v) showed 2–3 log reduction in coliforms, Klebsiella, Shigella, Salmonella, S. aureus and Vibrio except Pseudomonas, indicating significant alteration of complex microbial dynamics in wastewater. Application of ACF can potentially be used as a robust biocontrol strategy against infectious microbes in wastewater and subsequent valorization by cultivating beneficial Pseudomonas.
Collapse
|
43
|
Timmis K, Hallsworth JE. The darkest microbiome-a post-human biosphere. Microb Biotechnol 2022; 15:176-185. [PMID: 34843168 PMCID: PMC8719803 DOI: 10.1111/1751-7915.13976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/05/2023] Open
Abstract
Microbial technology is exceptional among human activities and endeavours in its range of applications that benefit humanity, even exceeding those of chemistry. What is more, microbial technologists are among the most creative scientists, and the scope of the field continuously expands as new ideas and applications emerge. Notwithstanding this diversity of applications, given the dire predictions for the fate of the surface biosphere as a result of current trajectories of global warming, the future of microbial biotechnology research must have a single purpose, namely to help secure the future of life on Earth. Everything else will, by comparison, be irrelevant. Crucially, microbes themselves play pivotal roles in climate (Cavicchioli et al., Nature Revs Microbiol 17: 569-586, 2019). To enable realization of their full potential in humanity's effort to survive, development of new and transformative global warming-relevant technologies must become the lynchpin of microbial biotechnology research and development. As a consequence, microbial biotechnologists must consider constraining their usual degree of freedom, and re-orienting their focus towards planetary-biosphere exigences. And they must actively seek alliances and synergies with others to get the job done as fast as humanly possible; they need to enthusiastically embrace and join the global effort, subordinating where necessary individual aspirations to the common good (the amazing speed with which new COVID-19 diagnostics and vaccines were developed and implemented demonstrates what is possible given creativity, singleness of purpose and funding). In terms of priorities, some will be obvious, others less so, with some only becoming revealed after dedicated effort yields new insights/opens new vistas. We therefore refrain from developing a priority list here. Rather, we consider what is likely to happen to the Earth's biosphere if we (and the rest of humanity) fail to rescue it. We do so with the aim of galvanizing the formulation and implementation of strategic and financial science policy decisions that will maximally stimulate the development of relevant new microbial technologies, and maximally exploit available technologies, to repair existing environmental damage and mitigate against future deterioration.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | | |
Collapse
|
44
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
45
|
Behind the nectar: the yeast community in bromeliads inflorescences after the exudate removal. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01728-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A. Phosphate solubilizing rhizobacteria isolated from jujube ziziphus lotus plant stimulate wheat germination rate and seedlings growth. PeerJ 2021; 9:e11583. [PMID: 34249493 PMCID: PMC8256818 DOI: 10.7717/peerj.11583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Jujube plant (Ziziphus lotus (L.) Desf.) can survive in arid climates and tolerates both biotic and abiotic stresses. Here, we isolated, for the first time in Morocco, nine phosphate solubilizing bacteria strains from jujube rhizosphere, designated J10 to J13, J15, & J153 to J156. Genotypic identification based on 16S rDNA sequencing, revealed six strains that belong to Pseudomonas (J10, J12, J13, J15, J153 and J154), two to Bacillus (J11 and J156), and one to Paenibacillus J155. Siderophores were produced by all strains. Proteases activity was missing in Pseudomonas sp. J153 & J154, whereas cellulase was restricted only to Pseudomonas sp. J10, Paenibacillus xylanexedens J155 and Bacillus cereus J156. Indole-3- acetic acid and ammonia were also produced by all strains, with a maxima of 204.28 µg mL−1 in Bacillus megaterium J11 and 0.33 µmol mL−1 in Pseudomonas sp. J153, respectively. Pseudomonas sp. J10 and B. cereus J156 grew on plates containing 1,500 µg mL−1 of nickel nitrate, while Pseudomonas sp. J153 withstood 1,500 µg mL−1 of either copper sulfate or cadmium sulfate. Phenotypic analysis of the potential of the isolates to promote early plant growth showed that wheat seeds inoculated with either P. moraviensis J12 or B. cereus J156 remarkably increased germination rate and seedlings growth. Lastly, antibiotic resistance profiling revealed that except for Pseudomonas sp. J11 and B. cereus J156, remaining strains displayed resistance at least to one of tested antibiotics. Collectively, Pseudomonas sp. J10, P. moraviensis J12, Pseudomonas sp. J153 and B. cereus J156, represent potential biofertilizers suitable for soils that are poor in P, and/or heavy metals contaminated.
Collapse
Affiliation(s)
- Nidal Fahsi
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Laboratory of Biologie & Sante, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Ismail Mahdi
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Laboratory of Microbial Biotechnologies, Agrobiosciences and Environement (BioMAgE), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biologie & Sante, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Latefa Biskri
- Molecular Microbiology laboratory, Coalition Center of Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.,African Genome Center (AGC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Abdelmounaaim Allaoui
- Molecular Microbiology laboratory, Coalition Center of Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
47
|
Abstract
Infections due to Aspergillus species are an acute threat to human health; members of the Aspergillus section Fumigati are the most frequently occurring agents, but depending on the local epidemiology, representatives of section Terrei or section Flavi are the second or third most important. Aspergillus terreus species complex is of great interest, as it is usually amphotericin B resistant and displays notable differences in immune interactions in comparison to Aspergillus fumigatus. The latest epidemiological surveys show an increased incidence of A. terreus as well as an expanding clinical spectrum (chronic infections) and new groups of at-risk patients being affected. Hallmarks of these non-Aspergillus fumigatus invasive mold infections are high potential for tissue invasion, dissemination, and possible morbidity due to mycotoxin production. We seek to review the microbiology, epidemiology, and pathogenesis of A. terreus species complex, address clinical characteristics, and highlight the underlying mechanisms of amphotericin B resistance. Selected topics will contrast key elements of A. terreus with A. fumigatus. We provide a comprehensive resource for clinicians dealing with fungal infections and researchers working on A. terreus pathogenesis, aiming to bridge the emerging translational knowledge and future therapeutic challenges on this opportunistic pathogen.
Collapse
|
48
|
Oliveira LA, Macedo MM, Rodrigues JLS, Lima ES, Hamill PG, Dallas TD, Lima MP, Souza ES, Hallsworth JE, Souza JVB. Plant metabolite 5-pentadecyl resorcinol is produced by the Amazonian fungus Penicillium sclerotiorum LM 5679. BRAZ J BIOL 2021; 82:e241863. [PMID: 34133562 DOI: 10.1590/1519-6984.241863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 11/21/2022] Open
Abstract
Since the classic studies of Alexander Flemming, Penicillium strains have been known as a rich source of antimicrobial substances. Recent studies have identified novel metabolites produced by Penicillium sclerotiorum that have antibacterial, antifouling and pharmaceutical activities. Here, we report the isolation of a P. sclerotiorum (LM 5679) from Amazonian soil and carry out a culture-based study to determine whether it can produce any novel secondary metabolite(s) that are not thus-far reported for this genus. Using a submerged culture system, secondary metabolites were recovered by solvent extract followed by thin-layer chromatography, nuclear magnetic resonance, and mass spectroscopy. One novel secondary metabolite was isolated from P. sclerotiorum (LM 5679); the phenolic compound 5-pentadecyl resorcinol widely known as an antifungal, that is produced by diverse plant species. This metabolite was not reported previously in any Penicillium species and was only found once before in fungi (that time, in a Fusarium). Here, we discuss the known activities of 5-pentadecyl resorcinol in the context of its mode-of-action as a hydrophobic (chaotropicity-mediated) stressor.
Collapse
Affiliation(s)
- L A Oliveira
- Universidade do Estado do Amazonas - UEA, Manaus, AM, Brasil
| | - M M Macedo
- Centro Universitário do Norte - UNINORTE, Manaus, AM, Brasil
| | - J L S Rodrigues
- Instituto Nacional de Pesquisas da Amazônia - INPA, Departamento de Produtos Naturais, Manaus, AM, Brasil
| | - E S Lima
- Universidade Federal do Amazonas - UFAM, Manaus, AM, Brasil
| | - P G Hamill
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, UK
| | - T D Dallas
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, UK
| | - M P Lima
- Instituto Nacional de Pesquisas da Amazônia - INPA, Departamento de Produtos Naturais, Manaus, AM, Brasil
| | - E S Souza
- Universidade do Estado do Amazonas - UEA, Manaus, AM, Brasil
| | - J E Hallsworth
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, UK
| | - J V B Souza
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Micologia, Manaus, AM, Brasil
| |
Collapse
|
49
|
Thompson TP, Kelly SA, Skvortsov T, Plunkett G, Ruffell A, Hallsworth JE, Hopps J, Gilmore BF. Microbiology of a
NaCl
stalactite ‘salticle’ in Triassic halite. Environ Microbiol 2021; 23:3881-3895. [DOI: 10.1111/1462-2920.15524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas P. Thompson
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Stephen A. Kelly
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Timofey Skvortsov
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
| | - Gill Plunkett
- School of Natural and Built Environment, Department of Archaeology, Geography and Palaeoecology Queen's University Belfast Belfast BT7 1NN UK
| | - Alastair Ruffell
- School of Natural and Built Environment, Department of Archaeology, Geography and Palaeoecology Queen's University Belfast Belfast BT7 1NN UK
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast BT9 5DL UK
| | - Jason Hopps
- Irish Salt Mining & Exploration Company Ltd. Carrickfergus BT38 9BT UK
| | - Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy Queen's University Belfast, Medical Biology Centre Belfast BT9 7BL UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast BT9 5DL UK
| |
Collapse
|
50
|
Viver T, Conrad RE, Orellana LH, Urdiain M, González-Pastor JE, Hatt JK, Amann R, Antón J, Konstantinidis KT, Rosselló-Móra R. Distinct ecotypes within a natural haloarchaeal population enable adaptation to changing environmental conditions without causing population sweeps. THE ISME JOURNAL 2021; 15:1178-1191. [PMID: 33342997 PMCID: PMC8182817 DOI: 10.1038/s41396-020-00842-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Microbial communities thriving in hypersaline brines of solar salterns are highly resistant and resilient to environmental changes, and salinity is a major factor that deterministically influences community structure. Here, we demonstrate that this resilience occurs even after rapid osmotic shocks caused by a threefold change in salinity (a reduction from 34 to 12% salts) leading to massive amounts of archaeal cell lysis. Specifically, our temporal metagenomic datasets identified two co-occurring ecotypes within the most dominant archaeal population of the brines Haloquadratum walsbyi that exhibited different salt concentration preferences. The dominant ecotype was generally more abundant and occurred in high-salt conditions (34%); the low abundance ecotype always co-occurred but was enriched at salinities around 20% or lower and carried unique gene content related to solute transport and gene regulation. Despite their apparent distinct ecological preferences, the ecotypes did not outcompete each other presumably due to weak functional differentiation between them. Further, the osmotic shock selected for a temporal increase in taxonomic and functional diversity at both the Hqr. walsbyi population and whole-community levels supporting the specialization-disturbance hypothesis, that is, the expectation that disturbance favors generalists. Altogether, our results provide new insights into how intraspecies diversity is maintained in light of substantial gene-content differences and major environmental perturbations.
Collapse
Affiliation(s)
- Tomeu Viver
- grid.466857.e0000 0000 8518 7126Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Roth E. Conrad
- grid.213917.f0000 0001 2097 4943School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Luis H. Orellana
- grid.419529.20000 0004 0491 3210Department of Molecular Ecology, Max-Planck-Institut für Marine Mikrobiologie, Bremen, D-28359 Germany
| | - Mercedes Urdiain
- grid.466857.e0000 0000 8518 7126Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - José E. González-Pastor
- grid.462011.00000 0001 2199 0769Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología, Consejo Superior de Investigaciones Científicas—Instituto Nacional de Técnica Aeroespacial, Madrid, Spain
| | - Janet K. Hatt
- grid.213917.f0000 0001 2097 4943School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Rudolf Amann
- grid.419529.20000 0004 0491 3210Department of Molecular Ecology, Max-Planck-Institut für Marine Mikrobiologie, Bremen, D-28359 Germany
| | - Josefa Antón
- grid.5268.90000 0001 2168 1800Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Konstantinos T. Konstantinidis
- grid.213917.f0000 0001 2097 4943School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Ramon Rosselló-Móra
- grid.466857.e0000 0000 8518 7126Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| |
Collapse
|