1
|
Khazem F, Zetoune AB. Investigating the role of HMGA2 plasma level as a diagnostic marker in bladder urothelial carcinoma patients. J Cancer Res Clin Oncol 2025; 151:134. [PMID: 40204943 PMCID: PMC11982150 DOI: 10.1007/s00432-025-06192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Bladder Cancer (BC) is an environmental cancer caused by exposure to a globally widespread carcinogen, which is smoking, and it is characterized by high rates of recurrence and mortality. High Mobility Group A2 (HMGA2) protein is an oncofetal protein that belongs to the HMG family proteins. It is involved in various stages of carcinogenesis and cancer progression. This study investigated the presence and levels of the HMGA2 protein in bladder urothelial carcinoma patients' plasma and in healthy individuals and their association with the clinicopathological features of bladder urothelial carcinoma. METHODS This case-control study included 80 individuals divided into two groups: a healthy group (n = 22) and a patient group with bladder urothelial carcinoma (n = 58). There were 16 patients with Muscle-Invasive Bladder Cancer (MIBC) and 42 patients with Non-Invasive Bladder Cancer (NMIBC) in the patients' cohort according to the European Association of Urology (EAU) classification. HMGA2 plasma levels were measured by Sandwich Enzyme-Linked ImmunoSorbent Assay (ELISA). The statistical analysis was performed using IBM SPSS statistics (version 25) software. The t-test and the Mann-Whitney test were used. RESULTS Plasma HMGA2 protein levels were higher in the BC group than in the healthy group (P < 0.001), they also were higher in MIBC (pT2-pT3) than in NMIBC (pTa-pT1) (P < 0.001). HMGA2 plasma levels were higher in high grade BC patients than in low grade BC patients (P = 0.049). CONCLUSIONS This study confirmed that the plasma HMGA2 protein level was higher in bladder cancer patients than in healthy individuals and that its elevated plasma levels were correlated with advanced stage and grade of BC; thus, the plasma HMGA2 protein level represents a potential non-invasive marker that could be included in bladder cancer diagnosis approach.
Collapse
Affiliation(s)
- Farah Khazem
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | | |
Collapse
|
2
|
Ko MY, Min E, Kim M, Park H, Jang S, Kim Y, Lee BS, Hyun SA, Ka M. Non-genotoxic carcinogens (TPA and mezerein) activate tumourous transformation through miR let-7-mediated Hmga2 expression in Bhas42 cells. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf005. [PMID: 40182023 PMCID: PMC11967402 DOI: 10.1093/eep/dvaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
A Bhas42 cell transformation assay is a method used to detect the tumour-promoting activities of chemicals. However, the mechanisms underlying tumour transformations mediated by non-genotoxic carcinogens (NGCs) are poorly understood. This study aimed to examine the correlation between 12-O-tetradecanoylphorbol 13-acetate (TPA) or mezerein and the initiation of tumourous transformations by epigenetic regulation in Bhas42 cells. We found that TPA and mezerein prompted tumourous transformations by stimulating cell proliferation and migration in Bhas42 cells. Furthermore, we observed alterations in the expression levels of 134 genes, with 87 genes being upregulated and 47 genes being downregulated, following exposure to either TPA or mezerein. Among the differentially regulated genes, we identified 17 upregulated genes and 8 downregulated genes corresponding to differentially expressed genes in TNM [primary tumour (T), regional nodes (N), and metastasis (M)]. Importantly, we found that TPA and mezerein triggered the expression of Hmga2 and Ezh2 by loss of miRNA let-7 (miR let-7) in Bhas42 cells. Finally, the microRNA (miRNA) mimic of let-7 prevented the TPA- and mezerein-induced activation of Hmga2 and Ezh2 in Bhas42 cells. Our findings reveal a connection between tumourous transformations and the epigenetic regulator miR let-7 in NGCs, such as TPA and mezerein in Bhas42 cells. This highlights miR let-7 as a promising therapeutic target for mitigating tumourous transformations induced by NGCs.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Euijun Min
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minjeong Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
3
|
Yamamoto N, Dobersch S, Loveless I, Samraj AN, Jang GH, Haraguchi M, Kang LI, Ruzinova MB, Vij KR, Mudd JL, Walsh T, Safyan RA, Chiorean EG, Hingorani SR, Bolton NM, Li L, Fields RC, DeNardo DG, Notta F, Crawford HC, Steele NG, Kugel S. HMGA2 Expression Predicts Subtype, Survival, and Treatment Outcome in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2025; 31:733-745. [PMID: 39680021 PMCID: PMC11967372 DOI: 10.1158/1078-0432.ccr-24-2200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE The purpose of this study was to establish HMGA2 as a marker of basal-like disease in pancreatic ductal adenocarcinoma (PDAC) and explore its use as a biomarker for prognosis and treatment resistance. EXPERIMENTAL DESIGN We identified high-mobility group A2 (HMGA2) protein expression in basal PDAC cells in a single-cell RNA sequencing (RNA-seq) atlas of 172 patient samples. We then analyzed HMGA2 expression, along with expression of the classic marker GATA-binding factor 6 (GATA6), in a cohort of 580 PDAC samples with multiplex IHC. We further supplemented these data with an additional 30 diverse patient samples and multiple independent single-cell RNA-seq databases. RESULTS We found that expression of HMGA2, but not previously described basal markers cytokeratins 5 or 17, predicted overall survival in our cohort. Combining HMGA2 and GATA6 statuses allowed for the identification of two key study groups: an HMGA2+/GATA6- cohort with worse survival, low tumor-infiltrating CD8+ T cells, increased FAP+ fibroblasts, and poorer response to gemcitabine-based chemotherapies (n = 94, median survival = 11.2 months after surgery) and an HMGA2-/GATA6+ cohort with improved survival, increased CD8+ T-cell infiltrate, decreased FAP+ fibroblasts, and improved survival with gemcitabine-based chemotherapy (n = 198, median survival = 21.7 months after surgery). HMGA2 was also prognostic for overall survival in RNA-seq from an independent cohort. CONCLUSIONS IHC stratification of primary tumors by HMGA2 and GATA6 statuses in pancreatic cancer is associated with differential outcomes, survival following chemotherapy, and tumor microenvironments. As a nuclear marker for basal disease, HMGA2 complements GATA6 to identify disease subtypes in PDAC.
Collapse
Affiliation(s)
- Naomi Yamamoto
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Dobersch
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian Loveless
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA
| | - Annie N. Samraj
- Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Miki Haraguchi
- Experimental Histopathology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Liang-I Kang
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marianna B. Ruzinova
- Surgical Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kiran R. Vij
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline L. Mudd
- Surgical Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Walsh
- Surgical Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael A. Safyan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Hematology and Oncology, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - E. Gabriela Chiorean
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Hematology and Oncology, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Sunil R. Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nathan M. Bolton
- Laboratory of Translational Cancer Research, Tom & Gayle Benson Cancer Center, Ochsner Clinic Foundation, New Orleans, LA 70124, USA
| | - Li Li
- Laboratory of Translational Cancer Research, Tom & Gayle Benson Cancer Center, Ochsner Clinic Foundation, New Orleans, LA 70124, USA
| | - Ryan C. Fields
- Surgical Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Pathology, Wayne State University, Detroit, MI 48202, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Oncology, Wayne State University, Detroit, MI 48202, USA
| | - Nina G. Steele
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Pathology, Wayne State University, Detroit, MI 48202, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Oncology, Wayne State University, Detroit, MI 48202, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Khazem F, Zetoune AB. Decoding high mobility group A2 protein expression regulation and implications in human cancers. Discov Oncol 2024; 15:322. [PMID: 39085703 PMCID: PMC11291832 DOI: 10.1007/s12672-024-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
High Mobility Group A2 (HMGA2) oncofetal proteins are a distinct category of Transcription Factors (TFs) known as "architectural factors" due to their lack of direct transcriptional activity. Instead, they modulate the three-dimensional structure of chromatin by binding to AT-rich regions in the minor grooves of DNA through their AT-hooks. This binding allows HMGA2 to interact with other proteins and different regions of DNA, thereby regulating the expression of numerous genes involved in carcinogenesis. Consequently, multiple mechanisms exist to finely control HMGA2 protein expression at various transcriptional levels, ensuring precise concentration adjustments to maintain cellular homeostasis. During embryonic development, HMGA2 protein is highly expressed but becomes absent in adult tissues. However, recent studies have revealed its re-elevation in various cancer types. Extensive research has demonstrated the involvement of HMGA2 protein in carcinogenesis at multiple levels. It intervenes in crucial processes such as cell cycle regulation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, cancer cell stemness, and DNA damage repair mechanisms, ultimately promoting cancer cell survival. This comprehensive review provides insights into the HMGA2 protein, spanning from the genetic regulation to functional protein behavior. It highlights the significant mechanisms governing HMGA2 gene expression and elucidates the molecular roles of HMGA2 in the carcinogenesis process.
Collapse
Affiliation(s)
- Farah Khazem
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | | |
Collapse
|
5
|
Zhang X, Li Z, Nie H, Huang Y, Du J, Xi Y, Guo C, Mu M, Li X, Zheng X, Xu Q, Huang D, Tu L, Cheng L. The IGF2BP2-lncRNA TRPC7-AS1 axis promotes hepatocellular carcinoma cell proliferation and invasion. Cell Signal 2024; 117:111078. [PMID: 38320625 DOI: 10.1016/j.cellsig.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Hepatocellular carcinoma(HCC) is one of the most common tumors in the world. Human insulin-like growth factor 2(IGF2) mRNA binding protein 2(IGF2BP2) plays an important role in the progression of hepatocellular carcinoma. Additionally, long non-coding RNA(lncRNA) has been confirmed as a key regulator of hepatocellular carcinoma occurrence. However, the function of TRPC7-AS1 has not been verified in hepatocellular carcinoma. The research results revealed that high IGF2BP2 expression was associated with a decreased survival rate in patients with hepatocellular carcinoma. Furthermore, IGF2BP2 knockdown inhibited and IGF2BP2 overexpression promoted the cell proliferation and invasion of hepatocellular carcinoma cells. The research illuminated that IGF2BP2 regulated the expression of TRPC7-AS1, and a correlation was observed between IGF2BP2 and TRPC7-AS1 expression. TRPC7-AS1 silencing repressed and its overexpression promoted the progression of hepatocellular carcinoma. After silencing or overexpressing TRPC7-AS1, the expression of the high-mobility group AT-hook 2 (HMGA2) gene decreased or increased, respectively. IGF2BP2 enhanced the expression of TRPC7-AS1 and thus affected the expression of HMGA2, thereby promoting hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Xu Zhang
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zilin Li
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huizong Nie
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yue Huang
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingyang Du
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiling Xi
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chaoqin Guo
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingshan Mu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangyu Li
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou City, Zhejiang Province, China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, China
| | - Qiuran Xu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, China.
| | - Dongsheng Huang
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, China.
| | - Liyan Cheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou City, Zhejiang Province, China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, China.
| |
Collapse
|
6
|
Tie CW, Zhu JQ, Yu Z, Dou LZ, Wang ML, Wang GQ, Ni XG. Revealing molecular and cellular heterogeneity in hypopharyngeal carcinogenesis through single-cell RNA and TCR/BCR sequencing. Front Immunol 2024; 15:1310376. [PMID: 38720887 PMCID: PMC11076829 DOI: 10.3389/fimmu.2024.1310376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Hypopharyngeal squamous cell carcinoma (HSCC) is one of the malignant tumors with the worst prognosis in head and neck cancers. The transformation from normal tissue through low-grade and high-grade intraepithelial neoplasia to cancerous tissue in HSCC is typically viewed as a progressive pathological sequence typical of tumorigenesis. Nonetheless, the alterations in diverse cell clusters within the tissue microenvironment (TME) throughout tumorigenesis and their impact on the development of HSCC are yet to be fully understood. Methods We employed single-cell RNA sequencing and TCR/BCR sequencing to sequence 60,854 cells from nine tissue samples representing different stages during the progression of HSCC. This allowed us to construct dynamic transcriptomic maps of cells in diverse TME across various disease stages, and experimentally validated the key molecules within it. Results We delineated the heterogeneity among tumor cells, immune cells (including T cells, B cells, and myeloid cells), and stromal cells (such as fibroblasts and endothelial cells) during the tumorigenesis of HSCC. We uncovered the alterations in function and state of distinct cell clusters at different stages of tumor development and identified specific clusters closely associated with the tumorigenesis of HSCC. Consequently, we discovered molecules like MAGEA3 and MMP3, pivotal for the diagnosis and treatment of HSCC. Discussion Our research sheds light on the dynamic alterations within the TME during the tumorigenesis of HSCC, which will help to understand its mechanism of canceration, identify early diagnostic markers, and discover new therapeutic targets.
Collapse
MESH Headings
- Humans
- Hypopharyngeal Neoplasms/genetics
- Hypopharyngeal Neoplasms/pathology
- Hypopharyngeal Neoplasms/immunology
- Single-Cell Analysis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Carcinogenesis/genetics
- Sequence Analysis, RNA
- Transcriptome
- Biomarkers, Tumor/genetics
- Squamous Cell Carcinoma of Head and Neck/genetics
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/pathology
- Gene Expression Regulation, Neoplastic
- Male
Collapse
Affiliation(s)
- Cheng-Wei Tie
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Qing Zhu
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhan Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Li-Zhou Dou
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Ling Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Gui-Qi Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Guang Ni
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Liu K, Wei C, Yu H, Zhang Q, Du Z. HMGA2 overexpression activates IGF2BP2 to stabilize APLP2 via m6A modification and promote pancreatic cancer progression. Heliyon 2024; 10:e27268. [PMID: 38449630 PMCID: PMC10915557 DOI: 10.1016/j.heliyon.2024.e27268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy of the digestive system, with occult onset, rapid progression, and poor prognosis. The genetic heterogeneity of pancreatic cancer contributes to its highly malignant biological behavior. HMGA2 is overexpressed in tumors and is known to regulate tumor progression in various cancers through the HMGA2-IGF2BP2 axis, but its role and mechanism in pancreatic cancer remain unclear. In this study, we demonstrated that HMGA2 promotes pancreatic cancer progression. We further revealed that HMGA2 upregulates IGF2BP2, which stabilizes APLP2 mRNA via m6A modification, thereby promoting pancreatic cancer progression. These results indicate that HMGA2/IGF2BP2/APLP2 signaling axis regulates the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Ke Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Congbing Wei
- Hospital of China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhouyuan Du
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Ma W, Zhou T, Song M, Liu J, Chen G, Zhan J, Ji L, Luo F, Gao X, Li P, Xia X, Huang Y, Zhang L. Genomic and transcriptomic profiling of combined small-cell lung cancer through microdissection: unveiling the transformational pathway of mixed subtype. J Transl Med 2024; 22:189. [PMID: 38383412 PMCID: PMC10880258 DOI: 10.1186/s12967-024-04968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Combined small-cell lung carcinoma (cSCLC) represents a rare subtype of SCLC, the mechanisms governing the evolution of cancer genomes and their impact on the tumor immune microenvironment (TIME) within distinct components of cSCLC remain elusive. METHODS Here, we conducted whole-exome and RNA sequencing on 32 samples from 16 cSCLC cases. RESULTS We found striking similarities between two components of cSCLC-LCC/LCNEC (SCLC combined with large-cell carcinoma/neuroendocrine) in terms of tumor mutation burden (TMB), tumor neoantigen burden (TNB), clonality structure, chromosomal instability (CIN), and low levels of immune cell infiltration. In contrast, the two components of cSCLC-ADC/SCC (SCLC combined with adenocarcinoma/squamous-cell carcinoma) exhibited a high level of tumor heterogeneity. Our investigation revealed that cSCLC originated from a monoclonal source, with two potential transformation modes: from SCLC to SCC (mode 1) and from ADC to SCLC (mode 2). Therefore, cSCLC might represent an intermediate state, potentially evolving into another histological tumor morphology through interactions between tumor and TIME surrounding it. Intriguingly, RB1 inactivation emerged as a factor influencing TIME heterogeneity in cSCLC, possibly through neoantigen depletion. CONCLUSIONS Together, these findings delved into the clonal origin and TIME heterogeneity of different components in cSCLC, shedding new light on the evolutionary processes underlying this enigmatic subtype.
Collapse
Affiliation(s)
- Wenjuan Ma
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Mengmeng Song
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Jiaqing Liu
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Jianhua Zhan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Liyan Ji
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Pansong Li
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Beijing, 102206, People's Republic of China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
XIE JIANYUN, LU LINJIE, ZHANG JIALI, LI QIRUI, CHEN WEIDONG. CircTHSD4 promotes the malignancy and docetaxel (DTX) resistance in prostate cancer by regulating miR-203/HMGA2 axis. Oncol Res 2024; 32:529-544. [PMID: 38361751 PMCID: PMC10865731 DOI: 10.32604/or.2023.031511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/15/2023] [Indexed: 02/17/2024] Open
Abstract
Objective Circular ribose nucleic acids (circRNAs) are implicated in tumor progression and drug resistance of prostate cancer (PCa). The current work explored the function of circ_0005203 (circTHSD4) in the malignancy and docetaxel (DTX) resistance of PCa. Methods circTHSD4 expression within PCa as well as matched non-carcinoma samples was measured through real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, a subcellular fraction assay was conducted to determine circTHSD4 subcellular localization within PCa cells. In addition, we performed a Western blot (WB) assay to detect high-mobility-group A2 protein (HMGA2) levels. Besides, functional associations of two molecules were investigated through dual luciferase reporter assay. Cell Counting Kit (CCK)-8, colony formation together with Transwell assay was conducted to assess malignant phenotypes of PCa cells, whereas flow cytometry was performed to determine cell apoptosis. Furthermore, a xenograft mouse model was constructed to verify the effect of circTHSD4 on the carcinogenesis of PCa cells. Results According to RT-qPCR results, circTHSD4 was up-regulated within PCa tissues and cells, which predicted the dismal prognostic outcome of PCa cases. circTHSD4 silencing within PCa cells markedly suppressed cell growth, migration, and colony formation. circTHSD4 silencing remarkably elevated PCa cell apoptosis and carcinogenesis within the xenograft model. Further, circTHSD4 silencing enhanced docetaxel (DTX) sensitivity in PCa cells. Furthermore, we demonstrated that circTHSD4 modulated the malignancy of PCa cells by regulating HMGA2 expression through sponging miR-203. Conclusion Together, our findings suggest that circTHSD4 overexpression could promote the malignant phenotype and DTX resistance in PCa through the regulation of the miR-203/HMGA2 axis.
Collapse
Affiliation(s)
- JIANYUN XIE
- Department of Urology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - LINJIE LU
- Department of Urology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - JIALI ZHANG
- Department of Urology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - QIRUI LI
- Department of Internal Medicine Outpatient Clinic, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - WEIDONG CHEN
- Department of Urology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
10
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Ouyang X, Li K, Wang J, Zhu W, Yi Q, Zhong J. HMGA2 promotes nasopharyngeal carcinoma progression and is associated with tumor resistance and poor prognosis. Front Oncol 2024; 13:1271080. [PMID: 38304037 PMCID: PMC10830841 DOI: 10.3389/fonc.2023.1271080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), as one of the most prevalent malignancies in the head and neck region, still lacks a complete understanding of its pathogenesis. Presently, radiotherapy, concurrent chemoradiotherapy, and targeted therapy stand as the primary modalities for treating NPC. With advancements in medicine, the cure rates for nasopharyngeal carcinoma have been steadily increasing. Nevertheless, recurrence and metastasis persist as the primary reasons for treatment failure. Consequently, a profound exploration of the molecular mechanisms underlying the occurrence and progression of nasopharyngeal carcinoma, along with the exploration of corresponding therapeutic approaches, becomes particularly imperative in the quest for comprehensive solutions to combat this disease. High mobility group AT-hook 2 (HMGA2) is a pivotal protein capable of altering chromatin structure, regulating gene expression, and influencing transcriptional activity. In the realm of cancer research, HMGA2 exhibits widespread dysregulation, playing a crucial role in nearly all malignant tumors. It is implicated in various tumorigenic processes, including cell cycle regulation, cell proliferation, epithelial-mesenchymal transition, angiogenesis, tumor invasion, metastasis, and drug resistance. Additionally, HMGA2 serves as a molecular marker and an independent prognostic factor in certain malignancies. Recent studies have increasingly unveiled the critical role of HMGA2 in nasopharyngeal carcinoma (NPC), particularly in promoting malignant progression, correlating with tumor resistance, and serving as an independent adverse prognostic factor. This review focuses on elucidating the oncogenic role of HMGA2 in NPC, suggesting its potential association with chemotherapy resistance in NPC, and proposing its candidacy as an independent factor in nasopharyngeal carcinoma prognosis assessment.
Collapse
Affiliation(s)
| | - Kangxin Li
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Yi
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
12
|
Thapa R, Afzal O, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Arora P, Singh SK, Dua K. From LncRNA to metastasis: The MALAT1-EMT axis in cancer progression. Pathol Res Pract 2024; 253:154959. [PMID: 38029713 DOI: 10.1016/j.prp.2023.154959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Cancer is a complex disease that causes abnormal genetic changes and unchecked cellular growth. It also causes a disruption in the normal regulatory processes that leads to the creation of malignant tissue. The complex interplay of genetic, environmental, and epigenetic variables influences its etiology. Long non-coding RNAs (LncRNAs) have emerged as pivotal contributors within the intricate landscape of cancer biology, orchestrating an array of multifaceted cellular processes that substantiate the processes of carcinogenesis and metastasis. Metastasis is a crucial driver of cancer mortality. Among these, MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) has drawn a lot of interest for its function in encouraging metastasis via controlling the Epithelial-Mesenchymal Transition (EMT) procedure. MALAT1 exerts a pivotal influence on the process of EMT, thereby promoting metastasis to distant organs. The mechanistic underpinning of this phenomenon involves the orchestration of an intricate regulatory network encompassing transcription factors, signalling cascades, and genes intricately associated with the EMT process by MALAT1. Its crucial function in transforming tumor cells into an aggressive phenotype is highlighted by its capacity to influence the expression of essential EMT effectors such as N-cadherin, E-cadherin, and Snail. An understanding of the MALAT1-EMT axis provides potential therapeutic approaches for cancer intervention. Targeting MALAT1 or its downstream EMT effectors may reduce the spread of metastatic disease and improve the effectiveness of already available therapies. Understanding the MALAT1-EMT axis holds significant clinical implications. Therefore, directing attention towards MALAT1 or its downstream mediators could present innovative therapeutic strategies for mitigating metastasis and improving patient prognosis. This study highlights the importance of MALAT1 in cancer biology and its potential for cutting back on metastatic disease with novel treatment strategies.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Poonam Arora
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
13
|
Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics Proteomics 2023; 20:646-668. [PMID: 38035705 PMCID: PMC10687737 DOI: 10.21873/cgp.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Despite availability of several treatment options for non-small cell lung cancer (NSCLC), such as surgery, chemotherapy, radiation, targeted therapy and immunotherapy, the survival rate of patients for five years is in the range of 22%. Therefore, identification of new targets and treatment modalities for this disease is an important issue. In this context, we screened the PubMed database for up-regulated circular RNAs (circRNAs) which promote growth of NSCLC in preclinical models in vitro as well as in vivo xenograft models in immuno-compromised mice. This approach led to potential targets for further validation and inhibition with small molecules or antibody-derived entities. In case of preclinical validation, the corresponding circRNAs can be inhibited with small interfering RNAs (siRNA) or short hairpin RNAs (shRNA). The identified circRNAs act by sponging microRNAs (miRs) preventing cleavage of the mRNA of the corresponding targets. We identified nine circRNAs up-regulating transmembrane receptors, five circRNAs increasing expression of secreted proteins, nine circRNAs promoting expression of components of signaling pathways, six circRNAs involved in regulation of splicing and RNA processing, six circRNAs up-regulating actin-related and RNA processing components, seven circRNAs increasing the steady-state levels of transcription factors, two circRNAs increasing high-mobility group proteins, four circRNAs increasing components of the epigenetic modification system and three circRNAs up-regulating protein components of additional systems.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
14
|
Zhang CP, Huang XY. Circular RNA circ_KIAA1429 accelerates hepatocellular carcinoma progression via the miR-133a-3p/high mobility group AT-hook 2 (HMGA2) axis in an m6A-dependent manner. Hum Cell 2023; 36:1741-1754. [PMID: 37368192 DOI: 10.1007/s13577-023-00933-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide with high mortality rate, and the N6-methyladenosine (m6A) epigenetic modifications have been reported to be closely associated with the pathogenesis of HCC, but the detailed molecular mechanisms by which m6A regulates HCC progression have not been fully delineated. In this study, we evidenced that the m6A methyltransferase-like 3 (METTL3)-mediated m6A modification contributed to HCC aggressiveness through modulating a novel circ_KIAA1429/miR-133a-3p/HMGA2 axis. Specifically, circ_KIAA1429 was aberrantly overexpressed in HCC tissues and cells, and the expression levels of circ_KIAA1429 was positively regulated by METTL3 in HCC cells in a m6A-dependent manner. Then, functional experiments confirmed that deletion of both circ_KIAA1429 and METTL3 suppressed HCC cell proliferation, migration and cell mitosis in vitro and in vivo, and conversely, circ_KIAA1429 overexpression had opposite effects to accelerate HCC development. Furthermore, the downstream mechanisms by which circ_KIAA1429 regulated HCC progression were uncovered, and we validated that silencing of circ_KIAA1429 restrained the malignant phenotypes in HCC cells through modulating the miR-133a-3p/high mobility group AT-hook 2 (HMGA2) axis. To summarize, our study firstly investigated the involvement of a novel METTL3/m6A/circ_KIAA1429/miR-133a-3p/HMGA2 axis in regulating HCC development, which provided novel indicators for HCC diagnosis, therapy and prognosis.
Collapse
Affiliation(s)
- Chun-Peng Zhang
- Department of General Surgery and Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Xin-Ying Huang
- Department of Training Section, Harbin Emergency Medical Center, Harbin, 150001, China
| |
Collapse
|
15
|
Rahimian N, Sheida A, Rajabi M, Heidari MM, Tobeiha M, Esfahani PV, Ahmadi Asouri S, Hamblin MR, Mohamadzadeh O, Motamedzadeh A, Khaksary Mahabady M. Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma. Pathol Res Pract 2023; 248:154649. [PMID: 37453360 DOI: 10.1016/j.prp.2023.154649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Pituitary adenoma (PA) is the third most common primary intracranial tumor in terms of overall disease incidence. Although they are benign tumors, they can have a variety of clinical symptoms, but are mostly asymptomatic, which often leads to diagnosis at an advanced stage when surgical intervention is ineffective. Earlier identification of PA could reduce morbidity and allow better clinical management of the affected patients. Non-coding RNAs (ncRNAs) do not generally code for proteins, but can modulate biological processes at the post-transcriptional level through a variety of molecular mechanisms. An increased number of ncRNA expression profiles have been found in PAs. Therefore, understanding the expression patterns of different ncRNAs could be a promising method for developing non-invasive biomarkers. This review summarizes the expression patterns of dysregulated ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) involved in PA, which could one day serve as innovative biomarkers or therapeutic targets for the treatment of this neoplasia. We also discuss the potential molecular pathways by which the dysregulated ncRNAs could cause PA and affect its progression.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Rajabi
- Department of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Senosain MF, Zou Y, Patel K, Zhao S, Coullomb A, Rowe DJ, Lehman JM, Irish JM, Maldonado F, Kammer MN, Pancaldi V, Lopez CF. Integrated Multi-omics Analysis of Early Lung Adenocarcinoma Links Tumor Biological Features with Predicted Indolence or Aggressiveness. CANCER RESEARCH COMMUNICATIONS 2023; 3:1350-1365. [PMID: 37501683 PMCID: PMC10370362 DOI: 10.1158/2767-9764.crc-22-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/01/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Lung adenocarcinoma (LUAD) is a heterogeneous group of tumors associated with different survival rates, even when detected at an early stage. Here, we aim to investigate the biological determinants of early LUAD indolence or aggressiveness using radiomics as a surrogate of behavior. We present a set of 92 patients with LUAD with data collected across different methodologies. Patients were risk-stratified using the CT-based Score Indicative of Lung cancer Aggression (SILA) tool (0 = least aggressive, 1 = most aggressive). We grouped the patients as indolent (x ≤ 0.4, n = 14), intermediate (0.4 > x ≤ 0.6, n = 27), and aggressive (0.6 > x ≤ 1, n = 52). Using Cytometry by time of flight (CyTOF), we identified subpopulations with high HLA-DR expression that were associated with indolent behavior. In the RNA sequencing (RNA-seq) dataset, pathways related to immune response were associated with indolent behavior, while pathways associated with cell cycle and proliferation were associated with aggressive behavior. We extracted quantitative radiomics features from the CT scans of the patients. Integrating these datasets, we identified four feature signatures and four patient clusters that were associated with survival. Using single-cell RNA-seq, we found that indolent tumors had significantly more T cells and less B cells than aggressive tumors, and that the latter had a higher abundance of regulatory T cells and Th cells. In conclusion, we were able to uncover a correspondence between radiomics and tumor biology, which could improve the discrimination between indolent and aggressive LUAD tumors, enhance our knowledge in the biology of these tumors, and offer novel and personalized avenues for intervention. Significance This study provides a comprehensive profiling of LUAD indolence and aggressiveness at the biological bulk and single-cell levels, as well as at the clinical and radiomics levels. This hypothesis generating study uncovers several potential future research avenues. It also highlights the importance and power of data integration to improve our systemic understanding of LUAD and to help reduce the gap between basic science research and clinical practice.
Collapse
Affiliation(s)
- Maria-Fernanda Senosain
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Early Detection and Prevention Initiative, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical. Center, Nashville, Tennessee
| | - Yong Zou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Early Detection and Prevention Initiative, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical. Center, Nashville, Tennessee
| | - Khushbu Patel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Early Detection and Prevention Initiative, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical. Center, Nashville, Tennessee
| | - Shilin Zhao
- Vanderbilt Ingram Cancer Center, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexis Coullomb
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Dianna J. Rowe
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Early Detection and Prevention Initiative, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical. Center, Nashville, Tennessee
| | - Jonathan M. Lehman
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan M. Irish
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fabien Maldonado
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael N. Kammer
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Early Detection and Prevention Initiative, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical. Center, Nashville, Tennessee
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Barcelona Supercomputing Center, Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
| | - Carlos F. Lopez
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
17
|
Andus I, Prall F, Linnebacher M, Linnebacher CS. Establishment, characterization, and drug screening of low-passage patient individual non-small cell lung cancer in vitro models including the rare pleomorphic subentity. Front Oncol 2023; 13:1089681. [PMID: 37228492 PMCID: PMC10203569 DOI: 10.3389/fonc.2023.1089681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION For pre-clinical drug development and precision oncology research, robust cancer cell models are essential. Patient-derived models in low passages retain more genetic and phenotypic characteristics of their original tumors than conventional cancer cell lines. Subentity, individual genetics, and heterogeneity greatly influence drug sensitivity and clinical outcome. MATERIALS AND METHODS Here, we report on the establishment and characterization of three patient-derived cell lines (PDCs) of different subentities of non-small cell lung cancer (NSCLC): adeno-, squamous cell, and pleomorphic carcinoma. The in-depth characterization of our PDCs included phenotype, proliferation, surface protein expression, invasion, and migration behavior as well as whole-exome and RNA sequencing. Additionally, in vitro drug sensitivity towards standard-of-care chemotherapeutic regimens was evaluated. RESULTS The pathological and molecular properties of the patients' tumors were preserved in the PDC models HROLu22, HROLu55, and HROBML01. All cell lines expressed HLA I, while none were positive for HLA II. The epithelial cell marker CD326 and the lung tumor markers CCDC59, LYPD3, and DSG3 were also detected. The most frequently mutated genes included TP53, MXRA5, MUC16, and MUC19. Among the most overexpressed genes in tumor cells compared to normal tissue were the transcription factors HOXB9, SIM2, ZIC5, SP8, TFAP2A, FOXE1, HOXB13, and SALL4; the cancer testis antigen CT83; and the cytokine IL23A. The most downregulated genes on the RNA level encode the long non-coding RNA LANCL1-AS1, LINC00670, BANCR, and LOC100652999; the regulator of angiogenesis ANGPT4; the signaling molecules PLA2G1B and RS1; and the immune modulator SFTPD. Furthermore, neither pre-existing therapy resistances nor drug antagonistic effects could be observed. CONCLUSION In summary, we successfully established three novel NSCLC PDC models from an adeno-, a squamous cell, and a pleomorphic carcinoma. Of note, NSCLC cell models of the pleomorphic subentity are very rare. The detailed characterization including molecular, morphological, and drug-sensitivity profiling makes these models valuable pre-clinical tools for drug development applications and research on precision cancer therapy. The pleomorphic model additionally enables research on a functional and cell-based level of this rare NCSLC subentity.
Collapse
Affiliation(s)
- Ingo Andus
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Christina S. Linnebacher
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
18
|
Mahmoudian RA, Akhlaghipour I, Lotfi M, Shahidsales S, Moghbeli M. Circular RNAs as the pivotal regulators of epithelial-mesenchymal transition in gastrointestinal tumor cells. Pathol Res Pract 2023; 245:154472. [PMID: 37087995 DOI: 10.1016/j.prp.2023.154472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Gastrointestinal (GI) cancers, as the most common human malignancies are always considered one of the most important health challenges in the world. Late diagnosis in advanced tumor stages is one of the main reasons for the high mortality rate and treatment failure in these patients. Therefore, investigating the molecular pathways involved in GI tumor progression is required to introduce the efficient markers for the early tumor diagnosis. Epithelial-mesenchymal transition (EMT) is one of the main cellular mechanisms involved in the GI tumor metastasis. Non-coding RNAs (ncRNAs) are one of the main regulatory factors in EMT process. Circular RNAs (circRNAs) are a group of covalently closed loop ncRNAs that have higher stability in body fluids compared with other ncRNAs. Considering the importance of circRNAs in regulation of EMT process, in the present review we discussed the role of circRNAs in EMT process during GI tumor invasion. It has been reported that circRNAs mainly affect the EMT process through the regulation of EMT-specific transcription factors and signaling pathways such as WNT, PI3K/AKT, TGF-β, and MAPK. This review can be an effective step in introducing a circRNA/EMT based diagnostic panel marker for the early tumor detection among GI cancer patients.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Ding M, Dai D, Yang W, Geng C, Cui G. Has_circ_0048764 promotes breast cancer progression by sponging miR-578 and regulating HMGA2 expression. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:448-463. [PMID: 36617513 DOI: 10.1080/15257770.2022.2155300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) function as important regulators in the progression of cancers. The role of circRNA_0048764 (circ_0048764) in the development of breast cancer (BC) remains inconclusive. This work investigates the biological function and molecular mechanism of circ_0048764 in BC. METHODS Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression levels of circ_0048764, microRNA-578 (miR-578) and high mobility group AT-hook 2 (HMGA2) mRNA. The viability of BC cells was examined by cell counting kit 8 (CCK-8) assay. Besides, cyclin D1, proliferating cell nuclear antigen (PCNA) and HMGA2 expression levels were detected by western blot. The migrative and invasive capability of BC cells were probed by transwell assay. The relationships between miR-578 and circ_0048764 or HMGA2 3'-UTR were validated by dual-luciferase reporter gene assay. RESULTS Circ_0048764 was highly expressed in BC tissues and cells, which was significantly associated with tumor size (≥2 cm), lymph node status (positive), and higher TNM stage of BC patients. Circ_0048764 depletion suppressed the proliferative, migrative, and invasive abilities of BC cells, which was rescued by transfection of miR-578 inhibitors. The binding sites were verified between circ_0048764 and miR-578. HMGA2 was identified to be a target of miR-578 in BC cells, and circ_0048764 positively regulated HMGA2 expression in BC cells via repressing miR-578. CONCLUSION Circ_0048764 promotes BC cell growth, migration and invasion via absorbing miR-578 and up-regulating HMGA2.
Collapse
Affiliation(s)
- Mingjian Ding
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei, P.R. China.,Department of Thyroid Mammary Gland, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Dianlu Dai
- Department of Thyroid Mammary Gland, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Wenhua Yang
- Department of Thyroid Mammary Gland, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Cuizhi Geng
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei, P.R. China
| | - Guozhong Cui
- Department of Thyroid Mammary Gland, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| |
Collapse
|
21
|
Chang W, Li H, Ou W, Wang SY. A novel zinc metabolism-related gene signature to predict prognosis and immunotherapy response in lung adenocarcinoma. Front Immunol 2023; 14:1147528. [PMID: 37033934 PMCID: PMC10079938 DOI: 10.3389/fimmu.2023.1147528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background Zinc is a key mineral element in regulating cell growth, development, and immune system. We constructed the zinc metabolism-related gene signature to predict prognosis and immunotherapy response for lung adenocarcinoma (LUAD). Methods Zinc metabolism-associated gene sets were obtained from Molecular Signature Database. Then, the zinc metabolism-related gene signature (ZMRGS) was constructed and validated. After combining with clinical characteristics, the nomogram for practical application was constructed. The differences in biological pathways, immune molecules, and tumor microenvironment (TME) between the different groups were analyzed. Tumor Immune Dysfunction and Exclusion algorithm (TIDE) and two immunotherapy datasets were used to evaluate the immunotherapy response. Results The signature was constructed according to six key zinc metabolism-related genes, which can well predict the prognosis of LUAD patients. The nomogram also showed excellent prediction performance. Functional analysis showed that the low-risk group was in the status of immune activation. More importantly, the lower risk score of LUAD patients showed a higher response rate to immunotherapy. Conclusion The state of zinc metabolism is closely connected to prognosis, tumor microenvironment, and response to immunotherapy. The zinc metabolism-related signature can well evaluate the prognosis and immunotherapy response for LUAD patients.
Collapse
Affiliation(s)
- Wuguang Chang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hongmu Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Si-Yu Wang, ; Wei Ou,
| | - Si-Yu Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Si-Yu Wang, ; Wei Ou,
| |
Collapse
|
22
|
Yang S, Zou C, Li Y, Yang X, Liu W, Zhang G, Lu N. Knockdown circTRIM28 enhances tamoxifen sensitivity via the miR-409-3p/HMGA2 axis in breast cancer. Reprod Biol Endocrinol 2022; 20:146. [PMID: 36180890 PMCID: PMC9524098 DOI: 10.1186/s12958-022-01011-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tamoxifen (TAM) is a frequently-used treatment for breast cancer (BC). But the TAM resistance seriously affects the patient therapeutic effect. Previous research indicated that circular RNAs (circRNAs) might participate in the regulatory processes of BC. Here, we discovered the parts of circular RNA tripartite motif-containing 28 (circTRIM28) in BC. METHODS CircTRIM28, microRNA-409-3p (miR-409-3p), and high mobility group AT-hook 2 (HMGA2) levels were perceived by qRT-PCR and western blot. Moreover, the biological functions of the cells were examined. Furthermore, dual-luciferase report was employed to reconnoiter the targeted relationship between miR-409-3p and circTRIM28 or HMGA2. RESULTS CircTRIM28 and HMGA2 were augmented, and the miR-409-3p was repressed in BC. Silencing circTRIM28 enhanced tamoxifen sensitivity and cell apoptosis, whereas hampered cell development in BC cells. In mechanism, circTRIM28 could sponge miR-409-3p to increase HMGA2. In addition, silencing circTRIM28 impeded tumor growth. CONCLUSION CircTRIM28 facilitated the BC via miR-409-3p/HMGA2.
Collapse
Affiliation(s)
- Shiyong Yang
- Department of Oncology, Men No. 2 People's Hospital, N0. 39, Xiangshan Road, Jingmen City, Hubei Province, 448000, PR China
| | - Changwu Zou
- Department of Oncology, Men No. 2 People's Hospital, N0. 39, Xiangshan Road, Jingmen City, Hubei Province, 448000, PR China.
| | - Yuxin Li
- Department of Oncology, Men No. 2 People's Hospital, N0. 39, Xiangshan Road, Jingmen City, Hubei Province, 448000, PR China
| | - Xianguo Yang
- Department of Oncology, Men No. 2 People's Hospital, N0. 39, Xiangshan Road, Jingmen City, Hubei Province, 448000, PR China
| | - Wei Liu
- Department of Oncology, Men No. 2 People's Hospital, N0. 39, Xiangshan Road, Jingmen City, Hubei Province, 448000, PR China
| | - Guannan Zhang
- Department of Oncology, Men No. 2 People's Hospital, N0. 39, Xiangshan Road, Jingmen City, Hubei Province, 448000, PR China
| | - Nina Lu
- Department of Oncology, Men No. 2 People's Hospital, N0. 39, Xiangshan Road, Jingmen City, Hubei Province, 448000, PR China
| |
Collapse
|
23
|
Moison C, Spinella JF, Chagraoui J, Lavallée VP, Lehnertz B, Thiollier C, Boivin I, Mayotte N, MacRae T, Marinier A, Hébert J, Sauvageau G. HMGA2 expression defines a subset of human AML with immature transcriptional signature and vulnerability to G2/M inhibition. Blood Adv 2022; 6:4793-4806. [PMID: 35797243 PMCID: PMC9631656 DOI: 10.1182/bloodadvances.2021005828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 06/26/2022] [Indexed: 12/01/2022] Open
Abstract
High-mobility group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein that is normally expressed in stem cells of various tissues and aberrantly detected in several tumor types. We recently observed that one-fourth of human acute myeloid leukemia (AML) specimens express HMGA2, which associates with a very poor prognosis. We present results indicating that HMGA2+ AMLs share a distinct transcriptional signature representing an immature phenotype. Using single-cell analyses, we showed that HMGA2 is expressed in CD34+ subsets of stem cells and early progenitors, whether normal or derived from AML specimens. Of interest, we found that one of the strongest gene expression signatures associated with HMGA2 in AML is the upregulation of G2/M checkpoint genes. Whole-genome CRISPR/Cas9 screening in HMGA2 overexpressing cells further revealed a synthetic lethal interaction with several G2/M checkpoint genes. Accordingly, small molecules that target G2/M proteins were preferentially active in vitro and in vivo on HMGA2+ AML specimens. Together, our findings suggest that HMGA2 is a key functional determinant in AML and is associated with stem cell features, G2/M status, and related drug sensitivity.
Collapse
Affiliation(s)
- Céline Moison
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Spinella
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Division of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, and
| | - Bernhard Lehnertz
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Clarisse Thiollier
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Isabel Boivin
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Nadine Mayotte
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Tara MacRae
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Anne Marinier
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Institut universitaire d’hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; and
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Institut universitaire d’hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; and
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
24
|
Zhang Z, Xiahou Z, Wu W, Song Y. Nitrogen Metabolism Disorder Accelerates Occurrence and Development of Lung Adenocarcinoma: A Bioinformatic Analysis and In Vitro Experiments. Front Oncol 2022; 12:916777. [PMID: 35903696 PMCID: PMC9315097 DOI: 10.3389/fonc.2022.916777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Nitrogen metabolism (NM) plays a pivotal role in immune regulation and the occurrence and development of cancers. The aim of this study was to construct a prognostic model and nomogram using NM-related genes for the evaluation of patients with lung adenocarcinoma (LUAD). Methods The differentially expressed genes (DEGs) related to NM were acquired from The Cancer Genome Atlas (TCGA) database. Consistent clustering analysis was used to divide them into different modules, and differentially expressed genes and survival analysis were performed. The survival information of patients was combined with the expressing levels of NM-related genes that extracted from TCGA and Gene Expression Omnibus (GEO) databases. Subsequently, univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression were used to build a prognostic model. GO and KEGG analysis were elaborated in relation with the mechanisms of NM disorder (NMD). Meanwhile, immune cells and immune functions related to NMD were discussed. A nomogram was built according to the univariate and multivariate Cox analysis to identify independent risk factors. Finally, real-time fluorescent quantitative PCR (RT-PCR) and Western bolt (WB) were used to verify the expression level of hub genes. Results There were 138 differential NM-related genes that were divided into two gene modules. Sixteen NM-related genes were used to build a prognostic model and the receiver operating characteristic curve (ROC) showed that the efficiency was reliable. GO and KEGG analysis suggested that NMD accelerated development of LUAD through the Wnt signaling pathway. The level of activated dendritic cells (aDCs) and type II interferon response in the low-risk group was higher than that of the high-risk group. A nomogram was constructed based on ABCC2, HMGA2, and TN stages, which was identified as four independent risk factors. Finally, RT-PCR and WB showed that CDH17, IGF2BP1, IGFBP1, ABCC2, and HMGA2 were differently expressed between human lung fibroblast (HLF) cells and cancer cells. Conclusions High NM levels were revealed as a poor prognosis of LUAD. NMD regulates immune system through affecting aDCs and type II interferon response. The prognostic model with NM-related genes could be used to effectively evaluate the outcomes of patients.
Collapse
Affiliation(s)
- Zexin Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Wenfeng Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Yafeng Song,
| |
Collapse
|
25
|
Jia L, Liu M, An L, Wang H, Wang X. Circ_0000514 promotes the malignant biological behaviors of non-small cell lung cancer cells by modulating miR-330-5p and HMGA2. Pathol Res Pract 2022; 235:153913. [DOI: 10.1016/j.prp.2022.153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
26
|
Ba-Alawi W, Kadambat Nair S, Li B, Mammoliti A, Smirnov P, Mer AS, Penn LZ, Haibe-Kains B. Bimodal gene expression in cancer patients provides interpretable biomarkers for drug sensitivity. Cancer Res 2022; 82:2378-2387. [PMID: 35536872 DOI: 10.1158/0008-5472.can-21-2395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/24/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Identifying biomarkers predictive of cancer cell response to drug treatment constitutes one of the main challenges in precision oncology. Recent large-scale cancer pharmacogenomic studies have opened new avenues of research to develop predictive biomarkers by profiling thousands of human cancer cell lines at the molecular level and screening them with hundreds of approved drugs and experimental chemical compounds. Many studies have leveraged these data to build predictive models of response using various statistical and machine learning methods. However, a common pitfall to these methods is the lack of interpretability as to how they make predictions, hindering the clinical translation of these models. To alleviate this issue, we used the recent logic modeling approach to develop a new machine learning pipeline that explores the space of bimodally expressed genes in multiple large in vitro pharmacogenomic studies and builds multivariate, nonlinear, yet interpretable logic-based models predictive of drug response. The performance of this approach was showcased in a compendium of the three largest in vitro pharmacogenomic data sets to build robust and interpretable models for 101 drugs that span 17 drug classes with high validation rates in independent datasets. These results along with in vivo and clinical validation, support a better translation of gene expression biomarkers between model systems using bimodal gene expression.
Collapse
Affiliation(s)
| | | | - Bo Li
- University of Toronto, Toronto, Canada
| | | | | | | | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Chen F, Zhang H, Wang J. Circular RNA CircSHKBP1 accelerates the proliferation, invasion, angiogenesis, and stem cell-like properties via modulation of microR-766-5p/high mobility group AT-hook 2 axis in laryngeal squamous cell carcinoma. Bioengineered 2022; 13:11551-11563. [PMID: 35502885 PMCID: PMC9275975 DOI: 10.1080/21655979.2022.2068922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignancy in head and neck. Circular SHKBP1 (circSHKBP) exerts momentous functions in the occurrence of many cancers including LSCC. Thus, we investigated the oncogenic capacities of circSHKBP1 in LSCC, and revealed the underlying mechanism as a competing endogenous RNA. The expression levels of circSHKBP1, miR-766-5p, and high mobility group AT-hook 2 (HMGA2) were examined by quantitative real-time PCR and their influences on the overall survival were measured by Kaplan–Meier method. The correlations between circSHKBP1 and miR-766-5p or HMGA2 were detected by Spearman’s rank correlation analysis. In vitro, the influences of circSHKBP1/miR-766-5p/HMGA2 axis on the tumorigenesis of LSCC were examined by CCK-8, transwell, sphere formation, and angiogenesis assays, respectively. circSHKBP1 expression was up-regulated in the LSCC specimens and cell lines. And elevated circSHKBP1 expression was closely linked to poor prognosis. Silencing circSHKBP1 expression restrained cell proliferation, invasion, angiogenesis, stem cell-like properties and tumor growth. We observed that miR-766-5p was down-regulated and negatively correlated to circSHKBP1 in LSCC samples. However, HMGA2 was highly expressed and positively associated with circSHKBP1 in these specimens. Importantly, the levels of circSHKBP1, miR-766-5p, and HMGA2 were closely associated with patients’ clinical parameters including lymph nodes metastasis and TNM stages. Mechanistic analysis clarified that circSHKBP1 sponged miR-766-5p to regulate HMGA2, the target of miR-766-5p. Moreover, miR-766-5p inhibition and overexpression of HMGA2 rescued the tumor-suppressing roles of circSHKBP1 downregulation in LSCC. In conclusion, circSHKBP1 accelerated the tumorigenesis of LSCC via modulating HMGA2 by targeting miR-766-5p.
Collapse
Affiliation(s)
- Fu Chen
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Haiyan Zhang
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jie Wang
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
28
|
Cui J, Dean D, Hornicek FJ, Yi G, Duan Z. Expression and Clinical Significance of High-Mobility Group AT-hook 2 (HMGA2) in Osteosarcoma. Orthop Surg 2022; 14:955-966. [PMID: 35388973 PMCID: PMC9087380 DOI: 10.1111/os.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Although high‐mobility group AT‐hook 2 (HMGA2) has been shown to have crucial roles in the pathogenesis and metastasis of various malignancies, its expression and significance in osteosarcoma remain unknown. Here we evaluate the expression, clinical prognostic value, and overall function of HMGA2 in osteosarcoma. Methods Sixty‐nine osteosarcoma patient specimens within a tissue microarray (TMA) were analyzed by immunohistochemistry for HMGA2 expression. Demographics and clinicopathological information including age, gender, tumor location, metastasis, recurrence, chemotherapy response, follow‐up time, and disease status were also collected. After validation of expression, we determined whether there was a correlation between HMGA2 expression and patient clinicopathology. HMGA2 expression was also evaluated in osteosarcoma cell lines and patient tissues by Western blot, we analyzed the expression of HMGA2 in the human osteosarcoma cell lines MG63, 143B, U2OS, Saos‐2, MNNG/HOS, and KHOS. HMGA2‐specific siRNA and clonogenic assays were then used to determine the effect of HMGA2 inhibition on osteosarcoma cell proliferation, growth, and chemosensitivity. Results HMGA2 expression was elevated in the osteosarcoma patient specimens and human osteosarcoma cell lines. HMGA2 was differentially expressed in human osteosarcoma cell lines. Specifically, a relatively high expression of HMGA2 was present in KHOS, MNNG/HOS, 143B and a relatively low expression was in MG63, U2OS as well as Saos‐2. HMGA2 expression is correlated with metastasis and shorter overall survival. High HMGA2 expression is an independent predictor of poor osteosarcoma prognosis. There was no significant correlation between HMGA2 expression and the age, gender, or tumor site of the patient. HMGA2 expression is predominantly within the nucleus. The expression of HMGA2 also directly correlated to neoadjuvant chemoresistance. There was a significant reduction of HMGA2 expression in the siRNA transfection group. After the use of siRNA, the proliferation of osteosarcoma cells is decreased and the chemosensitivity of osteosarcoma cells is significantly increased. Conclusion Our study supports HMGA2 as a potential prognostic biomarker and therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Guoliang Yi
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
29
|
Lee H, Jeong SH, Lee H, Kim C, Nam YJ, Kang JY, Song MO, Choi JY, Kim J, Park EK, Baek YW, Lee JH. Analysis of lung cancer-related genetic changes in long-term and low-dose polyhexamethylene guanidine phosphate (PHMG-p) treated human pulmonary alveolar epithelial cells. BMC Pharmacol Toxicol 2022; 23:19. [PMID: 35354498 PMCID: PMC8969249 DOI: 10.1186/s40360-022-00559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung injury elicited by respiratory exposure to humidifier disinfectants (HDs) is known as HD-associated lung injury (HDLI). Current elucidation of the molecular mechanisms related to HDLI is mostly restricted to fibrotic and inflammatory lung diseases. In our previous report, we found that lung tumors were caused by intratracheal instillation of polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. However, the lung cancer-related genetic changes concomitant with the development of these lung tumors have not yet been fully defined. We aimed to discover the effect of long-term exposure of PHMG-p on normal human lung alveolar cells. METHODS We investigated whether PHMG-p could increase distorted homeostasis of oncogenes and tumor-suppressor genes, with long-term and low-dose treatment, in human pulmonary alveolar epithelial cells (HPAEpiCs). Total RNA sequencing was performed with cells continuously treated with PHMG-p and harvested after 35 days. RESULTS After PHMG-p treatment, genes with transcriptional expression changes of more than 2.0-fold or less than 0.5-fold were identified. Within 10 days of exposure, 2 protein-coding and 5 non-coding genes were selected, whereas in the group treated for 27-35 days, 24 protein-coding and 5 non-coding genes were identified. Furthermore, in the long-term treatment group, 11 of the 15 upregulated genes and 9 of the 14 downregulated genes were reported as oncogenes and tumor suppressor genes in lung cancer, respectively. We also found that 10 genes of the selected 24 protein-coding genes were clinically significant in lung adenocarcinoma patients. CONCLUSIONS Our findings demonstrate that long-term exposure of human pulmonary normal alveolar cells to low-dose PHMG-p caused genetic changes, mainly in lung cancer-associated genes, in a time-dependent manner.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Myeong Ok Song
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Yong-Wook Baek
- Environmental Health Research Department, Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea.
| |
Collapse
|
30
|
Bai J, Zhu X, Zhang J, Bulin B. Screening key prognostic factors and constructing survival prognostic risk prediction model based on ceRNA network in early lung adenocarcinoma. Transl Cancer Res 2022; 10:4652-4663. [PMID: 35116321 PMCID: PMC8797449 DOI: 10.21037/tcr-20-3273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/14/2021] [Indexed: 12/25/2022]
Abstract
Background We aim to discover some prognostic factors, provide a basis for discovering molecular markers, and provide a basis for molecular features of early lung adenocarcinoma (LUAD) to predict patient prognosis. Methods Sequence data of LUAD were downloaded from The Cancer Genome Atlas (TCGA) database to screen out differentially expressed lncRNAs, miRNAs, and mRNAs (DERs). DERs were identified using R software’s limma package. The competitive endogenous RNA (ceRNA) network was constructed based on these RNAs. Univariate and multivariate Cox regression analysis on the RNAs in the ceRNA screened out independent prognostic-related RNAs to construct a prognostic risk score (PS) model. Combined with clinical data, we can calculate the survival rate of patients with early LUAD. Results There were 2,701 differentially expressed mRNAs (DEmRNAs), 47 differentially expressed lncRNAs (DElncRNAs), and 161 differentially expressed miRNAs (DEmiRNAs) identified in early LUAD. Based on these RNAs, 32 lncRNAs, 87 miRNAs, and 174 mRNAs participated in the ceRNA network. Twelve independently prognostic-related RNAs form an optimized combination. We developed a PS model based on these RNAs. Age, tumor recurrence and PS model status were independent survival prognostic clinical factors. Nomogram was established to predict the 3-year and 5-year survival rates. Conclusions We successfully constructed a ceRNA regulatory network based on the DERs in early LUAD. It can help us clarify the molecular mechanism of early LUAD. Simultaneously, the prognostic-related RNAs in early LUAD were also screened out. This network could provide new bases for diagnoses and prognoses of patients with LUAD.
Collapse
Affiliation(s)
- Juncheng Bai
- Department of Pathology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Xiaochun Zhu
- Department of Pathology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Jintao Zhang
- Department of Pathology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Baila Bulin
- Drug Lab, Inner Mongolia International Mongolian Medicine Hospital, Hohhot, China
| |
Collapse
|
31
|
Shen A, Liu L, Huang Y, Shen Z, Wu M, Chen X, Wu X, Lin X, Chen Y, Li L, Cheng Y, Chu J, Sferra TJ, Wei L, Zhuang Q, Peng J. Down-Regulating HAUS6 Suppresses Cell Proliferation by Activating the p53/p21 Pathway in Colorectal Cancer. Front Cell Dev Biol 2022; 9:772077. [PMID: 35096810 PMCID: PMC8790508 DOI: 10.3389/fcell.2021.772077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background: HAUS6 participates in microtubule-dependent microtubule amplification, but its role in malignancies including colorectal cancer (CRC) has not been explored. We therefore assessed the potential oncogenic activities of HAUS6 in CRC. Results: HAUS6 mRNA and protein expression is higher in CRC tissues, and high HAUS6 expression is correlated with shorter overall survival in CRC patients. HAUS6 knockdown in CRC cell lines suppressed cell growth in vitro and in vivo by inhibiting cell viability, survival and arresting cell cycle progression at G0/G1, while HAUS6 over-expression increased cell viability. We showed that these effects are dependent on activation of the p53/p21 signalling pathway by reducing p53 and p21 degradation. Moreover, combination of HAUS6 knockdown and 5-FU treatment further enhanced the suppression of cell proliferation of CRC cells by increasing activation of the p53/p21 pathway. Conclusion: Our study highlights a potential oncogenic role for HAUS6 in CRC. Targeting HAUS6 may be a promising novel prognostic marker and chemotherapeutic target for treating CRC patients.
Collapse
Affiliation(s)
- Aling Shen
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liya Liu
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yue Huang
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | - Li Li
- Department of Health Management, Fujian Provincial Hospital, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J Sferra
- Department of Health Management, Fujian Provincial Hospital, Fuzhou, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qunchuan Zhuang
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
32
|
Wang H, Liu J, Gao J, Yan W, Rehan VK. Perinatal Exposure to Nicotine Alters Sperm RNA Profiles in Rats. Front Endocrinol (Lausanne) 2022; 13:893863. [PMID: 35600600 PMCID: PMC9114732 DOI: 10.3389/fendo.2022.893863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023] Open
Abstract
Perinatal exposure to smoking has been associated with childhood asthma, one of the most common pediatric conditions affecting millions of children globally. Of great interest, this disease phenotype appears heritable as it can persist across multiple generations even in the absence of persistent exposure to smoking in subsequent generations. Although the molecular mechanisms underlying childhood asthma induced by perinatal exposure to smoking or nicotine remain elusive, an epigenetic mechanism has been proposed, which is supported by the data from our earlier analyses on germline DNA methylation (5mC) and histone marks (H3 and H4 acetylation). To further investigate the potential epigenetic inheritance of childhood asthma induced by perinatal nicotine exposure, we profiled both large and small RNAs in the sperm of F1 male rats. Our data revealed that perinatal exposure to nicotine leads to alterations in the profiles of sperm-borne RNAs, including mRNAs and small RNAs, and that rosiglitazone, a PPARγ agonist, can attenuate the effect of nicotine and reverse the sperm-borne RNA profiles of F1 male rats to close to placebo control levels.
Collapse
Affiliation(s)
- Hetan Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jie Liu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| | - Virender K. Rehan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| |
Collapse
|
33
|
Yan J, Dai P, Qin X, He Y, Zhang Y. HMGA2 promotes the migration and invasion of gallbladder cancer cells and HMGA2 knockdown inhibits angiogenesis via targeting VEGFA. Mol Med Rep 2021; 25:54. [PMID: 34913073 PMCID: PMC8711027 DOI: 10.3892/mmr.2021.12570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022] Open
Abstract
The high mobility group AT-hook 2 (HMGA2) protein has been found to be upregulated in the majority of tumor types and is associated with a poor prognosis. Previous studies have suggested the oncogenic role of HMGA2 in gallbladder cancer (GBC). The present study aimed to investigate the effects of HMGA2 on the invasion, migration and angiogenesis of GBC cells. To achieve this aim, HMGA2 was overexpressed or silenced in the GBC cell line, EH-GB1, and then the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) abilities of EH-GB1 cells were investigated using Cell Counting Kit-8, wound healing, Transwell and western blotting assays. In addition, the expression levels of VEGFA were determined in EH-GB1 cells using western blotting and reverse transcription-quantitative PCR following HMGA2 overexpression or silencing. Furthermore, HMGA2-silenced EH-GB1 cells were transfected with VEGFA overexpression plasmids to evaluate the tube formation ability of HUVECs using tube formation assay. The results demonstrated that HMGA2 silencing inhibited GBC cell proliferation, migration, invasion and EMT, as evidenced by the downregulated expression of Ki67, proliferating cell nuclear antigen, MMP2, MMP9, N-cadherin, snail family transcriptional repressor 2 and zinc finger E-box-binding homeobox 1, and attenuated cell migration and invasion. However, the opposite results were obtained following HMGA2 overexpression. Moreover, HMGA2 knockdown and overexpression downregulated and upregulated VEGFA expression, respectively. In addition, the tube formation ability of HUVECs and the expression levels of CD31, VEGFR1 and VEGFR2 were downregulated following HMGA2 silencing. However, these effects were partially rescued by simultaneous VEGFA overexpression. In conclusion, the findings of the present study revealed that HMGA2 may promote GBC cell migration, invasion, EMT and angiogenesis. Therefore, inhibiting HMGA2 expression could be considered as a possible therapeutic approach for GBC.
Collapse
Affiliation(s)
- Jun Yan
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Peng Dai
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Xueliang Qin
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Yanping He
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Yu Zhang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
34
|
Wang Z, Huang Y, Chu F, Ji S, Liao K, Cui Z, Chen J, Tang S. Clock Gene Nr1d1 Alleviates Retinal Inflammation Through Repression of Hmga2 in Microglia. J Inflamm Res 2021; 14:5901-5918. [PMID: 34795498 PMCID: PMC8594447 DOI: 10.2147/jir.s326091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Retinal inflammation is involved in the pathogenesis of several retinal diseases. As one of the core clock genes, Nr1d1 has been reported to suppress inflammation in many diseases. We investigated whether pharmacological activation of Nr1d1 can inhibit retinal inflammation and delineated the mechanisms of Nr1d1 in alleviating microglia activation. Methods Lipopolysaccharide (LPS) induced mice models were used to examine the effects of SR9009 (agonist of NR1D1) treatment on inflammatory phenotypes in vivo. Anti-inflammatory effects of Nr1d1 and associated mechanisms were investigated in the BV2 microglia cell line, and in primary retinal microglia in vitro. Results SR9009 treatment alleviated LPS-induced inflammatory cell infiltration, elevated cytokine levels and morphological changes of the microglia in mice models. In LPS-stimulated BV2 cells and primary retinal microglia, SR9009 suppressed cytokine expressions by inhibiting the NF-κB signaling pathway. Moreover, SR9009 treatment increased the levels of the M2 phenotype marker (CD206) and the proportions of ramified microglia. Suppression of Nr1d1 with siRNA reversed the inhibitory effects of SR9009 on cytokine production in BV2 cells. RNA-seq analysis showed that genes that were upregulated following Nr1d1 knockdown were enriched in inflammatory-associated biological processes. Subsequently, ChIP-seq of NR1D1 in BV2 was performed, and the results were integrated with RNA-seq results using the Binding and Expression Target Analysis (BETA) tool. Luciferase assays, electrophoretic mobility shift assay (EMSA), qPCR and Western blotting assays revealed that NR1D1 binds the promoter of Hmga2 to suppress its transcription. Notably, overexpressed Hmga2 in activated microglia could partly abolish the anti-inflammatory effects of Nr1d1. Conclusion The clock gene Nr1d1 protects against retinal inflammation and microglia activation in part by suppressing Hmga2 transcription.
Collapse
Affiliation(s)
- Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Yinhua Huang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Feixue Chu
- Department of Ophthalmology, Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, People's Republic of China
| | - Shangli Ji
- Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Zekai Cui
- Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China.,Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, People's Republic of China.,Institute of Ophthalmology, Jinan University, Guangzhou, People's Republic of China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Li D, Cao Y, Wang J, Yang H, Liu W, Cui J, Wu W. Regulatory effect between HMGA2 and the Wnt/β-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma. Oncol Lett 2021; 22:849. [PMID: 34733367 PMCID: PMC8561620 DOI: 10.3892/ol.2021.13110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the high incidence of colorectal cancer worldwide, the underlying molecular mechanisms have been extensively investigated. The Wnt/β-catenin signaling pathway plays a key role in the carcinogenesis of colorectal adenoma. In addition, the high mobility group AT-hook 2 (HMGA2) protein, which is involved in several biological processes, such as proliferation, differentiation, transformation and metastasis, is expressed at significantly high levels in colorectal cancer tissues compared with adjacent normal tissues. Currently, the role of HMGA2 in the carcinogenesis of sporadic colorectal tubular adenoma remains unclear. The downstream Wnt/β-catenin signaling molecule, T-cell factor/lymphoid enhancing factor (TCF/LEF), shares a similar domain with HMGA2, which enhances β-catenin transcriptional activity and TCF/LEF binding. Thus, the present study investigated the association between HMGA2 and the Wnt/β-catenin signaling pathway, and their role in the carcinogenesis of sporadic colorectal tubular adenoma via immunohistochemistry, siRNA, quantitative PCR and western blot analyses. The results demonstrated that the positive rate of HMGA2 expression gradually increased during tumor progression. Furthermore, HMGA2 expression was positively correlated with Wnt/β-catenin signaling protein expression [Wnt, β-catenin, cyclin-dependent kinase 4 (CDK4) and cyclin D1], suggesting its involvement in the carcinogenesis of sporadic colorectal tubular adenoma and its potential to synergistically interact with the Wnt/β-catenin signaling pathway. HMGA2 knockdown in the human colorectal cancer cell line, HCT 116 decreased β-catenin expression and its downstream targets, CDK4 and cyclin D1. Furthermore, silencing of Wnt or β-catenin decreased HMGA2 expression. Taken together, the results of the present study suggest the coordinated regulation of HMGA2 and the Wnt/β-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanan Cao
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Weina Liu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
36
|
Ma W, Gao Y, Zhang J, Yao X, Jia L, Xu Q. Long noncoding RNA LINC01410 promotes tumorigenesis of osteosarcoma cells via miR-497-5p/HMGA2 axis. J Biochem Mol Toxicol 2021; 35:e22921. [PMID: 34605103 DOI: 10.1002/jbt.22921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
LINC01410 is a tumor promoter that is upregulated in some cancer types, such as osteosarcoma (OS). Nonetheless, its role in OS and the underlying molecular mechanism have not been fully understood. Hence, we sought to elucidate it. We performed reverse-transcription quantitative polymerase chain reaction for examining LINC01410, miR-497-5p and HMGA2 levels. Additionally, we carried out the cell counting kit-8 and Transwell assays for detecting cell proliferation and invasion/migration. Bioinformatics predicted that there was a miR-497-5p binding site in LINC01410 or HMGA2; meanwhile, miR-497-5p was found to interact with HMGA2 and LINC01410 through dual-luciferase reporter assay. LINC01410 and HMGA2 were high, and miR-497-5p showed low expression in OS tissues and cells. Cell function assay demonstrated that LINC01410 or HMGA2 knockdown or miR-497-5p overexpression obviously restrained OS proliferation, invasion, and migration. Oppositely, inhibiting miR-497-5p had the opposite effects. Functionally, miR-497-5p bound with LINC01410 3'-untranslated region and HMGA2 was found to be the miR-497-5p target gene. Lastly, LINC01410 enhanced OS cell growth, invasion, and migration via decreasing miR-497-5p expression, whereas increasing that of HMGA2. We have demonstrated that LINC01410 promoted OS development partly by miR-497-5p/HMGA2 signal transduction pathway and this provides a reference for studying the mechanism of LINC01410 in OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Lina Jia
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Rothzerg E, Ho XD, Xu J, Wood D, Märtson A, Kõks S. Upregulation of 15 Antisense Long Non-Coding RNAs in Osteosarcoma. Genes (Basel) 2021; 12:genes12081132. [PMID: 34440306 PMCID: PMC8394133 DOI: 10.3390/genes12081132] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
The human genome encodes thousands of natural antisense long noncoding RNAs (lncRNAs); they play the essential role in regulation of gene expression at multiple levels, including replication, transcription and translation. Dysregulation of antisense lncRNAs plays indispensable roles in numerous biological progress, such as tumour progression, metastasis and resistance to therapeutic agents. To date, there have been several studies analysing antisense lncRNAs expression profiles in cancer, but not enough to highlight the complexity of the disease. In this study, we investigated the expression patterns of antisense lncRNAs from osteosarcoma and healthy bone samples (24 tumour-16 bone samples) using RNA sequencing. We identified 15 antisense lncRNAs (RUSC1-AS1, TBX2-AS1, PTOV1-AS1, UBE2D3-AS1, ERCC8-AS1, ZMIZ1-AS1, RNF144A-AS1, RDH10-AS1, TRG-AS1, GSN-AS1, HMGA2-AS1, ZNF528-AS1, OTUD6B-AS1, COX10-AS1 and SLC16A1-AS1) that were upregulated in tumour samples compared to bone sample controls. Further, we performed real-time polymerase chain reaction (RT-qPCR) to validate the expressions of the antisense lncRNAs in 8 different osteosarcoma cell lines (SaOS-2, G-292, HOS, U2-OS, 143B, SJSA-1, MG-63, and MNNG/HOS) compared to hFOB (human osteoblast cell line). These differentially expressed IncRNAs can be considered biomarkers and potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Xuan Dung Ho
- Department of Oncology, College of Medicine and Pharmacy, Hue University, Hue 53000, Vietnam;
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, 50411 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: ; Tel.: +61-(0)-8-6457-0313
| |
Collapse
|
38
|
Wang C, Zhang T, Wang K, Zhang S, Sun Q, Yang X. ER-α36 Promotes the Malignant Progression of Cervical Cancer Mediated by Estrogen via HMGA2. Front Oncol 2021; 11:712849. [PMID: 34336701 PMCID: PMC8317436 DOI: 10.3389/fonc.2021.712849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023] Open
Abstract
Objectives Estrogen is proven to promote the malignant behaviors of many cancers via its receptors. Estrogen receptor alfa 36 (ER-α36) is a newly identified isoform of estrogen receptor alfa (ER-α), the role of ER-α36 in regulating the effects of estrogen and its potential impact on human cervical cancer is poorly understood. Methods Immunohistochemistry staining was used to evaluate the expression of ER-α36, estrogen receptor alfa 66 (ER-α66) and their prognostic values in cervical cancer. The effects of ER-α36 and ER-α66 on the proliferation and metastasis of cervical cancer were measured in vitro. A xenograft tumor assay was used to study the tumorigenesis role of ER-α36 in vivo. Furthermore, the functional gene at the downstream of ER-α36 was obtained via next-generation sequencing, and the biological functions of high mobility group A2 (HMGA2) in cervical cancer cells were investigated in vitro. Results ER-α36 was over-expressed in cervical cancer tissues and elevated ER-α36 expression was associated with poor prognosis in cervical cancer patients. High expression of ER-α36 promoted the proliferation, invasion and metastasis of cervical cancer cells mediated by estrogen, while silencing ER-α36 had the opposite effects. Further research showed that HMGA2 was a downstream target of ER-α36 in cervical cancer cells. The oncogenic effect of ER-α36 was attenuated after HMGA2 knockdown. Conclusions High expression of ER-α36 was correlated with a poor prognosis in cervical cancer by regulating HMGA2. ER-α36 could be a prognostic biomarker and a target for cervical cancer treatment.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Tianli Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Kun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Qing Sun
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
39
|
Wang P, Zhang L, Yin S, Xu Y, Tai S, Zhang LI, Liang C. hsa_circ_0062019 promotes the proliferation, migration, and invasion of prostate cancer cells via the miR-195-5p/HMGA2 axis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:815-822. [PMID: 33978716 DOI: 10.1093/abbs/gmab058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNA (circRNA) is a new class of non-coding RNA. It was reported that circRNA involves in the metastasis of cancer. The aim of this study is to explore the role and mechanism of circRNA hsa_circ_0062019 in the development of prostate cancer (PCa). Our results showed that hsa_circ_0062019 was highly expressed in PCa cell lines. Cell Counting Kit-8 assay revealed that upregulation of hsa_circ_0062019 boosted PCa cell proliferation, and silencing of hsa_circ_0062019 inhibited cell proliferation. Meanwhile, transwell assay proved that upregulation of hsa_circ_0062019 facilitated PCa cell invasion and migration, while downregulation of hsa_circ_0062019 inhibited these malignant phenotypes. Furthermore, luciferase reporter assay proved the binding of hsa_circ_0062019 with miR-195-5p and the binding between miR-195-5p and high mobility group AT-hook 2 (HMGA2), suggesting that hsa_circ_0062019 promoted the expression of HMGA2 by sponging miR-195-5p. In addition, our results revealed that the hsa_circ_0062019-induced PCa cell malignant phenotypes were notably reversed by the downregulation of HMGA2. Overall, our study demonstrated that hsa_circ_0062019 promoted PCa cell proliferation, migration, and invasion via upregulation of HMGA2 expression by sponging miR-195-5p. Our study proved a novel molecular mechanism of PCa development and provided a potential target for the treatment of PCa.
Collapse
Affiliation(s)
- Peiyu Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| | - Ligang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| | - Shuiping Yin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| | - Yuchen Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| | - L i Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
40
|
Alswady-Hoff M, Erdem JS, Phuyal S, Knittelfelder O, Sharma A, Fonseca DDM, Skare Ø, Slupphaug G, Zienolddiny S. Long-Term Exposure to Nanosized TiO 2 Triggers Stress Responses and Cell Death Pathways in Pulmonary Epithelial Cells. Int J Mol Sci 2021; 22:ijms22105349. [PMID: 34069552 PMCID: PMC8161419 DOI: 10.3390/ijms22105349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/03/2023] Open
Abstract
There is little in vitro data available on long-term effects of TiO2 exposure. Such data are important for improving the understanding of underlying mechanisms of adverse health effects of TiO2. Here, we exposed pulmonary epithelial cells to two doses (0.96 and 1.92 µg/cm2) of TiO2 for 13 weeks and effects on cell cycle and cell death mechanisms, i.e., apoptosis and autophagy were determined after 4, 8 and 13 weeks of exposure. Changes in telomere length, cellular protein levels and lipid classes were also analyzed at 13 weeks of exposure. We observed that the TiO2 exposure increased the fraction of cells in G1-phase and reduced the fraction of cells in G2-phase, which was accompanied by an increase in the fraction of late apoptotic/necrotic cells. This corresponded with an induced expression of key apoptotic proteins i.e., BAD and BAX, and an accumulation of several lipid classes involved in cellular stress and apoptosis. These findings were further supported by quantitative proteome profiling data showing an increase in proteins involved in cell stress and genomic maintenance pathways following TiO2 exposure. Altogether, we suggest that cell stress response and cell death pathways may be important molecular events in long-term health effects of TiO2.
Collapse
Affiliation(s)
- Mayes Alswady-Hoff
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Johanna Samulin Erdem
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Santosh Phuyal
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | | | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Davi de Miranda Fonseca
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Øivind Skare
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Shanbeh Zienolddiny
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
- Correspondence: ; Tel.: +47-23195284
| |
Collapse
|
41
|
Zarrilli G, Galuppini F, Angerilli V, Munari G, Sabbadin M, Lazzarin V, Nicolè L, Biancotti R, Fassan M. miRNAs Involved in Esophageal Carcinogenesis and miRNA-Related Therapeutic Perspectives in Esophageal Carcinoma. Int J Mol Sci 2021; 22:3640. [PMID: 33807389 PMCID: PMC8037581 DOI: 10.3390/ijms22073640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a pivotal role in many aspects of cell biology, including cancer development. Within esophageal cancer, miRNAs have been proved to be involved in all phases of carcinogenesis, from initiation to metastatic spread. Several miRNAs have been found to be dysregulated in esophageal premalignant lesions, namely Barrett's esophagus, Barrett's dysplasia, and squamous dysplasia. Furthermore, numerous studies have investigated the alteration in the expression levels of many oncomiRNAs and tumor suppressor miRNAs in esophageal squamous cell carcinoma and esophageal adenocarcinoma, thus proving how miRNAs are able modulate crucial regulatory pathways of cancer development. Considering these findings, miRNAs may have a role not only as a diagnostic and prognostic tool, but also as predictive biomarker of response to anti-cancer therapies and as potential therapeutic targets. This review aims to summarize several studies on the matter, focusing on the possible diagnostic-therapeutic implications.
Collapse
Affiliation(s)
- Giovanni Zarrilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Francesca Galuppini
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Valentina Angerilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Giada Munari
- Veneto Institute of Oncology-IOV-IRCCS, 35128 Padua, Italy;
| | - Marianna Sabbadin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Vanni Lazzarin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Lorenzo Nicolè
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Rachele Biancotti
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Matteo Fassan
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
- Veneto Institute of Oncology-IOV-IRCCS, 35128 Padua, Italy;
| |
Collapse
|
42
|
Wang Q, Wang G, Xu X, Chen Z. miR-760 mediated the proliferation and metastasis of hepatocellular carcinoma cells by regulating HMGA2. Pathol Res Pract 2021; 222:153420. [PMID: 33887625 DOI: 10.1016/j.prp.2021.153420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The purpose of our study was to investigate the roles of miR-760 and its potential mechanisms in HCC. METHODS The functions of miR-760 were identified and measured by MTT, colony formation, transwell, and flow cytometry assays. Luciferase assay was applied to verify the direct binding of miR-760 on HMGA2 3'untranslated region (3'UTR). Then, in vitro experiment was used to investigate the biological effects of miR-760 and HMGA2. Luciferase and ChIP assays were used to detect the validity of SP1 binding sites on the miR-760 promoter. RESULTS We demonstrated that miR-760 overexpression suppressed cell proliferation, migration, and invasion in HCC. Besides, HMGA2 was demonstrated as a direct target gene of miR-760. Furthermore, we found that methylation may result in the downregulation of miR-760, and SP1 could inhibit the transcription of miR-760. CONCLUSIONS Our study demonstrated that SP1/miR-760/HMGA2 may serve as a molecular regulatory axis for HCC treatment.
Collapse
Affiliation(s)
- Quhui Wang
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Gang Wang
- Department of Anesthesiology, Union Hospital Affiliated With Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaodong Xu
- Department of General Surgery, The 4th Affiliated Hospital of Nantong University, Yancheng, 224000, China
| | - Zhong Chen
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
43
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
44
|
Zheng H, Yan B, Wu Q, Zhang J. MicroRNA-9-5p increases the sensitivity of colorectal cancer cells to 5-fluorouracil by downregulating high mobility group A2 expression. Oncol Lett 2021; 21:235. [PMID: 33613724 PMCID: PMC7856691 DOI: 10.3892/ol.2021.12496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy drug 5-fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC); however, 5-FU resistance decreases CRC therapeutic efficiency. A previous study revealed that microRNA (miR)-9-5p serves an antitumor effect in CRC. However, the effect of miR-9-5p in CRC chemoresistance remains unknown. In the present study, two CRC cell lines, including HT-29 and HCT-116 cells, were used to investigate the impact of miR-9-5p in overcoming 5-FU resistance. The results revealed that treatment with 5-FU decreased CRC cell viability and upregulated miR-9-5p expression in both CRC cells. Knockdown of miR-9-5p decreased HCT-116 cell sensitivity to 5-FU and inhibited apoptosis. By contrast, miR-9-5p overexpression enhanced the sensitivity of HT-29 cells to 5-FU and induced apoptosis. Additionally, it was confirmed that miR-9-5p directly targeted high mobility group A2 (HMGA2). HMGA2 overexpression reversed miR-9-5p-induced HT-29 apoptosis. The present study indicated that miR-9-5p enhanced the sensitivity of CRC cells to 5-FU via downregulating HMGA2 expression.
Collapse
Affiliation(s)
- Huizhe Zheng
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Bin Yan
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Qi Wu
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jingli Zhang
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
45
|
Lu W, Huang Z, Wang J, Liu H. Long non-coding RNA DANCR accelerates colorectal cancer progression via regulating the miR-185-5p/HMGA2 axis. J Biochem 2021; 171:389-398. [PMID: 33481014 DOI: 10.1093/jb/mvab011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in tumor progression. Herein, this work was designated to decipher the clinical significance, function and molecular mechanism of an lncRNA, differentiation antagonizing non-coding RNA (DANCR) in colorectal cancer (CRC). Quantitative real-time PCR (qRT-PCR) was adopted to examine DANCR, miR-185-5p and HMGA2 mRNA expressions in CRC tissues and cells. Both gain-of-function and loss-of-function cell models for DANCR were established, and then MTT, wound healing and Transwell, flow cytometry assays were carried out to detect the proliferation, migration, invasion, cell cycle and apoptosis of CRC cells. Dual luciferase reporter gene assay and RIP assay were utilized to validate the targeting relationships between DANCR and miR-185-5p. Western blot was employed for detecting high mobility group A2 (HMGA2) expressions in CRC cells. In this study, we demonstrated that the expression of DANCR was elevated in CRC tissues and cell lines, and its high expression was significantly associated with increased TNM stage and positive lymph node metastasis. DANCR overexpression promoted CRC cell proliferation, migration, invasion and cell cycle progression, but inhibited apoptosis; while knocking down DANCR caused the opposite effects. DANCR was further identified as a molecular sponge for miR-185-5p, and DANCR could indirectly increase the expression of HMGA2 via repressing miR-185-5p. In conclusion, DANCR/miR-185-5p/HMGA2 axis participated in the progression of CRC.
Collapse
Affiliation(s)
- Weiqun Lu
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhiliang Huang
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Jia Wang
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Haiying Liu
- Department of Gastrointestinal Surgical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
46
|
Xu J, Fang X, Long L, Wang S, Qian S, Lyu J. HMGA2 promotes breast cancer metastasis by modulating Hippo-YAP signaling pathway. Cancer Biol Ther 2020; 22:5-11. [PMID: 33307962 DOI: 10.1080/15384047.2020.1832429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women, and triple-negative breast cancer (TNBC) accounts for about 15-20% of all breast cancer. High mobility group AT-hook 2 (HMGA2) is overexpressed in some tumors and closely associated with patients' prognosis. However, the mechanisms involved in the regulation of HMGA2 in TNBC still remain unclear. METHODS In this study, HMGA2 level in TNBC cell lines was analyzed by western blot. After knockdown of HMGA2 expression by RNA interference in TNBC cell lines MDA-MB-231 and SUM149, wound healing and transwell assays were conducted to examine the effects of HMGA2 on migration and invasion. Tumor metastasis was assessed in amouse xenograft model invivo. Furthermore, expression levels of epithelial-mesenchymal transition (EMT) biomarkers and involvement of the Hippo-YAP pathway were detected by western blot. RESULTS Compared to normal breast epithelial cells, the expression levels of HMGA2 were significantly increased in TNBC cell lines (all P< .05). Downregulation of HMGA2 dramatically inhibited the migration and invasion of MDA-MB-231 and SUM149 cells (all P< .01) invitro, and suppressed the tumor metastasis of nude mice xenograft model invivo. Western blot analysis revealed alterations in EMT biomarkers: the expression of mesenchymal markers N-cadherin, Vimentin and Snail were decreased, while the expression of epithelial marker E-cadherin was increased. Downregulated expression of HMGA2 attenuated Hippo-YAP related protein expression and the stability of YAP. CONCLUSIONS HMGA2 is highly expressed in TNBC cells. Downregulation of HMGA2 inhibits the migration and invasion of TNBC and invivo tumor metastasis mediated through inhibition of EMT and Hippo-YAP pathway.
Collapse
Affiliation(s)
- Jianxin Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Xuejiao Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Luye Long
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Sixuan Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Shihan Qian
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| |
Collapse
|
47
|
Siddiqui MA, Gollavilli PN, Ramesh V, Parma B, Schwab A, Vazakidou ME, Natesan R, Saatci O, Rapa I, Bironzo P, Schuhwerk H, Asangani IA, Sahin O, Volante M, Ceppi P. Thymidylate synthase drives the phenotypes of epithelial-to-mesenchymal transition in non-small cell lung cancer. Br J Cancer 2020; 124:281-289. [PMID: 33024270 PMCID: PMC7782507 DOI: 10.1038/s41416-020-01095-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) enhances motility, stemness, chemoresistance and metastasis. Little is known about how various pathways coordinate to elicit EMT’s different functional aspects in non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) has been previously correlated with EMT transcription factor ZEB1 in NSCLC and imparts resistance against anti-folate chemotherapy. In this study, we establish a functional correlation between TS, EMT, chemotherapy and metastasis and propose a network for TS mediated EMT. Methods Published datasets were analysed to evaluate the significance of TS in NSCLC fitness and prognosis. Promoter reporter assay was used to sort NSCLC cell lines in TSHIGH and TSLOW. Metastasis was assayed in a syngeneic mouse model. Results TS levels were prognostic and predicted chemotherapy response. Cell lines with higher TS promoter activity were more mesenchymal-like. RNA-seq identified EMT as one of the most differentially regulated pathways in connection to TS expression. EMT transcription factors HOXC6 and HMGA2 were identified as upstream regulator of TS, and AXL, SPARC and FOSL1 as downstream effectors. TS knock-down reduced the metastatic colonisation in vivo. Conclusion These results establish TS as a theranostic NSCLC marker integrating survival, chemo-resistance and EMT, and identifies a regulatory network that could be targeted in EMT-driven NSCLC. ![]()
Collapse
Affiliation(s)
- Mohammad Aarif Siddiqui
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paradesi Naidu Gollavilli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vignesh Ramesh
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Annemarie Schwab
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maria Eleni Vazakidou
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Ida Rapa
- Department of Oncology at San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Paolo Bironzo
- Department of Oncology at San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Harald Schuhwerk
- Department of Experimental Medicine-I, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Marco Volante
- Department of Oncology at San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Paolo Ceppi
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. .,Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
48
|
Comprehensive Analysis of Differentially Expressed circRNAs Reveals a Colorectal Cancer-Related ceRNA Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:7159340. [PMID: 32952599 PMCID: PMC7481959 DOI: 10.1155/2020/7159340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
The morbidity and mortality of colorectal cancer (CRC) remained to be very high worldwide. Recently, circRNAs had been revealed to have a crucial role in cancer prognosis and progression. Numerous researches have shown that RNA sequencing technology and in silico method were widely used to identify pathogenic mechanisms and uncover promising targets for diagnosis and therapy. In this study, these methods were analyzed to obtain differentially expressed circRNAs (DECs). We identified upregulated 316 circRNAs and reduced 76 circRNAs in CRC samples, in comparison with those in normal tissues. In addition, a competitive endogenous network of circRNA-miRNA-mRNA was established to predict the mechanisms of circRNAs. Bioinformatics analysis revealed that these circRNAs participated in metabolism regulation and cell cycle progression. Of note, we observed the hub genes and miRNAs in this ceRNA network were associated with the survival time in CRC. We think this study could provide potential prognostic biomarkers and targets for CRC.
Collapse
|
49
|
Wang MD, Xing H, Li C, Liang L, Wu H, Xu XF, Sun LY, Wu MC, Shen F, Yang T. A novel role of Krüppel-like factor 8 as an apoptosis repressor in hepatocellular carcinoma. Cancer Cell Int 2020; 20:422. [PMID: 32874135 PMCID: PMC7456055 DOI: 10.1186/s12935-020-01513-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Krüppel-like factor 8 (KLF8), a cancer-promoting factor that regulates critical gene transcription and cellular cancer-related events, has been implicated in tumor development and progression. However, the functional role of KLF8 in the pathogenesis of hepatocellular carcinoma (HCC) remains largely unknown. METHODS The gene expression patterns and genome-wide regulatory profiles of HCC cells after KLF8 knockout were analyzed by using RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) of histone H3 lysine 27 acetylation (H3K27ac) combined with bioinformatics analysis. Transcription factor-binding motifs that recognized by KLF8 were evaluated by motif analysis. For the predicted target genes, transcriptional changes were examined by ChIP, and loss of function experiments were conducted by siRNA transfection. RESULTS KLF8 functioned as a transcription repressor in HCC and mainly regulated apoptotic-related genes directly. A total of 1,816 differentially expressed genes after KLF8 knockout were identified and significantly corresponded to global changes in H3K27ac status. Furthermore, two predicted target genes, high-mobility group AT-hook 2 (HMGA2) and matrix metalloproteinase 7 (MMP7), were identified as important participants in KLF8-mediated anti-apoptotic effect in HCC. Knockout of KLF8 enhanced cell apoptosis process and caused increase in the associated H3K27ac, whereas suppression HMGA2 or MMP7 attenuated these biological effects. CONCLUSIONS Our work suggests a novel role and mechanism for KLF8 in the regulation of cell apoptosis in HCC and facilitates the discovery of potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Lei Liang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Li-Yang Sun
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
- Department of Clinical Medicine, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| |
Collapse
|
50
|
Brownmiller T, Juric JA, Ivey AD, Harvey BM, Westemeier ES, Winters MT, Stevens AM, Stanley AN, Hayes KE, Sprowls SA, Ammer ASG, Walker M, Bey EA, Wu X, Lim ZF, Zhu L, Wen S, Hu G, Ma PC, Martinez I. Y Chromosome LncRNA Are Involved in Radiation Response of Male Non-Small Cell Lung Cancer Cells. Cancer Res 2020; 80:4046-4057. [PMID: 32616503 DOI: 10.1158/0008-5472.can-19-4032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/01/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Numerous studies have implicated changes in the Y chromosome in male cancers, yet few have investigated the biological importance of Y chromosome noncoding RNA. Here we identify a group of Y chromosome-expressed long noncoding RNA (lncRNA) that are involved in male non-small cell lung cancer (NSCLC) radiation sensitivity. Radiosensitive male NSCLC cell lines demonstrated a dose-dependent induction of linc-SPRY3-2/3/4 following irradiation, which was not observed in radioresistant male NSCLC cell lines. Cytogenetics revealed the loss of chromosome Y (LOY) in the radioresistant male NSCLC cell lines. Gain- and loss-of-function experiments indicated that linc-SPRY3-2/3/4 transcripts affect cell viability and apoptosis. Computational prediction of RNA binding proteins (RBP) motifs and UV-cross-linking and immunoprecipitation (CLIP) assays identified IGF2BP3, an RBP involved in mRNA stability, as a binding partner for linc-SPRY3-2/3/4 RNA. The presence of linc-SPRY3-2/3/4 reduced the half-life of known IGF2BP3 binding mRNA, such as the antiapoptotic HMGA2 mRNA, as well as the oncogenic c-MYC mRNA. Assessment of Y chromosome in NSCLC tissue microarrays and expression of linc-SPRY3-2/3/4 in NSCLC RNA-seq and microarray data revealed a negative correlation between the loss of the Y chromosome or linc-SPRY3-2/3/4 and overall survival. Thus, linc-SPRY3-2/3/4 expression and LOY could represent an important marker of radiotherapy in NSCLC. SIGNIFICANCE: This study describes previously unknown Y chromosome-expressed lncRNA regulators of radiation response in male NSCLC and show a correlation between loss of chromosome Y and radioresistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4046/F1.large.jpg.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Jamie A Juric
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Abby D Ivey
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Brandon M Harvey
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Emily S Westemeier
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Michael T Winters
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Alyson M Stevens
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Alana N Stanley
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Karen E Hayes
- Modulation Therapeutics, West Virginia University, Morgantown, West Virginia
| | - Samuel A Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia
| | - Amanda S Gatesman Ammer
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Mackenzee Walker
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Erik A Bey
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Xiaoliang Wu
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Zuan-Fu Lim
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania.,Cancer Cell Biology Program, West Virginia University School of Graduate Studies, West Virginia University, Morgantown, West Virginia
| | - Lin Zhu
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia.,Bioinformatics Core, West Virginia University, Morgantown, West Virginia
| | - Patrick C Ma
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Ivan Martinez
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|