1
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Functional metagenomic analysis reveals potential inflammatory triggers associated with genetic risk for autoimmune disease. J Autoimmun 2024; 148:103290. [PMID: 39033688 DOI: 10.1016/j.jaut.2024.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/28/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
To assess functional differences between the microbiomes of individuals with autoimmune risk-associated human leukocyte antigen (HLA) genetics and autoimmune protection-associated HLA, we performed a metagenomic analysis of stool samples from 72 infants in the All Babies in Southeast Sweden general-population cohort and assessed haplotype-peptide binding affinities. Infants with risk-associated HLA DR3-DQ2.5 and DR4-DQ8 had a higher abundance of known pathogen-associated molecular patterns and virulence related genes than infants with protection-associated HLA DR15-DQ6.2. However, there was limited overlap in the type of inflammatory trigger between risk groups. Supported by a high Firmicutes/Bacteroides ratio and differentially abundant flagellated species, genes related to the synthesis of flagella were prominent in those with HLA DR3-DQ2.5. However, this haplotype had a significantly lower likelihood of binding affinity to flagellin peptides. O-antigen biosynthesis genes were significantly correlated with the risk genotypes and absent from protective genotype association, supported by the differential abundance of gram-negative bacteria seen in the risk-associated groups. Genes related to vitamin B biosynthesis stood out in higher abundance in infants with HLA DR3-DQ2.5/DR4-DQ8 heterozygosity compared to those with autoimmune-protective genetics. Prevotella species and genus were significantly abundant in all infant groups with high risk for autoimmune disease. The potential inflammatory triggers associated with genetic risk for autoimmunity have significant implications. These results suggest that certain HLA haplotypes may be creating the opportunity for dysbiosis and subsequent inflammation early in life by clearing beneficial microbes or not clearing proinflammatory microbes. This HLA gatekeeping may prevent genetically at-risk individuals from benefiting from probiotic therapies by restricting the colonization of those beneficial bacteria.
Collapse
Affiliation(s)
- Meghan A Berryman
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Dang P, Lu C, Huang T, Zhang M, Yang N, Han X, Xu C, Wang S, Wan C, Qin X, Siddique KHM. Enhancing intercropping sustainability: Manipulating soybean rhizosphere microbiome through cropping patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172714. [PMID: 38679108 DOI: 10.1016/j.scitotenv.2024.172714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Understanding the responses of soybean rhizosphere and functional microbiomes in intercropping scenarios holds promise for optimizing nitrogen utilization in legume-based intercropping systems. This study investigated three cropping layouts under film mulching: sole soybean (S), soybean-maize intercropping in one row (IS), and soybean-maize intercropping in two rows (IIS), each subjected to two nitrogen levels: 110 kg N ha-1 (N110) and 180 kg N ha-1 (N180). Our findings reveal that cropping patterns alter bacterial and nifh communities, with approximately 5 % of soybean rhizosphere bacterial amplicon sequence variants (ASVs) and 42 % of rhizosphere nifh ASVs exhibiting altered abundances (termed sensitive ASVs). Root traits and soil properties shape these communities, with root traits exerting greater influence. Sensitive ASVs drive microbial co-occurrence networks and deterministic processes, predicting 85 % of yield variance and 78 % of partial factor productivity of nitrogen, respectively. These alterations impact bacterial and nifh diversity, complexity, stability, and deterministic processes in legume-based intercropping systems, enhancing performance in terms of yield, nitrogen utilization efficiency, land equivalent ratio, root nodule count, and nodule dry weight under IIS patterns with N110 compared to other treatments. Our findings underscore the importance of field management practices in shaping rhizosphere-sensitive ASVs, thereby altering microbial functions and ultimately impacting the productivity of legume-based intercropping systems. This mechanistic understanding of soybean rhizosphere microbial responses to intercropping patterns offers insights for sustainable intercropping enhancements through microbial manipulation.
Collapse
Affiliation(s)
- Pengfei Dang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Lu
- Yangling Vocational and Technical College, Yangling, Shaanxi, 712100, China
| | - Tiantian Huang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Miaomiao Zhang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Yang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqing Han
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunhong Xu
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiguang Wang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenxi Wan
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoliang Qin
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
3
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
4
|
Nguyen TQ, Martínez-Álvaro M, Lima J, Auffret MD, Rutherford KMD, Simm G, Dewhurst RJ, Baima ET, Roehe R. Identification of intestinal and fecal microbial biomarkers using a porcine social stress model. Front Microbiol 2023; 14:1197371. [PMID: 38029169 PMCID: PMC10670831 DOI: 10.3389/fmicb.2023.1197371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the relationships between social stress and the gastrointestinal microbiota, and how they influence host health and performance is expected to have many scientific and commercial implementations in different species, including identification and improvement of challenges to animal welfare and health. In particular, the study of the stress impact on the gastrointestinal microbiota of pigs may be of interest as a model for human health. A porcine stress model based on repeated regrouping and reduced space allowance during the last 4 weeks of the finishing period was developed to identify stress-induced changes in the gut microbiome composition. The application of the porcine stress model resulted in a significant increase in salivary cortisol concentration over the course of the trial and decreased growth performance and appetite. The applied social stress resulted in 32 bacteria being either enriched (13) or depleted (19) in the intestine and feces. Fecal samples showed a greater number of microbial genera influenced by stress than caecum or colon samples. Our trial revealed that the opportunistic pathogens Treponema and Clostridium were enriched in colonic and fecal samples from stressed pigs. Additionally, genera such as Streptococcus, Parabacteroides, Desulfovibrio, Terrisporobacter, Marvinbryantia, and Romboutsia were found to be enriched in response to social stress. In contrast, the genera Prevotella, Faecalibacterium, Butyricicoccus, Dialister, Alloprevotella, Megasphaera, and Mitsuokella were depleted. These depleted bacteria are of great interest because they synthesize metabolites [e.g., short-chain fatty acids (SCFA), in particular, butyrate] showing beneficial health benefits due to inhibitory effects on pathogenic bacteria in different animal species. Of particular interest are Dialister and Faecalibacterium, as their depletion was identified in a human study to be associated with inferior quality of life and depression. We also revealed that some pigs were more susceptible to pathogens as indicated by large enrichments of opportunistic pathogens of Clostridium, Treponema, Streptococcus and Campylobacter. Generally, our results provide further evidence for the microbiota-gut-brain axis as indicated by an increase in cortisol concentration due to social stress regulated by the hypothalamic-pituitary-adrenal axis, and a change in microbiota composition, particularly of bacteria known to be associated with pathogenicity and mental health diseases.
Collapse
Affiliation(s)
- Tuan Q. Nguyen
- Scotland’s Rural College, Edinburgh, United Kingdom
- Department of Animal Breeding, Faculty of Animal Science and Veterinary Medicine, Nong Lam University – Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Joana Lima
- Scotland’s Rural College, Edinburgh, United Kingdom
| | | | | | - Geoff Simm
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eric T. Baima
- Zoetis Inc., Parsippany-Troy Hills, NJ, United States
| | - Rainer Roehe
- Scotland’s Rural College, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Byers AK, Condron LM, O'Callaghan M, Waller L, Dickie IA, Wakelin SA. Plant species identity and plant-induced changes in soil physicochemistry-but not plant phylogeny or functional traits - shape the assembly of the root-associated soil microbiome. FEMS Microbiol Ecol 2023; 99:fiad126. [PMID: 37816673 PMCID: PMC10589101 DOI: 10.1093/femsec/fiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
The root-associated soil microbiome contributes immensely to support plant health and performance against abiotic and biotic stressors. Understanding the processes that shape microbial assembly in root-associated soils is of interest in microbial ecology and plant health research. In this study, 37 plant species were grown in the same soil mixture for 10 months, whereupon the root-associated soil microbiome was assessed using amplicon sequencing. From this, the contribution of direct and indirect plant effects on microbial assembly was assessed. Plant species and plant-induced changes in soil physicochemistry were the most significant factors that accounted for bacterial and fungal community variation. Considering that all plants were grown in the same starting soil mixture, our results suggest that plants, in part, shape the assembly of their root-associated soil microbiome via their effects on soil physicochemistry. With the increase in phylogenetic ranking from plant species to class, we observed declines in the degree of community variation attributed to phylogenetic origin. That is, plant-microbe associations were unique to each plant species, but the phylogenetic associations between plant species were not important. We observed a large degree of residual variation (> 65%) not accounted for by any plant-related factors, which may be attributed to random community assembly.
Collapse
Affiliation(s)
- Alexa-Kate Byers
- Bioprotection Aotearoa, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - Leo M Condron
- Bioprotection Aotearoa, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | | | - Lauren Waller
- Biosecurity New Zealand, Ministry for Primary Industries, 34-38 Bowen Street, PO Box 2526, Wellington 6140, New Zealand
| | - Ian A Dickie
- Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch 8140, New Zealand
| | - Steve A Wakelin
- Ecology and Environment, Scion Research Ltd, 10 Kyle Street, Riccarton, Christchurch 8011, Canterbury, New Zealand
| |
Collapse
|
6
|
Kindgren E, Ahrens AP, Triplett EW, Ludvigsson J. Infant gut microbiota and environment associate with juvenile idiopathic arthritis many years prior to disease onset, especially in genetically vulnerable children. EBioMedicine 2023; 93:104654. [PMID: 37329576 PMCID: PMC10279551 DOI: 10.1016/j.ebiom.2023.104654] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND The etiology of juvenile idiopathic arthritis (JIA) is poorly understood. This study investigated genetic and environmental factors and infant gut microbiota in a prospective birth cohort to assess disease risk. METHODS Data was collected from the All Babies in Southeast Sweden (ABIS) population-based cohort (n = 17,055), 111 of whom later acquired JIA (ABISJIA). Stool samples were collected at one year of age for 10.4%. To determine disease association, 16S rRNA gene sequences were analyzed, with and without confound adjustment. Genetic and environmental risks were assessed. FINDINGS ABISJIA had higher abundance of Acidaminococcales, Prevotella 9, and Veillonella parvula and lower abundance of Coprococcus, Subdoligranulum, Phascolarctobacterium, Dialister spp., Bifidobacterium breve, Fusicatenibacter saccharivorans, Roseburia intestinalis, and Akkermansia muciniphila (q's < 0.05). Parabacteroides distasonis greatly increased the odds of later contracting JIA (OR = 6.7; 1.81-24.84, p = 0.0045). Shorter breastfeeding duration and increased antibiotic exposure compounded risk in a dose-dependent manner, especially in those with genetic predisposition. INTERPRETATION Microbial dysregulation in infancy may trigger or accelerate JIA development. Environmental risk factors have a stronger impact on genetically predisposed children. This study is the first to implicate microbial dysregulation in JIA at such an early age, with many bacterial taxa associated with risk factors. These findings provide opportunities for intervention or early screening and offer new insights into JIA pathogenesis. FUNDING Barndiabetesfonden; Swedish Council for Working Life and Social Research; Swedish Research Council; Östgöta Brandstodsbolag; Medical Research Council of Southeast Sweden; JDRF-Wallenberg Foundation; Linköping.
Collapse
Affiliation(s)
- Erik Kindgren
- Department of Pediatrics, Region Västra Götaland, Skaraborg Hospital, Skövde, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Angelica P Ahrens
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA.
| | - Johnny Ludvigsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Crown Princess Victoria's Children's Hospital, Region Östergötland, Linköping, SE 58185, Sweden
| |
Collapse
|
7
|
Akinsuyi OS, Roesch LFW. Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated with Osteoporosis. Microbiol Spectr 2023; 11:e0032223. [PMID: 37042756 PMCID: PMC10269714 DOI: 10.1128/spectrum.00322-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past decade, the role of the gut microbiota in many disease states has gained a great deal of attention. Mounting evidence from case-control and observational studies has linked changes in the gut microbiota to the pathophysiology of osteoporosis (OP). Nonetheless, the results of these studies contain discrepancies, leaving the literature without a consensus on osteoporosis-associated microbial signatures. Here, we conducted a comprehensive meta-analysis combining and reexamining five publicly available 16S rRNA partial sequence data sets to identify gut bacteria consistently associated with osteoporosis across different cohorts. After adjusting for the batch effect associated with technical variation and heterogeneity of studies, we observed a significant shift in the microbiota composition in the osteoporosis group. An increase in the relative abundance of opportunistic pathogens Clostridium sensu stricto, Bacteroides, and Intestinibacter was observed in the OP group. Moreover, short-chain-fatty-acid (SCFA) producers, including members of the genera Collinsella, Megasphaera, Agathobaculum, Mediterraneibacter, Clostridium XIV, and Dorea, were depleted in the OP group relative to the healthy control (HC) group. Lactic acid-producing bacteria, including Limosilactobacillus, were significantly increased in the OP group. The random forest algorithm further confirmed that these bacteria differentiate the two groups. Furthermore, functional prediction revealed depletion of the SCFA biosynthesis pathway (glycolysis, tricarboxylic acid [TCA] cycle, and Wood-Ljungdahl pathway) and amino acid biosynthesis pathway (methionine, histidine, and arginine) in the OP group relative to the HC group. This study uncovered OP-associated compositional and functional microbial alterations, providing robust insight into OP pathogenesis and aiding the possible development of a therapeutic intervention to manage the disease. IMPORTANCE Osteoporosis is the most common metabolic bone disease associated with aging. Mounting evidence has linked changes in the gut microbiota to the pathophysiology of osteoporosis. However, which microbes are associated with dysbiosis and their impact on bone density and inflammation remain largely unknown due to inconsistent results in the literature. Here, we present a meta-analysis with a standard workflow, robust statistical approaches, and machine learning algorithms to identify notable microbial compositional changes influencing osteoporosis.
Collapse
Affiliation(s)
- Oluwamayowa S. Akinsuyi
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Luiz F. W. Roesch
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
da Cunha LL, Monteiro HF, Figueiredo CC, Canisso IF, Bicalho RC, Cardoso FC, Weimer BC, Lima FS. Characterization of rumen microbiome and metabolome from oro-esophageal tubing and rumen cannula in Holstein dairy cows. Sci Rep 2023; 13:5854. [PMID: 37041192 PMCID: PMC10090163 DOI: 10.1038/s41598-023-33067-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Less invasive rumen sampling methods, such as oro-esophageal tubing, became widely popular for exploring the rumen microbiome and metabolome. However, it remains unclear if such methods represent well the rumen contents from the rumen cannula technique. Herein, we characterized the microbiome and metabolome in the rumen content collected by an oro-esophageal tube and by rumen cannula in ten multiparous lactating Holstein cows. The 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. Untargeted metabolome was characterized using gas chromatography of a time-of-flight mass spectrometer. Bacteroidetes, Firmicutes, and Proteobacteria were the top three most abundant phyla representing ~ 90% of all samples. Although the pH of oro-esophageal samples was greater than rumen cannula, we found no difference in alpha and beta-diversity among their microbiomes. The overall metabolome of oro-esophageal samples was slightly different from rumen cannula samples yet more closely related to the rumen cannula content as a whole, including its fluid and particulate fractions. Enrichment pathway analysis revealed a few differences between sampling methods, such as when evaluating unsaturated fatty acid pathways in the rumen. The results of the current study suggest that oro-esophageal sampling can be a proxy to screen the 16S rRNA rumen microbiome compared to the rumen cannula technique. The variation introduced by the 16S rRNA methodology may be mitigated by oro-esophageal sampling and the possibility of increasing experimental units for a more consistent representation of the overall microbial population. Studies should consider an under or over-representation of metabolites and specific metabolic pathways depending on the sampling method.
Collapse
Affiliation(s)
- Lais L da Cunha
- Department of Forage Plants and Agrometeorology, Faculty of Agronomy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hugo F Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Caio C Figueiredo
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive, and Perinatal Biology Research Program, University of Florida, Gainesville, 32610, USA
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, 99164, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Felipe C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Fabio S Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Bélteky M, Milletich PL, Ahrens AP, Triplett EW, Ludvigsson J. Infant gut microbiome composition correlated with type 1 diabetes acquisition in the general population: the ABIS study. Diabetologia 2023; 66:1116-1128. [PMID: 36964264 DOI: 10.1007/s00125-023-05895-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/17/2023] [Indexed: 03/26/2023]
Abstract
AIMS/HYPOTHESIS While autoantibodies are traditional markers for type 1 diabetes development, we identified gut microbial biomarkers in 1-year-old infants associated with future type 1 diabetes up to 20 years before diagnosis. METHODS Infants enrolled in the longitudinal general population cohort All Babies In Southeast Sweden (ABIS) provided a stool sample at a mean age of 12.5 months. Samples (future type 1 diabetes, n=16; healthy controls, n=268) were subjected to 16S ribosomal RNA (rRNA) sequencing and quantitative PCR. Microbial differences at the taxonomic and core microbiome levels were assessed. PICRUSt was used to predict functional content from the 16S rRNA amplicons. Sixteen infants, with a future diagnosis of type 1 diabetes at a mean age of 13.3±5.4 years, and one hundred iterations of 32 matched control infants, who remained healthy up to 20 years of age, were analysed. RESULTS Parasutterella and Eubacterium were more abundant in healthy control infants, while Porphyromonas was differentially more abundant in infants with future type 1 diabetes diagnosis. Ruminococcus was a strong determinant in differentiating both control infants and those with future type 1 diabetes using random forest analysis and had differing trends of abundance when comparing control infants and those with future type 1 diabetes. Flavonifractor and UBA1819 were the strongest factors for differentiating control infants, showing higher abundance in control infants compared with those with future type 1 diabetes. Alternatively, Alistipes (more abundant in control infants) and Fusicatenibacter (mixed abundance patterns when comparing case and control infants) were the strongest factors for differentiating future type 1 diabetes. Predicted gene content regarding butyrate production and pyruvate fermentation was differentially observed to be higher in healthy control infants. CONCLUSIONS/INTERPRETATION This investigation suggests that microbial biomarkers for type 1 diabetes may be present as early as 1 year of age, as reflected in the taxonomic and functional differences of the microbial communities. The possibility of preventing disease onset by altering or promoting a 'healthy' gut microbiome is appealing. DATA AVAILABILITY The forward and reverse 16S raw sequencing data generated in this study are available through the NCBI Sequence Read Archive under BioProject PRJNA875929. Associated sample metadata used for statistical comparison are available in the source data file. R codes used for statistical comparisons and figure generation are available at: https://github.com/PMilletich/T1D_Pipeline .
Collapse
Affiliation(s)
- Malin Bélteky
- Crown Princess Victoria's Children's Hospital, Region Östergötland, Linköping, Sweden
| | - Patricia L Milletich
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Angelica P Ahrens
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital, Region Östergötland, Linköping, Sweden
- Division of Pediatrics, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Paulino GVB, Félix CR, da Silva Oliveira FA, Gomez-Silvan C, Melo VMM, Andersen GL, Landell MF. Microbiota of healthy and bleached corals of the species Siderastrea stellata in response to river influx and seasonality in Brazilian northeast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26496-26509. [PMID: 36369436 DOI: 10.1007/s11356-022-23976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Although coral bleaching is increasing worldwide due to warming oceans exacerbated by climate change, there has been a growing recognition that local stressors may play an additional role. Important stressors include the physicochemical and microbiological influences that are related to river runoff. Here, we investigated the microbiota associated to mucus and tissue of endemic coral Siderastrea stellata, collected from Brazilian northeast coral reefs of Barra de Santo Antônio (subject to river runoff) and Maragogi (minimal river runoff) during both the rainy and dry seasons. We sequenced the V4 region of 16S rDNA and used multiple R packages to process raw data and performed statistical analysis to reveal the microbial community structure composition and functional predictions. Major dissimilarities between microbial communities were related to seasonality, while healthy and bleached specimens were mainly associated with the enrichment of several less abundant taxa involved in specific metabolic functions, mainly related to the nitrogen cycle. We were not able to observe the dominance of groups that has been previously associated with bleachings, such as Vibrionaceae or Burkholderiaceae. The influx of freshwater appears to increase the homogeneity between individuals in Barra de Santo Antonio, especially during the rainy season. By contrast, we observed an increased homogeneity between samples in Maragogi during the dry season. Understanding the dynamics of the coral microbiota and how bleaching appears in response to specific environmental variables, in addition to determining the conditions that lead to a more robust coral microbiota, is essential for choosing the most appropriate area and conservation methods, for example.
Collapse
Affiliation(s)
- Gustavo Vasconcelos Bastos Paulino
- Universidade Federal de Alagoas, Maceió, AL, Brazil
- Programa de Pós-Graduação Em Diversidade Biológica E Conservação Nos Trópicos, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Ciro Ramon Félix
- Universidade Federal de Alagoas, Maceió, AL, Brazil
- Programa de Pós-Graduação Em Diversidade Biológica E Conservação Nos Trópicos, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Francisca Andréa da Silva Oliveira
- Laboratório de Ecologia Microbiana E Biotecnologia (Lembiotech), Departamento de Biologia, Universidade Federal Do Ceará, Campus Do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Cinta Gomez-Silvan
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vânia M M Melo
- Laboratório de Ecologia Microbiana E Biotecnologia (Lembiotech), Departamento de Biologia, Universidade Federal Do Ceará, Campus Do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Gary L Andersen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Maceió, AL, Brazil.
- Setor de Genética-ICBS, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/N, Tabuleiro Dos Martins, CEP: 57072-900, Maceió, AL, Brasil.
| |
Collapse
|
11
|
Hrbáček J, Tláskal V, Čermák P, Hanáček V, Zachoval R. Bladder cancer is associated with decreased urinary microbiota diversity and alterations in microbial community composition. Urol Oncol 2023; 41:107.e15-107.e22. [PMID: 36402713 DOI: 10.1016/j.urolonc.2022.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Human urine microbiota (UM) research has uncovered associations between composition of microbial communities of the lower urinary tract and various disease states including several reports on the putative link between UM and bladder cancer (BC). The aim of this study was to investigate male UM in patients with BC and controls using catheterised urine specimens unlike in previous studies. METHODS Urine samples were obtained in theatre after surgical prepping and draping using aseptic catheterisation. DNA was extracted and hypervariable region V4 of the 16S rRNA gene was amplified using 515F and 806R primers. Sequencing was performed on Illumina MiSeq platform. Sequencing data were processed using appropriate software tools. Alpha diversity measures were calculated and compared between groups. Prevalence Interval for Microbiome Evaluation was used to test differences in beta diversity. RESULTS A total of 63 samples were included in the analysis. Mean age of study subjects was 65.1 years (SD 12.5). Thirty-four men had bladder cancer and 29 participants were undergoing interventions for benign conditions (benign prostate hyperplasia or upper urinary tract stone disease). BC patients had lower UM richness and diversity than controls (83 vs. 139 operational taxonomic units, P = 0.015; Shannon index: 2.46 vs. 2.94, P = 0.049). There were specific taxa enriched in cancer (Veillonella, Varibaculum, Methylobacterium-Methylorubrum) and control groups (Pasteurella, Corynebacterium, Acinetobacter), respectively. CONCLUSION BC patients had lower bladder microbiota richness and diversity than controls. Specific genera were enriched in cancer and control groups, respectively. These results corroborate some of previous reports while contradicting others. Future microbiota research would benefit from parallel transcriptomic/metabolomic analysis.
Collapse
Affiliation(s)
- Jan Hrbáček
- Department of Urology, 3rd Faculty of Medicine, Charles University, Prague and Thomayer University Hospital, Prague, Czech Republic.
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice
| | - Pavel Čermák
- Department of Clinical Microbiology, Thomayer University Hospital, Prague, Czech Republic
| | - Vítězslav Hanáček
- Department of Urology, 3rd Faculty of Medicine, Charles University, Prague and Thomayer University Hospital, Prague, Czech Republic
| | - Roman Zachoval
- Department of Urology, 3rd Faculty of Medicine, Charles University, Prague and Thomayer University Hospital, Prague, Czech Republic
| |
Collapse
|
12
|
Lobo RR, Arce-Cordero JA, Agustinho BC, Ravelo AD, Vinyard JR, Johnson ML, Monteiro HF, Sarmikasoglou E, Roesch LFW, Jeong KCC, Faciola AP. Can dietary magnesium sources and buffer change the ruminal microbiota composition and fermentation of lactating dairy cows? J Anim Sci 2023; 101:skad211. [PMID: 37350733 PMCID: PMC10355366 DOI: 10.1093/jas/skad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
Magnesium oxide (MgO) is one of the most used Mg supplements in livestock. However, to avoid relying upon only one Mg source, it is important to have alternative Mg sources. Therefore, the objective of this study was to evaluate the effects of the interaction of two Mg sources with buffer use on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. Twenty lactating Holstein cows were blocked by parity and days in milk into five blocks with four cows each, in a 2 × 2 factorial design. Within blocks, cows were assigned to one of four treatments: 1) MgO; 2) MgO + Na sesquicarbonate (MgO+); 3) calcium-magnesium hydroxide (CaMgOH); 4) CaMgOH + Na sesquicarbonate (CaMgOH+). For 60 d, cows were individually fed a corn silage-based diet, and treatments were top-dressed. Ruminal fluid was collected via an orogastric tube, for analyses of the microbiota composition, volatile fatty acids (VFA), lactate, and ammonia nitrogen (NH3-N). The microbiota composition was analyzed using V4/16S rRNA gene sequencing, and taxonomy was assigned using the Silva database. Statistical analysis was carried out following the procedures of block design analysis, where block and cow were considered random variables. Effects of Mg source, buffer, and the interaction between Mg Source × Buffer were analyzed through orthogonal contrasts. There was no interaction effect of the two factors evaluated. There was a greater concentration of NH3-N, lactate, and butyrate in the ruminal fluid of cows fed with CaMg(OH)2, regardless of the buffer use. The increase in these fermentation intermediates/ end-products can be explained by an increase in abundance of micro-organisms of the genus Prevotella, Lactobacillus, and Butyrivibrio, which are micro-organisms mainly responsible for proteolysis, lactate-production, and butyrate-production in the rumen, respectively. Also, dietary buffer use did not affect the ruminal fermentation metabolites and pH; however, an improvement of the apparent total tract digestibility of dry matter (DM), organic matter (OM), neutral fiber detergent (NDF), and acid fiber detergent (ADF) were found for animals fed with dietary buffer. In summary, there was no interaction effect of buffer use and Mg source, whereas buffer improved total tract apparent digestibility of DM and OM through an increase in NDF and ADF digestibility and CaMg(OH)2 increased ruminal concentration of butyrate and abundance of butyrate-producing bacteria.
Collapse
Affiliation(s)
- Richard R Lobo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Jose A Arce-Cordero
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
- Escuela de Zootecnia, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica
| | - Bruna C Agustinho
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Ana D Ravelo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
- College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | - James R Vinyard
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Mikayla L Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hugo F Monteiro
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Luiz Fernando W Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32608, USA
| | - Kwang Cheol C Jeong
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
13
|
Miller GA, Auffret MD, Roehe R, Nisbet H, Martínez-Álvaro M. Different microbial genera drive methane emissions in beef cattle fed with two extreme diets. Front Microbiol 2023; 14:1102400. [PMID: 37125186 PMCID: PMC10133469 DOI: 10.3389/fmicb.2023.1102400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
The ratio of forage to concentrate in cattle feeding has a major influence on the composition of the microbiota in the rumen and on the mass of methane produced. Using methane measurements and microbiota data from 26 cattle we aimed to investigate the relationships between microbial relative abundances and methane emissions, and identify potential biomarkers, in animals fed two extreme diets - a poor quality fresh cut grass diet (GRASS) or a high concentrate total mixed ration (TMR). Direct comparisons of the effects of such extreme diets on the composition of rumen microbiota have rarely been studied. Data were analyzed considering their multivariate and compositional nature. Diet had a relevant effect on methane yield of +10.6 g of methane/kg of dry matter intake for GRASS with respect to TMR, and on the centered log-ratio transformed abundance of 22 microbial genera. When predicting methane yield based on the abundance of 28 and 25 selected microbial genera in GRASS and TMR, respectively, we achieved cross-validation prediction accuracies of 66.5 ± 9% and 85 ± 8%. Only the abundance of Fibrobacter had a consistent negative association with methane yield in both diets, whereas most microbial genera were associated with methane yield in only one of the two diets. This study highlights the stark contrast in the microbiota controlling methane yield between animals fed a high concentrate diet, such as that found on intensive finishing units, and a low-quality grass forage that is often found in extensive grazing systems. This contrast must be taken into consideration when developing strategies to reduce methane emissions by manipulation of the rumen microbial composition.
Collapse
Affiliation(s)
- Gemma A. Miller
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
- Gemma A. Miller,
| | | | - Rainer Roehe
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| | - Holly Nisbet
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| | - Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Marina Martínez-Álvaro,
| |
Collapse
|
14
|
Berryman MA, Milletich PL, Petrone JR, Roesch LF, Ilonen J, Triplett EW, Ludvigsson J. Autoimmune-associated genetics impact probiotic colonization of the infant gut. J Autoimmun 2022; 133:102943. [PMID: 36356550 DOI: 10.1016/j.jaut.2022.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
To exemplify autoimmune-associated genetic influence on the colonization of bacteria frequently used in probiotics, microbial composition of stool from 1326 one-year-old infants was analyzed in a prospective general-population cohort, All Babies In Southeast Sweden (ABIS). We show that an individual's HLA haplotype composition has a significant impact on which common Bifidobacterium strains thrive in colonizing the gut. The effect HLA has on the gut microbiome can be more clearly observed when considered in terms of allelic dosage. HLA DR1-DQ5 showed the most significant and most prominent effect on increased Bifidobacterium relative abundance. Therefore, HLA DR1-DQ5 is proposed to act as a protective haplotype in many individuals. Protection-associated HLA haplotypes are more likely to influence the promotion of specific bifidobacteria. In addition, strain-level differences are correlated with colonization proficiency in the gut depending on HLA haplotype makeup. These results demonstrate that HLA genetics should be considered when designing effective probiotics, particularly for those at high genetic risk for autoimmune diseases.
Collapse
Affiliation(s)
- Meghan A Berryman
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Patricia L Milletich
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Joseph R Petrone
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Luiz Fw Roesch
- Roesch Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W Triplett
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Nottingham AT, Scott JJ, Saltonstall K, Broders K, Montero-Sanchez M, Püspök J, Bååth E, Meir P. Microbial diversity declines in warmed tropical soil and respiration rise exceed predictions as communities adapt. Nat Microbiol 2022; 7:1650-1660. [PMID: 36065063 DOI: 10.1038/s41564-022-01200-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
Abstract
Perturbation of soil microbial communities by rising temperatures could have important consequences for biodiversity and future climate, particularly in tropical forests where high biological diversity coincides with a vast store of soil carbon. We carried out a 2-year in situ soil warming experiment in a tropical forest in Panama and found large changes in the soil microbial community and its growth sensitivity, which did not fully explain observed large increases in CO2 emission. Microbial diversity, especially of bacteria, declined markedly with 3 to 8 °C warming, demonstrating a breakdown in the positive temperature-diversity relationship observed elsewhere. The microbial community composition shifted with warming, with many taxa no longer detected and others enriched, including thermophilic taxa. This community shift resulted in community adaptation of growth to warmer temperatures, which we used to predict changes in soil CO2 emissions. However, the in situ CO2 emissions exceeded our model predictions threefold, potentially driven by abiotic acceleration of enzymatic activity. Our results suggest that warming of tropical forests will have rapid, detrimental consequences both for soil microbial biodiversity and future climate.
Collapse
Affiliation(s)
- Andrew T Nottingham
- School of Geography, University of Leeds, Leeds, UK. .,School of Geosciences, University of Edinburgh, Edinburgh, UK. .,Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.
| | - Jarrod J Scott
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | | | - Kirk Broders
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.,Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service USDA, Peoria, IL, USA
| | | | - Johann Püspök
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Erland Bååth
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK.,Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
16
|
Saliva microbiome, dietary, and genetic markers are associated with suicidal ideation in university students. Sci Rep 2022; 12:14306. [PMID: 35995968 PMCID: PMC9395396 DOI: 10.1038/s41598-022-18020-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Here, salivary microbiota and major histocompatibility complex (MHC) human leukocyte antigen (HLA) alleles were compared between 47 (12.6%) young adults with recent suicidal ideation (SI) and 325 (87.4%) controls without recent SI. Several bacterial taxa were correlated with SI after controlling for sleep issues, diet, and genetics. Four MHC class II alleles were protective for SI including DRB1*04, which was absent in every subject with SI while present in 21.7% of controls. Increased incidence of SI was observed with four other MHC class II alleles and two MHC class I alleles. Associations between these HLA alleles and salivary bacteria were also identified. Furthermore, rs10437629, previously associated with attempted suicide, was correlated here with SI and the absence of Alloprevotella rava, a producer of an organic acid known to promote brain energy homeostasis. Hence, microbial-genetic associations may be important players in the diathesis-stress model for suicidal behaviors.
Collapse
|
17
|
Oliveira MET, Paulino GVB, Dos Santos Júnior ED, da Silva Oliveira FA, Melo VMM, Ursulino JS, de Aquino TM, Shetty AK, Landell MF, Gitaí DLG. Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2022; 59:6429-6446. [PMID: 35962889 DOI: 10.1007/s12035-022-02984-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the β-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.
Collapse
Affiliation(s)
- Maria Eduarda T Oliveira
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Gustavo V B Paulino
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Erivaldo D Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Francisca A da Silva Oliveira
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Vânia M M Melo
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Jeferson S Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Thiago M de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Melissa Fontes Landell
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| |
Collapse
|
18
|
The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Commun Biol 2022; 5:770. [PMID: 35908086 PMCID: PMC9338936 DOI: 10.1038/s42003-022-03679-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Environmental degradation has the potential to alter key mutualisms that underlie the structure and function of ecological communities. How microbial communities associated with fishes vary across populations and in relation to habitat characteristics remains largely unknown despite their fundamental roles in host nutrition and immunity. We find significant differences in the gut microbiome composition of a facultative coral-feeding butterflyfish (Chaetodon capistratus) across Caribbean reefs that differ markedly in live coral cover (∼0–30%). Fish gut microbiomes were significantly more variable at degraded reefs, a pattern driven by changes in the relative abundance of the most common taxa potentially associated with stress. We also demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which may suggest a less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions may be vulnerable to severe coral degradation. The gut microbiome composition of the coral-feeding butterflyfish across Caribbean reefs is more variable at degraded reefs. These microbiomes have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria.
Collapse
|
19
|
Milletich PL, Ahrens AP, Russell JT, Petrone JR, Berryman MA, Agardh D, Ludvigsson JF, Triplett EW, Ludvigsson J. Gut microbiome markers in subgroups of HLA class II genotyped infants signal future celiac disease in the general population: ABIS study. Front Cell Infect Microbiol 2022; 12:920735. [PMID: 35959362 PMCID: PMC9357981 DOI: 10.3389/fcimb.2022.920735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although gut microbiome dysbiosis has been illustrated in celiac disease (CD), there are disagreements about what constitutes these microbial signatures and the timeline by which they precede diagnosis is largely unknown. The study of high-genetic-risk patients or those already with CD limits our knowledge of dysbiosis that may occur early in life in a generalized population. To explore early gut microbial imbalances correlated with future celiac disease (fCD), we analyzed the stool of 1478 infants aged one year, 26 of whom later acquired CD, with a mean age of diagnosis of 10.96 ± 5.6 years. With a novel iterative control-matching algorithm using the prospective general population cohort, All Babies In Southeast Sweden, we found nine core microbes with prevalence differences and seven differentially abundant bacteria between fCD infants and controls. The differences were validated using 100 separate, iterative permutations of matched controls, which suggests the bacterial signatures are significant in fCD even when accounting for the inherent variability in a general population. This work is the first to our knowledge to demonstrate that gut microbial differences in prevalence and abundance exist in infants aged one year up to 19 years before a diagnosis of CD in a general population.
Collapse
Affiliation(s)
- Patricia L. Milletich
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Angelica P. Ahrens
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jordan T. Russell
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph R. Petrone
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Meghan A. Berryman
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: Eric W. Triplett,
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Anderson EM, Rozowsky JM, Fazzone BJ, Schmidt EA, Stevens BR, O’Malley KA, Scali ST, Berceli SA. Temporal Dynamics of the Intestinal Microbiome Following Short-Term Dietary Restriction. Nutrients 2022; 14:2785. [PMID: 35889742 PMCID: PMC9318361 DOI: 10.3390/nu14142785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Short-term dietary restriction has been proposed as an intriguing pre-operative conditioning strategy designed to attenuate the surgical stress response and improve outcomes. However, it is unclear how this nutritional intervention influences the microbiome, which is known to modulate the systemic condition. Healthy individuals were recruited to participate in a four-day, 70% protein-restricted, 30% calorie-restricted diet, and stool samples were collected at baseline, after the restricted diet, and after resuming normal food intake. Taxonomy and functional pathway analysis was performed via shotgun metagenomic sequencing, prevalence filtering, and differential abundance analysis. High prevalence species were altered by the dietary intervention but quickly returned to baseline after restarting a regular diet. Composition and functional changes after the restricted diet included the decreased relative abundance of commensal bacteria and a catabolic phenotype. Notable species changes included Faecalibacterium prausnitzii and Roseburia intestinalis, which are major butyrate producers within the colon and are characteristically decreased in many disease states. The macronutrient components of the diet might have influenced these changes. We conclude that short-term dietary restriction modulates the ecology of the gut microbiome, with this modulation being characterized by a relative dysbiosis.
Collapse
Affiliation(s)
- Erik M. Anderson
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Jared M. Rozowsky
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Brian J. Fazzone
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Emilie A. Schmidt
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Bruce R. Stevens
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA;
| | - Kerri A. O’Malley
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Salvatore T. Scali
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Scott A. Berceli
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Bladder Microbiota Are Associated with Clinical Conditions That Extend beyond the Urinary Tract. Microorganisms 2022; 10:microorganisms10050874. [PMID: 35630319 PMCID: PMC9147640 DOI: 10.3390/microorganisms10050874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Background. Since the discovery of the human urinary microbiota (UM), alterations in microbial community composition have been associated with various genitourinary conditions. The aim of this exploratory study was to examine possible associations of UM with clinical conditions beyond the urinary tract and to test some of the conclusions from previous studies on UM. Methods. Catheterised urine samples from 87 men were collected prior to endoscopic urological interventions under anaesthesia. The composition of the bacterial community in urine was characterized using the hypervariable V4 region of the 16S rRNA gene. Samples from 58 patients yielded a sufficient amount of bacterial DNA for analysis. Alpha diversity measures (number of operational taxonomic units, ACE, iChao2, Shannon and Simpson indices) were compared with the Kruskal–Wallis test. Beta diversity (differences in microbial community composition) was assessed using non-metric dimensional scaling in combination with the Prevalence in Microbiome Analysis algorithm. Results. Differences in bacterial richness and diversity were observed for the following variables: age, diabetes mellitus, dyslipidemia, smoking status and single-dose preoperative antibiotics. Differences in microbial community composition were observed in the presence of chronic kidney disease, lower urinary tract symptoms and antibiotic prophylaxis. Conclusions. UM appears to be associated with certain clinical conditions, including those unrelated to the urinary tract. Further investigation is needed before conclusions can be drawn for diagnostics and treatment.
Collapse
|
22
|
Rumen and lower gut microbiomes relationship with feed efficiency and production traits throughout the lactation of Holstein dairy cows. Sci Rep 2022; 12:4904. [PMID: 35318351 PMCID: PMC8940958 DOI: 10.1038/s41598-022-08761-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 01/24/2023] Open
Abstract
Fermentation of dietary nutrients in ruminants' gastrointestinal (GI) tract is an essential mechanism utilized to meet daily energy requirements. Especially in lactating dairy cows, the GI microbiome plays a pivotal role in the breakdown of indigestible plant polysaccharides and supply most AAs, fatty acids, and gluconeogenic precursors for milk synthesis. Although the contribution of the rumen microbiome to production efficiency in dairy cows has been widely researched over the years, variations throughout the lactation and the lower gut microbiome contribution to these traits remain poorly characterized. Therefore, we investigated throughout lactation the relationship between the rumen and lower gut microbiomes with production efficiency traits in Holstein cows. We found that the microbiome from both locations has temporal stability throughout lactation, yet factors such as feed intake levels played a significant role in shaping microbiome diversity. The composition of the rumen microbiome was dependent on feed intake. In contrast, the lower gut microbiome was less dependent on feed intake and associated with a potentially enhanced ability to digest dietary nutrients. Therefore, milk production traits may be more correlated with microorganisms present in the lower gut than previously expected. The current study's findings advance our understanding of the temporal relationship of the rumen and lower gut microbiomes by enabling a broader overview of the gut microbiome and production efficiency towards more sustainable livestock production.
Collapse
|
23
|
Monteiro HF, Lelis ALJ, Fan P, Calvo Agustinho B, Lobo RR, Arce-Cordero JA, Dai X, Jeong KC, Faciola AP. Effects of lactic acid-producing bacteria as direct-fed microbials on the ruminal microbiome. J Dairy Sci 2022; 105:2242-2255. [PMID: 34998552 DOI: 10.3168/jds.2021-21025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
The objective of this study was to evaluate ruminal microbiome changes associated with feeding Lactobacillus plantarum GB-LP1 as direct-fed microbials (DFM) in high-producing dairy cow diets. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per day (16% crude protein and 28% starch). There were 4 experimental treatments: the basal diet without any DFM (CTRL); a mixture of Lactobacillus acidophilus, 1 × 109 cfu/g, and Propionibacterium freudenreichii, 2 × 109 cfu/g [MLP = 0.01% of diet dry matter (DM)]; and 2 different levels of L. plantarum, 1.35 × 109 cfu/g (L1 = 0.05% and L2 = 0.10% of diet DM). Bacterial samples were collected from the fluid and particulate effluents before feeding and at 2, 4, 6, and 8 h after feeding; a composite of all time points was made for each fermentor within their respective fractionations. Bacterial community composition was analyzed through sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Sequenced data were analyzed on DADA2, and statistical analyses were performed in R (RStudio 3.0.1, https://www.r-project.org/) and SAS 9.4 (SAS Institute Inc.); orthogonal contrasts were used to compare treatments. Different than in other fermentation scenarios (e.g., silage or beef cattle high-grain diets), treatments did not affect pH or lactic acid concentration. Effects were mainly from overall DFM inclusion, and they were mostly observed in the fluid phase. The relative abundance of the phylum Firmicutes, family Lachnospiraceae, and 6 genera decreased with DFM inclusion, with emphasis on Butyrivibrio_2, Saccharofermentans, and Ruminococcus_1 that are fibrolytic and may display peptidase activity during fermentation. Lachnospiraceae_AC2044_group and Lachnospiraceae_XPB1014_group also decreased in the fluid phase, and their relative abundances were positively correlated with NH3-N daily outflow from the fermentors. Specific effects of MLP and L. plantarum were mostly in specific bacteria associated with proteolytic and fibrolytic functions in the rumen. These findings help to explain why, in the previous results from this study, DFM inclusion decreased NH3-N concentration without altering pH and lactic acid concentration.
Collapse
Affiliation(s)
- H F Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis 95616; Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A L J Lelis
- Department of Animal Sciences, University of Florida, Gainesville 32611; Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, Brazil, 18618-681
| | - P Fan
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - B Calvo Agustinho
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - R R Lobo
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - J A Arce-Cordero
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - X Dai
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Clinical Science Services, Royal Veterinary College, London, UK, NW1 0TU
| | - K C Jeong
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow 83844
| | - A P Faciola
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
24
|
Hrbacek J, Morais D, Cermak P, Hanacek V, Zachoval R. Alpha-diversity and microbial community structure of the male urinary microbiota depend on urine sampling method. Sci Rep 2021; 11:23758. [PMID: 34887510 PMCID: PMC8660768 DOI: 10.1038/s41598-021-03292-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Considerable variation exists in the methodology of urinary microbiota studies published so far including the cornerstone of any biomedical analysis: sample collection. The aim of this study was to compare the urinary microbiota of first-catch voided urine (FCU), mid-stream voided urine (MSU) and aseptically catheterised urine in men and define the most suitable urine sampling method. Forty-nine men (mean age 71.3 years) undergoing endoscopic urological procedures were enrolled in the study. Each of them contributed three samples: first-catch urine (FCU), mid-stream urine (MSU) and a catheterised urine sample. The samples were subjected to next-generation sequencing (NGS, n = 35) and expanded quantitative urine culture (EQUC, n = 31). Using NGS, Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla in our population. The most abundant genera (in order of relative abundance) included: Prevotella, Veillonella, Streptococcus, Porphyromonas, Campylobacter, Pseudomonas, Staphylococcus, Ezakiella, Escherichia and Dialister. Eighty-two of 105 samples were dominated by a single genus. FCU, MSU and catheterised urine samples differed significantly in three of five alpha-diversity measures (ANOVA, p < 0.05): estimated number of operational taxonomic units, Chao1 and abundance-based coverage estimators. Beta-diversity comparisons using the PIME method (Prevalence Interval for Microbiome Evaluation) resulted in clustering of urine samples according to the mode of sampling. EQUC detected cultivable bacteria in 30/31 (97%) FCU and 27/31 (87%) MSU samples. Only 4/31 (13%) of catheterised urine samples showed bacterial growth. Urine samples obtained by transurethral catheterisation under aseptic conditions seem to differ from spontaneously voided urine samples. Whether the added value of a more exact reflection of the bladder microbiota free from urethral contamination outweighs the invasiveness of urethral catheterisation remains to be determined.
Collapse
Affiliation(s)
- Jan Hrbacek
- Department of Urology, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Videnska 800, 14059, Prague, Czech Republic.
| | - Daniel Morais
- Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| | - Pavel Cermak
- Department of Clinical Microbiology, Thomayer University Hospital, Videnska 800, 14059, Prague, Czech Republic
| | - Vitezslav Hanacek
- Department of Urology, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Videnska 800, 14059, Prague, Czech Republic
| | - Roman Zachoval
- Department of Urology, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Videnska 800, 14059, Prague, Czech Republic
| |
Collapse
|
25
|
Fotios B, Sotirios V, Elena P, Anastasios S, Stefanos T, Danae G, Georgia T, Aliki T, Epaminondas P, Emmanuel M, George K, Kalliope PK, Dimitrios KG. Grapevine wood microbiome analysis identifies key fungal pathogens and potential interactions with the bacterial community implicated in grapevine trunk disease appearance. ENVIRONMENTAL MICROBIOME 2021; 16:23. [PMID: 34863281 PMCID: PMC8642934 DOI: 10.1186/s40793-021-00390-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Grapevine trunk diseases (GTDs) is a disease complex caused by wood pathogenic fungi belonging to genera like Phaeomoniella, Phaeoacremonium, Fomitiporia, Eutypa and members of the family Botryosphaeriaceae. However, the co-occurrence of these fungi in symptomatic and asymptomatic vines at equivalent abundances has questioned their role in GTDs. Hence, we still lack a good understanding of the fungi involved in GTDs, their interactions and the factors controlling their assemblage in vines. We determined the fungal and bacterial microbiome in wood tissues of asymptomatic and symptomatic vines of three main Greek cultivars (Agiorgitiko, Xinomavro, Vidiano), each cultivated in geographically distinct viticultural zones, using amplicon sequencing. RESULTS We noted that cultivar/biogeography (lumped factor) was the strongest determinant of the wood fungal microbiome (p < 0.001, 22.7%), while GTD symptoms condition had a weaker but still significant effect (p < 0.001, 3.5%), being prominent only in the cultivar Xinomavro. Several fungal Amplicon Sequence Variants (ASVs), reported as GTD-associated pathogens like Kalmusia variispora, Fomitiporia spp., and Phaemoniella chlamydosporα (most dominant in our study), were positively correlated with symptomatic vines in a cultivar/viticultural zone dependent manner. Random Forest analysis pointed to P. chlamydosporα, K. variispora, A. alternata and Cladosporium sp., as highly accurate predictors of symptomatic vines (0% error rate). The wood bacterial microbiome showed similar patterns, with biogeography/cultivar being the main determinant (p < 0.001, 25.5%) of its composition, followed by the GTD status of vines (p < 0.001, 5.2%). Differential abundance analysis revealed a universal positive correlation (p < 0.001) of Bacillus and Streptomyces ASVs with asymptomatic vines. Network analysis identified a significant negative co-occurrence network between these bacterial genera and Phaemoniella, Phaeoacrominum and Seimatosporium. These results point to a plant beneficial interaction between Bacillus/Streptomyces and GTD pathogens. CONCLUSIONS Our study (a) provides evidence that GTD symptomatic plants support a wood fungal microbiome, showing cultivar and biogeography-dependent patterns, that could be used as a proxy to distinguish between healthy and diseased vines, (b) points to strong interactions between the bacterial and fungal wood microbiome in asymptomatic vines that should be further pursued in the quest for discovery of novel biocontrol agents.
Collapse
Affiliation(s)
- Bekris Fotios
- Laboratory of Plant and Environmental Biotechnology, Viopolis, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Vasileiadis Sotirios
- Laboratory of Plant and Environmental Biotechnology, Viopolis, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Papadopoulou Elena
- Laboratory of Plant and Environmental Biotechnology, Viopolis, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Samaras Anastasios
- Plant Pathology Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Testempasis Stefanos
- Plant Pathology Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gkizi Danae
- Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Tavlaki Georgia
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, 32A Kastorias Street, Mesa Katsabas, 71307 Heraklion, Crete Greece
| | - Tzima Aliki
- Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Paplomatas Epaminondas
- Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Markakis Emmanuel
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, 32A Kastorias Street, Mesa Katsabas, 71307 Heraklion, Crete Greece
| | - Karaoglanidis George
- Plant Pathology Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Papadopoulou K. Kalliope
- Laboratory of Plant and Environmental Biotechnology, Viopolis, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Karpouzas G. Dimitrios
- Laboratory of Plant and Environmental Biotechnology, Viopolis, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
26
|
Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Perna G, Geißler L, Roth F, Bougoure J, Guagliardo P, Struck U, Wild C, Pernice M, Raina JB, Meibom A, Voolstra CR. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. THE ISME JOURNAL 2021; 16:1110-1118. [PMID: 34857934 PMCID: PMC8941099 DOI: 10.1038/s41396-021-01158-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Efficient nutrient cycling in the coral-algal symbiosis requires constant but limited nitrogen availability. Coral-associated diazotrophs, i.e., prokaryotes capable of fixing dinitrogen, may thus support productivity in a stable coral-algal symbiosis but could contribute to its breakdown when overstimulated. However, the effects of environmental conditions on diazotroph communities and their interaction with other members of the coral holobiont remain poorly understood. Here we assessed the effects of heat stress on diazotroph diversity and their contribution to holobiont nutrient cycling in the reef-building coral Stylophora pistillata from the central Red Sea. In a stable symbiotic state, we found that nitrogen fixation by coral-associated diazotrophs constitutes a source of nitrogen to the algal symbionts. Heat stress caused an increase in nitrogen fixation concomitant with a change in diazotroph communities. Yet, this additional fixed nitrogen was not assimilated by the coral tissue or the algal symbionts. We conclude that although diazotrophs may support coral holobiont functioning under low nitrogen availability, altered nutrient cycling during heat stress abates the dependence of the coral host and its algal symbionts on diazotroph-derived nitrogen. Consequently, the role of nitrogen fixation in the coral holobiont is strongly dependent on its nutritional status and varies dynamically with environmental conditions.
Collapse
Affiliation(s)
- Nils Rädecker
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. .,Department of Biology, University of Konstanz, Konstanz, Germany. .,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Claudia Pogoreutz
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hagen M Gegner
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Metabolomics Core Technology Platform, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Anny Cárdenas
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gabriela Perna
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Laura Geißler
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Roth
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden.,Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, Helsinki, Finland
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, Australia
| | - Ulrich Struck
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Christian Wild
- Faculty of Biology and Chemistry, Marine Ecology Department, University of Bremen, Bremen, Germany
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, Université de Lausanne, Lausanne, Switzerland
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
27
|
Agostini L, Moreira JCF, Bendia AG, Kmit MCP, Waters LG, Santana MFM, Sumida PYG, Turra A, Pellizari VH. Deep-sea plastisphere: Long-term colonization by plastic-associated bacterial and archaeal communities in the Southwest Atlantic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148335. [PMID: 34174607 DOI: 10.1016/j.scitotenv.2021.148335] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 05/20/2023]
Abstract
Marine plastic pollution is a global concern because of continuous release into the oceans over the last several decades. Although recent studies have made efforts to characterize the so-called plastisphere, or microbial community inhabiting plastic substrates, it is not clear whether the plastisphere is defined as a core community or as a random attachment of microbial cells. Likewise, little is known about the influence of the deep-sea environment on the plastisphere. In our experimental study, we evaluated the microbial colonization on polypropylene pellets and two types of plastic bags: regular high density polyethylene (HDPE) and HDPE with the oxo-biodegradable additive BDA. Gravel was used as control. Samples were deployed at three sites at 3300 m depth in the Southwest Atlantic Ocean and left for microbial colonization for 719 days. For microbial communities analysis, DNA was extracted from the biofilm on plastic and gravel substrates, and then the 16S rRNA was sequenced through the Illumina Miseq platform. Cultivation was performed to isolate strains from the plastic and gravel substrates. Substrate type strongly influenced the microbial composition and structure, while no difference between sites was detected. Although several taxa were shared among plastics, we observed some groups specific for each plastic substrate. These communities comprised taxa previously reported from both epipelagic zones and deep-sea benthic ecosystems. The core microbiome (microbial taxa shared by all plastic substrates) was exclusively composed by low abundance taxa, with some members well-described in the plastisphere and with known plastic-degradation capabilities. Additionally, we obtained bacterial strains that have been previously reported inhabiting plastic substrates and/or degrading hydrocarbon compounds, which corroborates our metabarcoding data and suggests the presence of microbial members potentially active and involved with degradation of these plastics in the deep sea.
Collapse
Affiliation(s)
- Luana Agostini
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo CEP: 05508-120, Brazil
| | | | - Amanda Gonçalves Bendia
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo CEP: 05508-120, Brazil
| | - Maria Carolina Pezzo Kmit
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo CEP: 05508-120, Brazil
| | - Linda Gwen Waters
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo CEP: 05508-120, Brazil
| | | | - Paulo Yukio Gomes Sumida
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo CEP: 05508-120, Brazil
| | - Alexander Turra
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo CEP: 05508-120, Brazil
| | - Vivian Helena Pellizari
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo CEP: 05508-120, Brazil
| |
Collapse
|
28
|
Ahrens AP, Culpepper T, Saldivar B, Anton S, Stoll S, Handberg EM, Xu K, Pepine C, Triplett EW, Aggarwal M. A Six-Day, Lifestyle-Based Immersion Program Mitigates Cardiovascular Risk Factors and Induces Shifts in Gut Microbiota, Specifically Lachnospiraceae, Ruminococcaceae, Faecalibacterium prausnitzii: A Pilot Study. Nutrients 2021; 13:3459. [PMID: 34684459 PMCID: PMC8539164 DOI: 10.3390/nu13103459] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence remains elevated globally. We have previously shown that a one-week lifestyle "immersion program" leads to clinical improvements and sustained improvements in quality of life in moderate to high atherosclerotic CVD (ASCVD) risk individuals. In a subsequent year of this similarly modeled immersion program, we again collected markers of cardiovascular health and, additionally, evaluated intestinal microbiome composition. ASCVD risk volunteers (n = 73) completed the one-week "immersion program" involving nutrition (100% plant-based foods), stress management education, and exercise. Anthropometric measurements and CVD risk factors were compared at baseline and post intervention. A subgroup (n = 22) provided stool, which we analyzed with 16S rRNA sequencing. We assessed abundance changes within-person, correlated the abundance shifts with clinical changes, and inferred functional pathways using PICRUSt. Reductions in blood pressure, total cholesterol, and triglycerides, were observed without reduction in weight. Significant increases in butyrate producers were detected, including Lachnospiraceae and Oscillospirales. Within-person, significant shifts in relative abundance (RA) occurred, e.g., increased Lachnospiraceae (+58.8% RA, p = 0.0002), Ruminococcaceae (+82.1%, p = 0.0003), Faecalibacterium prausnitzii (+54.5%, p = 0.002), and diversification and richness. Microbiota changes significantly correlated with body mass index (BMI), blood pressure (BP), cholesterol, high-sensitivity C-reactive protein (hsCRP), glucose, and trimethylamine N-oxide (TMAO) changes. Pairwise decreases were inferred in microbial genes corresponding to cancer, metabolic disease, and amino acid metabolism. This brief lifestyle-based intervention improved lipids and BP and enhanced known butyrate producers, without significant weight loss. These results demonstrate a promising non-pharmacological preventative strategy for improving cardiovascular health.
Collapse
Affiliation(s)
- Angelica P. Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, 1355 Museum Dr, Gainesville, FL 32603, USA; (A.P.A.); (E.W.T.)
| | - Tyler Culpepper
- Department of Medicine, College of Medicine, University of Florida, P.O. Box 100277, Gainesville, FL 32610, USA; (T.C.); (B.S.)
| | - Brittany Saldivar
- Department of Medicine, College of Medicine, University of Florida, P.O. Box 100277, Gainesville, FL 32610, USA; (T.C.); (B.S.)
| | - Stephen Anton
- Department of Aging and Geriatric Research, University of Florida, 210 E. Mowry Rd, Gainesville, FL 32611, USA;
| | - Scott Stoll
- Total Health Immersions, P.O. Box 741596, Boynton Beach, FL 33474, USA;
| | - Eileen M. Handberg
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; (E.M.H.); (C.P.)
| | - Ke Xu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL 32610, USA;
| | - Carl Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; (E.M.H.); (C.P.)
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, 1355 Museum Dr, Gainesville, FL 32603, USA; (A.P.A.); (E.W.T.)
| | - Monica Aggarwal
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; (E.M.H.); (C.P.)
| |
Collapse
|
29
|
Stevens BR, Pepine CJ, Richards EM, Kim S, Raizada MK. Depressive hypertension: A proposed human endotype of brain/gut microbiome dysbiosis. Am Heart J 2021; 239:27-37. [PMID: 33984318 DOI: 10.1016/j.ahj.2021.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hypertension (HTN) is frequently linked with depression (DEP) in adults with cardiovascular disease (CVD), yet the underlying mechanism and successful management remain elusive. We approached this knowledge gap through the lens that humans are eukaryote-prokaryote "meta-organisms," such that cardiovascular disease dysregulation is a mosaic disorder involving dysbiosis of the gut. We hypothesized that patients diagnosed with hypertension plus depression harbor a unique gut microbial ecology with attending functional genomics engaged with their hosts' gut/brain axis physiology. METHODS Stool microbiome DNA was analyzed by whole metagenome shotgun sequencing in 54 subjects parsed into cohorts diagnosed with HTN only (N = 18), DEP only (N = 7), DEP plus HTN (DEP-HTN) (N = 8), or reference subjects with neither HTN nor DEP (N = 21). A novel battery of machine-learning multivariate analyses of de-noised data yielded effect sizes and permutational covariance-based dissimilarities that significantly differentiated the cohorts (false discovery rate (FDR)-adjusted P ≤ .05); data clustering within 95% confidence interval). RESULTS Metagenomic significant differences extricated the four cohorts. Data of the cohort exhibiting DEP-HTN were germane to the interplay of central control of blood pressure concomitant with the neuropathology of depressive disorders. DEP-HTN gut bacterial community ecology was defined by co-occurrence of Eubacterium siraeum, Alistipes obesi, Holdemania filiformis, and Lachnospiraceae bacterium 1.1.57FAA with Streptococcus salivariu. The corresponding microbial functional genomics of DEP-HTN engaged pathways degrading GABA and beneficial short chain fatty acids (SCFA), and are associated with enhanced sodium absorption and inflammasome induction. CONCLUSIONS These data suggest a new putative endotype of hypertension, which we denote "depressive-hypertension" (DEP-HTN), for which we posit a model that is distinctive from either HTN alone or DEP alone. An "endotype" is a subtype of a heterogeneous pathophysiological mechanism. The DEP-HTN model incorporates a unique signature of microbial taxa and functional genomics with crosstalk that putatively intertwines host pathophysiology involving the gastrointestinal tract with disruptions in central control of blood pressure and mood. The DEP-HTN endotype model engages cardiology with gastroenterology and psychiatry, providing a proof-of-concept foundation to explore future treatments, diagnosis, and prevention of HTN-coupled mood disorders.
Collapse
|
30
|
Nakai M, Ribeiro RV, Stevens BR, Gill P, Muralitharan RR, Yiallourou S, Muir J, Carrington M, Head GA, Kaye DM, Marques FZ. Essential Hypertension Is Associated With Changes in Gut Microbial Metabolic Pathways: A Multisite Analysis of Ambulatory Blood Pressure. Hypertension 2021; 78:804-815. [PMID: 34333988 DOI: 10.1161/hypertensionaha.121.17288] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (M.N., R.R.M., F.Z.M.)
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Australia (R.V.R.).,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Australia (R.V.R.)
| | - Bruce R Stevens
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville (B.R.S.)
| | - Paul Gill
- Department of Gastroenterology (P.G., J.M.), Monash University, Melbourne, Australia
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (M.N., R.R.M., F.Z.M.).,Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur (R.R.M.)
| | - Stephanie Yiallourou
- Preclinical Disease and Prevention, Baker Heart and Diabetes Institute, Melbourne, Australia (S.Y., M.C.)
| | - Jane Muir
- Department of Gastroenterology (P.G., J.M.), Monash University, Melbourne, Australia
| | - Melinda Carrington
- Preclinical Disease and Prevention, Baker Heart and Diabetes Institute, Melbourne, Australia (S.Y., M.C.)
| | - Geoffrey A Head
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences (G.A.H.), Monash University, Melbourne, Australia.,Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (G.A.H.)
| | - David M Kaye
- Clinical School, Faculty of Medicine Nursing and Health Sciences (D.M.K.), Monash University, Melbourne, Australia.,Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (D.M.K., F.Z.M.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (D.M.K.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (M.N., R.R.M., F.Z.M.).,Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (D.M.K., F.Z.M.)
| |
Collapse
|
31
|
Stevens BR, Roesch L, Thiago P, Russell JT, Pepine CJ, Holbert RC, Raizada MK, Triplett EW. Depression phenotype identified by using single nucleotide exact amplicon sequence variants of the human gut microbiome. Mol Psychiatry 2021; 26:4277-4287. [PMID: 31988436 PMCID: PMC11549940 DOI: 10.1038/s41380-020-0652-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Single nucleotide exact amplicon sequence variants (ASV) of the human gut microbiome were used to evaluate if individuals with a depression phenotype (DEPR) could be identified from healthy reference subjects (NODEP). Microbial DNA in stool samples obtained from 40 subjects were characterized using high throughput microbiome sequence data processed via DADA2 error correction combined with PIME machine-learning de-noising and taxa binning/parsing of prevalent ASVs at the single nucleotide level of resolution. Application of ALDEx2 differential abundance analysis with assessed effect sizes and stringent PICRUSt2 predicted metabolic pathways. This multivariate machine-learning approach significantly differentiated DEPR (n = 20) vs. NODEP (n = 20) (PERMANOVA P < 0.001) based on microbiome taxa clustering and neurocircuit-relevant metabolic pathway network analysis for GABA, butyrate, glutamate, monoamines, monosaturated fatty acids, and inflammasome components. Gut microbiome dysbiosis using ASV prevalence data may offer the diagnostic potential of using human metaorganism biomarkers to identify individuals with a depression phenotype.
Collapse
Affiliation(s)
- Bruce R Stevens
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA.
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Luiz Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- Centro Interdisciplinar de Pesquisas em Biotecnologia-CIP-Biotec, Universidade Federal do Pampa, São Gabriel, Bagé, Brazil
| | - Priscila Thiago
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Jordan T Russell
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Richard C Holbert
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|