1
|
Genitsaris S, Stefanidou N, Kourkoutmani P, Michaloudi E, Gros M, García-Gómez E, Petrović M, Ntziachristos L, Moustaka-Gouni M. Do coastal bacterioplankton communities hold the molecular key to the rapid biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) from shipping scrubber effluent? ENVIRONMENTAL RESEARCH 2025; 277:121563. [PMID: 40203979 DOI: 10.1016/j.envres.2025.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Shipping scrubber effluents, containing a cocktail of Polycyclic Aromatic Hydrocarbons (PAHs), show undisputed effects at single-species experiments while PAHs fate in the marine environment after effluent discharge is still investigated. Bacterioplankton, composed of abundant diverse taxa with xenobiotic-degrading capabilities, are the first responders to scrubber emissions and can affect PAHs impacts on marine life. This work aims to examine the fate of scrubber effluent PAHs and alkyl-PAHs in mesocosms of coastal bacterioplankton communities from a pristine (phytoplankton carbon biomass was 8.16 μg C L-1) and a eutrophic (105.35 μg C L-1) coastal site. High-throughput 16S rRNA metabarcoding revealed differential responses of the bacterioplankton linked to their initial community structure and population abundances. Taxa known for their PAHs-degrading capacity were retrieved, including the genera Roseobacter, Porticoccus, Marinomonas, Arcobacter, Lentibacter, Lacinutrix, Pseudospirillum, Glaciecola, Vibrio, Marivita, and Mycobacterium, and were found to have increased roles in shifted communities by increasing their relative abundances at least 5-fold in treatments with high scrubber effluent additions. Additionally, metagenomic analysis of shotgun sequencing, indicated an increase on the number of Clusters of Orthologous Genes (COGs) associated with pathways involved in PAHs degradation. Up to 198 more COGs involved in signal transduction were retrieved in scrubber effluent enriched mesocosms compared to controls, while 15, 86, and 136 more COGs associated with naphthalene, aromatic compound, and benzoate degradation, respectively, were detected in the pristine mesocosms after effluent additions. In both experiments, bacterioplankton responses towards xenobiotic degradation under increased PAHs and alkyl-PAHs were coupled with a drop in their concentrations, below the limit of detection by Day 3 of the experiment in the eutrophic community, and by half in Day 6 in the pristine environment's community. Our findings indicate that PAHs and alkyl-PAHs impacts can be rapidly reduced in natural systems of high bacterial activity.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Polyxeni Kourkoutmani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evangelia Michaloudi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Elisa García-Gómez
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Leonidas Ntziachristos
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
2
|
Qiao Y, Xu W, Kong L, Shen M, Wang S, Sun Y, Gao Y, Jiang Q, Xue J, Cheng D, Liu Y. Bacterial specialists playing crucial roles in maintaining system stability and governing microbial diversity in bioremediation of oil-polluted sediments under typical deep-sea condition. BIORESOURCE TECHNOLOGY 2024; 413:131498. [PMID: 39299343 DOI: 10.1016/j.biortech.2024.131498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Ecologically, interactions and contributions of microbiota generalists and specialists remain largely unexplored in remediation of deep-sea oil pollution. Herein, ecological and evolutionary characteristics of the two taxa were comprehensively investigated in restoration of oil-polluted sediment at deep-sea microcosm. Niche-specialized taxa exhibited rapid speciation rate, more complex network structure and highly interspecific mutualism. In contrast, generalists possessed higher richness but with poor local performance, as evidenced by higher extinction rate, lower stability, and more interspecific antagonism. Generalists were the primary oil degraders, while specialists acted as auxiliaries promoting degradation via production of biofilm and biosurfactant. Evolutionarily, the continuous transition from specialists to generalists insured the exclusion of generalist at a relatively constant level for ecological trade-offs. Collectively, the findings emphasize the importance of specialists in facilitating oil degradation by elucidating their vital roles in maintaining system stability and regulating microbial diversity during process, and offer valuable guidance for designing remediation plans.
Collapse
Affiliation(s)
- Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wenhui Xu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Qingdao UPC Environmental & Safety Technology Center Company Limited, Qingdao, Shandong 266555, China
| | - Lingbing Kong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Mingan Shen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shuo Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yudi Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuyang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
3
|
Lin R, Li H, Wu H, Ren H, Kong X, Lu Z. Resting for viability: Gordonia polyisoprenivorans ZM27, a robust generalist for petroleum bioremediation under hypersaline stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124618. [PMID: 39067736 DOI: 10.1016/j.envpol.2024.124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The intrinsic issue associated with the application of microbes for practical pollution remediation involves maintaining the expected activity of engaged strains or consortiums as effectively as that noted under laboratory conditions. Faced with various stress factors, degraders with dormancy ability are more likely to survive and exhibit degradation activity. In this study, a hydrocarbonoclastic and halotolerant strain, Gordonia polyisoprenivorans ZM27, was isolated via stimulation with resuscitation-promoting factor (Rpf). Long-term exposure to dual stresses of 10% NaCl and starvation induced ZM27 to enter a viable but nonculturable (VBNC)-like state, and ZM27 cells could be resuscitated upon Rpf stimulation. Notable changes in both morphological and physiological characteristics between VBNC-like ZM27 cells and resuscitated cells confirmed the response to Rpf and their robust resistance against harsh environments. Whole-genome sequencing and analysis indicated ZM27 could be a generalist degrader with dormancy ability. Subsequently, VBNC-like ZM27 was applied in a soil microcosm experiment to investigate the practical application potential under harsh conditions. VBNC-like ZM27 combined with Rpf stimulation exhibited the most effective biodegradation performance, and the initial n-hexadecane content (1000 mg kg-1) decreased by 63.29% after 14-day incubation. Based on 16S rRNA amplicon sequencing and analysis, Gordonia exhibited a positive response to Rpf stimulation. The relative abundance of genus Gordonia was negatively correlated with that of Alcanivorax, a genus of obligate hydrocarbon degrader with the greatest abundance during soil incubation. Based on the degradation profile and community analysis, generalist Gordonia may be more efficient in hydrocarbon degradation than specialist Alcanivorax under harsh conditions. The characteristics of ZM27, including its sustainable culturability under long-term stress, response to Rpf and robust performance in soil microcosms, are valuable for the remediation of petroleum pollution under stressful conditions. Our work validated the importance of dormancy and highlighted the underestimated role of low-activity degraders in petroleum remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Romera‐Castillo C, Birnstiel S, Sebastián M. Diversity of marine bacteria growing on leachates from virgin and weathered plastic: Insights into potential degraders. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13305. [PMID: 38923399 PMCID: PMC11194452 DOI: 10.1111/1758-2229.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Plastic debris in the ocean releases chemical compounds that can be toxic to marine fauna. It was recently found that some marine bacteria can degrade such leachates, but information on the diversity of these bacteria is mostly lacking. In this study, we analysed the bacterial diversity growing on leachates from new low-density polyethylene (LDPE) and a mix of naturally weathered plastic, collected from beach sand. We used a combination of Catalysed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH), BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT), and 16S rRNA gene amplicon sequencing to analyse bacterioplankton-groups specific activity responses and the identity of the responsive taxa to plastic leachates produced under irradiated and non-irradiated conditions. We found that some generalist taxa responded to all leachates, most of them belonging to the Alteromonadales, Oceanospirillales, Nitrosococcales, Rhodobacterales, and Sphingomonadales orders. However, there were also non-generalist taxa responding to specific irradiated and non-irradiated leachates. Our results provide information about bacterial taxa that could be potentially used to degrade the chemicals released during plastic degradation into seawater contributing to its bioremediation.
Collapse
|
5
|
Genitsaris S, Stefanidou N, Hatzinikolaou D, Kourkoutmani P, Michaloudi E, Voutsa D, Gros M, García-Gómez E, Petrović M, Ntziachristos L, Moustaka-Gouni M. Marine Microbiota Responses to Shipping Scrubber Effluent Assessed at Community Structure and Function Endpoints. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38415986 DOI: 10.1002/etc.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;00:1-18. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Hatzinikolaou
- Department of Botany, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Polyxeni Kourkoutmani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Michaloudi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona (UdG), Girona, Spain
| | - Elisa García-Gómez
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona (UdG), Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Leonidas Ntziachristos
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Bharali P, Gogoi B, Sorhie V, Acharjee SA, Walling B, Alemtoshi, Vishwakarma V, Shah MP. Autochthonous psychrophilic hydrocarbonoclastic bacteria and its ecological function in contaminated cold environments. Biodegradation 2024; 35:1-46. [PMID: 37436665 DOI: 10.1007/s10532-023-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.
Collapse
Affiliation(s)
- Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Maulin Pramod Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab at Enviro Technology Ltd., Ankleshwar, Gujarat, India
| |
Collapse
|
7
|
Almeda R, Rist S, Christensen AM, Antoniou E, Parinos C, Olsson M, Young CM. Crude Oil and Its Burnt Residues Induce Metamorphosis in Marine Invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19304-19315. [PMID: 37963269 DOI: 10.1021/acs.est.3c05194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Metamorphosis is a critical process in the life cycle of most marine benthic invertebrates, determining their transition from plankton to benthos. It affects dispersal and settlement and therefore decisively influences the dynamics of marine invertebrate populations. An extended period of metamorphic competence is an adaptive feature of numerous invertebrate species that increases the likelihood of finding a habitat suitable for settlement and survival. We found that crude oil and residues of burnt oil rapidly induce metamorphosis in two different marine invertebrate larvae, a previously unknown sublethal effect of oil pollution. When exposed to environmentally realistic oil concentrations, up to 84% of tested echinoderm larvae responded by undergoing metamorphosis. Similarly, up to 87% of gastropod larvae metamorphosed in response to burnt oil residues. This study demonstrates that crude oil and its burned residues can act as metamorphic inducers in marine planktonic larvae, short-circuiting adaptive metamorphic delay. Future studies on molecular pathways and oil-bacteria-metamorphosis interactions are needed to fully understand the direct or indirect mechanisms of oil-induced metamorphosis in marine invertebrates. With 90% of chronic oiling occurring in coastal areas, this previously undescribed impact of crude oil on planktonic larvae may have global implications for marine invertebrate populations and biodiversity.
Collapse
Affiliation(s)
- Rodrigo Almeda
- EOMAR-ECOAQUA, University of Las Palmas de Gran Canaria, 35017 Tafira Baja, Las Palmas, Spain
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
| | - Sinja Rist
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
- Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon 97420,United States
| | - Anette M Christensen
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
| | - Eleftheria Antoniou
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
- School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Constantine Parinos
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 19013 Anavyssos, Attiki, Greece
| | - Mikael Olsson
- DTU Sustain, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Craig M Young
- Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon 97420,United States
| |
Collapse
|
8
|
Vázquez Rosas Landa M, De Anda V, Rohwer RR, Angelova A, Waldram G, Gutierrez T, Baker BJ. Exploring novel alkane-degradation pathways in uncultured bacteria from the North Atlantic Ocean. mSystems 2023; 8:e0061923. [PMID: 37702502 PMCID: PMC10654063 DOI: 10.1128/msystems.00619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE Petroleum pollution in the ocean has increased because of rapid population growth and modernization, requiring urgent remediation. Our understanding of the metabolic response of native microbial communities to oil spills is not well understood. Here, we explored the baseline hydrocarbon-degrading communities of a subarctic Atlantic region to uncover the metabolic potential of the bacteria that inhabit the surface and subsurface water. We conducted enrichments with a 13C-labeled hydrocarbon to capture the fraction of the community actively using the hydrocarbon. We then combined this approach with metagenomics to identify the metabolic potential of this hydrocarbon-degrading community. This revealed previously undescribed uncultured bacteria with unique metabolic mechanisms involved in aerobic hydrocarbon degradation, indicating that temperature may be pivotal in structuring hydrocarbon-degrading baseline communities. Our findings highlight gaps in our understanding of the metabolic complexity of hydrocarbon degradation by native marine microbial communities.
Collapse
Affiliation(s)
- Mirna Vázquez Rosas Landa
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
- Instituto de Ciencias del Mar y Limnologia Universidad Nacional Autónoma de Mexico, Unidad Académica de Ecologia y Biodiversidad Acuática, Mexico City, Mexico
| | - Valerie De Anda
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Robin R. Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Angelina Angelova
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, Edinburgh, United Kingdom
| | - Georgia Waldram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, Edinburgh, United Kingdom
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, Edinburgh, United Kingdom
| | - Brett J. Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
9
|
Singleton SL, Davis EW, Arnold HK, Daniels AMY, Brander SM, Parsons RJ, Sharpton TJ, Giovannoni SJ. Identification of rare microbial colonizers of plastic materials incubated in a coral reef environment. Front Microbiol 2023; 14:1259014. [PMID: 37869676 PMCID: PMC10585116 DOI: 10.3389/fmicb.2023.1259014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Plastic waste accumulation in marine environments has complex, unintended impacts on ecology that cross levels of community organization. To measure succession in polyolefin-colonizing marine bacterial communities, an in situ time-series experiment was conducted in the oligotrophic coastal waters of the Bermuda Platform. Our goals were to identify polyolefin colonizing taxa and isolate bacterial cultures for future studies of the biochemistry of microbe-plastic interactions. HDPE, LDPE, PP, and glass coupons were incubated in surface seawater for 11 weeks and sampled at two-week intervals. 16S rDNA sequencing and ATR-FTIR/HIM were used to assess biofilm community structure and chemical changes in polymer surfaces. The dominant colonizing taxa were previously reported cosmopolitan colonizers of surfaces in marine environments, which were highly similar among the different plastic types. However, significant differences in rare community composition were observed between plastic types, potentially indicating specific interactions based on surface chemistry. Unexpectedly, a major transition in community composition occurred in all material treatments between days 42 and 56 (p < 0.01). Before the transition, Alteromonadaceae, Marinomonadaceae, Saccharospirillaceae, Vibrionaceae, Thalassospiraceae, and Flavobacteriaceae were the dominant colonizers. Following the transition, the relative abundance of these taxa declined, while Hyphomonadaceae, Rhodobacteraceae and Saprospiraceae increased. Over the course of the incubation, 8,641 colonizing taxa were observed, of which 25 were significantly enriched on specific polyolefins. Seven enriched taxa from families known to include hydrocarbon degraders (Hyphomonadaceae, Parvularculaceae and Rhodobacteraceae) and one n-alkane degrader (Ketobacter sp.). The ASVs that exhibited associations with specific polyolefins are targets of ongoing investigations aimed at retrieving plastic-degrading microbes in culture.
Collapse
Affiliation(s)
| | - Edward W. Davis
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Holly K. Arnold
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - Susanne M. Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, United States
| | | | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
10
|
Rodriguez KND, Santos RT, Nagpala MJM, Opulencia RB. Metataxonomic Characterization of Enriched Consortia Derived from Oil Spill-Contaminated Sites in Guimaras, Philippines, Reveals Major Role of Klebsiella sp. in Hydrocarbon Degradation. Int J Microbiol 2023; 2023:3247448. [PMID: 37790200 PMCID: PMC10545452 DOI: 10.1155/2023/3247448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Oil spills are major anthropogenic disasters that cause serious harm to marine environments. In the Philippines, traditional methods of rehabilitating oil-polluted areas were proven to be less efficient and cause further damage to the environment. Microbial degradation has poised itself to be a promising alternative to those traditional methods in remediating oil spills. Hence, the present study aimed to enrich and characterize hydrocarbon-degrading microbial consortia from oil-contaminated regions in Guimaras Island for potential use in bioremediation. A total of 75 soil samples were obtained and used as inoculum for the enrichment for hydrocarbon degraders. Afterwards, 32 consortia were recovered and subjected to the 2,6-DCPIP assay for biodegradation ability on four types of hydrocarbons: diesel, xylene, hexane, and hexadecane. The consortia that obtained the highest percent degradation for each of the four hydrocarbons were "B2" (92.34% diesel degraded), "A5" (85.55% hexadecane degraded), "B1" (74.33% hexane degraded), and "B7" (63.38% xylene degraded). Illumina MiSeq 16S rRNA gene amplicon sequencing revealed that the dominant phyla in all consortia are Pseudomonadota (previously Proteobacteria), followed by Bacillota (previously Firmicutes). Overall, the amplicon sequence variants (ASVs) retrieved were mainly from the Gammaproteobacteria class, in which many hydrocarbon-degrading bacteria are found. Predictive functional profiling of the consortium showed the presence of genes involved in the degradation of recalcitrant hydrocarbon pollutants. Fatty acid metabolism, which includes alkB (alkane-1-monooxygenase) and genes for beta oxidation, was inferred to be the most abundant amongst all hydrocarbon degradation pathways. Klebsiella sp. is the predominant ASV in all the sequenced consortia as well as the major contributor of hydrocarbon degradation genes. The findings of the study can serve as groundwork for the development of hydrocarbon-degrading bacterial consortia for the bioremediation of oil spill-affected areas in the Philippines. Likewise, this paper provides a basis for further investigation into the role of Klebsiella sp. in the bioremediation of hydrocarbon pollutants.
Collapse
Affiliation(s)
| | - Russel T. Santos
- Genetics and Molecular Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031, Los Baños, Philippines
| | - Michael Joseph M. Nagpala
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031, Los Baños, Philippines
| | - Rina B. Opulencia
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031, Los Baños, Philippines
| |
Collapse
|
11
|
Frates ES, Spietz RL, Silverstein MR, Girguis P, Hatzenpichler R, Marlow JJ. Natural and anthropogenic carbon input affect microbial activity in salt marsh sediment. Front Microbiol 2023; 14:1235906. [PMID: 37744927 PMCID: PMC10512730 DOI: 10.3389/fmicb.2023.1235906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Salt marshes are dynamic, highly productive ecosystems positioned at the interface between terrestrial and marine systems. They are exposed to large quantities of both natural and anthropogenic carbon input, and their diverse sediment-hosted microbial communities play key roles in carbon cycling and remineralization. To better understand the effects of natural and anthropogenic carbon on sediment microbial ecology, several sediment cores were collected from Little Sippewissett Salt Marsh (LSSM) on Cape Cod, MA, USA and incubated with either Spartina alterniflora cordgrass or diesel fuel. Resulting shifts in microbial diversity and activity were assessed via bioorthogonal non-canonical amino acid tagging (BONCAT) combined with fluorescence-activated cell sorting (FACS) and 16S rRNA gene amplicon sequencing. Both Spartina and diesel amendments resulted in initial decreases of microbial diversity as well as clear, community-wide shifts in metabolic activity. Multi-stage degradative frameworks shaped by fermentation were inferred based on anabolically active lineages. In particular, the metabolically versatile Marinifilaceae were prominent under both treatments, as were the sulfate-reducing Desulfovibrionaceae, which may be attributable to their ability to utilize diverse forms of carbon under nutrient limited conditions. By identifying lineages most directly involved in the early stages of carbon processing, we offer potential targets for indicator species to assess ecosystem health and highlight key players for selective promotion of bioremediation or carbon sequestration pathways.
Collapse
Affiliation(s)
- Erin S. Frates
- Department of Biology, Boston University, Boston, MA, United States
| | - Rachel L. Spietz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | | | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
| | | |
Collapse
|
12
|
Jeong G, Kim HJ, Kim KE, Kim YJ, Lee TK, Shim WJ, Jung SW. Selective attachment of prokaryotes and emergence of potentially pathogenic prokaryotes on four plastic surfaces: Adhesion study in a natural marine environment. MARINE POLLUTION BULLETIN 2023; 193:115149. [PMID: 37336046 DOI: 10.1016/j.marpolbul.2023.115149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
This study employed 16S rRNA metabarcoding to establish the diversity of prokaryotic communities and specific characteristics of potentially pathogenic prokaryotic primary colonizers of four plastic materials (EPS, expanded polystyrene; PE, polyethylene; PP, polypropylene; and PET, polyethylene terephthalate). Bacteria inhabiting plastic and seawater differ; thus, distinct changes in the attached prokaryotic community were observed over an exposure time of 21 days, specifically on Days 3, 6, 9, and 12-21. Frist colonizers were Gammaproteobacteria and Alphaproteobacteria; Bacilli and Clostridia represented secondary colonizers. On Day 3, Pseudoalteromonas had a relative abundance >80 %; whereas, the prevalence of Vibrio spp. (potentially pathogenic prokaryotes) increased rapidly on Days 6 and 9. However, after Day 12, the prevalence of other potential pathogens, namely, Clostridium spp., steadily increased. Despite the diversity of the plastic surfaces, attached prokaryotes changed over time instead of showing similar adherent diversity in all plastic materials.
Collapse
Affiliation(s)
- Gaeul Jeong
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Risk Assessment Research Centre, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Won Joon Shim
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Risk Assessment Research Centre, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
13
|
Álvarez-Barragán J, Cravo-Laureau C, Xiong B, Wick LY, Duran R. Marine Fungi Select and Transport Aerobic and Anaerobic Bacterial Populations from Polycyclic Aromatic Hydrocarbon-Contaminated Sediments. mBio 2023; 14:e0276122. [PMID: 36786561 PMCID: PMC10127579 DOI: 10.1128/mbio.02761-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
The organization of microbial communities in marine sediment relies on complex biotic and abiotic interactions. Among them, the interaction between fungi and bacteria plays a crucial role building specific microbial assemblages, resulting in metabolic networks adapted to environmental conditions. The fungal-bacterial interaction (FBI) includes bacterial translocation via fungal mycelia, allowing bacterial dispersion, and ecological niche colonization. In order to demonstrate that the translocation of bacteria through fungal mycelia involves bacterial selection, the mycelia of two fungi isolated from marine coastal sediment, Alternaria destruens F10.81 and Fusarium pseudonygamai F5.76, showing different strategies for uptake of polycyclic aromatic hydrocarbon (PAH), homogenous internalization and vacuole forming respectively, were used to translocate bacteria through hydrophobic hydrocarbon contaminated sediments. A. destruens F10.81 selected four specific bacteria, while bacterial selection by F. pseudonygamai F5.76 was not evident. Among the bacteria selected by A. destruens F10.81, Spirochaeta litoralis, known as strictly anaerobic bacterium, was identified, indicating that A. destruens F10.81 selects and transports both aerobic and anaerobic bacteria. Such a result is consistent with the observed formation of anoxic micro-niches in areas surrounding and affected by fungal hyphae. Our findings provide new insights on the selection and dispersion of bacterial communities by fungi, which are crucial for the organization of microbial communities and their functioning in coastal PAH-contaminated sediments. IMPORTANCE The study provides advances for understanding fungal-bacterial relationships, particularly on the selection and dispersion of bacterial communities by fungi, which are crucial for the organization of microbial communities and their functioning in coastal PAH-contaminated sediments. The transportation of bacteria via fungal hyphae (fungal highway) results in bacterial selection; in particular, fungal hyphae offer adequate conditions for the transport of both aerobic and anaerobic bacteria through hydrophobic patches for the colonization of novel niches.
Collapse
Affiliation(s)
| | | | - Bijing Xiong
- Helmholtz Centre for Environmental Research–UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research–UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Robert Duran
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
14
|
Lalzar M, Zvi-Kedem T, Kroin Y, Martinez S, Tchernov D, Meron D. Sediment Microbiota as a Proxy of Environmental Health: Discovering Inter- and Intrakingdom Dynamics along the Eastern Mediterranean Continental Shelf. Microbiol Spectr 2023; 11:e0224222. [PMID: 36645271 PMCID: PMC9927165 DOI: 10.1128/spectrum.02242-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sedimentary marine habitats are the largest ecosystem on our planet in terms of area. Marine sediment microbiota govern most of the benthic biological processes and therefore are responsible for much of the global biogeochemical activity. Sediment microbiota respond, even rapidly, to natural change in environmental conditions as well as disturbances of anthropogenic sources. The latter greatly impact the continental shelf. Characterization and monitoring of the sediment microbiota may serve as an important tool for assessing environmental health and indicate changes in the marine ecosystem. This study examined the suitability of marine sediment microbiota as a bioindicator for environmental health in the eastern Mediterranean Sea. Integration of information from Bacteria, Archaea, and Eukaryota enabled robust assessment of environmental factors controlling sediment microbiota composition: seafloor-depth (here representing sediment grain size and total organic carbon), core depth, and season (11%, 4.2%, and 2.5% of the variance, respectively). Furthermore, inter- and intrakingdom cooccurrence patterns indicate that ecological filtration as well as stochastic processes may control sediment microbiota assembly. The results show that the sediment microbiota was robust over 3 years of sampling, in terms of both representation of region (outside the model sites) and robustness of microbial markers. Furthermore, anthropogenic disturbance was reflected by significant transformations in sediment microbiota. We therefore propose sediment microbiota analysis as a sensitive approach to detect disturbances, which is applicable for long-term monitoring of marine environmental health. IMPORTANCE Analysis of data, curated over 3 years of sediment sampling, improves our understanding of microbiota assembly in marine sediment. Furthermore, we demonstrate the importance of cross-kingdom integration of information in the study of microbial community ecology. Finally, the urgent need to propose an applicable approach for environmental health monitoring is addressed here by establishment of sediment microbiota as a robust and sensitive model.
Collapse
Affiliation(s)
- Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Yael Kroin
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Stephane Martinez
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Kokate PP, Bales E, Joyner D, Hazen TC, Techtmann SM. Biogeographic patterns in populations of marine Pseudoalteromonas atlantica isolates. FEMS Microbiol Lett 2023; 370:fnad081. [PMID: 37573136 DOI: 10.1093/femsle/fnad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023] Open
Abstract
Intra-specific genomic diversity is well documented in microbes. The question, however, remains whether natural selection or neutral evolution is the major contributor to this diversity. We undertook this study to estimate genomic diversity in Pseudoalteromonas atlantica populations and whether the diversity, if present, could be attributed to environmental factors or distance effects. We isolated and sequenced twenty-three strains of P. atlantica from three geographically distant deep marine basins and performed comparative genomic analyses to study the genomic diversity of populations among these basins. Average nucleotide identity followed a strictly geographical pattern. In two out of three locations, the strains within the location exhibited >99.5% identity, whereas, among locations, the strains showed <98.11% identity. Phylogenetic and pan-genome analysis also reflected the biogeographical separation of the strains. Strains from the same location shared many accessory genes and clustered closely on the phylogenetic tree. Phenotypic diversity between populations was studied in ten out of twenty-three strains testing carbon and nitrogen source utilization and osmotolerance. A genetic basis for phenotypic diversity could be established in most cases but was apparently not influenced by local environmental conditions. Our study suggests that neutral evolution may have a substantial role in the biodiversity of P. atlantica.
Collapse
Affiliation(s)
- Prajakta P Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States
| | - Erika Bales
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Dominique Joyner
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Terry C Hazen
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States
| |
Collapse
|
16
|
Ryther CM, Ortmann AC, Wohlgeschaffen G, Robinson BJ. Temperate Coastal Microbial Communities Rapidly Respond to Low Concentrations of Partially Weathered Diesel. MICROBIAL ECOLOGY 2022; 84:1122-1132. [PMID: 34888738 PMCID: PMC9747835 DOI: 10.1007/s00248-021-01939-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/05/2021] [Indexed: 05/23/2023]
Abstract
Diesel is frequently encountered in coastal ecosystems due to land run-off from road surfaces. The current study investigates how partially weathered diesel at environmentally relevant concentrations, as may be seen during a run-off event, affect coastal microbial communities. A mesocosm experiment using seawater from the Bedford Basin, Nova Scotia, was followed for 72 h after the addition of partially weathered diesel. Sequencing data suggests partially weathered diesel acts quickly to alter the prokaryotic community, as both opportunistic (Vibrio and Lentibacter) and oil-degrading (Colwellia, Sulfitobacter, and Pseudoalteromonas) bacteria proliferated after 24 h in comparison to the control. In addition, total prokaryotes seemed to recover in abundance after 24 h, where eukaryotes only ceased to decrease slightly at 72 h, likely because of an inability to adapt to the oil-laden conditions, unlike the prokaryotes. Considering there were no highly volatile components (benzene, toluene, ethylbenzene, and xylene) present in the diesel when the communities were exposed, the results indicate that even a relatively small concentration of diesel run-off can cause a drastic change to the microbial community under low energy conditions. Higher energy conditions due to wave action may mitigate the response of the microbial communities by dilution and additional weathering of the diesel.
Collapse
Affiliation(s)
- Camilla M Ryther
- Biology Department, Dalhousie University, 6299 South Street, Halifax, NS, B3H 4R2, Canada
| | - Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada.
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
| | - Brian J Robinson
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
| |
Collapse
|
17
|
Focardi A, Moore LR, Raina JB, Seymour JR, Paulsen IT, Tetu SG. Plastic leachates impair picophytoplankton and dramatically reshape the marine microbiome. MICROBIOME 2022; 10:179. [PMID: 36274162 PMCID: PMC9590215 DOI: 10.1186/s40168-022-01369-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/30/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Each year, approximately 9.5 million metric tons of plastic waste enter the ocean with the potential to adversely impact all trophic levels. Until now, our understanding of the impact of plastic pollution on marine microorganisms has been largely restricted to the microbial assemblages that colonize plastic particles. However, plastic debris also leaches considerable amounts of chemical additives into the water, and this has the potential to impact key groups of planktonic marine microbes, not just those organisms attached to plastic surfaces. RESULTS To investigate this, we explored the population and genetic level responses of a marine microbial community following exposure to leachate from a common plastic (polyvinyl chloride) or zinc, a specific plastic additive. Both the full mix of substances leached from polyvinyl chloride (PVC) and zinc alone had profound impacts on the taxonomic and functional diversity of our natural planktonic community. Microbial primary producers, both prokaryotic and eukaryotic, which comprise the base of the marine food web, were strongly impaired by exposure to plastic leachates, showing significant declines in photosynthetic efficiency, diversity, and abundance. Key heterotrophic taxa, such as SAR11, which are the most abundant planktonic organisms in the ocean, also exhibited significant declines in relative abundance when exposed to higher levels of PVC leachate. In contrast, many copiotrophic bacteria, including members of the Alteromonadales, dramatically increased in relative abundance under both exposure treatments. Moreover, functional gene and genome analyses, derived from metagenomes, revealed that PVC leachate exposure selects for fast-adapting, motile organisms, along with enrichment in genes usually associated with pathogenicity and an increased capacity to metabolize organic compounds leached from PVC. CONCLUSIONS This study shows that substances leached from plastics can restructure marine microbial communities with the potential for significant impacts on trophodynamics and biogeochemical cycling. These findings substantially expand our understanding of the ways by which plastic pollution impact life in our oceans, knowledge which is particularly important given that the burden of plastic pollution in the marine environment is predicted to continue to rise. Video Abstract.
Collapse
Affiliation(s)
- Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia.
| | - Lisa R Moore
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Justin R Seymour
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
18
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Zan S, Lv J, Li Z, Cai Y, Wang Z, Wang J. Genomic insights into Pseudoalteromonas sp. JSTW coping with petroleum-heavy metals combined pollution. J Basic Microbiol 2021; 61:947-957. [PMID: 34387369 DOI: 10.1002/jobm.202100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 08/08/2021] [Indexed: 11/05/2022]
Abstract
Worldwide marine compound contamination by petroleum products and heavy metals is a burgeoning environmental concern. Pseudoalteromonas, prevalently distributed in marine environment, has been proven to degrade petroleum and plays an essential role in the fate of oil pollution under the combined pollution. Nevertheless, the research on the reference genes is still incomplete. Therefore, this study aims to thoroughly investigate the reference genes represented by Pseudoalteromonas sp. JSTW via whole-genome sequencing. Next-generation sequencing technology unfolded a genome of 4,026,258 bp, database including Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to annotate the genes and metabolic pathways conferring to petroleum hydrocarbon degradation. The results show that common alkane and aromatic hydrocarbon degradation genes (alkB, ligB, yqhD, and ladA), chemotaxis gene (MCP, cheA, cheB, pcaY, and pcaR), heavy-metal resistance, and biofilm genes (σ54, merC, pcoA, copB, etc.) were observed in whole-genome sequence (WGS) of JSTW, which indicated that strain JSTW could potentially cope with combined pollution. The degradation efficiency of naphthalene in 60 h by JSTW was 99% without Cu2+ and 67% with 400 mg L-1 Cu2+ . Comparative genome analysis revealed that genomes of Pseudoalteromonas lipolytica strain LEMB 39 and Pseudoalteromonas donghaensis strain HJ51 shared similarity with strain JSTW, suggesting they are also the potential degradater of petroleum hydrocarbons under combined pollution. Therefore, this study provides a WGS annotation and reveals the mechanism of response to combined pollution of Pseudoalteromonas sp. JSTW.
Collapse
Affiliation(s)
- Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jingping Lv
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Zongcheng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
20
|
Thomas GE, Brant JL, Campo P, Clark DR, Coulon F, Gregson BH, McGenity TJ, McKew BA. Effects of Dispersants and Biosurfactants on Crude-Oil Biodegradation and Bacterial Community Succession. Microorganisms 2021; 9:microorganisms9061200. [PMID: 34206054 PMCID: PMC8229435 DOI: 10.3390/microorganisms9061200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.
Collapse
Affiliation(s)
- Gareth E. Thomas
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
- Correspondence: ; Tel.: +44-1206-873333 (ext. 2918)
| | - Jan L. Brant
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK;
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; (P.C.); (F.C.)
| | - Dave R. Clark
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
- Institute for Analytics and Data Science, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; (P.C.); (F.C.)
| | - Benjamin H. Gregson
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| | - Boyd A. McKew
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| |
Collapse
|
21
|
Angelova AG, Berx B, Bresnan E, Joye SB, Free A, Gutierrez T. Inter- and Intra-Annual Bacterioplankton Community Patterns in a Deepwater Sub-Arctic Region: Persistent High Background Abundance of Putative Oil Degraders. mBio 2021; 12:e03701-20. [PMID: 33727364 PMCID: PMC8092327 DOI: 10.1128/mbio.03701-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/01/2022] Open
Abstract
Hydrocarbon-degrading bacteria naturally degrade and remove petroleum pollutants, yet baselines do not currently exist for these critical microorganisms in many regions where the oil and gas industry is active. Furthermore, understanding how a baseline community changes across the seasons and its potential to respond to an oil spill event are prerequisites for predicting their response to elevated hydrocarbon exposures. In this study, 16S rRNA gene-based profiling was used to assess the spatiotemporal variability of baseline bacterioplankton community composition in the Faroe-Shetland Channel (FSC), a deepwater sub-Arctic region where the oil and gas industry has been active for the last 40 years. Over a period of 2 years, we captured the diversity of the bacterioplankton community within distinct water masses (defined by their temperature and salinity) that have a distinct geographic origin (Atlantic or Nordic), depth, and direction of flow. We demonstrate that bacterioplankton communities were significantly different across water samples of contrasting origin and depth. Taxa of known hydrocarbon-degrading bacteria were observed at higher-than-anticipated abundances in water masses originating in the Nordic Seas, suggesting these organisms are sustained by an unconfirmed source of oil input in that region. In the event of an oil spill, our results suggest that the response of these organisms is severely hindered by the low temperatures and nutrient levels that are typical for the FSC.IMPORTANCE Oil spills at sea are one of the most disastrous anthropogenic pollution events, with the Deepwater Horizon spill providing a testament to how profoundly the health of marine ecosystems and the livelihood of its coastal inhabitants can be severely impacted by spilled oil. The fate of oil in the environment is largely dictated by the presence and activities of natural communities of oil-degrading bacteria. While a significant effort was made to monitor and track the microbial response and degradation of the oil in the water column in the wake of the Deepwater Horizon spill, the lack of baseline data on the microbiology of the Gulf of Mexico confounded scientists' abilities to provide an accurate assessment of how the system responded relative to prespill conditions. This data gap highlights the need for long-term microbial ocean observatories in regions at high risk of oil spills. Here, we provide the first microbiological baseline established for a subarctic region experiencing high oil and gas industry activity, the northeast Atlantic, but with no apparent oil seepage or spillage. We also explore the presence, relative abundances, and seasonal dynamics of indigenous hydrocarbon-degrading communities. These data will advance the development of models to predict the behavior of such organisms in the event of a major oil spill in this region and potentially impact bioremediation strategies by enhancing the activities of these organisms in breaking down the oil.
Collapse
Affiliation(s)
- Angelina G Angelova
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Barbara Berx
- Marine Scotland Science, Aberdeen, United Kingdom
| | | | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Andrew Free
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Mugge RL, Salerno JL, Hamdan LJ. Microbial Functional Responses in Marine Biofilms Exposed to Deepwater Horizon Spill Contaminants. Front Microbiol 2021; 12:636054. [PMID: 33717029 PMCID: PMC7947620 DOI: 10.3389/fmicb.2021.636054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Marine biofilms are essential biological components that transform built structures into artificial reefs. Anthropogenic contaminants released into the marine environment, such as crude oil and chemical dispersant from an oil spill, may disrupt the diversity and function of these foundational biofilms. To investigate the response of marine biofilm microbiomes from distinct environments to contaminants and to address microbial functional response, biofilm metagenomes were analyzed from two short-term microcosms, one using surface seawater (SSW) and the other using deep seawater (DSW). Following exposure to crude oil, chemical dispersant, and dispersed oil, taxonomically distinct communities were observed between microcosms from different source water challenged with the same contaminants and higher Shannon diversity was observed in SSW metagenomes. Marinobacter, Colwellia, Marinomonas, and Pseudoalteromonas phylotypes contributed to driving community differences between SSW and DSW. SSW metagenomes were dominated by Rhodobacteraceae, known biofilm-formers, and DSW metagenomes had the highest abundance of Marinobacter, associated with hydrocarbon degradation and biofilm formation. Association of source water metadata with treatment groups revealed that control biofilms (no contaminant) harbor the highest percentage of significant KEGG orthologs (KOs). While 70% functional similarity was observed among all metagenomes from both experiments, functional differences between SSW and DSW metagenomes were driven primarily by membrane transport KOs, while functional similarities were attributed to translation and signaling and cellular process KOs. Oil and dispersant metagenomes were 90% similar to each other in their respective experiments, which provides evidence of functional redundancy in these microbiomes. When interrogating microbial functional redundancy, it is crucial to consider how composition and function evolve in tandem when assessing functional responses to changing environmental conditions within marine biofilms. This study may have implications for future oil spill mitigation strategies at the surface and at depth and also provides information about the microbiome functional responses of biofilms on steel structures in the marine built environment.
Collapse
Affiliation(s)
- Rachel L Mugge
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, United States
| | - Jennifer L Salerno
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, United States
| | - Leila J Hamdan
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, United States
| |
Collapse
|
23
|
Suárez-Moo P, Lamelas A, Garcia-Bautista I, Barahona-Pérez LF, Sandoval-Flores G, Valdes-Lozano D, Toledano-Thompson T, Polanco-Lugo E, Valdez-Ojeda R. Characterization of sediment microbial communities at two sites with low hydrocarbon pollution in the southeast Gulf of Mexico. PeerJ 2020; 8:e10339. [PMID: 33354414 PMCID: PMC7731659 DOI: 10.7717/peerj.10339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Coastal ecosystems are prone to hydrocarbon pollution due to human activities, and this issue has a tremendous impact on the environment, socioeconomic consequences, and represents a hazard to humans. Bioremediation relies on the ability of bacteria to metabolize hydrocarbons with the aim of cleaning up polluted sites. Methods The potential of naturally occurring microbial communities as oil degraders was investigated in Sisal and Progreso, two port locations in the southeast Gulf of Mexico, both with a low level of hydrocarbon pollution. To do so, we determined the diversity and composition of bacterial communities in the marine sediment during the dry and rainy seasons using 16S rRNA sequencing. Functional profile analysis (PICRUTSt2) was used to predict metabolic functions associated with hydrocarbon degradation. Results We found a large bacterial taxonomic diversity, including some genera reported as hydrocarbon-degraders. Analyses of the alpha and beta diversity did not detect significant differences between sites or seasons, suggesting that location, season, and the contamination level detected here do not represent determining factors in the structure of the microbial communities. PICRUTSt2 predicted 10 metabolic functions associated with hydrocarbon degradation. Most bacterial genera with potential hydrocarbon bioremediation activity were generalists likely capable of degrading different hydrocarbon compounds. The bacterial composition and diversity reported here represent an initial attempt to characterize sites with low levels of contamination. This information is crucial for understanding the impact of eventual rises in hydrocarbon pollution.
Collapse
Affiliation(s)
- Pablo Suárez-Moo
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, Xalapa, Veracruz, Mexico
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, Xalapa, Veracruz, Mexico
| | - Itza Garcia-Bautista
- Unidad de Energia Renovable, Centro de Investigacion Cientifica de Yucatan, Merida, Yucatan, Mexico
| | | | - Gloria Sandoval-Flores
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autonoma de Tamaulipas, Merida, Yucatan, Mexico
| | - David Valdes-Lozano
- Centro de Investigación y de Estudios Avanzados, Insituto Politecnico Nacional, Merida, Yucatan, Mexico
| | - Tanit Toledano-Thompson
- Unidad de Energia Renovable, Centro de Investigacion Cientifica de Yucatan, Merida, Yucatan, Mexico
| | - Erik Polanco-Lugo
- Campus de Ciencias Biológicas y Agropecuarias,, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Ruby Valdez-Ojeda
- Unidad de Energia Renovable, Centro de Investigacion Cientifica de Yucatan, Merida, Yucatan, Mexico
| |
Collapse
|
24
|
Knapik K, Bagi A, Krolicka A, Baussant T. Metatranscriptomic Analysis of Oil-Exposed Seawater Bacterial Communities Archived by an Environmental Sample Processor (ESP). Microorganisms 2020; 8:E744. [PMID: 32429288 PMCID: PMC7284936 DOI: 10.3390/microorganisms8050744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
The use of natural marine bacteria as "oil sensors" for the detection of pollution events can be suggested as a novel way of monitoring oil occurrence at sea. Nucleic acid-based devices generically called genosensors are emerging as potentially promising tools for in situ detection of specific microbial marker genes suited for that purpose. Functional marker genes are particularly interesting as targets for oil-related genosensing but their identification remains a challenge. Here, seawater samples, collected in tanks with oil addition mimicking a realistic oil spill scenario, were filtered and archived by the Environmental Sample Processor (ESP), a fully robotized genosensor, and the samples were then used for post-retrieval metatranscriptomic analysis. After extraction, RNA from ESP-archived samples at start, Day 4 and Day 7 of the experiment was used for sequencing. Metatranscriptomics revealed that several KEGG pathways were significantly enriched in samples exposed to oil. However, these pathways were highly expressed also in the non-oil-exposed water samples, most likely as a result of the release of natural organic matter from decaying phytoplankton. Temporary peaks of aliphatic alcohol and aldehyde dehydrogenases and monoaromatic ring-degrading enzymes (e.g., ben, box, and dmp clusters) were observed on Day 4 in both control and oil-exposed and non-exposed tanks. Few alkane 1-monooxygenase genes were upregulated on oil, mostly transcribed by families Porticoccaceae and Rhodobacteraceae, together with aromatic ring-hydroxylating dioxygenases, mostly transcribed by Rhodobacteraceae. Few transcripts from obligate hydrocarbonoclastic genera of Alcanivorax, Oleispira and Cycloclasticus were significantly enriched in the oil-treated exposed tank in comparison to control the non-exposed tank, and these were mostly transporters and genes involved in nitrogen and phosphorous acquisition. This study highlights the importance of seasonality, i.e., phytoplankton occurrence and senescence leading to organic compound release which can be used preferentially by bacteria over oil compounds, delaying the latter process. As a result, such seasonal effect can reduce the sensitivity of genosensing tools employing bacterial functional genes to sense oil. A better understanding of the use of natural organic matter by bacteria involved in oil-biodegradation is needed to develop an array of functional markers enabling the rapid and specific in situ detection of anthropogenic pollution.
Collapse
Affiliation(s)
| | | | | | - Thierry Baussant
- NORCE Environment, NORCE Norwegian Research Centre AS, 4070 Randaberg, Norway; (K.K.); (A.B.); (A.K.)
| |
Collapse
|
25
|
Angelova AG, Ellis GA, Wijesekera HW, Vora GJ. Microbial Composition and Variability of Natural Marine Planktonic and Biofouling Communities From the Bay of Bengal. Front Microbiol 2019; 10:2738. [PMID: 31866960 PMCID: PMC6908470 DOI: 10.3389/fmicb.2019.02738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
The Bay of Bengal (BoB) is the largest bay in the world and presents a unique marine environment that is subjected to severe weather, a distinct hydrographic regime and a large anthropogenic footprint. Despite these features and the BoB’s overall economic significance, this ecosystem and its microbiome remain among the most underexplored in the world. In this study, amplicon-based microbial profiling was used to assess the bacterial, archaeal, and micro-eukaryotic content of unperturbed planktonic and biofilm/biofouling communities within the BoB. Planktonic microbial communities were collected during the Southwest monsoon season from surface (2 m), subsurface (75 m), and deep-sea (1000 m) waters from six south-central BoB locations and were compared to concomitant mature biofouling communities from photic-zone subsurface moorings (∼75 m). The results demonstrated vertical stratification of all planktonic communities with geographic variations disappearing in the deep-sea environment. Planktonic microbial diversity was found to be driven by different members of the community, with the most dominant phylotypes driving the diversity of the photic zone and rarer species playing a more influential role within the deep-sea. Geographic variability was not observed in the co-located biofouling microbiomes, but community composition and variability was found to be driven by depth and the presence of macro-fouling and photosynthetic organisms. Overall, these results provide much needed baselines for longitudinal assessments that can be used to monitor the health and evolution of this dynamic and critically important marine environment.
Collapse
Affiliation(s)
- Angelina G Angelova
- American Society for Engineering Education, Postdoctoral Fellowship Program, U.S. Naval Research Laboratory, Washington, DC, United States
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, United States
| | | | - Gary J Vora
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
26
|
Chemical and biological dispersants differently affect the bacterial communities of uncontaminated and oil-contaminated marine water. Braz J Microbiol 2019; 51:691-700. [PMID: 31612432 DOI: 10.1007/s42770-019-00153-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
The use of dispersants in marine environments is a common practice worldwide for oil spill remediation. While the effects of chemical dispersants have been extensively studied, those of biosurfactants, mainly surfactin that is considered one of the most effective surfactants produced by bacteria, have been less considered. We constructed microcosms containing marine water collected from Grumari beach (W_GB, Brazil) and from Schiermonnikoog beach (W_SI, The Netherlands) with the addition of oil (WO), Ultrasperse II plus oil (WOS), surfactin plus oil (WOB), and both dispersants (WS or WB) individually. In these treatments, the composition of bacterial communities and their predictive biodegradation potential were determined over time. High-throughput sequencing of the rrs gene encoding bacterial 16S rRNA revealed that Bacteroidetes (Flavobacteria class) and Proteobacteria (mainly Gammaproteobacteria and Alphaproteobacteria classes) were the most abundant phyla found among the W_GB and W_SI microbiomes, and the relative abundance of the bacterial types in the different microcosms varied based on the treatment applied. Non-metrical multidimensional scaling (NMDS) revealed a clear clustering based on the addition of oil and on the dispersant type added to the GB or SI microcosms, i.e., WB and WOB were separated from WS and WOS in both marine ecosystems studied. The potential presence of diverse enzymes involved in oil degradation was indicated by predictive bacterial metagenome reconstruction. The abundance of predicted genes for degradation of petroleum hydrocarbons increased more in surfactin-treated microcosms than those treated with Ultrasperse II, mainly in the marine water samples from Grumari beach.
Collapse
|
27
|
Xu X, Wang S, Gao F, Li J, Zheng L, Sun C, He C, Wang Z, Qu L. Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China's coastal seawaters. MARINE POLLUTION BULLETIN 2019; 145:278-286. [PMID: 31590788 DOI: 10.1016/j.marpolbul.2019.05.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Microplastics have emerged as new pollutants in oceans. Nevertheless, information of the long-term variations in the composition of plastic-associated microbial communities in coastal waters remains limited. This study applied high-throughput sequencing to investigate the successional stages of microbial communities attached to polypropylene and polyvinyl chloride microplastics exposed for one year in the coastal seawater of China. The composition of plastisphere microbial communities varied remarkably across geographical locations and exposure times. The dominant bacteria in the plastisphere were affiliated with the Alphaproteobacteria class, particularly Rhodobacteraceae, followed by the Gammaproteobacteria class. Scanning electron microscopy analysis revealed that the microplastics showed signs of degradation. Microbial communities showed adaptations to plastisphere including more diverse microbial community and greater "xenobiotics biodegradation and metabolism" in metabolic pathway analysis. The findings elucidate the long-term changes in the community composition of microorganisms that colonize microplastics and expand the understanding of plastisphere microbial communities present in the marine environment.
Collapse
Affiliation(s)
- Xiyuan Xu
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shuai Wang
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenglei Gao
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jingxi Li
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Li Zheng
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Chengjun Sun
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfei He
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zongxing Wang
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Lingyun Qu
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
28
|
Potts LD, Perez Calderon LJ, Gubry-Rangin C, Witte U, Anderson JA. Characterisation of microbial communities of drill cuttings piles from offshore oil and gas installations. MARINE POLLUTION BULLETIN 2019; 142:169-177. [PMID: 31232291 DOI: 10.1016/j.marpolbul.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Drill cuttings (DC) are produced during hydrocarbon drilling operations and are composed of subsurface rock coated with hydrocarbons and drilling fluids. Historic disposal of DC at sea has resulted in the formation of large piles on the seabed that may be left in situ following infrastructure decommissioning. This study provides a first insight into the microbial abundance, diversity and community structure of two DC piles from North Sea oil and gas installations. The abundance of both bacteria and archaea was lower in DC than in surrounding natural sediments. Microbial diversity and richness within DC were low but increased with distance from the piles. Microbial community structure was significantly different in DC piles compared to nearby natural sediments. DC bacterial communities were dominated by Halomonas, Dietzia and Dethiobacter. The presence of such organisms suggests a potential function of hydrocarbon degradation ability and may play an active role in DC pile remediation.
Collapse
Affiliation(s)
- Lloyd D Potts
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom; Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom.
| | - Luis J Perez Calderon
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom; Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ursula Witte
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - James A Anderson
- Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
29
|
Fernandes C, Kankonkar H, Meena RM, Menezes G, Shenoy BD, Khandeparker R. Metagenomic analysis of tarball-associated bacteria from Goa, India. MARINE POLLUTION BULLETIN 2019; 141:398-403. [PMID: 30955749 DOI: 10.1016/j.marpolbul.2019.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
The beaches of Goa state in India are frequently polluted with tarballs, specifically during pre-monsoon and monsoon seasons. Tarballs contain hydrocarbons, including polycyclic aromatic hydrocarbons, which pose significant environmental risks. Microbes associated with tarballs reportedly possess capabilities to degrade toxic hydrocarbons present in tarballs. In this study, bacterial diversity associated with tarballs from Vagator and Morjim beaches of north Goa was analysed based on V3-V4 regions of 16S rRNA gene sequenced using Illumina Miseq Platform. The Proteobacterial members were dominant in both Vagator (≥85.5%) and Morjim (≥94.0%) samples. Many of the identified taxa have been previously reported as hydrocarbon degraders (e.g. Halomonas, Marinobacter) or possible human pathogens (e.g. Acinetobacter, Klebsiella, Rhodococcus, Staphylococcus, Vibrio). This is the first study reported on a metagenomic analysis of bacteria associated with tarballs from Goa.
Collapse
Affiliation(s)
- Clafy Fernandes
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Harshada Kankonkar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Ram Murti Meena
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Gilda Menezes
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Belle Damodara Shenoy
- CSIR-National Institute of Oceanography Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam, 530017, Andhra Pradesh, India
| | - Rakhee Khandeparker
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India.
| |
Collapse
|
30
|
Ortmann AC, Cobanli SE, Wohlgeschaffen G, Thamer P, McIntyre C, Mason J, King TL. Inorganic nutrients have a significant, but minimal, impact on a coastal microbial community's response to fresh diluted bitumen. MARINE POLLUTION BULLETIN 2019; 139:381-389. [PMID: 30686441 DOI: 10.1016/j.marpolbul.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Microbes capable of degrading hydrocarbons in oil are present in low abundances in coastal waters, but quickly respond to oil following a spill. When estimating potential biodegradation rates in the laboratory, high concentrations of inorganic nutrients are often added to prevent nutrient limitation. In this study, we tested the short term response of coastal microbes to fresh diluted bitumen under varying nutrient conditions in a cold water regime. Total hydrocarbon concentrations changed minimally over five days; however, oil composition changed over time and the abundance of microbes increased in all treatments. Addition of phosphate, with or without nitrogen, resulted in rapid changes in community composition, but after three days treatments no longer differed. Nutrients were never depleted in any treatment suggesting that, even at low inorganic nutrient concentrations, microbial communities can quickly respond to hydrocarbons following a spill.
Collapse
Affiliation(s)
- Alice C Ortmann
- Center for Offshore Oil, Gas and Energy Research, Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada.
| | - Susan E Cobanli
- Center for Offshore Oil, Gas and Energy Research, Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Gary Wohlgeschaffen
- Center for Offshore Oil, Gas and Energy Research, Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Peter Thamer
- Center for Offshore Oil, Gas and Energy Research, Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Claire McIntyre
- Center for Offshore Oil, Gas and Energy Research, Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Jennifer Mason
- Center for Offshore Oil, Gas and Energy Research, Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Thomas L King
- Center for Offshore Oil, Gas and Energy Research, Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| |
Collapse
|
31
|
Reyes-Sosa MB, Apodaca-Hernández JE, Arena-Ortiz ML. Bioprospecting for microbes with potential hydrocarbon remediation activity on the northwest coast of the Yucatan Peninsula, Mexico, using DNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1060-1074. [PMID: 30045488 DOI: 10.1016/j.scitotenv.2018.06.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 05/16/2023]
Abstract
Coastal environments harbor diverse microbial communities, which can contain genera with potential bioremediation activity. Next-generation DNA sequencing was used to identify bacteria to the genus level in water and sediment samples collected from the open ocean, shoreline, wetlands and freshwater upwellings on the northwest coast of the Yucatan Peninsula. Supported by an extensive literature review, a phylogenetic investigation of the communities was done using reconstruction of unobserved states software (PICRUSt) to predict metagenome functional content from the sequenced 16S gene in all the samples. Bacterial genera were identified for their potential hydrocarbon bioremediation activity. These included generalist genera commonly reported in hydrocarbon-polluted areas and petroleum reservoirs, as well as specialists such as Alcanivorax and Cycloclasticus. The highest readings for bacteria with potential hydrocarbon bioremediation activity were for the genera Vibrio, Alteromonas, Pseudomonas, Acinetobacter, Burkholderia, Acidovorax and Pseudoalteromonas from different environments in the study area. Some genera were identified only in specific sites; for example, Aquabacterium and Polaromonas were found only in freshwater upwellings. Variation in genera distribution was probably due to differences in environmental conditions in the sampled zones. Bacterial diversity was high in the study area and included numerous genera with known bioremediation activity. Functional prediction of the metagenome indicated that the studied bacterial communities would most probably degrade toluene, naphthalene, chloroalkane and chloroalkene, with lower degradation proportions for aromatic hydrocarbons, fluorobenzoate and xylene. Differences in predicted degradation existed between sediments and water, and between different locations.
Collapse
Affiliation(s)
| | | | - María Leticia Arena-Ortiz
- Posgrado en Ciencias del Mar y Limnología UNAM, Mérida, Yucatán, Mexico; Laboratorio de Ecogenonomica Universidad Nacional Autonoma de Mexico.
| |
Collapse
|
32
|
Napp AP, Pereira JES, Oliveira JS, Silva-Portela RCB, Agnez-Lima LF, Peralba MCR, Bento FM, Passaglia LMP, Thompson CE, Vainstein MH. Comparative metagenomics reveals different hydrocarbon degradative abilities from enriched oil-drilling waste. CHEMOSPHERE 2018; 209:7-16. [PMID: 29908430 DOI: 10.1016/j.chemosphere.2018.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/24/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
The oil drilling process generates large volumes of waste with inadequate treatments. Here, oil drilling waste (ODW) microbial communities demonstrate different hydrocarbon degradative abilities when exposed to distinct nutrient enrichments as revealed by comparative metagenomics. The ODW was enriched in Luria Broth (LBE) and Potato Dextrose (PDE) media to examine the structure and functional variations of microbial consortia. Two metagenomes were sequenced on Ion Torrent platform and analyzed using MG-RAST. The STAMP software was used to analyze statistically significant differences amongst different attributes of metagenomes. The microbial diversity presented in the different enrichments was distinct and heterogeneous. The metabolic pathways and enzymes were mainly related to the aerobic hydrocarbons degradation. Moreover, our results showed efficient biodegradation after 15 days of treatment for aliphatic hydrocarbons (C8-C33) and polycyclic aromatic hydrocarbons (PAHs), with a total of about 50.5% and 46.4% for LBE and 44.6% and 37.9% for PDE, respectively. The results obtained suggest the idea that the enzymatic apparatus have the potential to degrade petroleum compounds.
Collapse
Affiliation(s)
- Amanda P Napp
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-070, Brazil.
| | - José Evandro S Pereira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-070, Brazil.
| | - Jorge S Oliveira
- INESC-ID/IST-Instituto de Engenharia de Sistemas e Computadores/Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1000-029, Portugal; Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Rita C B Silva-Portela
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Lucymara F Agnez-Lima
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Maria C R Peralba
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91500-970, Brazil.
| | - Fátima M Bento
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil.
| | - Luciane M P Passaglia
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91500-970, Brazil.
| | - Claudia E Thompson
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-070, Brazil; Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| | - Marilene H Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-070, Brazil.
| |
Collapse
|
33
|
Brzeszcz J, Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 2018; 29:359-407. [PMID: 29948519 DOI: 10.1007/s10532-018-9837-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Environmental pollution with petroleum toxic products has afflicted various ecosystems, causing devastating damage to natural habitats with serious economic implications. Some crude oil components may serve as growth substrates for microorganisms. A number of bacterial strains reveal metabolic capacities to biotransform various organic compounds. Some of the hydrocarbon degraders are highly biochemically specialized, while the others display a versatile metabolism and can utilize both saturated aliphatic and aromatic hydrocarbons. The extended catabolic profiles of the latter group have been subjected to systematic and complex studies relatively rarely thus far. Growing evidence shows that numerous bacteria produce broad biochemical activities towards different hydrocarbon types and such an enhanced metabolic potential can be found in many more species than the already well-known oil-degraders. These strains may play an important role in the removal of heterogeneous contamination. They are thus considered to be a promising solution in bioremediation applications. The main purpose of this article is to provide an overview of the current knowledge on aerobic bacteria involved in the mineralization or transformation of both n-alkanes and aromatic hydrocarbons. Variant scientific approaches enabling to evaluate these features on biochemical as well as genetic levels are presented. The distribution of multidegradative capabilities between bacterial taxa is systematically shown and the possibility of simultaneous transformation of complex hydrocarbon mixtures is discussed. Bioinformatic analysis of the currently available genetic data is employed to enable generation of phylogenetic relationships between environmental strain isolates belonging to the phyla Actinobacteria, Proteobacteria, and Firmicutes. The study proves that the co-occurrence of genes responsible for concomitant metabolic bioconversion reactions of structurally-diverse hydrocarbons is not unique among various systematic groups.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute-National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland.
| | - Paweł Kaszycki
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
34
|
Debroas D, Mone A, Ter Halle A. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1222-1232. [PMID: 28514840 DOI: 10.1016/j.scitotenv.2017.05.059] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 05/20/2023]
Abstract
Plastic is a broad name given to different polymers with high molecular weight that impact wildlife. Their fragmentation leads to a continuum of debris sizes (meso to microplastics) entrapped in gyres and colonized by microorganisms. In the present work, the structure of eukaryotes, bacteria and Archaea was studied by a metabarcoding approach, and statistical analysis associated with network building was used to define a core microbiome at the plastic surface. Most of the bacteria significantly associated with the plastic waste originated from non-marine ecosystems, and numerous species can be considered as hitchhikers, whereas others act as keystone species (e.g., Rhodobacterales, Rhizobiales, Streptomycetales and Cyanobacteria) in the biofilm. The chemical analysis provides evidence for a specific colonization of the polymers. Alphaproteobacteria and Gammaproteobacteria significantly dominated mesoplastics consisting of poly(ethylene terephthalate) and polystyrene. Polyethylene was also dominated by these bacterial classes and Actinobacteria. Microplastics were made of polyethylene but differed in their crystallinity, and the majorities were colonized by Betaproteobacteria. Our study indicated that the bacteria inhabiting plastics harboured distinct metabolisms from those present in the surrounding water. For instance, the metabolic pathway involved in xenobiotic degradation was overrepresented on the plastic surface.
Collapse
Affiliation(s)
- Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France.
| | - Anne Mone
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Alexandra Ter Halle
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|
35
|
Krolicka A, Boccadoro C, Nilsen MM, Baussant T. Capturing Early Changes in the Marine Bacterial Community as a Result of Crude Oil Pollution in a Mesocosm Experiment. Microbes Environ 2017; 32:358-366. [PMID: 29187706 PMCID: PMC5745021 DOI: 10.1264/jsme2.me17082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The results of marine bacterial community succession from a short-term study of seawater incubations at 4°C to North Sea crude oil are presented herein. Oil was used alone (O) or in combination with a dispersant (OD). Marine bacterial communities resulting from these incubations were characterized by a fingerprinting analysis and pyrosequencing of the 16S rRNA gene with the aim of 1) revealing differences in bacterial communities between the control, O treatment, and OD treatment and 2) identifying the operational taxonomic units (OTUs) of early responders in order to define the bacterial gene markers of oil pollution for in situ monitoring. After an incubation for 1 d, the distribution of the individual ribotypes of bacterial communities in control and oil-treated (O and OD) tanks differed. Differences related to the structures of bacterial communities were observed at later stages of the incubation. Among the early responders identified (Pseudoalteromonas, Sulfitobacter, Vibrio, Pseudomonas, Glaciecola, Neptunomonas, Methylophaga, and Pseudofulvibacter), genera that utilize a disintegrated biomass or hydrocarbons as well as biosurfactant producers were detected. None of these genera included obligate hydrocarbonoclastic bacteria (OHCB). After an incubation for 1 d, the abundances of Glaciecola and Pseudofulvibacter were approximately 30-fold higher in the OD and O tanks than in the control tank. OTUs assigned to the Glaciecola genus were represented more in the OD tank, while those of Pseudofulvibacter were represented more in the O tank. We also found that 2 to 3% of the structural community shift originated from the bacterial community in the oil itself, with Polaribacter being a dominant bacterium.
Collapse
Affiliation(s)
- Adriana Krolicka
- International Research Institute of Stavanger (IRIS), Environment department
| | - Catherine Boccadoro
- International Research Institute of Stavanger (IRIS), Environment department
| | - Mari Mæland Nilsen
- International Research Institute of Stavanger (IRIS), Environment department
| | - Thierry Baussant
- International Research Institute of Stavanger (IRIS), Environment department
| |
Collapse
|
36
|
Luria CM, Amaral-Zettler LA, Ducklow HW, Repeta DJ, Rhyne AL, Rich JJ. Seasonal Shifts in Bacterial Community Responses to Phytoplankton-Derived Dissolved Organic Matter in the Western Antarctic Peninsula. Front Microbiol 2017; 8:2117. [PMID: 29163409 PMCID: PMC5675858 DOI: 10.3389/fmicb.2017.02117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial consumption of dissolved organic matter (DOM) drives much of the movement of carbon through the oceanic food web and the global carbon cycle. Understanding complex interactions between bacteria and marine DOM remains an important challenge. We tested the hypothesis that bacterial growth and community succession would respond differently to DOM additions due to seasonal changes in phytoplankton abundance in the environment. Four mesocosm experiments were conducted that spanned the spring transitional period (August-December 2013) in surface waters of the Western Antarctic Peninsula (WAP). Each mesocosm consisted of nearshore surface seawater (50 L) incubated in the laboratory for 10 days. The addition of DOM, in the form of cell-free exudates extracted from Thalassiosira weissflogii diatom cultures led to changes in bacterial abundance, production, and community composition. The timing of each mesocosm experiment (i.e., late winter vs. late spring) influenced the magnitude and direction of bacterial changes. For example, the same DOM treatment applied at different times during the season resulted in different levels of bacterial production and different bacterial community composition. There was a mid-season shift from Collwelliaceae to Polaribacter having the greatest relative abundance after incubation. This shift corresponded to a modest but significant increase in the initial relative abundance of Polaribacter in the nearshore seawater used to set up experiments. This finding supports a new hypothesis that starting community composition, through priority effects, influenced the trajectory of community succession in response to DOM addition. As strong inter-annual variability and long-term climate change may shift the timing of WAP phytoplankton blooms, and the corresponding production of DOM exudates, this study suggests a mechanism by which different seasonal successional patterns in bacterial communities could occur.
Collapse
Affiliation(s)
- Catherine M. Luria
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Linda A. Amaral-Zettler
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, United States
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, United States
- NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, Netherlands
| | - Hugh W. Ducklow
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Daniel J. Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Andrew L. Rhyne
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI, United States
| | - Jeremy J. Rich
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME, United States
| |
Collapse
|
37
|
Sipler RE, Kellogg CTE, Connelly TL, Roberts QN, Yager PL, Bronk DA. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic. Front Microbiol 2017. [PMID: 28649233 PMCID: PMC5465303 DOI: 10.3389/fmicb.2017.01018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.
Collapse
Affiliation(s)
- Rachel E Sipler
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| | - Colleen T E Kellogg
- Department of Microbiology & Immunology, University of British Columbia, VancouverBC, Canada
| | - Tara L Connelly
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Quinn N Roberts
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Deborah A Bronk
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| |
Collapse
|
38
|
Suja LD, Summers S, Gutierrez T. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic. Front Microbiol 2017; 8:676. [PMID: 28484435 PMCID: PMC5399796 DOI: 10.3389/fmicb.2017.00676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/03/2017] [Indexed: 11/17/2022] Open
Abstract
In this study we report the formation of marine oil snow (MOS), its associated microbial community, the factors influencing its formation, and the microbial response to crude oil in surface waters of the Faroe-Shetland Channel (FSC). The FSC is a subarctic region that is hydrodynamically complex located in the northeast Atlantic where oil extraction is currently occurring and where exploration is likely to expand into its deeper waters (>500 m). A major oil spill in this region may mirror the aftermath that ensued following the Deepwater Horizon (DWH) blowout in the Gulf of Mexico, where the massive influx of Macondo crude oil triggered the formation of copious quantities of rapidly sinking MOS and successional blooms of opportunistic oil-degrading bacteria. In laboratory experiments, we simulated environmental conditions in sea surface waters of the FSC using water collected from this site during the winter of 2015. We demonstrated that the presence of dispersant triggers the formation of MOS, and that nutrient amendments magnify this. Illumina MiSeq sequencing revealed the enrichment on MOS of associated oil-degrading (Cycloclasticus, Thalassolituus, Marinobacter) and EPS-producing (Halomonas, Pseudoalteromonas, Alteromonas) bacteria, and included major representation by Psychrobacter and Cobetia with putative oil-degrading/EPS-producing qualities. The formation of marine snow, in the absence of crude oil and dispersant, in seawater amended with nutrients alone indicated that the de novo synthesis of bacterial EPS is a key factor in MOS formation, and the glycoprotein composition of the MOS aggregates confirmed that its amorphous biopolymeric matrix was of microbial (likely bacterial) origin. The presence of dispersants and crude oil with/without nutrients resulted in distinct microbial responses marked by intermittent, and in some cases short-lived, blooms of opportunistic heterotrophs, principally obligate hydrocarbonoclastic (Alcanivorax, Cycloclasticus, Thalassolituus, Marinobacter) and EPS-producing (Halomonas, Alteromonas, Pseudoalteromonas) bacteria. Interestingly, members of the Vibrionales (principally the genus Vibrio) were strongly enriched by crude oil (with/without dispersant or nutrients), highlighting a putative importance for these organisms in crude oil biodegradation in the FSC. Our findings mirror those observed at DWH and hence underscore their broad relevance.
Collapse
Affiliation(s)
- Laura Duran Suja
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| | - Stephen Summers
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| |
Collapse
|
39
|
Torralba MG, Franks JS, Gomez A, Yooseph S, Nelson KE, Grimes DJ. Effect of Macondo Prospect 252 Oil on Microbiota Associated with Pelagic Sargassum in the Northern Gulf of Mexico. MICROBIAL ECOLOGY 2017; 73:91-100. [PMID: 27815589 DOI: 10.1007/s00248-016-0857-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
The environmental impact of major oil spills on marine microorganisms has yet to be thoroughly investigated using molecular biology techniques. The Deepwater Horizon (DWH) drilling rig explosion of 2010 affected an approximately 176,000 km2 surface area of the Gulf of Mexico (GOM) when an estimated 210 million gallons of oil from the Macondo Prospect spilled into the environment. Pelagic Sargassum, a complex of two surface drifting species (Sargassum natans and Sargassum fluitans) of marine brown macroalgae and a critically important habitat in the GOM ecosystem, was suffused by Macondo Prospect 252 oil released during the DWH event. Using 16S rRNA PCR and Roche 454 pyrosequencing, the effect of the oil on the bacterial population associated with pelagic Sargassum and contiguous waters was examined by comparing sequence data generated from samples collected from oiled and non-oiled locations in the northern GOM. Sequence data showed similar microbial composition in Sargassum regardless of exposure to oil primarily dominated by five phyla; Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, and unclassified bacteria. The microbial composition in water samples was significantly less diverse than for Sargassum and consisted primarily of Proteobacteria, Firmicutes, and Bacteroidetes. Due to the evenly distributed abundance of microbial species on oiled and non-oiled pelagic Sargassum, study findings indicate that DWH spilled oil had minimal effect on the composition and diversity of the microbial community associated with Sargassum and contiguous waters. However, higher abundances of Sulfitobacter and one species of Psychrobacter were found in oiled water samples when compared to non-oiled water samples indicating some effect of DHW oil in the microbial composition of seawater. Though there are a number of marine studies using molecular biology approaches, this is the first molecular examination of the impact of the DWH oil spill on bacterial communities associated with pelagic Sargassum and contiguous waters from the GOM.
Collapse
Affiliation(s)
| | - James S Franks
- The University of Southern Mississippi, Gulf Coast Research Laboratory, Center for Fisheries Research and Development, 703 East Beach Drive, Ocean Springs, MS, 39564, USA
| | - Andres Gomez
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Shibu Yooseph
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Karen E Nelson
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - D Jay Grimes
- Division of Coastal Sciences, The University of Southern Mississippi, Gulf Coast Research Laboratory, 703 East Beach Drive, Ocean Springs, MS, 39564, USA.
| |
Collapse
|
40
|
Gemmell BJ, Bacosa HP, Liu Z, Buskey EJ. Can gelatinous zooplankton influence the fate of crude oil in marine environments? MARINE POLLUTION BULLETIN 2016; 113:483-487. [PMID: 27609236 DOI: 10.1016/j.marpolbul.2016.08.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Gelatinous zooplankton are known for their capacity to excrete copious amounts of mucus that can be utilized by other organisms. The release of mucus is exacerbated by stressful conditions. Despite the recognized importance of cnidarian mucus to production and material flux in marine ecosystems, the role of gelatinous zooplankton in influencing the fate of oil spills is unknown. In this study we used laboratory experiments to observe the influence of mucus from the moon jellyfish (Aurelia aurita) on the aggregation and degradation of crude oil. The results show that jellyfish swimming in a dispersed solution of oil droplets produced copious amounts of mucus and the mucus aggregates that were shed by the animals contained 26 times more oil than the surrounding water. Incubation experiments showed that hydrocarbon degrading bacteria cell densities more than doubled in the presence of mucus and after 14days, resulted in a significant increase in oil degradation. These results suggest that jellyfish can aggregate dispersed oil droplets and embed them within a matrix that favors hydrocarbon degrading bacteria. While this study lends support to the hypothesis that the presence of gelatinous zooplankton can impact oil spills large scale mesocosm studies will be needed to fully quantify the influence on a natural system.
Collapse
Affiliation(s)
- Brad J Gemmell
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
| | - Hernando P Bacosa
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Zhanfei Liu
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Edward J Buskey
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
41
|
Oberbeckmann S, Osborn AM, Duhaime MB. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris. PLoS One 2016; 11:e0159289. [PMID: 27487037 PMCID: PMC4972250 DOI: 10.1371/journal.pone.0159289] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 04/26/2016] [Indexed: 11/19/2022] Open
Abstract
Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface.
Collapse
Affiliation(s)
- Sonja Oberbeckmann
- Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- School of Life Sciences, University of Lincoln, Brayford Pool Lincoln LN6 7TS, United Kingdom
- Environmental Microbiology Working Group, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - A. Mark Osborn
- Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- School of Life Sciences, University of Lincoln, Brayford Pool Lincoln LN6 7TS, United Kingdom
- School of Applied Sciences, Royal Melbourne Institute of Technology University, PO Box 77, Bundoora, VIC3083, Australia
| | - Melissa B. Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
42
|
Mustafa GA, Abd-Elgawad A, Ouf A, Siam R. The Egyptian Red Sea coastal microbiome: A study revealing differential microbial responses to diverse anthropogenic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:892-902. [PMID: 27179234 DOI: 10.1016/j.envpol.2016.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported "Egyptian Red Sea Coastal Microbiome," sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants.
Collapse
Affiliation(s)
- Ghada A Mustafa
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, New Cairo Campus, AUC Avenue, PO Box 74, New Cairo 11835, Egypt
| | - Amr Abd-Elgawad
- Tourism Development Authority, Ministry of Tourism, Cairo, Egypt
| | - Amged Ouf
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, New Cairo Campus, AUC Avenue, PO Box 74, New Cairo 11835, Egypt
| | - Rania Siam
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, New Cairo Campus, AUC Avenue, PO Box 74, New Cairo 11835, Egypt
| |
Collapse
|
43
|
Brussaard CPD, Peperzak L, Beggah S, Wick LY, Wuerz B, Weber J, Samuel Arey J, van der Burg B, Jonas A, Huisman J, van der Meer JR. Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nat Commun 2016; 7:11206. [PMID: 27041738 PMCID: PMC4822028 DOI: 10.1038/ncomms11206] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/01/2016] [Indexed: 01/16/2023] Open
Abstract
Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m(3) of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning.
Collapse
Affiliation(s)
- Corina P. D. Brussaard
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Louis Peperzak
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Siham Beggah
- Department of Fundamental Microbiology, Bâtiment Biophore, Quartier UNIL-Sorge, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Birgit Wuerz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Jan Weber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
| | - J. Samuel Arey
- Environmental Chemistry Modeling Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Bart van der Burg
- BioDetection Systems BV, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Arjen Jonas
- BioDetection Systems BV, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Johannes Huisman
- Rijkswaterstaat Zee en Delta, Ministerie van Infrastructuur en Milieu, Lange Kleiweg 34, 2288 GK Rijswijk, The Netherlands
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, Bâtiment Biophore, Quartier UNIL-Sorge, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Six Pseudoalteromonas Strains Isolated from Surface Waters of Kabeltonne, Offshore Helgoland, North Sea. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01697-15. [PMID: 26868390 PMCID: PMC4751314 DOI: 10.1128/genomea.01697-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Draft genomes are presented for 6 Pseudoalteromonas sp. strains isolated from surface waters at Kabeltonne, Helgoland, a long-term ecological research station in the North Sea. These strains contribute knowledge of the genomic underpinnings of a developing model system to study phage-host dynamics of a particle-associated ocean copiotroph.
Collapse
|
45
|
Bacosa HP, Liu Z, Erdner DL. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters. Front Microbiol 2015; 6:1325. [PMID: 26648916 PMCID: PMC4664628 DOI: 10.3389/fmicb.2015.01325] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023] Open
Abstract
Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Marine Science Institute, The University of Texas at Austin Port Aransas, TX, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin Port Aransas, TX, USA
| | - Deana L Erdner
- Marine Science Institute, The University of Texas at Austin Port Aransas, TX, USA
| |
Collapse
|
46
|
Sanni GO, Coulon F, McGenity TJ. Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15230-15247. [PMID: 25869427 DOI: 10.1007/s11356-015-4313-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0-2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0-2-mm section of sediment were only significant at days 12 to 28, and the 2-4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2-4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods.
Collapse
Affiliation(s)
- Gbemisola O Sanni
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Frédéric Coulon
- School of Energy, Environment and Agrifood, Cranfield University, Building 40, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Terry J McGenity
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|