1
|
Frankham GJ, Ogden R, Baker BW, Ewart KM, Johnson RN, Kuiper I, Lindquist CD, Moore MK, Ndiaye A, Webster LMI. Standards in wildlife forensic science, with a focus on non-human DNA analysis. Anim Genet 2025; 56:e70005. [PMID: 39994870 PMCID: PMC11850956 DOI: 10.1111/age.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
For genetic data to be used in forensic casework, it has to be produced within a controlled environment that follows strict quality standards. However, recent reviews have suggested that wildlife forensic laboratories are behind in the development and adherence to appropriate standards for casework. This paper will address these concerns by documenting the standards that have been produced, highlighting the systems of assessment and competency testing available, and reviewing the status of validated reference genetic databases. Networks of dedicated wildlife forensic scientists across the globe, represented in part by the author list for this paper, illustrate the strides taken to build capacity in this field, and an ongoing commitment to present quality wildlife forensic evidence in court.
Collapse
Affiliation(s)
| | - Rob Ogden
- TRACE Wildlife Forensics NetworkEdinburghUK
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Barry W. Baker
- U.S. Fish & Wildlife Service, Office of Law EnforcementU.S. National Fish and Wildlife Forensic LaboratoryAshlandOregonUSA
| | - Kyle M. Ewart
- Australian Museum Research InstituteSydneyNew South WalesAustralia
- TRACE Wildlife Forensics NetworkEdinburghUK
| | - Rebecca N. Johnson
- National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Irene Kuiper
- Netherlands Forensic InstituteThe HagueThe Netherlands
| | | | - M. Katherine Moore
- US National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Conservation Biology DivisionMarine Forensic LaboratoryCharlestonSouth CarolinaUSA
| | | | | |
Collapse
|
2
|
Yao Y, Chen JY, Gong XL, Li CH, Liu Z, Lin XL. Species Delimitation and Cryptic Diversity in Rheotanytarsus Thienemann & Bause, 1913 (Diptera: Chironomidae) Based on DNA Barcoding. INSECTS 2025; 16:370. [PMID: 40332883 PMCID: PMC12028281 DOI: 10.3390/insects16040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
The genus Rheotanytarsus Thienemann & Bause, 1913 (Diptera: Chironomidae) currently includes more than 120 recognized species worldwide, but precise species-level identification based solely on morphology remains challenging. Pronounced morphological differences among life stages and the time-consuming inefficiency of rearing larvae further complicate life-stage matching in this genus. In this study, we assessed species diversity by integrating morphological examination and DNA barcoding, analyzing 911 DNA barcodes from newly collected samples and a public database. Based on these results, we further constructed a relatively complete life-history framework. Our results show that 911 Rheotanytarsus DNA barcodes belong to 69 putative species. The maximum intraspecific divergence reached 7.35% in R. pentapoda, and the average minimal interspecific distance was 11.44%. Substantial intraspecific divergence in certain species complexes suggests the presence of cryptic species. Therefore, to resolve these potential cryptic species issues, more extensive sampling and morphological examination of specimens from geographically distant regions-supplemented by nuclear and ecological data-are required.
Collapse
Affiliation(s)
- Yuan Yao
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (Y.Y.); (J.-Y.C.); (X.-L.G.); (C.-H.L.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Jia-Yu Chen
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (Y.Y.); (J.-Y.C.); (X.-L.G.); (C.-H.L.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Ling Gong
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (Y.Y.); (J.-Y.C.); (X.-L.G.); (C.-H.L.)
| | - Chen-Hong Li
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (Y.Y.); (J.-Y.C.); (X.-L.G.); (C.-H.L.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Zheng Liu
- Geological Museum of China, Beijing 100083, China
| | - Xiao-Long Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (Y.Y.); (J.-Y.C.); (X.-L.G.); (C.-H.L.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Liberty JT, Lin H, Kucha C, Sun S, Alsalman FB. Innovative approaches to food traceability with DNA barcoding: Beyond traditional labels and certifications. ECOLOGICAL GENETICS AND GENOMICS 2025; 34:100317. [DOI: 10.1016/j.egg.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Mayo Ilodiri W, Huyghe CET, da Costa LM, Mambo Baba T, Danadu Mizani C, Vreven EJWMN. Hidden species diversity in the Enteromius Cope, 1867 (Teleostei: Cyprinidae) from the Aruwimi basin (Middle Congo) in the Okapi Wildlife Reserve (Democratic Republic of the Congo). JOURNAL OF FISH BIOLOGY 2025; 106:230-255. [PMID: 39370741 DOI: 10.1111/jfb.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 10/08/2024]
Abstract
Two new African minnow species, Enteromius cerinus sp. nov. and Enteromius ruforum sp. nov., are described for science from the Angadiko River, a left-bank sub-affluent of first order of the Nepoko River, draining the north-eastern part of the Okapi Wildlife Reserve (OWR). Both new species belong to the group of Enteromius for which the last unbranched dorsal-fin ray is flexible and underrated. Within this morphological group, both are most similar to Enteromius kamolondoensis, especially in life colour pattern characteristics. However, Enteromius cerinus sp. nov. differs from E. kamolondoensis by its low number of circumpeduncular scales, 10-11 (vs. 12), low maximum body depth, 22.8%-25.7% standard length (Ls) (vs. 26.1%-30.0%), and long anterior and posterior barbel lengths, 32.6%-35.3% head length (LH) (vs. 23.6%-27.2%) and 41.6%-43.9% LH (vs. 30.3%-34.9%), respectively. Further, E. ruforum sp. nov. is also easily distinguished from E. kamolondoensis by its high maximum body depth, 30.6%-33.3% Ls (vs. 26.1%-30.0%), and small, isometric, eye diameter, 26.2%-28.0% LH (vs. 29.1%-31.9%). A barcoding study (mtDNA, cytochrome oxidase subunit I [COI]) revealed that specimens of both new species form lineages well differentiated from those of other available species. As such, (i) E. cerinus sp. nov. diverges from E. kamolondoensis by a K2P genetic distance (GD) of 10.3% and (ii) E. ruforum sp. nov. by a K2P GD of 11.2%. To the present day, the fish fauna of the left-bank sub-affluents of the Nepoko River, in general, remains poorly known or undocumented. Unfortunately, at the same time, multiple anthropogenic impacts are affecting this fauna, such as (i) the destruction of habitats along the river banks for agriculture and fishing and (ii) the use of illegal fishing practices, such as fishing with plant-based ichthyotoxins during ecopage, which is combined with dam building. As a result of the demographic growth, this ecopage results in overfishing and thus is threatening both new species in particular, but all other co-occurring fish species as well. Both new species, E. cerinus sp. nov. and E. ruforum sp. nov., should thus be considered Vulnerable (VU) according to IUCN criterion D2. It is therefore hoped that their discovery highlights the urgent need for a better protection and further in situ exploration of the reserve's freshwater (fish) biodiversity, in general, and that of those small sub-affluents, in particular.
Collapse
Affiliation(s)
- Wilson Mayo Ilodiri
- Département d'Ecologie et Biodiversité des Ressources Aquatiques (DEBRA), Université de Kisangani (UNIKIS), Centre de Surveillance de la Biodiversité (CSB), Kisangani, Democratic Republic of the Congo
| | - Charlotte E T Huyghe
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
- Royal Museum for Central Africa (RMCA), Vertebrates Section, Ichthyology, Tervuren, Belgium
| | - Luis M da Costa
- Royal Museum for Central Africa (RMCA), Vertebrates Section, Ichthyology, Tervuren, Belgium
- Marine and Environmental Sciences Centre (MARE), Aquatic Research Network (ARNET), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Museu Nacional de História Natural e da Ciência, (MUHNAC), Universidade de Lisboa, Lisbon, Portugal
| | - Taylor Mambo Baba
- Département d'Ecologie et Biodiversité des Ressources Aquatiques (DEBRA), Université de Kisangani (UNIKIS), Centre de Surveillance de la Biodiversité (CSB), Kisangani, Democratic Republic of the Congo
| | - Célestin Danadu Mizani
- Département d'Ecologie et Biodiversité des Ressources Aquatiques (DEBRA), Université de Kisangani (UNIKIS), Centre de Surveillance de la Biodiversité (CSB), Kisangani, Democratic Republic of the Congo
- Faculté des Sciences, Département d'Hydrobiologie, Université de Kisangani (UNIKIS), Kisangani, Democratic Republic of the Congo
| | - Emmanuel J W M N Vreven
- Royal Museum for Central Africa (RMCA), Vertebrates Section, Ichthyology, Tervuren, Belgium
- KU Leuven, Department of Biology, Research Group on Fish Diversity and Conservation, Leuven, Belgium
- National Research Foundation-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
| |
Collapse
|
5
|
Davies N, Lafleur A, Hochberg R, Walsh EJ, Wallace RL. Key to sessile gnesiotrochan rotifers: Lacinularia and Sinantherina (Monogononta; Flosculariidae). Zootaxa 2025; 5575:177-193. [PMID: 40173879 DOI: 10.11646/zootaxa.5575.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Indexed: 04/04/2025]
Abstract
Understanding the general biology, biodiversity, ecology, and evolutionary history of organisms necessitates correct identification. Found worldwide in fresh, brackish, and some marine waters, rotifers can be difficult to identify due to their small size, complex characteristics, and dearth of keys to their identification. Moreover, many species lack a hard body wall (i.e., illoricate species), thus they are nearly impossible to identify when preserved. As a result detailed study of many illoricate rotifers is wanting. This is especially acute for the sessile rotifers where quality illustrations, either as line art or light or scanning electron photomicrographs, of adults and trophi is deficient. This leads to a serious impediment in providing a comprehensive accounting for some species. Lacinularia and Sinantherina (Monogononta; Gnesiotrocha; Flosculariidae) are two sessile genera in which the literature provides inadequate treatment. In this contribution we (1) provide simple, dichotomous keys for the identification of all valid species of both genera and (2) present collated information on their morphology thereby detailing where additional research is needed. Both keys focus on easily observable characters of adult female morphology, including features of their coronae, antennae, colony formation behaviors, and presence/absence of eyespots in the adults. We hope that our effort promotes additional research on these two genera, including better documentation of their trophi and general body morphology.
Collapse
Affiliation(s)
- Natalie Davies
- Department of Biology; Ripon College; Ripon; WI; 54971; USA.
| | | | - Rick Hochberg
- University of Massachusetts Lowell; Lowell; MA; 01854; USA.
| | - Elizabeth J Walsh
- Department of Biological Sciences; University of Texas at El Paso; El Paso; TX; 79968; USA.
| | | |
Collapse
|
6
|
Appleyard SA, Ward RD, Pogonoski JJ, Graham A, Last PR, Deagle BE, Holmes B, Gomon MF, Bray DJ, Johnson JW, Hay AC, Moore GI, Hammer MP, Russell B, Graham KJ. Australia's marine fishes DNA barcode reference library for integrated taxonomy, metabarcoding & eDNA research. Sci Data 2025; 12:21. [PMID: 39774015 PMCID: PMC11707331 DOI: 10.1038/s41597-025-04375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Over 15 000 species of fishes are found globally in the marine environment and DNA barcodes are used extensively to describe, catalogue, understand and manage this diversity. The dataset outlined here represents a DNA barcode reference library of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) from 9767 voucher specimens (representing at least 2220 species and 288 families) of marine fishes. This publicly available dataset in the Barcode of Life Data System (BOLD) represents 17 years (2005-2022) of barcoding of marine fishes identified from Australian territorial waters. Tissues targeted for sequencing with their matching physical specimens (and extracted DNA), obtained via a multi-agency sampling effort, are mostly maintained and curated by the CSIRO Australian National Fish Collection (ANFC) in Hobart, Australia. Species-level integrated taxonomy (assigned after combined morphological and genetic assessment) has been determined for 91% of the dataset. The library represents the most complete COI barcode reference dataset for marine fishes from Australian waters and is currently utilised for integrated taxonomy, (meta)barcoding and eDNA studies.
Collapse
Affiliation(s)
- Sharon A Appleyard
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, TAS, 7000, Australia.
| | - Robert D Ward
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, TAS, 7000, Australia
| | - John J Pogonoski
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, TAS, 7000, Australia
| | - Alastair Graham
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, TAS, 7000, Australia
| | - Peter R Last
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, TAS, 7000, Australia
| | - Bruce E Deagle
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, TAS, 7000, Australia
| | | | | | | | - Jeffrey W Johnson
- Queensland Museum, Collections and Research Centre, Hendra, QLD, 4011, Australia
| | - Amanda C Hay
- Australia Museum, Ichthyology, Sydney, NSW, 2010, Australia
| | - Glenn I Moore
- Collections and Research, Western Australian Museum, Welshpool, WA, 6106, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, Darwin, NT, 0810, Australia
| | - Barry Russell
- Museum and Art Gallery of the Northern Territory, Darwin, NT, 0810, Australia
| | - Ken J Graham
- Australia Museum, Ichthyology, Sydney, NSW, 2010, Australia
| |
Collapse
|
7
|
Meier R, Lawniczak MKN, Srivathsan A. Illuminating Entomological Dark Matter with DNA Barcodes in an Era of Insect Decline, Deep Learning, and Genomics. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:185-204. [PMID: 39353093 DOI: 10.1146/annurev-ento-040124-014001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Most insects encountered in the field are initially entomological dark matter in that they cannot be identified to species while alive. This explains the enduring quest for efficient ways to identify collected specimens. Morphological tools came first but are now routinely replaced or complemented with DNA barcodes. Initially too expensive for widespread use, these barcodes have since evolved into powerful tools for specimen identification and sorting, given that the evolution of sequencing approaches has dramatically reduced the cost of barcodes, thus enabling decentralized deployment across the planet. In this article, we review how DNA barcodes have become a key tool for accelerating biodiversity discovery and analyzing insect communities through both megabarcoding and metabarcoding in an era of insect decline. We predict that DNA barcodes will be particularly important for assembling image training sets for deep learning algorithms, global biodiversity genomics, and functional analysis of insect communities.
Collapse
Affiliation(s)
- Rudolf Meier
- Institute for Biology, Humboldt University Berlin, Berlin, Germany;
- Center for Integrative Biodiversity Discovery, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| | | | - Amrita Srivathsan
- Center for Integrative Biodiversity Discovery, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| |
Collapse
|
8
|
Argôlo LA, Ramos RTC, Bitencourt JA, Galdino JH, Sampaio I, Affonso PRAM. Hidden diversity revealed by DNA barcoding of paralichthyidae fish along the caribbean and brazilian coast. Genetica 2024; 153:4. [PMID: 39589617 DOI: 10.1007/s10709-024-00221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/10/2024] [Indexed: 11/27/2024]
Abstract
DNA barcoding based on COI sequences has been highly informative for the taxonomic assessment of many fish species due to its high rate of species identification. Accordingly, numerous studies have employed this method to encompass species checklists of different areas, assessment of cryptic diversity, biodiversity monitoring, and other applications. Furthermore, most of the success of COI DNA barcoding relies on a comprehensive database (BOLD Systems) that holds sequences and detailed records of millions of species and applies a system (BIN) that clusters short DNA barcodes to generate OTUs. Besides COI, the 16S rDNA has proven to be suitable for the molecular identification of several taxa, and the combination of both markers could be advantageous in investigating species composition in the Neotropics. The family Paralichthyidae comprises over 60 flatfish species. Most of them inhabit tropical areas and remain understudied. Here, we evaluated the diversity of Paralichthyidae species along the Brazilian coast through COI and 16S DNA barcodes. Combining our dataset with BOLD (COI) and GenBank (16S) public records, we conducted tree-based and genetic distance analyses along with BIN-based and species delimitation methods. Our results were consistent for both markers, and we identified eight species of paralichthyids among our samples with high confidence. Interestingly, our analyses indicate several cases where public records assigned to the same species might be sequences from multiple species. Therefore, we provide new records and occurrences and explore important issues regarding misidentification and putative cryptic diversity for several species.
Collapse
Affiliation(s)
- Leandro A Argôlo
- Instituto Tecnológico Vale Desenvolvimento Sustentável, Belém, PA, 66055-090, Brazil
| | - Robson T C Ramos
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - Jamille A Bitencourt
- Departamento de Ciências Biológicas, Universidade Estadual Do Sudoeste da Bahia, Jequié, BA, Brasil
| | - José Henrique Galdino
- Departamento de Ciências Biológicas, Universidade Estadual Do Sudoeste da Bahia, Jequié, BA, Brasil.
| | - Iracilda Sampaio
- Instituto de Estudos Costeiros, Universidade Federal Do Pará, Bragança, PA, Brasil
| | - Paulo R A M Affonso
- Departamento de Ciências Biológicas, Universidade Estadual Do Sudoeste da Bahia, Jequié, BA, Brasil
| |
Collapse
|
9
|
Baxter JR, Kotze A, de Bruyn M, Matlou K, Labuschagne K, Mwale M. DNA barcoding of southern African mammal species and construction of a reference library for forensic application. Genome 2024; 67:378-391. [PMID: 38996389 DOI: 10.1139/gen-2023-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Combating wildlife crimes in South Africa requires accurate identification of traded species and their products. Diagnostic morphological characteristics needed to identify species are often lost when specimens are processed and customs officials lack the expertise to identify species. As a potential solution, DNA barcoding can be used to identify morphologically indistinguishable specimens in forensic cases. However, barcoding is hindered by the reliance on comprehensive, validated DNA barcode reference databases, which are currently limited. To overcome this limitation, we constructed a barcode library of cytochrome c oxidase subunit 1 and cytochrome b sequences for threatened and protected mammals exploited in southern Africa. Additionally, we included closely related or morphologically similar species and assessed the database's ability to identify species accurately. Published southern African sequences were incorporated to estimate intraspecific and interspecific variation. Neighbor-joining trees successfully discriminated 94%-95% of the taxa. However, some widespread species exhibited high intraspecific distances (>2%), suggesting geographic sub-structuring or cryptic speciation. Lack of reliable published data prevented the unambiguous discrimination of certain species. This study highlights the efficacy of DNA barcoding in species identification, particularly for forensic applications. It also highlights the need for a taxonomic re-evaluation of certain widespread species and challenging genera.
Collapse
Affiliation(s)
- J R Baxter
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| | - A Kotze
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - M de Bruyn
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| | - K Matlou
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| | - K Labuschagne
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| | - M Mwale
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| |
Collapse
|
10
|
Zhao Y, Kipkoech A, Li ZP, Xu L, Yang JB. Deciphering the Plastome and Molecular Identities of Six Medicinal "Doukou" Species. Int J Mol Sci 2024; 25:9005. [PMID: 39201691 PMCID: PMC11354342 DOI: 10.3390/ijms25169005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The genus Amomum includes over 111 species, 6 of which are widely utilized as medicinal plants and have already undergone taxonomic revision. Due to their morphological similarities, the presence of counterfeit and substandard products remains a challenge. Accurate plant identification is, therefore, essential to address these issues. This study utilized 11 newly sequenced samples and extensive NCBI data to perform molecular identification of the six medicinal "Doukou" species. The plastomes of these species exhibited a typical quadripartite structure with a conserved gene content. However, independent variation shifts of the SC/IR boundaries existed between and within species. The comprehensive set of genetic sequences, including ITS, ITS1, ITS2, complete plastomes, matK, rbcL, psbA-trnH, and ycf1, showed varying discrimination of the six "Doukou" species based on both distance and phylogenetic tree methods. Among these, the ITS, ITS1, and complete plastome sequences demonstrated the highest identification success rate (3/6), followed by ycf1 (2/6), and then ITS2, matK, and psbA-trnH (1/6). In contrast, rbcL failed to identify any species. This research established a basis for a reliable molecular identification method for medicinal "Doukou" plants to protect wild plant resources, promote the sustainable use of medicinal plants, and restrict the exploitation of these resources.
Collapse
Affiliation(s)
- Ying Zhao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (A.K.); (Z.-P.L.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Research Center of Perennial Rice Engineering and Technology, School of Agriculture, Yunnan University, Kunming 650201, China;
| | - Amos Kipkoech
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (A.K.); (Z.-P.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Peng Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (A.K.); (Z.-P.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650091, China
| | - Ling Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Research Center of Perennial Rice Engineering and Technology, School of Agriculture, Yunnan University, Kunming 650201, China;
| | - Jun-Bo Yang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| |
Collapse
|
11
|
Landers E, Claridge B, Kuhn W, Seymour V, Peek H, Fluet S, Ramgren J, Phelps J, Paulk B, Cordner L, Blaschke J. Using DNA barcoding to identify high-priority taxa (Hymenoptera: Ichneumonidae) from Great Smoky Mountains National Park. ENVIRONMENTAL ENTOMOLOGY 2024; 53:730-739. [PMID: 38853372 DOI: 10.1093/ee/nvae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
The All Taxa Biodiversity Inventory (ATBI) in Great Smoky Mountains National Park (GSMNP) seeks to document every species of living thing in the park. The ATBI is decades in progress, yet some taxa remain virtually untouched by taxonomists. Such "high priority" taxa include the hyper-diverse parasitoid wasp family Ichneumonidae. Despite the positive and multifaceted effects ichneumonids have on their environment, only a small percentage of those collected in the park have been identified as species, mostly to their complex morphology and overwhelming diversity. Recently, DNA barcoding has transformed biodiversity inventories, streamlining the process to be more rapid and efficient. To test the effectiveness of barcoding 20 + year-old specimens of Ichneumonidae and catalog new records for GSMNP, COI was amplified from 95 ichneumonid morphospecies collected from Andrew's Bald, NC. Species identifications were confirmed morphologically. Eighty-one ichneumonids generated sequence data, representing 16 subfamilies and 44 genera. The subfamily Oxytorinae is newly recorded from GSMNP, along with 10 newly recorded genera and 23 newly recorded species across Ichneumonidae. These results contribute significantly to the ATBI by adding new park records for a high-priority taxon and demonstrate the effectiveness of applying DNA barcoding to samples in long-term storage or those lacking immediate taxonomic expertise.
Collapse
Affiliation(s)
- Emerie Landers
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Brandon Claridge
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - Will Kuhn
- Discover Life in America, 1316 Cherokee Orchard Road, Gatlinburg, TN, 37738, USA
| | - Victoria Seymour
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Hettie Peek
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Scout Fluet
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Jake Ramgren
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Jake Phelps
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Brayden Paulk
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Lydia Cordner
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| | - Jeremy Blaschke
- Department of Biology, Union University, 1050 Union University, Jackson, TN, 38305, USA
| |
Collapse
|
12
|
Yamamoto T, Tachihara K, Toda M. Examination of sequence variations in partial mitochondrial 12S gene amongst damselfish species as references for DNA barcoding. Biodivers Data J 2024; 12:e126744. [PMID: 39184369 PMCID: PMC11342385 DOI: 10.3897/bdj.12.e126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Accurate species identification, based on DNA barcoding, can be achieved when sufficient sequence variations are present amongst species in the sampled marker. In general, the ability to discriminate species decreases with shorter sequences; however, shorter regions have a merit in amplification success by the polymerase chain reaction. In either case, it is important to investigate sequence variations amongst species before barcoding to understand its reliability and limitations. In this study, we investigate how accurately short, but hypervariable portion of the mitochondrial 12S ribosomal RNA (12S) gene (MiFish region with approximately 180 bp) is used to identify each species in diversified pomacentrid fishes compared with the longer region of the same gene (approximately 750 bp). We prepared three datasets with 301 sequences of the MiFish region for 150 species, the same 301 of sequences of the longer 12S region and 476 sequences of the MiFish region for 183 species. Neighbour-joining (NJ) analyses and genetic distance analyses revealed several indistinguishable pairs of species in these DNA regions. Although the number of such pairs was larger in the MiFish region, 83.6% (153 of 183) of species possessed respective unique sequences even in the MiFish region (versus 96.0% [144 of 150 species] in the longer 12S region). A part of indistinguishable pairs of species might have caused by mitochondrial DNA introgressions and taxonomically unresolved problems. Our analysis clarified the effectiveness and limitations of species identification using DNA barcoding for Pomacentridae and the sequences we provided here contribute to the expansion of references for pomacentrid mitochondrial 12S sequences.
Collapse
Affiliation(s)
- Takumi Yamamoto
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, JapanGraduate School of Engineering and Science, University of the RyukyusNishihara, OkinawaJapan
| | - Katsunori Tachihara
- Laboratory of Fisheries Biology and Coral Reef Studies, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, JapanLaboratory of Fisheries Biology and Coral Reef Studies, Faculty of Science, University of the RyukyusNishihara, OkinawaJapan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, JapanTropical Biosphere Research Center, University of the RyukyusNishihara, OkinawaJapan
| |
Collapse
|
13
|
Allison PF, Pickich ET, Barnett ZC, Garrick RC. DNA barcoding is currently unreliable for species identification in most crayfishes. Ecol Evol 2024; 14:e70050. [PMID: 39041008 PMCID: PMC11260883 DOI: 10.1002/ece3.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
DNA barcoding is commonly used for species identification. Despite this, there has not been a comprehensive assessment of the utility of DNA barcoding in crayfishes (Decapoda: Astacidea). Here we examined the extent to which local barcoding gaps (used for species identification) and global barcoding gaps (used for species discovery) exist among crayfishes, and whether global gaps met a previously suggested 10× threshold (mean interspecific difference being 10× larger than mean intra specific difference). We examined barcoding gaps using publicly available mitochondrial COI sequence data from the National Center for Biotechnology Information's nucleotide database. We created two versions of the COI datasets used for downstream analyses: one focused on the number of unique haplotypes (N H) per species, and another that focused on total number of sequences (N S; i.e., including redundant haplotypes) per species. A total of 81 species were included, with 58 species and five genera from the family Cambaridae and 23 species from three genera from the family Parastacidae. Local barcoding gaps were present in only 30 species (20 Cambaridae and 10 Parastacidae species). We detected global barcoding gaps in only four genera (Cambarus, Cherax, Euastacus, and Tenuibranchiurus), which were all below (4.2× to 5.2×) the previously suggested 10× threshold. We propose that a ~5× threshold would be a more appropriate working hypothesis for species discovery. While the N H and N S datasets yielded largely similar results, there were some discrepant inferences. To understand why some species lacked a local barcoding gap, we performed species delimitation analyses for each genus using the N H dataset. These results suggest that current taxonomy in crayfishes may be inadequate for the majority of examined species, and that even species with local barcoding gaps present may be in need of taxonomic revisions. Currently, the utility of DNA barcoding for species identification and discovery in crayfish is quite limited, and caution should be exercised when mitochondrial-based approaches are used in place of taxonomic expertise. Assessment of the evidence for local and global barcoding gaps is important for understanding the reliability of molecular species identification and discovery, but outcomes are dependent on the current state of taxonomy. As this improves (e.g., via resolving species complexes, possibly elevating some subspecies to the species-level status, and redressing specimen misidentifications in natural history and other collections), so too will the utility of DNA barcoding.
Collapse
Affiliation(s)
| | - Emily T. Pickich
- Department of BiologyUniversity of MississippiUniversityMississippiUSA
| | - Zanethia C. Barnett
- Southern Research StationUSDA Forest Service, Center for Bottomland Hardwoods ResearchClemsonSouth CarolinaUSA
| | - Ryan C. Garrick
- Department of BiologyUniversity of MississippiUniversityMississippiUSA
| |
Collapse
|
14
|
Lafleur A, Davies N, Hochberg R, Walsh EJ, Wallace RL. Key to sessile gnesiotrochan rotifers: Floscularia (Monogononta; Flosculariidae). Zootaxa 2024; 5471:401-421. [PMID: 39646303 DOI: 10.11646/zootaxa.5471.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 12/10/2024]
Abstract
Correct identification of species is necessary if we are to understand their biology, ecology, and evolutionary history, as well as to catalog their global biodiversity. This is acutely critical for many micrometazoans like rotifers, which are often difficult to identify because of their small size and complicated morphologies. Rotifers are ubiquitous micrometazoans that are found worldwide in fresh, brackish, and some marine waters. However, their study is hindered by a lack of both taxonomic expertise and concomitantly adequate guides to the identification of some taxa. These deficiencies are particularly true for the sessile species. To help alleviate these impediments, we assembled information from the literature on easily recognizable characters of all nine valid species in one notable genus: Floscularia (Monogononta; Gnesiotrocha; Flosculariidae). Using that information we developed a simple, dichotomous key to enable workers to identify species in this genus. Our key emphasizes easily observable characters of adult female morphology, including features of their tubes, anterior ends, trophi, and colony formation abilities, thereby allowing for relatively quick identification.
Collapse
Affiliation(s)
| | - Natalie Davies
- Department of Biology; Ripon College; Ripon; WI; 54971; USA.
| | - Rick Hochberg
- University of Massachusetts Lowell; Lowell; MA; 01854; USA.
| | - Elizabeth J Walsh
- Department of Biological Sciences; University of Texas at El Paso; El Paso; TX; 79968; USA.
| | | |
Collapse
|
15
|
Lima RC, de Lima SR, Rocha MS, Dos Anjos HDB, Dantas YCA, Benites IDN, Queiroz CDCS, Fraga EDC, Batista JDS. Identification of fish specimens of the Tocantins River, Brazil, using DNA barcoding. JOURNAL OF FISH BIOLOGY 2024; 104:1924-1939. [PMID: 38551122 DOI: 10.1111/jfb.15721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/03/2023] [Accepted: 02/25/2024] [Indexed: 06/27/2024]
Abstract
The fish fauna of the Tocantins River possesses many endemic species; however, it is little studied in molecular terms and is quite threatened by the construction of several hydroelectric dams. Therefore, the objective of this study was to identify the ichthyofauna of the Tocantins River using DNA barcoding. For this, collections were carried out in five points of this river, which resulted in the capture of 725 individuals from which partial sequences of the cytochrome oxidase subunit I (COI) gene were obtained for genetic analysis. A total of 443 haplotypes were recovered with the mean intraspecific K2P genetic distance of 1.82%. Altogether, 138 species were identified based on morphological criteria, which was a quantity that was much lower than that indicated by the four molecular methods (assemble species by automatic partitioning [ASAP], barcode index number [BIN], generalized mixed Yule coalescent (GMYC), and Bayesian Poisson tree processes [bPTP]) through which 152-157 molecular entities were identified. In all, 41 unique BINs were obtained based on the data generated in the BOLDSystems platform. According to the result indicated by ASAP (species delimitation approach considered the most appropriate in the present study), there was an increase of 17 molecular entities (12.32%), when compared to the number of species identified through their morphological criteria, as it can show cryptic diversity, candidates for new species, and misidentifications. There were 21 incongruities indicated between the different identification approaches for species. Therefore, it is suggested that these taxonomic problems be cautiously evaluated by experts to solve such taxonomic issues.
Collapse
Affiliation(s)
- Renato Corrêia Lima
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Laboratório Temático de Biologia Molecular (LTBM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Sabrina Rufino de Lima
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Laboratório Temático de Biologia Molecular (LTBM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Marcelo Salles Rocha
- Coordenação de Ciências Biológicas, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | | | | | | | | | - Elmary da Costa Fraga
- Departamento de Química e Biologia, Universidade Estadual do Maranhão (UEMA), Caxias, Brazil
| | - Jacqueline da Silva Batista
- Coordenação de Biodiversidade (COBIO), Laboratório Temático de Biologia Molecular (LTBM), Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| |
Collapse
|
16
|
Niu M, Liu Y, Xue L, Cai B, Zhao Q, Wei J. Improving DNA barcoding library of armored scale insects (Hemiptera: Diaspididae) in China. PLoS One 2024; 19:e0301499. [PMID: 38814962 PMCID: PMC11139323 DOI: 10.1371/journal.pone.0301499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 06/01/2024] Open
Abstract
DNA barcoding is used to identify cryptic species, survey environmental samples, and estimate phyletic and genetic diversity. Armored scale insects are phytophagous insects and are the most species-rich taxa in the Coccoidea superfamily. This study developed a DNA barcode library for armored scale insect species collected from southern China during 2021-2022. We sequenced a total of 239 specimens, recognized as 50 morphological species, representing two subfamilies and 21 genera. Sequencing analysis revealed that the average G + C content of the cytochrome oxidase subunit I (COI) gene sequence was very low (~18.06%) and that the average interspecific divergence was 10.07% while intraspecific divergence was 3.20%. The intraspecific divergence value was inflated by the high intraspecific divergence in ten taxa, which may indicate novel species overlooked by current taxonomic treatments. All the Automated Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Taxon DNA analysis and Bayesian Poisson Tree Process methods yielded largely consistent results, indicating a robust and credible species delimitation. Based on these results, an intergeneric distance threshold of ≤ 5% was deemed appropriate for the differentiation of armored scale insect species in China. This study establishes a comprehensive barcode library for the identification of armored scale insects, future research, and application.
Collapse
Affiliation(s)
- Minmin Niu
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Yubo Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Linjia Xue
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Bo Cai
- Hainan Province Engineering Research Center for Quarantine, Prevention and Control of Exotic Pests, Haikou, China
| | - Qing Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Jiufeng Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
17
|
Fu N, Xu Y, Jin L, Xiao TW, Song F, Yan HF, Chen YS, Ge XJ. Testing plastomes and nuclear ribosomal DNA sequences as the next-generation DNA barcodes for species identification and phylogenetic analysis in Acer. BMC PLANT BIOLOGY 2024; 24:445. [PMID: 38778277 PMCID: PMC11112886 DOI: 10.1186/s12870-024-05073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.
Collapse
Affiliation(s)
- Ning Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Xu
- Conghua Middle School, Guangzhou, 510920, China
| | - Lu Jin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - You-Sheng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
18
|
Ajene IJ, Heya H, Khamis FM. Evaluating the mitochondrial genomic diversity, global distribution and niche overlap of two invasive Phthorimaea species. Heliyon 2024; 10:e29010. [PMID: 38617910 PMCID: PMC11015427 DOI: 10.1016/j.heliyon.2024.e29010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
This study sought to evaluate the genetic diversity of two invasive Phthorimaea species (Phthorimaea operculella Zeller and Phthorimaea absoluta Meyrick), and identify potential niche overlap of both species. The complete mitogenomes of P. operculella and P. absoluta were sequenced and compared. Furthermore, the diversity within the family Gelechiidae was assessed. Subsequently, two species distribution models (MaxEnt and BIOCLIM) were used to identify niche overlaps of both species globally. The complete mitogenomes of both species were similar in size and structure, with a pairwise identity of 92.3%. The models showed a niche overlap of both species and revealed areas of marginal to high suitability for both pests in countries where they have not been reported. Therefore, these results present a compelling case for a deeper genetic and ecological investigation of the Gelechiidae family for taxonomic harmonization, an early warning for surveillance, stricter phytosanitary considerations and preventive management against the spread of the pests.
Collapse
Affiliation(s)
- Inusa Jacob Ajene
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Helen Heya
- Kenya Plant Health Inspectorate Service, Nairobi, Kenya
| | | |
Collapse
|
19
|
Epur IV, Balanov AA, Shelekhov VA, Turanov SV. First description of larvae of Radulinopsis derzhavini Soldatov et Lindberg, 1930 (Scorpaeniformes: Psychrolutidae) with remarks on melanin colouration and relationships with related species. JOURNAL OF FISH BIOLOGY 2024; 104:769-779. [PMID: 37963807 DOI: 10.1111/jfb.15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
The Derzhavin's sculpin (Radulinopsis derzhavini Soldatov et Lindberg, 1930) is a psychrolutids species that leads a cryptic life in coastal waters of the Japan Sea and the southern Okhotsk Sea. To date, larvae of this species have remained unknown; therefore, their biology is poorly understood. In the present study, the early developmental stages of R. derzhavini are described for the first time. In Peter the Great Bay, Japan Sea, this species is characterized by a spring spawning season (May) and a short pelagic period of larval development, usually from mid-May to the last 10 days of June. Species identification of the described larvae was confirmed by incubation, rearing of larvae in captivity, and genotyping of a fragment of the mitochondrial cytochrome c oxidase I (COI) gene. In addition, the development of pigmentation in larvae of this and related species was compared. Morphological analysis of both adults and larvae, together with complementary molecular genetics, confirms the previously obtained conclusions that the species of the genera Radulinopsis, Radulinus, Asemichthys, and Astrocottus form a natural group with monophyly by all types of data.
Collapse
Affiliation(s)
- Irina V Epur
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russia
| | - Andrey A Balanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russia
| | - Vladimir A Shelekhov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russia
| | - Sergey V Turanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russia
| |
Collapse
|
20
|
Choudhary A, Shekhawat D, Pathania J, Sita K, Sharma S, Chawla A, Jaiswal V. Exploring DNA barcode for accurate identification of threatened Aconitum L. species from Western Himalaya. Mol Biol Rep 2024; 51:75. [PMID: 38175298 DOI: 10.1007/s11033-023-08927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Aconitum species, belonging to Ranunculaceae, have high medicinal importance but due to their overexploitation come under IUCN (International Union for Conservation of Nature) red list. The precise identification of the Aconitum species is equally important because they are used in herbal formulations. The present study aimed to develop an efficient DNA barcode system for the authentic identification of Aconitum species. METHODS AND RESULTS A set of 92 barcode gene sequences (including 12 developed during the present study and 80 retrieved from NCBI) of 5 Aconitum species (A. heterophyllum, A. vialoceum, A. japonicum, A. napellus, and A. stapfianum) were analyzed using three methods (tree-based, distance-based, and similarity-based) for species discrimination. The PWG-distance method was found most effective for species discrimination. The discrimination rate of PWG- distance ranged from 33.3% (rbcL + trnH-psbA) to 100% (ITS, rbcL + ITS, ITS + trnH-psbA and rbcL + ITS + trnH-psbA). Among DNA barcodes and their combinations, the ITS marker had the highest degree of species discrimination (NJ-40%, PWG-100% and BLAST-40%), followed by trnH-psbA (NJ-20%, PWG-60% and BLAST-20%). ITS also had higher barcoding gap as compared to other individual barcodes and their combinations. Further, we also analyzed six Aconitum species (A. balfourii, A. ferox, A. heterophyllum, A. rotundifolium, A. soongaricum and A. violaceum) existing in Western Himalaya. These species were distinguished clearly through tree-based method using the ITS barcode gene with 100% species resolution. CONCLUSION ITS showed the best species discrimination power and was used to develop species-specific barcodes for Aconitum species. DNA barcodes developed during the present study can be used to identify Aconitum species.
Collapse
Affiliation(s)
- Anita Choudhary
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepika Shekhawat
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Jyotsna Pathania
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Kumari Sita
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Shailika Sharma
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Amit Chawla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Vandana Jaiswal
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Miralles A, Puillandre N, Vences M. DNA Barcoding in Species Delimitation: From Genetic Distances to Integrative Taxonomy. Methods Mol Biol 2024; 2744:77-104. [PMID: 38683312 DOI: 10.1007/978-1-0716-3581-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Over the past two decades, DNA barcoding has become the most popular exploration approach in molecular taxonomy, whether for identification, discovery, delimitation, or description of species. The present contribution focuses on the utility of DNA barcoding for taxonomic research activities related to species delimitation, emphasizing the following aspects:(1) To what extent DNA barcoding can be a valuable ally for fundamental taxonomic research, (2) its methodological and theoretical limitations, (3) the conceptual background and practical use of pairwise distances between DNA barcode sequences in taxonomy, and (4) the different ways in which DNA barcoding can be combined with complementary means of investigation within a broader integrative framework. In this chapter, we recall and discuss the key conceptual advances that have led to the so-called renaissance of taxonomy, elaborate a detailed glossary for the terms specific to this discipline (see Glossary in Chap. 35 ), and propose a newly designed step-by-step species delimitation protocol starting from DNA barcode data that includes steps from the preliminary elaboration of an optimal sampling strategy to the final decision-making process which potentially leads to nomenclatural changes.
Collapse
Affiliation(s)
- Aurélien Miralles
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Miguel Vences
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
22
|
Vences M, Miralles A, DeSalle R. A Glossary of DNA Barcoding Terms. Methods Mol Biol 2024; 2744:561-572. [PMID: 38683343 DOI: 10.1007/978-1-0716-3581-0_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
This chapter provides a reference glossary for the protocols in this volume. We have chosen only the very basic terms in the DNA barcode lexicon to include, and provide clear and concise definitions of these terms. We hope the reader finds this glossary useful.
Collapse
Affiliation(s)
- Miguel Vences
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Aurélien Miralles
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Robert DeSalle
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.
| |
Collapse
|
23
|
Zhang P, Cai Y, Ma L, Chai J, Zhou Z. DNA barcoding of the genus Gampsocleis (Orthoptera, Tettigoniidae) from China. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22070. [PMID: 38288484 DOI: 10.1002/arch.22070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 02/01/2024]
Abstract
DNA barcoding is a useful addition to the traditional morphology-based taxonomy. A ca. 650 bp fragment of the 5' end of mitochondrial cytochrome c oxidase subunit I (hereafter COI-5P) DNA barcoding was sued as a practical tool for Gampsocleis species identification. DNA barcodes from 889 specimens belonging to 8 putative Gampsocleis species was analyzed, including 687 newly generated DNA barcodes. These barcode sequences were clustered/grouped into Operational Taxonomic Units (OTUs) using the criteria of five algorithms, namely Barcode Index Number (BIN) System, Assemble Species by Automatic Partitioning (ASAP), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP). The Taxon ID Tree grouped sequences of morphospecies and almost all MOTUs in distinct nonoverlapping clusters. Both long- and short-winged Gampsocleis species are reciprocally monophyletic in the Taxon ID Tree. In BOLD, 889 barcode sequences are assigned to 17 BINs. The algorithms ASAP, jMOTU, bPTP and GMYC clustered the barcode sequences into 6, 13, 10, and 23 MOTUs, respectively. BIN, ASAP, and bPTP algorithm placed three long-winged species, G. sedakovii, G. sinensis and G. ussuriensis within the same MOTU. All species delimitation algorithms split two short-winged species,G. fletcheri and G. gratiosa into at least two MOTUs each, except for ASAP algorithm. More detailed molecular and morphological integrative studies are required to clarify the status of these MOTUs in the future.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Yuting Cai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Lan Ma
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Jinyan Chai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
24
|
da Silva TF, Sampaio I, Angulo A, Domínguez-Domínguez O, Andrade-Santos J, Guimarães-Costa A, Santos S. Species delimitation by DNA barcoding reveals undescribed diversity in Stelliferinae (Sciaenidae). PLoS One 2023; 18:e0296335. [PMID: 38153939 PMCID: PMC10754464 DOI: 10.1371/journal.pone.0296335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Stelliferinae is the third most speciose subfamily of Sciaenidae, with 51 recognized species arranged in five genera. Phylogenies derived from both morphological and molecular data support the monophyly of this subfamily, although there is no general consensus on the intergeneric relationships or the species diversity of this group. We used the barcoding region of the cytochrome oxidase C subunit I (COI) gene to verify the delimitation of Stelliferinae species based on the Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescence (GMYC), and Bayesian Poisson Tree Process (bPTP) methods. In general, the results of these different approaches were congruent, delimiting 30-32 molecular operational taxonomic units (MOTUs), most of which coincided with valid species. Specimens of Stellifer menezesi and Stellifer gomezi were attributed to a single species, which disagrees with the most recent review of this genus. The evidence also indicated that Odontoscion xanthops and Corvula macrops belong to a single MOTU. In contrast, evidence also indicates presence of distinct lineages in both Odontoscion dentex and Bairdiella chrysoura. Such results are compatible with the existence of cryptic species, which is supported by the genetic divergence and haplotype genealogy. Therefore, the results of the present study indicate the existence of undescribed diversity in the Stelliferinae, which reinforces the need for an ample taxonomic review of the fish in this subfamily.
Collapse
Affiliation(s)
- Tárcia Fernanda da Silva
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Iracilda Sampaio
- Laboratory of Evolution, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Arturo Angulo
- Escuela de Biología, Museo de Zoología/Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET) and Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
| | - Omar Domínguez-Domínguez
- Laboratory of Aquatic Biology, Faculty of Biology, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morella, Michoacán, Mexico
| | - Jonas Andrade-Santos
- Laboratory of Ichthyology, Vertebrates Department–Federal University of Rio de Janeiro, National Museum, Rio de Janeiro, Brazil
| | - Aurycéia Guimarães-Costa
- Laboratory of Evolution, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Simoni Santos
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| |
Collapse
|
25
|
Noll NW, Scherber C, Schäffler L. taxalogue: a toolkit to create comprehensive CO1 reference databases. PeerJ 2023; 11:e16253. [PMID: 38077427 PMCID: PMC10702336 DOI: 10.7717/peerj.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/18/2023] [Indexed: 12/18/2023] Open
Abstract
Background Taxonomic identification through DNA barcodes gained considerable traction through the invention of next-generation sequencing and DNA metabarcoding. Metabarcoding allows for the simultaneous identification of thousands of organisms from bulk samples with high taxonomic resolution. However, reliable identifications can only be achieved with comprehensive and curated reference databases. Therefore, custom reference databases are often created to meet the needs of specific research questions. Due to taxonomic inconsistencies, formatting issues, and technical difficulties, building a custom reference database requires tremendous effort. Here, we present taxalogue, an easy-to-use software for creating comprehensive and customized reference databases that provide clean and taxonomically harmonized records. In combination with extensive geographical filtering options, taxalogue opens up new possibilities for generating and testing evolutionary hypotheses. Methods taxalogue collects DNA sequences from several online sources and combines them into a reference database. Taxonomic incongruencies between the different data sources can be harmonized according to available taxonomies. Dereplication and various filtering options are available regarding sequence quality or metadata information. taxalogue is implemented in the open-source Ruby programming language, and the source code is available at https://github.com/nwnoll/taxalogue. We benchmark four reference databases by sequence identity against eight queries from different localities and trapping devices. Subsamples from each reference database were used to compare how well another one is covered. Results taxalogue produces reference databases with the best coverage at high identities for most tested queries, enabling more accurate, reliable predictions with higher certainty than the other benchmarked reference databases. Additionally, the performance of taxalogue is more consistent while providing good coverage for a variety of habitats, regions, and sampling methods. taxalogue simplifies the creation of reference databases and makes the process reproducible and transparent. Multiple available output formats for commonly used downstream applications facilitate the easy adoption of taxalogue in many different software pipelines. The resulting reference databases improve the taxonomic classification accuracy through high coverage of the query sequences at high identities.
Collapse
Affiliation(s)
- Niklas W. Noll
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| | - Christoph Scherber
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| | - Livia Schäffler
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
26
|
Jin L, Shi HY, Li T, Zhao N, Xu Y, Xiao TW, Song F, Ma CX, Li QM, Lin LX, Shao XN, Li BH, Mi XC, Ren HB, Qiao XJ, Lian JY, Du H, Ge XJ. A DNA barcode library for woody plants in tropical and subtropical China. Sci Data 2023; 10:819. [PMID: 37993453 PMCID: PMC10665436 DOI: 10.1038/s41597-023-02742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The application of DNA barcoding has been significantly limited by the scarcity of reliable specimens and inadequate coverage and replication across all species. The deficiency of DNA barcode reference coverage is particularly striking for highly biodiverse subtropical and tropical regions. In this study, we present a comprehensive barcode library for woody plants in tropical and subtropical China. Our dataset includes a standard barcode library comprising the four most widely used barcodes (rbcL, matK, ITS, and ITS2) for 2,520 species from 4,654 samples across 49 orders, 144 families, and 693 genera, along with 79 samples identified at the genus level. This dataset also provides a super-barcode library consisting of 1,239 samples from 1,139 species, 411 genera, 113 families, and 40 orders. This newly developed library will serve as a valuable resource for DNA barcoding research in tropical and subtropical China and bordering countries, enable more accurate species identification, and contribute to the conservation and management of tropical and subtropical forests.
Collapse
Affiliation(s)
- Lu Jin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hao-You Shi
- Central South Academy of Inventory and Planning of NFGA, Changsha, 410014, China
| | - Ting Li
- Yiyang Forestry Bureau, Yiyang, 413000, China
| | - Nan Zhao
- Hunan Police Academy, Changsha, 410138, China
| | - Yong Xu
- Conghua Middle School, Guangzhou, 510900, China
| | - Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Feng Song
- College of Forestry, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Chen-Xin Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qiao-Ming Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lu-Xiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Na Shao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bu-Hang Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiang-Cheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Bao Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiu-Juan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ju-Yu Lian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hu Du
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
27
|
Sangster G, Luksenburg JA. The importance of voucher specimens: misidentification or previously unknown mtDNA diversity in Phalacrocorax capillatus (Aves: Phalacrocoracidae)? Mitochondrial DNA B Resour 2023; 8:1158-1160. [PMID: 38188423 PMCID: PMC10769515 DOI: 10.1080/23802359.2023.2274986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/19/2023] [Indexed: 01/09/2024] Open
Abstract
A recently published complete mitochondrial genome of Japanese or Temminck's cormorant (Phalacrocorax capillatus) was the first of this species (GenBank accession number LC714913). Comparison of COI sequences shows that this mitogenome clustered with great cormorant (Phalacrocorax carbo) rather than with its sister taxon P. capillatus. This suggests that the mitogenome was either a misidentified P. carbo or represents previously unknown intraspecific diversity in P. capillatus overlapping with that of P. carbo. Unfortunately, no voucher specimen was retained so it remains impossible to distinguish between these alternatives. We suggest that great restraint should be exercised using this mitogenome as a reference for P. capillatus. We reiterate previous pleas to retain voucher specimens for mitogenome sequences to enable re-analysis of the identity of the material.
Collapse
Affiliation(s)
| | - Jolanda A. Luksenburg
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| |
Collapse
|
28
|
Cannet A, Simon-Chane C, Akhoundi M, Histace A, Romain O, Souchaud M, Jacob P, Sereno D, Mouline K, Barnabe C, Lardeux F, Boussès P, Sereno D. Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species. Sci Rep 2023; 13:13895. [PMID: 37626130 PMCID: PMC10457333 DOI: 10.1038/s41598-023-41114-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
We present a new and innovative identification method based on deep learning of the wing interferential patterns carried by mosquitoes of the Anopheles genus to classify and assign 20 Anopheles species, including 13 malaria vectors. We provide additional evidence that this approach can identify Anopheles spp. with an accuracy of up to 100% for ten out of 20 species. Although, this accuracy was moderate (> 65%) or weak (50%) for three and seven species. The accuracy of the process to discriminate cryptic or sibling species is also assessed on three species belonging to the Gambiae complex. Strikingly, An. gambiae, An. arabiensis and An. coluzzii, morphologically indistinguishable species belonging to the Gambiae complex, were distinguished with 100%, 100%, and 88% accuracy respectively. Therefore, this tool would help entomological surveys of malaria vectors and vector control implementation. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des Affaires Sanitaires et Sociales de la Nouvelle-Calédonie, Nouméa, France
| | | | | | - Aymeric Histace
- ETIS UMR 8051, ENSEA, CNRS, Cergy Paris University, 95000, Cergy, France
| | - Olivier Romain
- ETIS UMR 8051, ENSEA, CNRS, Cergy Paris University, 95000, Cergy, France
| | - Marc Souchaud
- ETIS UMR 8051, ENSEA, CNRS, Cergy Paris University, 95000, Cergy, France
| | - Pierre Jacob
- CNRS, Bordeaux INP, LaBRI, UMR 5800, Univ. Bordeaux, 33400, Talence, France
| | - Darian Sereno
- InterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ Montpellier, Montpellier, France
| | - Karine Mouline
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Christian Barnabe
- InterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ Montpellier, Montpellier, France
| | | | | | - Denis Sereno
- InterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ Montpellier, Montpellier, France.
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France.
| |
Collapse
|
29
|
Shimbori EM, Querino RB, Costa VA, Zucchi RA. Taxonomy and Biological Control: New Challenges in an Old Relationship. NEOTROPICAL ENTOMOLOGY 2023; 52:351-372. [PMID: 36656493 PMCID: PMC9851596 DOI: 10.1007/s13744-023-01025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/03/2023] [Indexed: 05/13/2023]
Abstract
Biological control and taxonomy are continuously developing fields with remarkable impacts on society. At least 80 years of literature have documented this relationship, which remains essentially the same in its mutualistic nature, as well as in its major challenges. From the perspective of Brazilian taxonomists, we discuss the impacts of important scientific and social developments that directly affect research in these areas, posing new challenges for this lasting relationship. The increasing restrictions and concerns regarding the international transit of organisms require improvements in research related to risk assessment for exotic biological control agents and also stimulate prospecting within the native biota. In our view, this is a positive situation that can foster a closer relationship between taxonomists and applied entomologists, as well as local surveys and taxonomic studies that are necessary before new programs and agents can be implemented. We discuss the essential role of molecular biology in this context, as an iconic example of the synergy between applied sciences and natural history. As our society comes to need safer and more sustainable solutions for food security and the biodiversity crisis, scientific progress will build upon this integration, where biological control and taxonomy play an essential role.
Collapse
Affiliation(s)
- Eduardo Mitio Shimbori
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), São Paulo Piracicaba, Brazil
| | - Ranyse Barbosa Querino
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Cerrados, Planaltina, Distrito Federal Brazil
| | - Valmir Antonio Costa
- Centro Avançado de Pesquisa e Desenvolvimento em Sanidade Agropecuária, Instituto Biológico, São Paulo Campinas, Brazil
| | - Roberto Antonio Zucchi
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), São Paulo Piracicaba, Brazil
| |
Collapse
|
30
|
Neves MO, Campos Lima LM, Koroiva R, Nali RC, Santana DJ. A New Species of Dendrophryniscus Jiménez de la Espada 1871 (Amphibia: Anura: Bufonidae) from Mantiqueira Mountain Range, State of Minas Gerais, Brazil. HERPETOLOGICA 2023. [DOI: 10.1655/herpetologica-d-22-00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Matheus Oliveira Neves
- Pro rama de Pós-Graduaca͂o em Zoolo ia Instituto de Biociências Universidade Federal de Mato Grosso Cuiabá Mato Grosso 78060-900 Brazil
| | - Lucio Moreira Campos Lima
- Programa de Pós-Graduaça͂o em Biodiversidade e Conservaça͂o da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Ricardo Koroiva
- Laboratório Multiusuário do Programa de Pós-Graduaça͂o em Ciências Biológicas-Zoologia, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Joa͂o Pessoa, Paraíba, 58051-090, Brazil
| | - Renato Christensen Nali
- Programa de Pós-Graduaça͂o em Biodiversidade e Conservaça͂o da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Diego José Santana
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002-970, Brazil
| |
Collapse
|
31
|
Han W, Tang H, Wei L, Zhang E. The first DNA barcode library of Chironomidae from the Tibetan Plateau with an evaluation of the status of the public databases. Ecol Evol 2023; 13:e9849. [PMID: 36861023 PMCID: PMC9969238 DOI: 10.1002/ece3.9849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
The main aim of this study was to curate a COI barcode library of Chironomidae from the Tibetan Plateau (TP) as an essential supplement to the public database. Another aim is to evaluate the current status of the public database of Chironomidae in aspects of taxonomic coverage, geographic representation, barcode quality, and efficiency for molecular identification, the Tibetan Plateau, China. In this study, 512 individuals of Chironomidae from the TP were identified based on morphological taxonomy and barcode analysis. The metadata of public records of Chironomidae were downloaded from the BOLD, and the quality of the public barcodes was ranked using the BAGS program. The reliability of the public library for molecular identification was evaluated with the newly curated library using the BLAST method. The newly curated library comprised 159 barcode species of 54 genera, of which 58.4% of species were likely new to science. There were great gaps in the taxonomic coverage and geographic representation in the public database, and only 29.18% of barcodes were identified at the species level. The quality of the public database was of concern, with only 20% of species being determined as concordant between BINs and morphological species. The accuracy of molecular identification using the public database was poor, and about 50% of matched barcodes could be correctly identified at the species level at the identity threshold of 97%. Based on these data, some recommendations are included here for improving barcoding studies on Chironomidae. The species richness of Chironomidae from the TP is much higher than ever recorded. Barcodes from more taxonomic groups and geographic regions are urgently needed to fill the great gap in the current public database of Chironomidae. Users should take caution when public databases are adopted as reference libraries for the taxonomic assignment.
Collapse
Affiliation(s)
- Wu Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of ScienceNanjingChina
- University of Chinese Academy of SciencesBeijing100039China
| | - Hongqu Tang
- Life Science and Technology CollegeJinan UniversityGuangzhouChina
| | - Lili Wei
- Life Science and Technology CollegeJinan UniversityGuangzhouChina
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of ScienceNanjingChina
| |
Collapse
|
32
|
Schubert HC, Duda M, Eschner A, Weigand E, Kruckenhauser L. DNA barcoding as a tool to monitor the diversity of endangered spring snails in an Austrian National Park. Biodivers Data J 2023; 11:e91496. [PMID: 36761079 PMCID: PMC9850253 DOI: 10.3897/bdj.11.e91496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
The Kalkalpen National Park is situated in Upper Austria and contains more than 800 springs. The international importance of this Park is, from the perspective of nature conservation directives, highly significant (European Nature Reserve Natura 2000, recognised wetland of the Ramsar convention). In the current study, the hydrobioid fauna ('spring snails') of the Kalkalpen National Park was evaluated. These tiny snails are difficult to determine; however, their investigation is especially desirable, as several species are threatened and as they are important for water quality assessment. Snails collected in 39 selected springs were examined with classical morphological methods (shell and genital anatomy) and, subsequently, by DNA analysis. For this task, the DNA barcode, a partial sequence of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene (length of the sequence 658-682 bp), was PCR amplified and sequenced. From 107 specimens, the DNA barcoding sequence could be obtained and compared with already existing DNA sequences. The (sub)endemic species Bythinellaconica, Hauffeniakerschneri, Hauffeniawienerwaldensis and Belgrandiellaaulaei could be clearly identified. For Bythiospeumnocki, despite the ambitious collecting effort, only empty shells were found in four springs (including the locus typicus spring) in the Park and its surroundings. The genus Bythinella was detected in 36 springs. From 25 of these localities, DNA barcodes could be created, which matches those of Bythinellaconica (comparison data from ABOL). It is, therefore, concluded that the species occurs widely in the Kalkalpen National Park. The genus Hauffenia was sampled from 16 springs. From one, the haplotype of Hauffeniawienerwaldensis could be identified (spring is 5 km outside the Park) and from six, the haplotype of Hauffeniakerschneri. Belgrandiellaaulaei was found in three springs, which all lie outside the boundaries and are, therefore, not included in the protection measures of the National Park. The data and analyses obtained contribute to the assessment of the taxonomic status of the species studied. The present study gives a good baseline for further monitoring of the hydrobioids in the Kalkalpen National Park, which is important to evaluate current as well as to decide on future protection measures for this group.
Collapse
Affiliation(s)
- Hannah C Schubert
- Central Research Laboratories, Natural History Museum, Vienna, AustriaCentral Research Laboratories, Natural History MuseumViennaAustria,Department of Evolutionary Biology, University of Vienna, Vienna, AustriaDepartment of Evolutionary Biology, University of ViennaViennaAustria
| | - Michael Duda
- Central Research Laboratories, Natural History Museum, Vienna, AustriaCentral Research Laboratories, Natural History MuseumViennaAustria,3rd Zoological Department, Natural History Museum Vienna, Vienna, Austria3rd Zoological Department, Natural History Museum ViennaViennaAustria
| | - Anita Eschner
- 3rd Zoological Department, Natural History Museum Vienna, Vienna, Austria3rd Zoological Department, Natural History Museum ViennaViennaAustria
| | - Erich Weigand
- Nationalpark OÖ Kalkalpen Ges.m.b.H., Molln, AustriaNationalpark OÖ Kalkalpen Ges.m.b.H.MollnAustria
| | - Luise Kruckenhauser
- Central Research Laboratories, Natural History Museum, Vienna, AustriaCentral Research Laboratories, Natural History MuseumViennaAustria,Department of Evolutionary Biology, University of Vienna, Vienna, AustriaDepartment of Evolutionary Biology, University of ViennaViennaAustria
| |
Collapse
|
33
|
Kiwele Mutambala P, Abwe E, Schedel FDB, Chocha Manda A, Schliewen UK, Vreven EJWMN. A new Parakneria Poll 1965 (Gonorhynchiformes: Kneriidae), 'Mikinkidi' from the Upper Lufira Basin (Upper Congo: DRC): Evidence from a morphologic and DNA barcoding integrative approach. JOURNAL OF FISH BIOLOGY 2023; 102:4-26. [PMID: 36444901 DOI: 10.1111/jfb.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
A new species, Parakneria alytogrammus, is described from the main stream of the Upper Lufira River. This species is easily distinguished from its congeners from the Congo Basin by its unique colouration, consisting of a low number of transversal bands on each of the caudal-fin lobes, 2 (vs. 3-5) and the presence of an uninterrupted lateral mid-longitudinal black band in fresh and preserved specimens (vs. absent). In addition, the new species differs from its Upper Lualaba congeners by the narrow width of its pectoral-fin base, 4.8-5.6% LS [vs. wider, 8.2-10.1% for P. lufirae, 8.6% LS for P. damasi (holotype), and 7.6-7.9% LS for P. thysi]. Finally, it differs from the only species currently known from the Luapula-Mweru system, P. malaissei, by having a short post-dorsal distance, 36.4-36.6% LS (vs. longer, 38.6-41.1% LS ) and a short post-pelvic distance of 40.0-40.6% LS (vs. longer, 41.4-44.1% LS ). Mitochondrial DNA-haplotypes of P. alytogrammus sp. nov. form a clade, which is sister to the P. thysi clade, and from which it diverges by a genetic (Kimura 2-parameter and uncorrected p) distance of 0.7% in the COI-barcoding locus. The Upper Lufira, one of the sub-basins of the Upper Congo Basin, remains poorly explored relative to its fish fauna. In contrast, the region is well explored with regard to its mineral wealth. Unfortunately, mining exploitation is carried out in the region without proper concern for the environment. Thus, the discovery of this new species for science calls for increased protection and aquatic biodiversity exploration in this mining region.
Collapse
Affiliation(s)
- Pacifique Kiwele Mutambala
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides, Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Emmanuel Abwe
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides, Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
- Royal Museum for Central Africa, Section Vertebrates, Ichthyology, Tervuren, Belgium
- KU Leuven, Fish Diversity and Conservation, Leuven, Belgium
| | - Frederic D B Schedel
- Zoological Institute, University of Basel, Basel, Switzerland
- Faculty of Biology, LMU Munich, Munich, Germany
| | - Auguste Chocha Manda
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides, Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Ulrich K Schliewen
- Department of Ichthyology, SNSB-Bavarian State Collection of Zoology, Munich, Germany
| | - Emmanuel J W M N Vreven
- Royal Museum for Central Africa, Section Vertebrates, Ichthyology, Tervuren, Belgium
- KU Leuven, Fish Diversity and Conservation, Leuven, Belgium
| |
Collapse
|
34
|
Asorey CM, Jilberto F, Haase I, Schubbert R, Angélica Larraín M, Araneda C. Comparison of two commercial methods for smooth-shelled mussels ( Mytilus spp.) species identification. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100121. [PMID: 35865713 PMCID: PMC9294527 DOI: 10.1016/j.fochms.2022.100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Seafood international trade has increased the labeling requirements in standards and regulations to include product information that enable traders and consumers to make informed choices. The European Union (EU) Regulation No. 1379/2013 imposes the declaration of an official commercial designation and scientific names for all the fishery and aquaculture products to be offered for sale to the final consumers. DNA analyses are used to enforce this regulation and to test authenticity in processed foods. We compared the performance of two mono-locus approaches for species identification (SI) in 61 Mytilus mussels: the high-resolution melting analysis of the polyphenolic adhesive protein gene and the partial sequencing of the histone H1C gene. The H1C sequences were analyzed with five different methods. Both approaches show discrepancies in the identification of putative hybrids (0.0 < κ < 0.687 and 0.0 < MCC < 0.724). Excluding putative hybrids, methods show substantial to perfect agreement (0.772 < κ < 1.0 and 0.783 < MCC < 1.0). This study highlights the need to use standardized molecular tools, as well as to use multi-locus methods for SI of Mytilus mussels in testing laboratories.
Collapse
Affiliation(s)
- Cynthia M. Asorey
- Food Quality Research Center. Universidad de Chile, Santiago, Chile
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Sala de Colecciones Biológicas, Departamento de Biología Marina, Larrondo 1281, Coquimbo, Chile
| | - Felipe Jilberto
- Food Quality Research Center. Universidad de Chile, Santiago, Chile
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Avenida Santa Rosa 11315, La Pintana, Santiago, Chile
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Ciencia de los Alimentos y Tecnología Química, Santiago, Chile
| | - Ilka Haase
- Eurofins Genomics, Anzinger Str. 7a, 85560 Ebersberg, Germany
| | | | - María Angélica Larraín
- Food Quality Research Center. Universidad de Chile, Santiago, Chile
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Ciencia de los Alimentos y Tecnología Química, Santiago, Chile
| | - Cristián Araneda
- Food Quality Research Center. Universidad de Chile, Santiago, Chile
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Avenida Santa Rosa 11315, La Pintana, Santiago, Chile
| |
Collapse
|
35
|
Zhao Y, Wang H, Huang H, Zhou Z. A DNA barcode library for katydids, cave crickets, and leaf-rolling crickets (Tettigoniidae, Rhaphidophoridae and Gryllacrididae) from Zhejiang Province, China. Zookeys 2022; 1123:147-171. [PMID: 36762040 PMCID: PMC9836636 DOI: 10.3897/zookeys.1123.86704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
Barcode libraries are generally assembled with two main objectives in mind: specimen identification and species discovery/delimitation. In this study, the standard COI barcode region was sequenced from 681 specimens belonging to katydids (Tettigoniidae), cave crickets (Rhaphidophoridae), and leaf-rolling crickets (Gryllacrididae) from Zhejiang Province, China. Of these, four COI-5P sequences were excluded from subsequent analyses because they were likely NUMTs (nuclear mitochondrial pseudogenes). The final dataset consisted of 677 barcode sequences representing 90 putative species-level taxa. Automated cluster delineation using the Barcode of Life Data System (BOLD) revealed 118 BINs (Barcodes Index Numbers). Among these 90 species-level taxa, 68 corresponded with morphospecies, while the remaining 22 were identified based on reverse taxonomy using BIN assignment. Thirteen of these morphospecies were represented by a single barcode (so-called singletons), and each of 19 morphospecies were split into more than one BIN. The consensus delimitation scheme yielded 55 Molecular Operational Taxonomic Units (MOTUs). Only four morphospecies (I max > DNN) failed to be recovered as monophyletic clades (i.e., Elimaeaterminalis, Phyllomimusklapperichi, Sinochloraszechwanensis and Xizicushowardi), so it is speculated that these may be species complexes. Therefore, the diversity of katydids, cave crickets, and leaf-rolling crickets in Zhejiang Province is probably slightly higher than what current taxonomy would suggest.
Collapse
Affiliation(s)
- Yizheng Zhao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Hui Wang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Huimin Huang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| |
Collapse
|
36
|
Laskar BA, Adimalla H, Kundu S, Jaiswal D, Chandra K. DNA barcoding of a lesser-known catfish, Clupisoma bastari (Actinopterygii: Ailiidae) from Deccan Peninsula, India. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.6900.14.8.21605-21611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA barcoding substantiates species identification, and simultaneously indicates the misnomer taxa. Based on the morphological descriptions, we identified a lesser-known catfish, Clupisoma bastari, from Godavari River basin, and contributed novel DNA barcode data to the GenBank. The Kimura 2 parameter genetic divergence between species, and the neighbour-joining phylogeny clearly depicted a distinct clade of C. bastari in the studied dataset. Clupisoma bastari maintained sufficient K2P genetic divergence (8.3% to 11.2%) with other congeners, and branched as a sister-species of C. garua. The present study highlights possible existence of a few misnomer taxa in the GenBank. We encourage further extensive sampling of different congeners of Clupisoma from a wide range of habitats to explore the species diversity and phylogenetic relationship.
Collapse
|
37
|
Rozzi R, Quilodrán CS, Botero-Delgadillo E, Napolitano C, Torres-Mura JC, Barroso O, Crego RD, Bravo C, Ippi S, Quirici V, Mackenzie R, Suazo CG, Rivero-de-Aguilar J, Goffinet B, Kempenaers B, Poulin E, Vásquez RA. The Subantarctic Rayadito (Aphrastura subantarctica), a new bird species on the southernmost islands of the Americas. Sci Rep 2022; 12:13957. [PMID: 36028531 PMCID: PMC9418250 DOI: 10.1038/s41598-022-17985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
We describe a new taxon of terrestrial bird of the genus Aphrastura (rayaditos) inhabiting the Diego Ramírez Archipelago, the southernmost point of the American continent. This archipelago is geographically isolated and lacks terrestrial mammalian predators as well as woody plants, providing a contrasted habitat to the forests inhabited by the other two Aphrastura spp. Individuals of Diego Ramírez differ morphologically from Aphrastura spinicauda, the taxonomic group they were originally attributed to, by their larger beaks, longer tarsi, shorter tails, and larger body mass. These birds move at shorter distances from ground level, and instead of nesting in cavities in trees, they breed in cavities in the ground, reflecting different life-histories. Both taxa are genetically differentiated based on mitochondrial and autosomal markers, with no evidence of current gene flow. Although further research is required to define how far divergence has proceeded along the speciation continuum, we propose A. subantarctica as a new taxonomic unit, given its unique morphological, genetic, and behavioral attributes in a non-forested habitat. The discovery of this endemic passerine highlights the need to monitor and conserve this still-pristine archipelago devoid of exotic species, which is now protected by the recently created Diego Ramírez Islands-Drake Passage Marine Park.
Collapse
Affiliation(s)
- Ricardo Rozzi
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile.
- Sub-Antarctic Biocultural Conservation Program, Department of Philosophy and Religion and Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| | - Claudio S Quilodrán
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Esteban Botero-Delgadillo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
- Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Constanza Napolitano
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Juan C Torres-Mura
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- AvesChile (Unión de Ornitólogos de Chile), Santiago, Chile
| | - Omar Barroso
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
| | - Ramiro D Crego
- Smithsonian National Zoo and Conservation Biology Institute, Conservation Ecology Center, 1500 Remount Rd, Front Royal, VA, 22630, USA
| | - Camila Bravo
- Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Silvina Ippi
- Departamento de Zoología, CRUB Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| | - Verónica Quirici
- Centro de Investigación Para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Roy Mackenzie
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
| | - Cristián G Suazo
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Juan Rivero-de-Aguilar
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
| | - Bernard Goffinet
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Elie Poulin
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo A Vásquez
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
- Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
38
|
Timm VF, Gonçalves LT, Valente V, Deprá M. The efficiency of the COI gene as a DNA barcode and an overview of Orthoptera (Caelifera and Ensifera) sequences in the BOLD System. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthoptera, among the oldest and most numerous insect lineages, is an excellent model for evolutionary studies but has numerous taxonomic problems. To mitigate these issues, the cytochrome c oxidase subunit I (COI), standardized with the DNA barcode for Metazoa, is increasingly used for specimen identification and species delimitation. We tested the performance of COI as a DNA barcode in Orthoptera, using two analyses based on intra- and interspecific distances, barcode gap and Probability of Correct Identification (PCI); and estimated species richness through Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP). We filtered all sequences of Orthoptera available in Barcode of Life Data System (BOLD) and used 11,605 COI sequences, covering 1,132 species, 226 genera, and 18 families. The overall average PCI was 73.86%. For 82.2% of genera the barcode gap boxplots were classified as good or intermediate, indicating that COI can be effective as a DNA barcode in Orthoptera, although with varying efficiency depending on the need for more information. ABGD and ASAP inferred species richness similar to labels informed by BOLD for the suborders Caelifera and Ensifera. The representation of Orthoptera in the BOLD database and the results of these analyses are discussed.
Collapse
Affiliation(s)
- Vítor Falchi Timm
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil
| | | | - V.l.S. Valente
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil,
| | | |
Collapse
|
39
|
Hoban ML, Whitney J, Collins AG, Meyer C, Murphy KR, Reft AJ, Bemis KE. Skimming for barcodes: rapid production of mitochondrial genome and nuclear ribosomal repeat reference markers through shallow shotgun sequencing. PeerJ 2022; 10:e13790. [PMID: 35959477 PMCID: PMC9359134 DOI: 10.7717/peerj.13790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
DNA barcoding is critical to conservation and biodiversity research, yet public reference databases are incomplete. Existing barcode databases are biased toward cytochrome oxidase subunit I (COI) and frequently lack associated voucher specimens or geospatial metadata, which can hinder reliable species assignments. The emergence of metabarcoding approaches such as environmental DNA (eDNA) has necessitated multiple marker techniques combined with barcode reference databases backed by voucher specimens. Reference barcodes have traditionally been generated by Sanger sequencing, however sequencing multiple markers is costly for large numbers of specimens, requires multiple separate PCR reactions, and limits resulting sequences to targeted regions. High-throughput sequencing techniques such as genome skimming enable assembly of complete mitogenomes, which contain the most commonly used barcoding loci (e.g., COI, 12S, 16S), as well as nuclear ribosomal repeat regions (e.g., ITS1&2, 18S). We evaluated the feasibility of genome skimming to generate barcode references databases for marine fishes by assembling complete mitogenomes and nuclear ribosomal repeats. We tested genome skimming across a taxonomically diverse selection of 12 marine fish species from the collections of the National Museum of Natural History, Smithsonian Institution. We generated two sequencing libraries per species to test the impact of shearing method (enzymatic or mechanical), extraction method (kit-based or automated), and input DNA concentration. We produced complete mitogenomes for all non-chondrichthyans (11/12 species) and assembled nuclear ribosomal repeats (18S-ITS1-5.8S-ITS2-28S) for all taxa. The quality and completeness of mitogenome assemblies was not impacted by shearing method, extraction method or input DNA concentration. Our results reaffirm that genome skimming is an efficient and (at scale) cost-effective method to generate all mitochondrial and common nuclear DNA barcoding loci for multiple species simultaneously, which has great potential to scale for future projects and facilitate completing barcode reference databases for marine fishes.
Collapse
Affiliation(s)
- Mykle L. Hoban
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States of America
| | - Jonathan Whitney
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, Hawai‘i, United States of America
| | - Allen G. Collins
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Katherine R. Murphy
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Abigail J. Reft
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Katherine E. Bemis
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| |
Collapse
|
40
|
Pinochet R, Pardo LM, Cárdenas L. Assessing diversity of King Crab Lithodes spp. in the south-eastern pacific using phylogeny and molecular species delimitation methods. Ecol Evol 2022; 12:e9143. [PMID: 35923941 PMCID: PMC9339758 DOI: 10.1002/ece3.9143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to test the hypothesis that the genetic diversity of commercially significant species of King Crabs (Lithodes spp.) along the south-eastern Pacific (SEP) comprises different independent evolutionary units (IEUs) with spatially isolated distribution. Nine localities from inner and open waters along the SEP Chilean coast (39°S-55°S) were sampled. We analyzed sequences from 173 individuals for the mitochondrial gene Cytochrome oxidase I (COX-I), 151 individuals for the Internal Transcribed Spacer 1 (ITS) and 135 for the structural ribosomal RNA (28S). Genetic delimitation was performed through three analytical methods: ABGD, GMYC, and its Bayesian implementation, bGMYC. Bayesian phylogenetic analyses and haplotype networks were also performed. Divergence time between clades was assessed for the COX-I marker and estimated from known evolutionary rates for this marker in other crustacean species and fossil calibration from other Anomuran species. Delimitation analyses, phylogenetic analyses, and mitochondrial haplotype networks suggested the presence of two deeply divergent mitochondrial lineages of Lithodes in the SEP, referred to as Clade1 and Clade 2. Nuclear markers showed low phylogenetic resolution and therefore were unsuitable for molecular species delimitation. Divergence time analysis of the mitochondrial lineages suggests a separation between Clades of approximately 2.3 Mya. The divergence time obtained suggested that Pliocene glaciations and deglaciations cycles could be involved in hybridization events between Lithodes IEUs at southern tip of South American coasts. The different frequencies of Lithodes haplotypes in inner and open water environments along SEP coasts could be explained by events such as the last glacial maximum or by differences in the adaptation of each clade to different environments. These findings support the necessity of evaluating the taxonomic status of Lithodes individuals found along SEP coasts under an integrative taxonomy approach or through markers with other evolution rates than those already used.
Collapse
Affiliation(s)
- Ramona Pinochet
- Programa de Doctorado en Biología Marina, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
- Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile
| | - Luis Miguel Pardo
- Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile
- Instituto de Ciencias Marinas y Limnológicas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
| | - Leyla Cárdenas
- Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile
- Instituto de Ciencias ambientales y evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
| |
Collapse
|
41
|
Young MK, Smith R, Pilgrim KL, Isaak DJ, McKelvey KS, Parkes S, Egge J, Schwartz MK. A Molecular Taxonomy of Cottus in western North America. WEST N AM NATURALIST 2022. [DOI: 10.3398/064.082.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Michael K. Young
- USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802
| | - Rebecca Smith
- USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802
| | - Kristine L. Pilgrim
- USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802
| | - Daniel J. Isaak
- USDA Forest Service, Rocky Mountain Research Station, 322 East Front Street Suite 401, Boise, ID 83702
| | - Kevin S. McKelvey
- USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802
| | - Sharon Parkes
- USDA Forest Service, Rocky Mountain Research Station, 322 East Front Street Suite 401, Boise, ID 83702
| | - Jacob Egge
- Department of Biology, Pacific Lutheran University, Tacoma, WA 98447
| | - Michael K. Schwartz
- USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802
| |
Collapse
|
42
|
Arkhipkin AI, Brickle P, Lee B, Shaw PW, McKeown NJ. Taxonomic re-appraisal for toothfish (Dissostichus: Notothenioidea) across the Antarctic Polar Front using genomic and morphological studies. JOURNAL OF FISH BIOLOGY 2022; 100:1158-1170. [PMID: 35174488 DOI: 10.1111/jfb.15013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The Patagonian toothfish, Dissostichus eleginoides, is one of the largest predatory fishes inhabiting Southern Ocean waters spanning the Antarctic Polar Front (APF), a prominent biogeographic boundary restricting gene flow and driving species divergence between Antarctic and sub-Antarctic waters. In the light of emerging threats to toothfish conservation and sustainability, this study investigated genetic [mtDNA sequences and genome wide nuclear single nucleotide polymorphisms (SNPs)] and morphological data to critically evaluate the taxonomic status of toothfish north (Chile and Patagonian shelf) and south (South Georgia and South Sandwich Islands) of the APF. mtDNA revealed reciprocally monophyletic lineages on either side of the APF with coalescent analysis indicating these diverged during the Pleistocene. Integration with data from other sources suggests the Chilean/Patagonian lineage is endemic. SNP analysis confirmed restricted nuclear gene flow between both groups and revealed a consensus suite of positive outlier SNPs compatible with adaptive divergence between these groups. Finally, several morphological features permit unequivocal assignment of individuals to either of the clades. Based on the genetic, phenotypic and ecological divergence, the authors propose that toothfish on either side of the APF be recognised as distinct species, with the name D. eleginoides used for toothfish occurring in South American waters north of the APF and toothfish south of the APF being classified using the new name D. australis reflecting their southern distribution.
Collapse
Affiliation(s)
| | - Paul Brickle
- South Atlantic Environmental Research Institute (SAERI), Stanley, Falkland Islands
| | - Brendon Lee
- Fisheries Department, Stanley, Falkland Islands
| | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
43
|
Exploring Large-Scale Patterns of Genetic Variation in the COI Gene among Insecta: Implications for DNA Barcoding and Threshold-Based Species Delimitation Studies. INSECTS 2022; 13:insects13050425. [PMID: 35621761 PMCID: PMC9147995 DOI: 10.3390/insects13050425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022]
Abstract
The genetic variation in the COI gene has had a great effect on the final results of species delimitation studies. However, little research has comprehensively investigated the genetic divergence in COI among Insecta. The fast-growing COI data in BOLD provide an opportunity for the comprehensive appraisal of the genetic variation in COI among Insecta. We calculated the K2P distance of 64,414 insect species downloaded from BOLD. The match ratios of the clustering analysis, based on different thresholds, were also compared among 4288 genera (35,068 species). The results indicate that approximately one-quarter of the species of Insecta showed high intraspecific genetic variation (>3%), and a conservative estimate of this proportion ranges from 12.05% to 22.58%. The application of empirical thresholds (e.g., 2% and 3%) in the clustering analysis may result in the overestimation of the species diversity. If the minimum interspecific genetic distance of the congeneric species is greater than or equal to 2%, it is possible to avoid overestimating the species diversity on the basis of the empirical thresholds. In comparison to the fixed thresholds, the “threshOpt” and “localMinima” algorithms are recommended for the provision of a reference threshold for threshold-based species delimitation studies.
Collapse
|
44
|
Hlebec D, Sivec I, Podnar M, Kučinić M. DNA barcoding for biodiversity assessment: Croatian stoneflies (Insecta: Plecoptera). PeerJ 2022; 10:e13213. [PMID: 35469200 PMCID: PMC9034701 DOI: 10.7717/peerj.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/12/2022] [Indexed: 01/12/2023] Open
Abstract
Background The hemi-metabolous aquatic order Plecoptera (stoneflies) constitutes an indispensable part of terrestrial and aquatic food webs due to their specific life cycle and habitat requirements. Stoneflies are considered one of the most sensitive groups to environmental changes in freshwater ecosystems and anthropogenic changes have caused range contraction of many species. Given the critical threat to stoneflies, the study of their distribution, morphological variability and genetic diversity should be one of the priorities in conservation biology. However, some aspects about stoneflies, especially a fully resolved phylogeny and their patterns of distribution are not well known. A study that includes comprehensive field research and combines morphological and molecular identification of stoneflies has not been conducted in Croatia so far. Thus, the major aim of this study was to regenerate a comprehensive and taxonomically well-curated DNA barcode database for Croatian stoneflies, to highlight the morphological variability obtained for several species and to elucidate results in light of recent taxonomy. Methods A morphological examination of adult specimens was made using basic characteristics for distinguishing species: terminalia in males and females, head and pronotum patterns, penial morphology, and egg structures. DNA barcoding was applied to many specimens to help circumscribe known species, identify cryptic or yet undescribed species, and to construct a preliminary phylogeny for Croatian stoneflies. Results Sequences (658 bp in length) of 74 morphospecies from all families present in Croatia were recovered from 87% of the analysed specimens (355 of 410), with one partial sequence of 605 bp in length for Capnopsis schilleri balcanica Zwick, 1984. A total of 84% morphological species could be unambiguously identified using COI sequences. Species delineation methods confirmed the existence of five deeply divergent genetic lineages, with monophyletic origin, which also differ morphologically from their congeners and represent distinct entities. BIN (Barcode Index Number) assignment and species delineation methods clustered COI sequences into different numbers of operational taxonomic units (OTUs). ASAP delimited 76 putative species and achieved a maximum match score with morphology (97%). ABGD resulted in 62 and mPTP in 61 OTUs, indicating a more conservative approach. Most BINs were congruent with traditionally recognized species. Deep intraspecific genetic divergences in some clades highlighted the need for taxonomic revision in several species-complexes and species-groups. Research has yielded the first molecular characterization of nine species, with most having restricted distributions and confirmed the existence of several species which had been declared extinct regionally.
Collapse
Affiliation(s)
- Dora Hlebec
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia,Zoological Museum Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany,Croatian Biospeleological Society, Zagreb, Croatia
| | - Ignac Sivec
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | | | - Mladen Kučinić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
45
|
Phillips JD, Gillis DJ, Hanner RH. Lack of Statistical Rigor in DNA Barcoding Likely Invalidates the Presence of a True Species' Barcode Gap. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.859099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA barcoding has been largely successful in satisfactorily exposing levels of standing genetic diversity for a wide range of taxonomic groups through the employment of only one or a few universal gene markers. However, sufficient coverage of geographically-broad intra-specific haplotype variation within genomic databases like the Barcode of Life Data Systems (BOLD) and GenBank remains relatively sparse. As reference sequence libraries continue to grow exponentially in size, there is now the need to identify novel ways of meaningfully analyzing vast amounts of available DNA barcode data. This is an important issue to address promptly for the routine tasks of specimen identification and species discovery, which have seen broad adoption in areas as diverse as regulatory forensics and resource conservation. Here, it is demonstrated that the interpretation of DNA barcoding data is lacking in statistical rigor. To highlight this, focus is set specifically on one key concept that has become a household name in the field: the DNA barcode gap. Arguments outlined herein specifically center on DNA barcoding in animal taxa and stem from three angles: (1) the improper allocation of specimen sampling effort necessary to capture adequate levels of within-species genetic variation, (2) failing to properly visualize intra-specific and interspecific genetic distances, and (3) the inconsistent, inappropriate use, or absence of statistical inferential procedures in DNA barcoding gap analyses. Furthermore, simple statistical solutions are outlined which can greatly propel the use of DNA barcoding as a tool to irrefutably match unknowns to knowns on the basis of the barcoding gap with a high degree of confidence. Proposed methods examined herein are illustrated through application to DNA barcode sequence data from Canadian Pacific fish species as a case study.
Collapse
|
46
|
Urfer K, Spasojevic T, Klopfstein S, Baur H, Lasut L, Kropf C. Incongruent molecular and morphological variation in the crab spider Synemaglobosum (Araneae, Thomisidae) in Europe. Zookeys 2021; 1078:107-134. [PMID: 35068955 PMCID: PMC8709837 DOI: 10.3897/zookeys.1078.64116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/29/2021] [Indexed: 11/12/2022] Open
Abstract
Establishing species boundaries is one of the challenges taxonomists around the world have been tackling for centuries. The relation between intraspecific and interspecific variability is still under discussion and in many taxa it remains understudied. Here the hypothesis of single versus multiple species of the crab spider Synemaglobosum (Fabricius) is tested. The wide distribution range as well as its high morphological variability makes this species an interesting candidate for re-evaluation using an integrative approach. This study combines information from barcoding, phylogenetic reconstruction based on mitochondrial CO1 and ITS2 of more than 60 specimens collected over a wide range of European localities, and morphology. The findings show deep clades with up to 6% mean pairwise distance in the CO1 barcode without any biogeographical pattern. The nuclear ITS2 gene did not support the CO1 clades. Morphological assessment of somatic and genital characters in males and females and a morphometric analysis of the male palp uncovered high intraspecific variation that does not match the CO1 or ITS2 phylogenies or biogeography either. Screening for endosymbiotic Wolbachia bacteria was conducted and only a single infected specimen was found. Several scenarios might explain these inconsistent patterns. While the deep divergences in the barcoding marker might suggest cryptic or ongoing speciation or geographical isolation in the past, the lack of congruent variation in the nuclear ITS2 gene or the studied morphological character systems, especially the male palp, indicates that S.globosum might simply be highly polymorphic both in terms of its mtDNA and morphology. Therefore, more data on ecology and behaviour and full genome sequences are necessary to ultimately resolve this taxonomically intriguing case.
Collapse
Affiliation(s)
- Karin Urfer
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum St.Gallen, Rorschacher Strasse 263, 9016 St.Gallen, SwitzerlandNatural History Museum BaselBaselSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Tamara Spasojevic
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Seraina Klopfstein
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Hannes Baur
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| | - Liana Lasut
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| | - Christian Kropf
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| |
Collapse
|
47
|
Jamdade R, Upadhyay M, Al Shaer K, Al Harthi E, Al Sallani M, Al Jasmi M, Al Ketbi A. Evaluation of Arabian Vascular Plant Barcodes (rbcL and matK): Precision of Unsupervised and Supervised Learning Methods towards Accurate Identification. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122741. [PMID: 34961211 PMCID: PMC8708657 DOI: 10.3390/plants10122741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Arabia is the largest peninsula in the world, with >3000 species of vascular plants. Not much effort has been made to generate a multi-locus marker barcode library to identify and discriminate the recorded plant species. This study aimed to determine the reliability of the available Arabian plant barcodes (>1500; rbcL and matK) at the public repository (NCBI GenBank) using the unsupervised and supervised methods. Comparative analysis was carried out with the standard dataset (FINBOL) to assess the methods and markers' reliability. Our analysis suggests that from the unsupervised method, TaxonDNA's All Species Barcode criterion (ASB) exhibits the highest accuracy for rbcL barcodes, followed by the matK barcodes using the aligned dataset (FINBOL). However, for the Arabian plant barcode dataset (GBMA), the supervised method performed better than the unsupervised method, where the Random Forest and K-Nearest Neighbor (gappy kernel) classifiers were robust enough. These classifiers successfully recognized true species from both barcode markers belonging to the aligned and alignment-free datasets, respectively. The multi-class classifier showed high species resolution following the two classifiers, though its performance declined when employed to recognize true species. Similar results were observed for the FINBOL dataset through the supervised learning approach; overall, matK marker showed higher accuracy than rbcL. However, the lower rate of species identification in matK in GBMA data could be due to the higher evolutionary rate or gaps and missing data, as observed for the ASB criterion in the FINBOL dataset. Further, a lower number of sequences and singletons could also affect the rate of species resolution, as observed in the GBMA dataset. The GBMA dataset lacks sufficient species membership. We would encourage the taxonomists from the Arabian Peninsula to join our campaign on the Arabian Barcode of Life at the Barcode of Life Data (BOLD) systems. Our efforts together could help improve the rate of species identification for the Arabian Vascular plants.
Collapse
Affiliation(s)
- Rahul Jamdade
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University, 80539 Munich, Germany;
| | - Khawla Al Shaer
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Eman Al Harthi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Mariam Al Sallani
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Mariam Al Jasmi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Asma Al Ketbi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| |
Collapse
|
48
|
Abstract
Growing popularity of herbal medicine has increased the demand of medicinal orchids in the global markets leading to their overharvesting from natural habitats for illegal trade. To stop such illegal trade, the correct identification of orchid species from their traded products is a foremost requirement. Different species of medicinal orchids are traded as their dried or fresh parts (tubers, pseudobulbs, stems), which look similar to each other making it almost impossible to identify them merely based on morphological observation. To overcome this problem, DNA barcoding could be an important method for accurate identification of medicinal orchids. Therefore, this research evaluated DNA barcoding of medicinal orchids in Asia where illegal trade of medicinal orchids has long existed. Based on genetic distance, similarity-based and tree-based methods with sampling nearly 7,000 sequences from five single barcodes (ITS, ITS2, matK, rbcL, trnH-psbA and their seven combinations), this study revealed that DNA barcoding is effective for identifying medicinal orchids. Among single locus, ITS performed the best barcode, whereas ITS + matK exhibited the most efficient barcode among multi-loci. A barcode library as a resource for identifying medicinal orchids has been established which contains about 7,000 sequences of 380 species (i.e. 90%) of medicinal orchids in Asia.
Collapse
|
49
|
Mao X, Xie W, Li X, Shi S, Guo Z. Establishing community-wide DNA barcode references for conserving mangrove forests in China. BMC PLANT BIOLOGY 2021; 21:571. [PMID: 34863107 PMCID: PMC8642986 DOI: 10.1186/s12870-021-03349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mangrove ecosystems have been the focus of global attention for their crucial role in sheltering coastal communities and retarding global climate change by sequestering 'blue carbon'. China is relatively rich in mangrove diversity, with one-third of the ca. 70 true mangrove species and a number of mangrove associate species occurring naturally along the country's coasts. Mangrove ecosystems, however, are widely threatened by intensifying human disturbances and rising sea levels. DNA barcoding technology may help protect mangrove ecosystems by providing rapid species identification. RESULTS To investigate this potential, 898 plant specimens were collected from 33 major mangrove sites in China. Based on the morphologic diagnosis, the specimens were assigned to 72 species, including all 28 true mangrove species and all 12 mangrove associate species recorded in China. Three chloroplast DNA markers rbcL, trnH-psbA, matK, and one nuclear marker ITS2 were chosen to investigate the utility of using barcoding to identify these species. According to the criteria of barcoding gaps in genetic distance, sequence similarity, and phylogenetic monophyly, we propose that a single marker, ITS2, is sufficient to barcode the species of mangroves and their associates in China. Furthermore, rbcL or trnH-psbA can also be used to gather supplement confirming data. In using these barcodes, we revealed a very low level of genetic variation among geographic locations in the mangrove species, which is an alert to their vulnerability to climate and anthropogenic disturbances. CONCLUSION We suggest using ITS2 to barcode mangrove species and terrestrial coastal plants in South China. The DNA barcode sequences we obtained would be valuable in monitoring biodiversity and the restoration of ecosystems, which are essential for mangrove conservation.
Collapse
Affiliation(s)
- Xiaomeng Mao
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Xie
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinnian Li
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Forevergen Biosciences Center, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
50
|
Uhlir C, Schwentner M, Meland K, Kongsrud JA, Glenner H, Brandt A, Thiel R, Svavarsson J, Lörz AN, Brix S. Adding pieces to the puzzle: insights into diversity and distribution patterns of Cumacea (Crustacea: Peracarida) from the deep North Atlantic to the Arctic Ocean. PeerJ 2021; 9:e12379. [PMID: 34824910 PMCID: PMC8590803 DOI: 10.7717/peerj.12379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
The Nordic Seas have one of the highest water-mass diversities in the world, yet large knowledge gaps exist in biodiversity structure and biogeographical distribution patterns of the deep macrobenthic fauna. This study focuses on the marine bottom-dwelling peracarid crustacean taxon Cumacea from northern waters, using a combined approach of morphological and molecular techniques to present one of the first insights into genetic variability of this taxon. In total, 947 specimens were assigned to 77 morphologically differing species, representing all seven known families from the North Atlantic. A total of 131 specimens were studied genetically (16S rRNA) and divided into 53 putative species by species delimitation methods (GMYC and ABGD). In most cases, morphological and molecular-genetic delimitation was fully congruent, highlighting the overall success and high quality of both approaches. Differences were due to eight instances resulting in either ecologically driven morphological diversification of species or morphologically cryptic species, uncovering hidden diversity. An interspecific genetic distance of at least 8% was observed with a clear barcoding gap for molecular delimitation of cumacean species. Combining these findings with data from public databases and specimens collected during different international expeditions revealed a change in the composition of taxa from a Northern Atlantic-boreal to an Arctic community. The Greenland-Iceland-Scotland-Ridge (GIS-Ridge) acts as a geographical barrier and/or predominate water masses correspond well with cumacean taxa dominance. A closer investigation on species level revealed occurrences across multiple ecoregions or patchy distributions within defined ecoregions.
Collapse
Affiliation(s)
- Carolin Uhlir
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany.,German Center for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| | - Martin Schwentner
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany.,Natural History Museum Vienna, Vienna, Austria
| | - Kenneth Meland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Anders Kongsrud
- Department of Natural History, University Museum of Bergen (ZMBN), Bergen, Norway
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Centre of Macroecology, Evolution and Climate (CMEC), Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Thiel
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| | - Jörundur Svavarsson
- Faculty of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Anne-Nina Lörz
- Institute for Marine Ecosystems and Fisheries Science, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
| | - Saskia Brix
- German Center for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| |
Collapse
|