1
|
Cai Y, Fu X, Peng Y, Feng X, Ling C, Zha L, Li J, Liu H. Droplet digital PCR-based approach for identifying Trionycis Carapax and its Chinese patent medicines. J Pharm Biomed Anal 2025; 262:116863. [PMID: 40209495 DOI: 10.1016/j.jpba.2025.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Trionycis Carapax, the dorsal armour of Trionyx sinensis Wiegmann, is a traditional Chinese medicine (TCM) widely used in clinical applications. The substitution of high-value Trionyx sinensis Wiegmann with other soft-shelled turtles has caused market confusion and compromised the quality of proprietary Chinese medicines. To ensure drug safety and clinical efficacy, effective methods for identifying and quantifying adulterated Trionycis Carapax and its Chinese patent medicines are urgently needed. A droplet digital PCR (ddPCR) method targeting mitochondrial DNA for qualitative detection of Trionycis Carapax and its Chinese patent medicines. Processed and deeply processed products of Trionyx sinensis Wiegmann and its two common adulterants were analyzed for specificity, sensitivity, and utility using singleplex and quadruplex ddPCR assays. The ddPCR assay detected the target genes and identified low-abundance adulterants below 10 copies in unbalanced mixed samples, confirmed by Sanger sequencing. This work demonstrates the ability of ddPCR technology to detect TCM adulterants with complex composition and processing, providing a method for quality control of deep-processed animal-based TCMs with weak morphological characteristics.
Collapse
Affiliation(s)
- Yuan Cai
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, PR China
| | - Xiaoyi Fu
- Department of Forensic Medicine, School of Xiangya Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yanmei Peng
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, PR China
| | - Xiaolong Feng
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, PR China
| | - Chengli Ling
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, PR China
| | - Lagabaiyila Zha
- Department of Forensic Medicine, School of Xiangya Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China.
| | - Jienan Li
- Department of Forensic Medicine, School of Xiangya Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China.
| | - Hui Liu
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, PR China.
| |
Collapse
|
2
|
Kim IS, Park HK. Molecular Quantification of Total and Toxigenic Microcystis Using Digital-Droplet-Polymerase-Chain-Reaction-Based Multiplex Assay. Toxins (Basel) 2025; 17:242. [PMID: 40423324 DOI: 10.3390/toxins17050242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
The proliferation of harmful cyanobacteria, particularly Microcystis, poses significant risks to drinking and recreational water resources, especially under the influence of climate change. Conventional monitoring methods based on microscopy for harmful cyanobacteria management systems are limited in detecting toxigenic genotypes, hindering accurate risk assessment. In this study, we developed a digital droplet PCR (ddPCR)-based method for the simultaneous quantification of total and toxigenic Microcystis in freshwater environments. We targeted the secA gene, specific to the Microcystis genus, and the mcyA gene, associated with microcystin biosynthesis. Custom-designed primers and probes showed high specificity and sensitivity, enabling accurate detection without cross-reactivity. The multiplex ddPCR assay allowed for concurrent quantification of both targets in a single reaction, reducing the analysis time and cost. Application to field samples demonstrated good agreement with microscopic counts and revealed seasonal shifts in toxigenic genotype abundance. Notably, ddPCR detected Microcystis at very low densities-down to 7 cells/mL in the mixed cyanobacterial communities of field samples-even when microscopy failed, highlighting its utility for early bloom detection. This approach provides a reliable and efficient tool for monitoring Microcystis dynamics and assessing toxin production potential, offering significant advantages for the early warning and proactive management of harmful cyanobacterial blooms.
Collapse
Affiliation(s)
- In-Su Kim
- Nakdong River Environment Research Center, National Institute of Environmental Research, Daegu 43008, Republic of Korea
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hae-Kyung Park
- Nakdong River Environment Research Center, National Institute of Environmental Research, Daegu 43008, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Li J, Guo Z, Feng C, Gao Y, Liu D, Wang D. Development and validation of a droplet digital PCR assay for sensitive detection and quantification of Phytophthora nicotianae. FRONTIERS IN PLANT SCIENCE 2025; 16:1573949. [PMID: 40353232 PMCID: PMC12061998 DOI: 10.3389/fpls.2025.1573949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/14/2025]
Abstract
Tobacco black shank (TBS) disease, caused by Phytophthora nicotianae (P. nicotianae), poses a significant threat to global agriculture and results in substantial economic losses. Traditional methods, like culture-based techniques and quantitative polymerase chain reaction (qPCR), aid pathogen identification but can be less sensitive for complex samples with low pathogen loads. Here, we developed and validated a droplet digital PCR (ddPCR) assay with high sensitivity and specificity for detecting P. nicotianae. ddPCR and qPCR revealed comparable analytical performance including limit of blank (LoB), limit of detection (LoD), and limit of quantitation (LoQ). For the 68 infectious tobacco root samples and 145 surrounding soil samples, ddPCR demonstrated greater sensitivity, with a higher positive rate of 96.4% vs 83.9%. Receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) of ddPCR was 0.913, compared to 0.885 for qPCR. Moreover, ddPCR provided better quantification accuracy for low pathogen concentrations in soil, suggesting better tolerance to potential PCR inhibitors in soil. These results highlight ddPCR as a robust and reliable tool for early diagnosis in complex samples, offering a valuable tool for improving disease management strategies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Life Sciences, Shanxi University, Taiyuan, China
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Jiali Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zining Guo
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Chao Feng
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Danmei Liu
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
4
|
He Q, Wang S, Feng K, Hou W, Zhang W, Li F, Zhang Y, Hai W, Sun Y, Deng Y. The Same Source of Microbes has a Divergent Assembly Trajectory Along a Hot Spring Flowing Path. Mol Ecol 2025; 34:e17727. [PMID: 40087983 DOI: 10.1111/mec.17727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Hot spring microbial mats represent intricate biofilms that establish self-sustaining ecosystems, hosting diverse microbial communities which facilitate a range of biochemical processes and contribute to the structural and functional complexity of these systems. While community structuring across mat depth has received substantial attention, mechanisms shaping horizontal spatial composition and functional structure of these communities remain understudied. Here, we explored the contributions of species source, local environment and species interaction to microbial community assembly processes in six microbial mat regions following a flow direction with a temperature decreasing from 73.3°C to 52.8°C. Surprisingly, we found that despite divergent community structures and potential functions across different microbial mats, large proportions of the community members (45.50%-80.29%) in the recipient mat communities originated from the same source community at the upper limit of temperature for photosynthetic life. This finding indicated that the source species were dispersed with water and subsequently filtered and shaped by local environmental factors. Furthermore, critical species with specific functional attributes played a pivotal role in community assembly by influencing potential interactions with other microorganisms. Therefore, species dispersal via water flow, environmental variables, and local species interaction jointly governed microbial assembly, elucidating assembly processes in the horizontal dimension of hot spring microbial mats and providing insights into microbial community assembly within extreme biospheres.
Collapse
Affiliation(s)
- Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Wenhui Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Fangru Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Yidi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Wanming Hai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Yuxuan Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Davis BC, Vikesland PJ, Pruden A. Evaluating Quantitative Metagenomics for Environmental Monitoring of Antibiotic Resistance and Establishing Detection Limits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6192-6202. [PMID: 40100955 PMCID: PMC11966778 DOI: 10.1021/acs.est.4c08284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Metagenomics holds promise as a comprehensive, nontargeted tool for environmental monitoring. However, one key limitation is that the quantitative capacity of metagenomics is not well-defined. Here, we demonstrated a quantitative metagenomic technique and benchmarked the approach for wastewater-based surveillance of antibiotic resistance genes. To assess the variability of low-abundance oligonucleotide detection across sample matrices, we spiked DNA reference standards (meta sequins) into replicate wastewater DNA extracts at logarithmically decreasing mass-to-mass percentages (m/m%). Meta sequin ladders exhibited strong linearity at input concentrations as low as 2 × 10-3 m/m% (R2 > 0.95), with little to no reference length or GC bias. At a mean sequencing depth of 94 Gb, the limits of quantification (LoQ) and detection were calculated to be 1.3 × 103 and 1 gene copy per μL DNA extract, respectively. In wastewater influent, activated sludge, and secondary effluent samples, 27.3, 47.7, and 44.3% of detected genes were ≤LoQ, respectively. Volumetric gene concentrations and log removal values were statistically equivalent between quantitative metagenomics and ddPCR for 16S rRNA, intI1, sul1, CTX-M-1, and vanA. The quantitative metagenomics benchmark here is a key step toward establishing metagenomics for high-throughput, nontargeted, and quantitative environmental monitoring.
Collapse
Affiliation(s)
- Benjamin C. Davis
- Office
of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter J. Vikesland
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Blanco-Pérez R, San-Blas E, Rivera MJ, Campos-Herrera R. Population ecology of entomopathogenic nematodes: Bridging past insights and future applications for sustainable agriculture. J Invertebr Pathol 2025; 211:108313. [PMID: 40107567 DOI: 10.1016/j.jip.2025.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling organisms essential for controlling pest populations across diverse crops and regions worldwide. Over the past century, significant advancements have been made in isolating, identifying, and quantifying EPNs, enhancing our understanding of their natural distribution and influencing factors. This review outlines major milestones in EPN population dynamics research and highlights emerging molecular and biophysical tools that offer new research directions. Here, we examine the factors shaping EPN occurrence in agroecosystems, including interactions between hosts, EPNs, and their resource competitors (viewing EPNs as scavengers) and the biotic and abiotic drivers affecting their spatial and temporal patterns. Additionally, the review explores EPN interactions with plant rhizospheres and the impact of agricultural practices on their efficacy as biological control agents. Understanding EPN population dynamics is crucial for optimizing their use as sustainable pest management tools. By combining traditional insights with innovative methods, we can expand EPN applications in agroecosystems, fostering more resilient and eco-friendly agricultural practices.
Collapse
Affiliation(s)
- Rubén Blanco-Pérez
- Soils, Biosystems & Agroforestry Ecology Department, Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Spain
| | - Ernesto San-Blas
- Laboratory of Nematology, Institute of Agri-food, Animal and Environmental Sciences (ICA3), Universidad de O' Higgins, San Fernando, Chile; Centre of Systems Biology for Crop Protection (BioSaV), Universidad de O' Higgins, San Fernando, Chile
| | - Monique J Rivera
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Raquel Campos-Herrera
- Viticulture Deparment, Instituto de las Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain.
| |
Collapse
|
7
|
Liu Y, Tang Q, Tang S, Huang H, Kou L, Zhou Y, Ruan H, Yuan Y, He C, Ying B. Clinical evaluation of droplet digital PCR in suspected invasive pulmonary aspergillosis. Clin Chim Acta 2025; 569:120153. [PMID: 39862901 DOI: 10.1016/j.cca.2025.120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Invasive pulmonary aspergillosis (IPA), the most common fungal infection, is associated with high mortality of affected patients. Traditional diagnostic methods exhibit limited sensitivity and specificity, raising big challenges for precise management of the patients. There is thus an urgent need to find out a timely and accurate diagnostic method in clinical practice. In this study, 163 patients suspected with IPA were enrolled. The medical data of the patients were retrieved from hospital information system. The 158 patients with complete data were classified into an IPA group with 122 cases (58 putative IPA, 19 probable IPA, and 45 possible IPA cases) and a non-IPA group with 36 cases. Cell-free DNA (cfDNA) of bronchoalveolar lavage fluid (BALF) or plasma samples was detected via a droplet digital PCR (ddPCR) assay targeting Aspergillus spp. Overall, this ddPCR assay demonstrated a higher sensitivity of 50.8 % for IPA diagnosis, compared with that of fungal culture (44.3 %) and smear test (10.7 %). Moreover, its sensitivity was higher in the IPA group (73.1 %) and putative IPA subgroup (88.2 %) when using BALF samples, compared with those using plasma samples (P < 0.01). It achieved a high specificity of 94.4 % for IPA diagnosis, with significant variations in cfDNA copy numbers across the subgroups (P < 0.05). In addition, the ddPCR results were associated with the prognosis of the patients at the discharge (P < 0.05). In conclusion, ddPCR assay demonstrated a good performance for IPA diagnosis when using BALF samples, especially for putative IPA. The ddPCR results could be integrated with clinical data to improve prognostic prediction.
Collapse
Affiliation(s)
- Yang Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qiuping Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Sishi Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hengjian Huang
- West China Precision Medicine Industrial Technology Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lanxi Kou
- West China Precision Medicine Industrial Technology Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxia Ruan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu Yuan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chao He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
8
|
Yu L, Kou X, Liu Z, Guan C, Sun B. Establishment and validation of a dual qPCR method for the detection of carbapenem-resistant Acinetobacter baumannii in bloodstream infections. Front Cell Infect Microbiol 2025; 15:1490528. [PMID: 40078872 PMCID: PMC11897477 DOI: 10.3389/fcimb.2025.1490528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Objective Bloodstream infections(BSIs) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) have a high mortality rate due to the high levels of drug resistance. There is an urgent need to establish a sensitive and accurate detection method to rapidly detect CRAB in BSIs. Methods A new method was developed based on fluorescence quantitative PCR (qPCR) targeting the specific region of 16sRNA and OXA-23 gene from CRAB. The parameters were evaluated and optimized. This qPCR method was further applied in the detection of AB from 30 clinical specimens. Results The qPCR method established in this study showed high specificity. The method successfully differentiated Acinetobacter baumannii(A. baumanii) from 26 other common pathogens in BSIs and identify the carbapenem resistance gene. The qPCR method shows a limit of detection (LOD) of 3×10-3 ng/μL, and displays good linear relationship between 16sRNA and OXA-23 and excellent repeatability (CV ≤2%). The results for the detection of 30 clinical specimens using this new qPCR method are in complete agreement with those using blood culture and drug susceptibility test. Conclusion The qPCR method established in this study has strong specificity, wide linear range, good repeatability, and a lower LOD than PCR (Non-fluorescence quantification). The method provides new technical support for the early clinical diagnosis of CRAB in BSIs.
Collapse
Affiliation(s)
- Lin Yu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guizhou, China
| | - Xianglan Kou
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guizhou, China
| | - Ze Liu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chushi Guan
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guizhou, China
| |
Collapse
|
9
|
Liu L, Mu BR, Zhou Y, Wu QL, Li B, Wang DM, Lu MH. Research Trends and Development Dynamics of qPCR-based Biomarkers: A Comprehensive Bibliometric Analysis. Mol Biotechnol 2025:10.1007/s12033-024-01356-7. [PMID: 39843617 DOI: 10.1007/s12033-024-01356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Quantitative polymerase chain reaction (qPCR) is a vital molecular technique for biomarker detection; however, its clinical application is impeded by the scarcity of robust biomarkers and the inherent limitations of the technology. This study conducted a bibliometric analysis of 4063 qPCR-based biomarker studies sourced from the Web of Science (WOS) database, employing VOSviewer and CiteSpace to generate multi-dimensional structural insights into this field. The results reveal a growing trend in research within this domain, with gene expression analysis playing a central role in the identification of potential biomarkers. Among these, cancer-related biomarkers are the most prominent, while research on biomarkers for other diseases remains limited. Liquid biopsy biomarkers, including microRNA (miRNA), circulating free DNA (cfDNA), and circulating tumor DNA (ctDNA), are increasingly being explored. The integration of bioinformatics, omics analysis, and high-throughput technologies with qPCR is accelerating biomarker discovery. Furthermore, large-scale parallel sequencing is emerging as a potential alternative to relative quantification and microarray techniques. Nevertheless, qPCR remains essential for validating specific biomarkers, and further standardization of its protocols is necessary to enhance reliability. This study provides a systematic analysis of qPCR-based biomarker research and underscores the need for future technological integration and standardization to facilitate broader clinical applications.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Ya Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Qing-Lin Wu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Bin Li
- Department of Respiratory Medicine, Guangyuan Hospital of Traditional Chinese Medicine, No.133 Jianshe Road, Lizhou District, Guangyuan, 628099, Sichuan, China
| | - Dong-Mei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
10
|
Wang X, Ma T, Chen Z, Liu Y, Wang K, Liu G, Li K, Chen T, Zhang G, Zhang W, Zhang B. Review of Methods for Studying Viruses in the Environment and Organisms. Viruses 2025; 17:86. [PMID: 39861875 PMCID: PMC11769461 DOI: 10.3390/v17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Recent decades have seen growing attention on viruses in the environment and their potential impacts as a result of global epidemics. Due to the diversity of viral species along with the complexity of environmental and host factors, virus extraction and detection methods have become key for the study of virus ecology. This review systematically summarises the methods for extracting and detecting pathogens from different environmental samples (e.g., soil, water, faeces, air) and biological samples (e.g., plants, animals) in existing studies, comparing their similarities and differences, applicability, as well as the advantages and disadvantages of each method. Additionally, this review discusses future directions for research in this field. The aim is to provide a theoretical foundation and technical reference for virus ecology research, facilitating further exploration and applications in this field.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tong Ma
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhiyuan Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Kexin Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guangxiu Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
| | - Kesheng Li
- Lanzhou Yahua Biotechnology Company, Lanzhou 730050, China;
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaosen Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
| | - Wei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
11
|
Pogner CE, Antunes C, Apangu GP, Bruffaerts N, Celenk S, Cristofori A, González Roldán N, Grinn-Gofroń A, Lara B, Lika M, Magyar D, Martinez-Bracero M, Muggia L, Muyshondt B, O'Connor D, Pallavicini A, Marchã Penha MA, Pérez-Badia R, Ribeiro H, Rodrigues Costa A, Tischner Z, Xhetani M, Ambelas Skjøth C. Airborne DNA: State of the art - Established methods and missing pieces in the molecular genetic detection of airborne microorganisms, viruses and plant particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177439. [PMID: 39549753 DOI: 10.1016/j.scitotenv.2024.177439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Bioaerosol is composed of different particles, originating from organisms, or their fragments with different origin, shape, and size. Sampling, analysing, identification and describing this airborne diversity has been carried out for over 100 years, and more recently the use of molecular genetic tools has been implemented. However, up to now there are no established protocols or standards for detecting airborne diversity of bacteria, fungi, viruses, pollen, and plant particles. In this review we evaluated commonalities of methods used in molecular genetic based studies in the last 23 years, to give an overview of applicable methods as well as knowledge gaps in diversity assessment. Various sampling techniques show different levels of effectiveness in detecting airborne particles based on their DNA. The storage and processing of samples, as well as DNA processing, influences the outcome of sampling campaigns. Moreover, the decisions on barcode selection, method of analysis, reference database as well as negative and positive controls may severely impact the results obtained. To date, the chain of decisions, methodological biases and error propagation have hindered DNA based molecular sequencing from offering a holistic picture of the airborne biodiversity. Reviewing the available studies, revealed a great diversity in used methodology and many publications didn't state all used methods in detail, making comparisons with other studies difficult or impossible. To overcome these limitations and ensure genuine comparability across studies, it is crucial to standardize protocols. Publications need to include all necessary information to enable comparison among different studies and to evaluate how methodological choices can impacts the results. Besides standardization, implementing of automatic tools and combining of different analytical techniques, such as real-time evaluation combined with sampling and molecular genetic analysis, could assist in achieving the goal of accurately assessing the actual airborne biodiversity.
Collapse
Affiliation(s)
- C-E Pogner
- Unit Bioresources, Center of Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - C Antunes
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - G P Apangu
- Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - N Bruffaerts
- Mycology and Aerobiology, Sciensano, Rue J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - S Celenk
- Bursa Uludag University, Arts and Science Faculty, Biology Department, Görükle-Bursa, Turkey
| | - A Cristofori
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Via Mach 1, 38098 San Michele all'Adige, TN, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - N González Roldán
- Pollen Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 41390 Gothenburg, Sweden
| | - A Grinn-Gofroń
- Institute of Biology, University of Szczecin, Wąska 13 Street, 71-415 Szczecin, Poland
| | - B Lara
- Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III, s/n, 45071 Toledo, Spain
| | - M Lika
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - D Magyar
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - M Martinez-Bracero
- Department of Botany, Ecology and Plant Physiology, Córdoba University, 14071 Córdoba, Spain
| | - L Muggia
- Department of Life Sciences, University of Trieste, via L. Giorgieri 7, 34127 Trieste, Italy
| | - B Muyshondt
- Mycology and Aerobiology, Sciensano, Rue J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - D O'Connor
- School of Chemical Sciences, Dublin City University, Dublin D09 V209, Ireland
| | - A Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 7, 34127 Trieste, Italy
| | - M A Marchã Penha
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - R Pérez-Badia
- Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III, s/n, 45071 Toledo, Spain
| | - H Ribeiro
- Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Earth Sciences Institute (ICT), Pole of the Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - A Rodrigues Costa
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Z Tischner
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - M Xhetani
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - C Ambelas Skjøth
- Department of Environmental Science, iCLIMATE, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| |
Collapse
|
12
|
Fusco G, Cardillo L, Valvini O, Pucciarelli A, Picazio G, Cerrone A, Napoletano M, Pellicanò R, Ottaiano M, de Martinis C, De Falco F, Cutarelli A, Sannino E, Borriello G, Tittarelli M, Roperto S, De Carlo E. Detection and quantification of Brucella abortus DNA in water buffaloes ( bubalus bubalis) using droplet digital polymerase chain reaction. Vet Q 2024; 44:1-8. [PMID: 39148364 PMCID: PMC11328813 DOI: 10.1080/01652176.2024.2390944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Brucellosis represents a major public health concern worldwide. Human transmission is mainly due to the consumption of unpasteurized milk and dairy products of infected animals. The gold standard for the diagnosis of Brucella spp in ruminants is the bacterial isolation, but it is time-consuming. Polymerase Chain Reaction (PCR) is a quicker and more sensitive technique than bacterial culture. Droplet digital PCR (ddPCR) is a novel molecular assay showing high sensitivity in samples with low amount of DNA and lower susceptibility to amplification inhibitors. Present study aimed to develop a ddPCR protocol for the detection of Brucella abortus in buffalo tissue samples. The protocol was validated using proficiency test samples for Brucella spp by real time qPCR. Furthermore, 599 tissue samples were examined. Among reference materials, qPCR and ddPCR demonstrated same performance and were able to detect up to 225 CFU/mL. Among field samples, ddPCR showed higher sensitivity (100%), specificity and accuracy of 93.4% and 94.15%, respectively. ddPCR could be considered a promising technique to detect B. abortus in veterinary specimens, frequently characterized by low amount of bacteria, high diversity in matrices and species and poor storage conditions.
Collapse
Affiliation(s)
- Giovanna Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Lorena Cardillo
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Ornella Valvini
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Alessia Pucciarelli
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Gerardo Picazio
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Anna Cerrone
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Michele Napoletano
- Caserta Section, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Caserta, Italy
| | - Roberta Pellicanò
- Regional Observatory of Epidemiology and Biostatistic, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Maria Ottaiano
- Regional Observatory of Epidemiology and Biostatistic, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Claudio de Martinis
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Francesca De Falco
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Anna Cutarelli
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Emanuela Sannino
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Giorgia Borriello
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Campo Boario, Italy
| | - Sante Roperto
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Esterina De Carlo
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| |
Collapse
|
13
|
Łukaszuk E, Dziewulska D, Stenzel T. Rotaviruses in Pigeons With Diarrhea: Recovery of Three Complete Pigeon Rotavirus A Genomes and the First Case of Pigeon Rotavirus G in Europe. Transbound Emerg Dis 2024; 2024:4684235. [PMID: 40303061 PMCID: PMC12019971 DOI: 10.1155/tbed/4684235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/05/2024] [Indexed: 05/02/2025]
Abstract
Rotaviruses are well-recognized pathogens responsible for diarrhea in humans and various animal species, with Rotavirus A the most often detected and most thoroughly described. Rotaviral disease is an important concern in pathology of pigeons as well, as pigeon rotavirus A was proven to play a major role in young pigeon disease (YPD). However, rotaviruses of other groups have been so far understudied in birds. This paper describes the first finding of Rotavirus G in domestic pigeon in Europe, as well as the recovery of three complete genomes of pigeon rotavirus A with Oxford Nanopore Sequencing. Quantification of pigeon rotavirus A genetic material with droplet digital polymerase chain reaction (PCR) in pigeons suffering from diarrhea and in asymptomatic pigeons was also performed in the frameworks of this study and resulted in determination of statistically highly significant differences between the groups in both detection rate and shedding of the virus. Phylogenetic analysis revealed the close relationship of acquired strains with those originating from pigeons from Europe, North America, Asia, and Australia, indicating a broad geographical spread of pigeon rotaviruses. Results of our research shed more light on occurrence and diversity of Rotavirus species in pigeons.
Collapse
Affiliation(s)
- Ewa Łukaszuk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
14
|
Bouhouch Y, Aggad D, Richet N, Rehman S, Al-Jaboobi M, Kehel Z, Esmaeel Q, Hafidi M, Jacquard C, Sanchez L. Early Detection of Both Pyrenophora teres f. teres and f. maculata in Asymptomatic Barley Leaves Using Digital Droplet PCR (ddPCR). Int J Mol Sci 2024; 25:11980. [PMID: 39596050 PMCID: PMC11593351 DOI: 10.3390/ijms252211980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Efficient early pathogen detection, before symptom apparition, is crucial for optimizing disease management. In barley, the fungal pathogen Pyrenophora teres is the causative agent of net blotch disease, which exists in two forms: P. teres f. sp. teres (Ptt), causing net-form of net blotch (NTNB), and P. teres f. sp. maculata (Ptm), responsible for spot-form of net blotch (STNB). In this study, we developed primers and a TaqMan probe to detect both Ptt and Ptm. A comprehensive k-mer based analysis was performed across a collection of P. teres genomes to identify the conserved regions that had potential as universal genetic markers. These regions were then analyzed for their prevalence and copy number across diverse Moroccan P. teres strains, using both a k-mer analysis for sequence identification and a phylogenetic assessment to establish genetic relatedness. The designed primer-probe set was successfully validated through qPCR, and early disease detection, prior to symptom development, was achieved using ddPCR. The k-mer analysis performed across the available P. teres genomes suggests the potential for these sequences to serve as universal markers for P. teres, transcending environmental variations.
Collapse
Affiliation(s)
- Yassine Bouhouch
- INRAE, RIBP, Université de Reims Champagne-Ardenne, USC 1488, BP 1039 Reims, France; (Y.B.); (N.R.); (Q.E.); (C.J.)
- Plateformes Technologiques URCATech, Plateau MOBICYTE, Université de Reims Champagne-Ardenne, BP 1039 Reims, France;
| | - Dina Aggad
- Plateformes Technologiques URCATech, Plateau MOBICYTE, Université de Reims Champagne-Ardenne, BP 1039 Reims, France;
| | - Nicolas Richet
- INRAE, RIBP, Université de Reims Champagne-Ardenne, USC 1488, BP 1039 Reims, France; (Y.B.); (N.R.); (Q.E.); (C.J.)
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat BP 6202, Morocco; (S.R.); (M.A.-J.); (Z.K.)
| | - Muamar Al-Jaboobi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat BP 6202, Morocco; (S.R.); (M.A.-J.); (Z.K.)
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat BP 6202, Morocco; (S.R.); (M.A.-J.); (Z.K.)
| | - Qassim Esmaeel
- INRAE, RIBP, Université de Reims Champagne-Ardenne, USC 1488, BP 1039 Reims, France; (Y.B.); (N.R.); (Q.E.); (C.J.)
| | - Majida Hafidi
- Laboratoire de Biotechnologie Végétale et de Biologie Moléculaire, Faculté des Sciences, Université Moulay Ismail, Zitoune, Meknès BP 11201, Morocco;
| | - Cédric Jacquard
- INRAE, RIBP, Université de Reims Champagne-Ardenne, USC 1488, BP 1039 Reims, France; (Y.B.); (N.R.); (Q.E.); (C.J.)
| | - Lisa Sanchez
- INRAE, RIBP, Université de Reims Champagne-Ardenne, USC 1488, BP 1039 Reims, France; (Y.B.); (N.R.); (Q.E.); (C.J.)
| |
Collapse
|
15
|
Dass M, Ghai M. Development of a multiplex PCR assay and quantification of microbial markers by ddPCR for identification of saliva and vaginal fluid. Forensic Sci Int 2024; 362:112147. [PMID: 39067179 DOI: 10.1016/j.forsciint.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
The identification of biological fluids at crime scenes contributes to crime scene reconstruction and provides investigative leads. Traditional methods for body fluid identification are limited in terms of sensitivity and are mostly presumptive. Emerging methods based on mRNA and DNA methylation require high quality template source. An exploitable characteristic of body fluids is their distinct microbial profiles allowing for the discrimination of body fluids based on microbiome content. Microbial DNA is highly abundant within the body, robust and stable and can persist in the environment long after human DNA has degraded. 16S rRNA sequencing is the gold standard for microbial analysis; however, NGS is costly, and requires intricate workflows and interpretation. Also, species level resolution is not always achievable. Based on the current challenges, the first objective of this study was to develop a multiplex conventional PCR assay to identify vaginal fluid and saliva by targeting species-specific 16S rRNA microbial markers. The second objective was to employ droplet digital PCR (ddPCR) as a novel approach to quantify bacterial species alone and in a mixture of body fluids. Lactobacillus crispatus and Streptococcus salivarius were selected because of high abundance within vaginal fluid and saliva respectively. While Fusobacterium nucleatum and Gardnerella vaginalis, though present in healthy humans, are also frequently found in oral and vaginal infections, respectively. The multiplex PCR assay detected L. crispatus and G. vaginalis in vaginal fluid while F. nucleatum and S. salivarius was detected in saliva. Multiplex PCR detected F. nucleatum, S. salivarius and L. crispatus in mixed body fluid samples while, G. vaginalis was undetected in mixtures containing vaginal fluid. For samples exposed at room temperature for 65 days, L. crispatus and G. vaginalis were detected in vaginal swabs while only S. salivarius was detected in saliva swabs. The limit of detection was 0.06 copies/µl for F. nucleatum (2.5 ×10-9 ng/µl) and S. salivarius (2.5 ×10-6 ng/µl). L. crispatus and G. vaginalis had detection limits of 0.16 copies/µl (2.5 ×10-4 ng/µl) and 0.48 copies/µl (2.5 ×10-7 ng/µl). All 4 bacterial species were detected in mixtures and aged samples by ddPCR. No significant differences were observed in quantity of bacterial markers in saliva and vaginal fluid. The present research reports for the first time the combination of the above four bacterial markers for the detection of saliva and vaginal fluid and highlights the sensitivity of ddPCR for bacterial quantification in pure and mixed body fluids.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| |
Collapse
|
16
|
Zhou YZ, Zhao YH, Fang WZ, Zhou YL, Chen CM, Gao ZH, Gu B, Guo XG, Duan CH. Establishment of droplet digital PCR for the detection of Neisseria gonorrhoeae. Diagn Microbiol Infect Dis 2024; 110:116351. [PMID: 38896891 DOI: 10.1016/j.diagmicrobio.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Infection with Neisseria gonorrhoeae in adults usually leads to vaginitis and acute urethritis, and infection through the birth canal in newborns can lead to acute neonatal conjunctivitis. In view of certain factors such as a high missed detection rate of N.gonorrhoeae from staining microscopy method, the time-consuming nature and limited sensitivity of bacterial culture method, complicated and inability of absolute quantification from the ordinary PCR method. METHODS This study aims to establish a ddPCR system to detect N.gonorrhoeae in a absolute quantification, high specificity, high stability and accurate way. We selected the pgi1 gene as the target gene for the detection of N.gonorrhoeae. RESULTS The amplification efficiency was good in the ddPCR reaction, and the whole detection process could be completed in 94 min. It has a high sensitivity of up to 5.8 pg/μL. With a high specificity, no positive microdroplets were detected in 9 negative control pathogens in this experiment. In addition, ddPCR detection of N.gonorrhoeae has good repeatability, and the calculated CV is 4.2 %. CONCLUSIONS DdPCR detection technology has the characteristics of absolute quantification, high stability, high specificity and high accuracy of N.gonorrhoeae. It can promote the accuracy of the detecting of N.gonorrhoeae, providing a more scientific basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yong-Zhuo Zhou
- Laboratory of Clinical, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiangxi Road, Guangzhou, Guangdong 510120, China; The Third Affiliated Hospital of Guangzhou Medical University, 510150, China
| | - Yun-Hu Zhao
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Wei-Zhen Fang
- Laboratory of Clinical, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiangxi Road, Guangzhou, Guangdong 510120, China
| | - Yu-Lin Zhou
- The Third Affiliated Hospital of Guangzhou Medical University, 510150, China
| | - Chu-Mao Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ze-Hang Gao
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Bing Gu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000, China
| | - Chao-Hui Duan
- Laboratory of Clinical, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiangxi Road, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
17
|
Liang C, Yang H, Yang X, Long Z, Zhou Y, Wang J, Fan L, Zeng M, Wang Y, Zheng H, Wang Z, Ye P, Lin J, Shi W, Huang H, Yan H, Qian J, Li L, Liu L. Applying improved ddPCR to reliable quantification of MPXV in clinical settings. Microbiol Spectr 2024; 12:e0001824. [PMID: 38757960 PMCID: PMC11218477 DOI: 10.1128/spectrum.00018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Monkeypox virus (MPXV) poses a global health threat. Droplet digital PCR (ddPCR) holds potential as an accurate diagnostic tool for clinical microbiology. However, there is limited literature on the applicability of ddPCR in clinical settings. In this study, the clinical features of patients with MPXV during the initial outbreak in China in June 2023 were reviewed, and an optimized ddPCR method with dilution and/or inhibitor removal was developed to enhance MPXV detection efficiency. Eighty-two MPXV samples were tested from nine different clinical specimen types, including feces, urine, pharyngeal swabs, anal swabs, saliva, herpes fluid, crust, and semen, and the viral load of each specimen was quantified. A comparative analysis was performed with qPCR to assess sensitivity and specificity and to investigate the characteristics of MPXV infection by analyzing viral loads in different clinical specimens. Consequently, common pharyngeal and gastrointestinal symptoms were observed in patients with MPXV. The optimized ddPCR method demonstrated relatively high sensitivity for MPXV quantification in the clinical materials, with a limit of detection of 0.1 copies/μL. This was particularly evident in low-concentration samples like whole blood, semen, and urine. The optimized ddPCR demonstrated greater detection accuracy compared with normal ddPCR and qPCR, with an area under the curve (AUC) of 0.939. Except for crust samples, viral loads in the specimens gradually decreased as the disease progressed. Virus levels in feces and anal swabs kept a high detection rate at each stage of post-symptom onset, and feces and anal swabs samples may be suitable for clinical diagnosis and continuous monitoring of MPXV. IMPORTANCE The ddPCR technique proved to be a sensitive and valuable tool for accurately quantifying MPXV viral loads in various clinical specimen types. The findings provided valuable insights into the necessary pre-treatment protocols for MPXV diagnosis in ddPCR detection and the potentially suitable sample types for collection. Therefore, such results can aid in comprehending the potential characteristics of MPXV infection and the usage of ddPCR in clinical settings.
Collapse
Affiliation(s)
- Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Huiqin Yang
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofeng Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhenyu Long
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuandong Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Jian Wang
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Linjin Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Mou Zeng
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yulong Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Haipeng Zheng
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Third People’s Hospital of Bijie City, Bijie, Guizhou, China
| | - Zequn Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Pengfei Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Jingyan Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Wendi Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Hongxin Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Linghua Li
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Linna Liu
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Le Geay M, Mayers K, Küttim M, Lauga B, Jassey VEJ. Development of a digital droplet PCR approach for the quantification of soil micro-organisms involved in atmospheric CO 2 fixation. Environ Microbiol 2024; 26:e16666. [PMID: 38889760 DOI: 10.1111/1462-2920.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Carbon-fixing micro-organisms (CFMs) play a pivotal role in soil carbon cycling, contributing to carbon uptake and sequestration through various metabolic pathways. Despite their importance, accurately quantifying the absolute abundance of these micro-organisms in soils has been challenging. This study used a digital droplet polymerase chain reaction (ddPCR) approach to measure the abundance of key and emerging CFMs pathways in fen and bog soils at different depths, ranging from 0 to 15 cm. We targeted total prokaryotes, oxygenic phototrophs, aerobic anoxygenic phototrophic bacteria and chemoautotrophs, optimizing the conditions to achieve absolute quantification of these genes. Our results revealed that oxygenic phototrophs were the most abundant CFMs, making up 15% of the total prokaryotic abundance. They were followed by chemoautotrophs at 10% and aerobic anoxygenic phototrophic bacteria at 9%. We observed higher gene concentrations in fen than in bog. There were also variations in depth, which differed between fen and bog for all genes. Our findings underscore the abundance of oxygenic phototrophs and chemoautotrophs in peatlands, challenging previous estimates that relied solely on oxygenic phototrophs for microbial carbon dioxide fixation assessments. Incorporating absolute gene quantification is essential for a comprehensive understanding of microbial contributions to soil processes. This approach sheds light on the complex mechanisms of soil functioning in peatlands.
Collapse
Affiliation(s)
- Marie Le Geay
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Kyle Mayers
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Béatrice Lauga
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Vincent E J Jassey
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
19
|
Zang P, Xu Q, Li C, Tao M, Zhang Z, Li J, Zhang W, Li S, Li C, Yang Q, Guo Z, Yao J, Zhou L. Self-correction of cycle threshold values by a normal distribution-based process to improve accuracy of quantification in real-time digital PCR. Anal Bioanal Chem 2024:10.1007/s00216-024-05208-w. [PMID: 38400940 DOI: 10.1007/s00216-024-05208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
The digital polymerase chain reaction (dPCR) is a new and developing nucleic acid detection technology with high sensitivity that can realize the absolute quantitative analysis of samples. In order to improve the accuracy of quantitative results, real-time digital PCR emphasizes the kinetic information during amplification to identify prominent abnormal data. However, it is challenging to use a unified standard to accurately classify the amplification curve of each well as negative and positive, due to the interference caused by various factors in the experiment. In this work, a normal distribution-based cycle threshold value self-correcting model (NCSM) was established, which focused on the feature of the cycle threshold values in amplification curves and conducted continuous detection and correction on the whole. The cycle threshold value distribution was closer to the ideal normal distribution to avoid the influence of interference. Thus, the model achieves a more accurate classification between positive and negative results. The corrective process was applied to plasmid samples and resulted in an accuracy improvement from 92 to 99%. The coefficient of variation was below 5% when considering the quantitation of a range between 100 and 10,000 copies. At the same time, by utilizing this model, the distribution of cycle threshold values at the endpoint can be predicted with fewer thermal cycles, which can reduce the cycling time by around 25% while maintaining a consistency of more than 98%. Therefore, using the NCSM can effectively enhance the quantitative accuracy and increase the detection efficiency based on the real-time dPCR platform.
Collapse
Affiliation(s)
- Peilin Zang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Qi Xu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Mingli Tao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Shuli Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Qi Yang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
- Suzhou CASENS Co., Ltd, Suzhou, 215163, China.
| |
Collapse
|
20
|
Liu J, Zhang B, Wang L, Peng J, Wu K, Liu T. The development of droplet-based microfluidic virus detection technology for human infectious diseases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:971-978. [PMID: 38299435 DOI: 10.1039/d3ay01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Virus-based human infectious diseases have a significant negative impact on people's health and social development. The need for quick, accurate, and early viral infection detection in preventive medicine is expanding. A microfluidic control is particularly suitable for point-of-care-testing virus diagnosis due to its advantages of low sample consumption, quick detection speed, simple operation, multi-functional integration, small size, and easy portability. It is also thought to have significant development potential and a wide range of application prospects in the research on virus detection technology. In an effort to aid researchers in creating novel microfluidic tools for virus detection, this review highlights recent developments of droplet-based microfluidics in virus detection research and also discusses the challenges and opportunities for rapid virus detection.
Collapse
Affiliation(s)
- Jiayan Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Bingyang Zhang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Li Wang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Jingjie Peng
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Palumbo JD, Sarreal SBL, Kim JH. Simultaneous detection of mycotoxigenic Aspergillus species of sections Circumdati and Flavi using multiplex digital PCR. Lett Appl Microbiol 2023; 76:ovad142. [PMID: 38111225 DOI: 10.1093/lambio/ovad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Populations of ochratoxin-producing Aspergillus section Circumdati species and aflatoxin-producing Aspergillus section Flavi species frequently coexist in soil and are the main sources of mycotoxin contamination of tree nuts. Identification of mycotoxigenic Aspergillus species in these sections is difficult using traditional isolation and culture methods. We developed a multiplex digital PCR (dPCR) assay to detect and quantify Aspergillus ochraceus, Aspergillus westerdijkiae, and Aspergillus steynii (section Circumdati), as well as Aspergillus flavus and Aspergillus parasiticus (section Flavi), in environmental samples based on species-specific calmodulin gene sequences. Relative quantification of each species by dPCR of mixed-species templates correlated with corresponding DNA input ratios. Target species could be detected in soil inoculated with conidia from each species. Non-target species of sections Circumdati, Flavi, and Nigri were generally not detectable using this dPCR method. Detected non-target species (Aspergillus fresenii, Aspergillus melleus, Aspergillus sclerotiorum, and Aspergillus subramanianii) were discernible from A. ochraceus in dual-template dPCR reactions based on differential fluorescence intensity.
Collapse
Affiliation(s)
- Jeffrey D Palumbo
- Foodborne Toxin Detection and Prevention Research Unit, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710, United States
| | - Siov Bouy L Sarreal
- Foodborne Toxin Detection and Prevention Research Unit, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710, United States
| | - Jong H Kim
- Foodborne Toxin Detection and Prevention Research Unit, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710, United States
| |
Collapse
|
22
|
Chen W, Modi D, Picot A. Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2736. [PMID: 37514350 PMCID: PMC10384710 DOI: 10.3390/plants12142736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The phytomicrobiome plays a crucial role in soil and ecosystem health, encompassing both beneficial members providing critical ecosystem goods and services and pathogens threatening food safety and security. The potential benefits of harnessing the power of the phytomicrobiome for plant disease suppression and management are indisputable and of interest in agriculture but also in forestry and landscaping. Indeed, plant diseases can be mitigated by in situ manipulations of resident microorganisms through agronomic practices (such as minimum tillage, crop rotation, cover cropping, organic mulching, etc.) as well as by applying microbial inoculants. However, numerous challenges, such as the lack of standardized methods for microbiome analysis and the difficulty in translating research findings into practical applications are at stake. Moreover, climate change is affecting the distribution, abundance, and virulence of many plant pathogens, while also altering the phytomicrobiome functioning, further compounding disease management strategies. Here, we will first review literature demonstrating how agricultural practices have been found effective in promoting soil health and enhancing disease suppressiveness and mitigation through a shift of the phytomicrobiome. Challenges and barriers to the identification and use of the phytomicrobiome for plant disease management will then be discussed before focusing on the potential impacts of climate change on the phytomicrobiome functioning and disease outcome.
Collapse
Affiliation(s)
- Wen Chen
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dixi Modi
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
23
|
He Q, Wang S, Feng K, Michaletz ST, Hou W, Zhang W, Li F, Zhang Y, Wang D, Peng X, Yang X, Deng Y. High speciation rate of niche specialists in hot springs. THE ISME JOURNAL 2023:10.1038/s41396-023-01447-4. [PMID: 37286739 DOI: 10.1038/s41396-023-01447-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Ecological and evolutionary processes simultaneously regulate microbial diversity, but the evolutionary processes and their driving forces remain largely unexplored. Here we investigated the ecological and evolutionary characteristics of microbiota in hot springs spanning a broad temperature range (54.8-80 °C) by sequencing the 16S rRNA genes. Our results demonstrated that niche specialists and niche generalists are embedded in a complex interaction of ecological and evolutionary dynamics. On the thermal tolerance niche axis, thermal (T) sensitive (at a specific temperature) versus T-resistant (at least in five temperatures) species were characterized by different niche breadth, community abundance and dispersal potential, consequently differing in potential evolutionary trajectory. The niche-specialized T-sensitive species experienced strong temperature barriers, leading to completely species shift and high fitness but low abundant communities at each temperature ("home niche"), and such trade-offs thus reinforced peak performance, as evidenced by high speciation across temperatures and increasing diversification potential with temperature. In contrast, T-resistant species are advantageous of niche expansion but with poor local performance, as shown by wide niche breadth with high extinction, indicating these niche generalists are "jack-of-all-trades, master-of-none". Despite of such differences, the T-sensitive and T-resistant species are evolutionarily interacted. Specifically, the continuous transition from T-sensitive to T-resistant species insured the exclusion probability of T-resistant species at a relatively constant level across temperatures. The co-evolution and co-adaptation of T-sensitive and T-resistant species were in line with the red queen theory. Collectively, our findings demonstrate that high speciation of niche specialists could alleviate the environmental-filtering-induced negative effect on diversity.
Collapse
Affiliation(s)
- Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Wenhui Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Fangru Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Yidi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xingsheng Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
24
|
Nichols DP, Morgan SJ, Skalland M, Vo AT, Van Dalfsen JM, Singh SB, Ni W, Hoffman LR, McGeer K, Heltshe SL, Clancy JP, Rowe SM, Jorth P, Singh PK, the PROMISE-Micro Study Group. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest 2023; 133:e167957. [PMID: 36976651 PMCID: PMC10178839 DOI: 10.1172/jci167957] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundLung infections are among the most consequential manifestations of cystic fibrosis (CF) and are associated with reduced lung function and shortened survival. Drugs called CF transmembrane conductance regulator (CFTR) modulators improve activity of dysfunctional CFTR channels, which is the physiological defect causing CF. However, it is unclear how improved CFTR activity affects CF lung infections.MethodsWe performed a prospective, multicenter, observational study to measure the effect of the newest and most effective CFTR modulator, elexacaftor/tezacaftor/ivacaftor (ETI), on CF lung infections. We studied sputum from 236 people with CF during their first 6 months of ETI using bacterial cultures, PCR, and sequencing.ResultsMean sputum densities of Staphylococcus aureus, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp., and Burkholderia spp. decreased by 2-3 log10 CFU/mL after 1 month of ETI. However, most participants remained culture positive for the pathogens cultured from their sputum before starting ETI. In those becoming culture negative after ETI, the pathogens present before treatment were often still detectable by PCR months after sputum converted to culture negative. Sequence-based analyses confirmed large reductions in CF pathogen genera, but other bacteria detected in sputum were largely unchanged. ETI treatment increased average sputum bacterial diversity and produced consistent shifts in sputum bacterial composition. However, these changes were caused by ETI-mediated decreases in CF pathogen abundance rather than changes in other bacteria.ConclusionsTreatment with the most effective CFTR modulator currently available produced large and rapid reductions in traditional CF pathogens in sputum, but most participants remain infected with the pathogens present before modulator treatment.Trial RegistrationClinicalTrials.gov NCT04038047.FundingThe Cystic Fibrosis Foundation and the NIH.
Collapse
Affiliation(s)
| | - Sarah J. Morgan
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Michelle Skalland
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Anh T. Vo
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Jill M. Van Dalfsen
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Wendy Ni
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | | - Kailee McGeer
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Sonya L. Heltshe
- Department of Pediatrics and
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - John P. Clancy
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Steven M. Rowe
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Peter Jorth
- Departments of Pathology and Laboratory Medicine, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pradeep K. Singh
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
25
|
Ponchon M, Reineke A, Massot M, Bidochka MJ, Thiéry D, Papura D. Three Methods Assessing the Association of the Endophytic Entomopathogenic Fungus Metarhizium robertsii with Non-Grafted Grapevine Vitis vinifera. Microorganisms 2022; 10:microorganisms10122437. [PMID: 36557691 PMCID: PMC9787814 DOI: 10.3390/microorganisms10122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Characterizing the association of endophytic insect pathogenic fungi (EIPF) with plants is an important step in order to understand their ecology before using them in biological control programs. Since several methods are available, it is challenging to identify the most appropriate for such investigations. Here, we used two strains of Metarhizium robertsii: EF3.5(2) native to the French vineyard environment and ARSEF-2575-GFP a laboratory strain expressing a green fluorescent protein, to compare their potential of association with non-grafted grapevine Vitis vinifera. Three methods were used to evaluate the kinetics of rhizosphere and grapevine endospheric colonization: (i) Droplet Digital (ddPCR), a sensitive molecular method of M. robertsii DNA quantification in different plant parts, (ii) culture-based method to detect the live fungal propagules from plant tissues that grew on the medium, (iii) confocal imaging to observe roots segments. Both strains showed evidence of establishment in the rhizosphere of grapevines according to the culture-based and ddPCR methods, with a significantly higher establishment of strain EF3.5(2) (40% positive plants and quantified median of exp(4.61) c/μL) compared to strain ARSEF-2575-GFP (13% positive plants and quantified median of exp(2.25) c/μL) at 96-98 days post-inoculation. A low incidence of association of both strains in the grapevine root endosphere was found with no significant differences between strains and evaluation methods (15% positive plants inoculated with strain EF3.5(2) and 5% with strain ARSEF-2575-GFP according to culture-based method). ddPCR should be used more extensively to investigate the association between plants and EIPF but always accompanied with at least one method such as culture-based method or confocal microscopy.
Collapse
Affiliation(s)
- Mathilde Ponchon
- Department of Crop Protection, Hochschule Geisenheim University, 65366 Geisenheim, Germany
- INRAE, Bordeaux Sciences Agro, ISVV, UMR SAVE, 33140 Villenave d’Ornon, France
| | - Annette Reineke
- Department of Crop Protection, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Marie Massot
- INRAE, Univ. Bordeaux, UMR BIOGECO, 33610 Cestas, France
| | - Michael J. Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Denis Thiéry
- INRAE, Bordeaux Sciences Agro, ISVV, UMR SAVE, 33140 Villenave d’Ornon, France
- Correspondence: ; Tel.: +33-557-122-618
| | - Daciana Papura
- INRAE, Bordeaux Sciences Agro, ISVV, UMR SAVE, 33140 Villenave d’Ornon, France
| |
Collapse
|
26
|
Meng J, Ji H, Chen L, Liu A. Comparison of Droplet Digital PCR and Metagenomic Next-Generation Sequencing Methods for the Detection of Human Herpesvirus 6B Infection Using Cell-Free DNA from Patients Receiving CAR-T and Hematopoietic Stem Cell Transplantation. Infect Drug Resist 2022; 15:5353-5364. [PMID: 36110128 PMCID: PMC9469937 DOI: 10.2147/idr.s379439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to examine and compare the differences between droplet digital PCR (ddPCR) and metagenomic next-generation sequencing (mNGS) in the detection of human herpesvirus 6B (HHV-6B). Long-term monitoring of HHV-6B viral load in patients receiving chimeric antigen receptor-modified T-cell (CAR-T) therapy and hematopoietic stem cell transplantation (HSCT) can be used to identify immune effector cell-associated neurotoxicity syndrome (ICANS) and guide drug therapy. Methods Twenty-seven patients with suspected HHV-6B infection who had both mNGS and ddPCR test results were analyzed retrospectively, including 19 patients who received CAR T-cell therapy and 8 who received HSCT. The HHV-6B probe and primers were designed, and the performance of the ddPCR assay was evaluated. Subsequently, ddPCR was performed utilizing blood and urine. Data on clinical information and mNGS investigations were collected. Results The ddPCR test results correlated significantly with the mNGS test results (P < 0.001, R2 = 0.672). Of the 27 time-paired samples, ddPCR showed positive HHV-6B detection in 20 samples, while mNGS alone showed positive HHV-6B detection in 12 samples. ddPCR detected additional HHV-6B infections in 8 samples that would have been missed if only mNGS were used. In addition, the first HHV-6B infection event was detected at a median of 14 days after CAR T-cell infusion (range, 8 to 19 days). Longitudinal monitoring of HHV-6B by ddPCR was performed to assess the effectiveness of antiviral therapy. The data showed that with antiviral treatment HHV-6B viral load gradually decreased. Conclusion Our results indicated that ddPCR improved the HHV-6B positive detection ratio and was an effective adjunct to mNGS methods. Furthermore, the longitudinal detection and quantification of HHV-6B viral load in patients undergoing CAR T-cell therapy and HSCT may serve as a guide for drug treatment.
Collapse
Affiliation(s)
- Jiao Meng
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Hongyan Ji
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Aichun Liu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|