1
|
Seto AM, Saville BJ. Characterization of RNA Helicase Genes in Ustilago maydis Reveals Links to Stress Response and Teliospore Dormancy. Int J Mol Sci 2025; 26:2432. [PMID: 40141077 PMCID: PMC11941951 DOI: 10.3390/ijms26062432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Fungi produce dormant structures that are responsible for protection during adverse environmental conditions and dispersal (disease spread). Ustilago maydis, a basidiomycete plant pathogen, is a model for understanding the molecular mechanisms of teliospore dormancy and germination. Dormant teliospores store components required for germination including mRNAs which may be stored as dsRNAs. RNA helicases are conserved enzymes that function to modulate, bind, and unwind RNA duplexes, and can displace other proteins. We hypothesize that RNA helicases function during teliospore dormancy to stabilize and/or modulate stored mRNAs. We identified the U. maydis udbp3 and uded1 as encoding RNA helicases of interest as they are upregulated in the dormant teliospore and decrease during germination. Experimental results suggest that udbp3 may function as a negative regulator of osmotic stress-responsive genes and that uded1 modulates stress response by repressing translation. The altered expression of uded1 also results in slow growth, polarized growth, and the formation of dsRNA. Together, the data support a role for both helicases modulating gene expression, in response to stress, leading to teliospore dormancy and also modulating responses for teliospore germination. Increasing our molecular understanding of these processes will aid in developing novel strategies to mitigate disease spread.
Collapse
Affiliation(s)
- Amanda M. Seto
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada;
| | - Barry J. Saville
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada;
- Department of Forensic Science, Trent University, Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
2
|
Thomas PB, Kaluç N, Çavlı IN, Tuna BG. Slx5/Slx8 SUMO-targeted ubiquitin ligase deficiency shortens lifespan due to increased mutation accumulation in yeast. FEMS Microbiol Lett 2025; 372:fnae109. [PMID: 39730145 DOI: 10.1093/femsle/fnae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress. Small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligases (STUbLs) play a critical role in mediating an adaptive response to various stresses. In this study, we investigated the effect of a STUbL, Slx5/Slx8, on CLS in budding yeast. We showed that both SLX5 and SLX8 deletions accelerate chronological aging, resulting in a decreased maximum and mean lifespan. slx5Δ cells were capable of entering or maintaining a quiescent state during aging. On the other hand, aging slx5Δ and slx8Δ cells had both increased spontaneous mutation accumulation. Our data together indicate that Slx5/Slx8 STUbL is required for normal rate of aging by preventing increased spontaneous mutation accumulation during aging.
Collapse
Affiliation(s)
- Pınar B Thomas
- Department of Medical Biology and Genetics, Faculty of Medicine, Maltepe University, Istanbul, 34857, Turkey
| | - Nur Kaluç
- Department of Medical Biology, Hamidiye Faculty of Medicine, University of Health Sciences, İstanbul, 34668, Turkey
| | - Irmak N Çavlı
- Department of Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, 34820, Turkey
| | - Bilge G Tuna
- Department of Biophysics, Yeditepe University School of Medicine, Yeditepe University, Istanbul, 34755, Turkey
| |
Collapse
|
3
|
Kramer NJ, Prakash G, Isaac RS, Choquet K, Soto I, Petrova B, Merens HE, Kanarek N, Churchman LS. Regulators of mitonuclear balance link mitochondrial metabolism to mtDNA expression. Nat Cell Biol 2023; 25:1575-1589. [PMID: 37770567 PMCID: PMC11370000 DOI: 10.1038/s41556-023-01244-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.
Collapse
Affiliation(s)
- Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gyan Prakash
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Iliana Soto
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hope E Merens
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wang Y, Yi Y, Liu C, Zheng H, Huang J, Tian Y, Zhang H, Gao Q, Tang D, Lin J, Liu X. Dephosphorylation of CatC at Ser-18 improves salt and oxidative tolerance via promoting its tetramerization in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111597. [PMID: 36649757 DOI: 10.1016/j.plantsci.2023.111597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Catalase (CAT) is a vital antioxidant enzyme, while phosphorylation pivotally regulates its function. Many phosphosites have been identified in CAT, but their functions remained largely elusive. We functionally studied five phosphoserines (Ser-9, -10, -11, -18, and -205) of CatC in rice (Oryza sativa L.). Phospho-Ser-9 and - 11 and dephospho-Ser-18 promoted the enzymatic activity of CatC and enhanced oxidative and salt tolerance in yeast. Phosphorylation status of Ser-18 did not affect CatC peroxisomal targeting and stability, but dephospho-Ser-18 promoted CatC tetramerization to enhance its activity. Moreover, overexpression of dephospho-mimic form CatCS18A in rice significantly improved the tolerance to salt and oxidative stresses by inhibiting the H2O2 accumulation. Together, these results elucidate the mechanism underlying dephosphorylation at Ser-18 promotes CatC activity and salt tolerance in rice. Ser-18 is a promising candidate phosphosite of CatC for breeding highly salt-tolerant rice.
Collapse
Affiliation(s)
- Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China; College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yuting Yi
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Heping Zheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Jian Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Huihui Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Qiang Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China.
| |
Collapse
|
5
|
Kramer NJ, Prakash G, Choquet K, Soto I, Petrova B, Merens HE, Kanarek N, Churchman LS. Genome-wide screens for mitonuclear co-regulators uncover links between compartmentalized metabolism and mitochondrial gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528118. [PMID: 36798306 PMCID: PMC9934615 DOI: 10.1101/2023.02.11.528118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells, in which gene expression must be coordinated across organelles using distinct pools of ribosomes. How cells produce and maintain the accurate subunit stoichiometries for these OXPHOS complexes remains largely unknown. To identify genes involved in dual-origin protein complex synthesis, we performed FACS-based genome-wide screens analyzing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of cytochrome c oxidase (Complex IV). We identified novel genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6 . We found that PREPL specifically regulates Complex IV biogenesis by interacting with mitochondrial protein synthesis machinery, while NME6, an uncharacterized nucleoside diphosphate kinase (NDPK), controls OXPHOS complex biogenesis through multiple mechanisms reliant on its NDPK domain. First, NME6 maintains local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Second, through stabilizing interactions with RCC1L, NME6 modulates the activity of mitoribosome regulatory complexes, leading to disruptions in mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression. Finally, we present these screens as a resource, providing a catalog of genes involved in mitonuclear gene regulation and OXPHOS biogenesis.
Collapse
|
6
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
7
|
Wodrich APK, Scott AW, Shukla AK, Harris BT, Giniger E. The Unfolded Protein Responses in Health, Aging, and Neurodegeneration: Recent Advances and Future Considerations. Front Mol Neurosci 2022; 15:831116. [PMID: 35283733 PMCID: PMC8914544 DOI: 10.3389/fnmol.2022.831116] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Aging and age-related neurodegeneration are both associated with the accumulation of unfolded and abnormally folded proteins, highlighting the importance of protein homeostasis (termed proteostasis) in maintaining organismal health. To this end, two cellular compartments with essential protein folding functions, the endoplasmic reticulum (ER) and the mitochondria, are equipped with unique protein stress responses, known as the ER unfolded protein response (UPR ER ) and the mitochondrial UPR (UPR mt ), respectively. These organellar UPRs play roles in shaping the cellular responses to proteostatic stress that occurs in aging and age-related neurodegeneration. The loss of adaptive UPR ER and UPR mt signaling potency with age contributes to a feed-forward cycle of increasing protein stress and cellular dysfunction. Likewise, UPR ER and UPR mt signaling is often altered in age-related neurodegenerative diseases; however, whether these changes counteract or contribute to the disease pathology appears to be context dependent. Intriguingly, altering organellar UPR signaling in animal models can reduce the pathological consequences of aging and neurodegeneration which has prompted clinical investigations of UPR signaling modulators as therapeutics. Here, we review the physiology of both the UPR ER and the UPR mt , discuss how UPR ER and UPR mt signaling changes in the context of aging and neurodegeneration, and highlight therapeutic strategies targeting the UPR ER and UPR mt that may improve human health.
Collapse
Affiliation(s)
- Andrew P. K. Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W. Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Arvind Kumar Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Brent T. Harris
- Department of Pathology, Georgetown University, Washington, DC, United States
- Department of Neurology, Georgetown University, Washington, DC, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Dannenmaier S, Desroches Altamirano C, Schüler L, Zhang Y, Hummel J, Milanov M, Oeljeklaus S, Koch HG, Rospert S, Alberti S, Warscheid B. Quantitative proteomics identifies the universally conserved ATPase Ola1p as a positive regulator of heat shock response in Saccharomyces cerevisiae. J Biol Chem 2021; 297:101050. [PMID: 34571008 PMCID: PMC8531669 DOI: 10.1016/j.jbc.2021.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
The universally conserved P-loop ATPase Ola1 is implicated in various cellular stress response pathways, as well as in cancer and tumor progression. However, Ola1p functions are divergent between species, and the involved mechanisms are only poorly understood. Here, we studied the role of Ola1p in the heat shock response of the yeast Saccharomyces cerevisiae using a combination of quantitative and pulse labeling-based proteomics approaches, in vitro studies, and cell-based assays. Our data show that when heat stress is applied to cells lacking Ola1p, the expression of stress-protective proteins is enhanced. During heat stress Ola1p associates with detergent-resistant protein aggregates and rapidly forms assemblies that localize to stress granules. The assembly of Ola1p was also observed in vitro using purified protein and conditions, which resembled those in living cells. We show that loss of Ola1p results in increased protein ubiquitination of detergent-insoluble aggregates recovered from heat-shocked cells. When cells lacking Ola1p were subsequently relieved from heat stress, reinitiation of translation was delayed, whereas, at the same time, de novo synthesis of central factors required for protein refolding and the clearance of aggregates was enhanced when compared with wild-type cells. The combined data suggest that upon acute heat stress, Ola1p is involved in the stabilization of misfolded proteins, which become sequestered in cytoplasmic stress granules. This function of Ola1p enables cells to resume translation in a timely manner as soon as heat stress is relieved.
Collapse
Affiliation(s)
- Stefan Dannenmaier
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Lisa Schüler
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Hummel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Simon Alberti
- BIOTEC and CMCB, Technische Universität Dresden, Dresden, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Lee MB, Kiflezghi MG, Tsuchiya M, Wasko B, Carr DT, Uppal PA, Grayden KA, Elala YC, Nguyen TA, Wang J, Ragosti P, Nguyen S, Zhao YT, Kim D, Thon S, Sinha I, Tang TT, Tran NHB, Tran THB, Moore MD, Li MAK, Rodriguez K, Promislow DEL, Kaeberlein M. Pterocarpus marsupium extract extends replicative lifespan in budding yeast. GeroScience 2021; 43:2595-2609. [PMID: 34297314 PMCID: PMC8599564 DOI: 10.1007/s11357-021-00418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan. No mTOR inhibitory activity was detected, but several of the treatments affected growth rate and lifespan. The strongest lifespan shortening effects were observed for green tea extract and berberine. The most robust lifespan extension was detected from an extract of Pterocarpus marsupium and another mixture containing Pterocarpus marsupium extract. These findings illustrate the utility of the yeast system for longevity intervention discovery and identify Pterocarpus marsupium extract as a potentially fruitful longevity intervention for testing in higher eukaryotes.
Collapse
Affiliation(s)
- Mitchell B. Lee
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Brian Wasko
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX USA
| | - Daniel T. Carr
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya A. Uppal
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Katherine A. Grayden
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yordanos C. Elala
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Tu Anh Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Jesse Wang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya Ragosti
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Sunny Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yan Ting Zhao
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA USA
| | - Deborah Kim
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Socheata Thon
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Irika Sinha
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thao T. Tang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Ngoc H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thu H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Margarete D. Moore
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mary Ann K. Li
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Karl Rodriguez
- Department of Cell Systems and Anatomy, University of Texas Health Sciences Center, San Antonio, TX USA ,Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| |
Collapse
|
10
|
Pogoda E, Tutaj H, Pirog A, Tomala K, Korona R. Overexpression of a single ORF can extend chronological lifespan in yeast if retrograde signaling and stress response are stimulated. Biogerontology 2021; 22:415-427. [PMID: 34052951 PMCID: PMC8266792 DOI: 10.1007/s10522-021-09924-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Systematic collections of single-gene deletions have been invaluable in uncovering determinants of lifespan in yeast. Overexpression of a single gene does not have such a clear outcome as cancellation of its function but it can lead to a variety of imbalances, deregulations and compensations, and some of them could be important for longevity. We report an experiment in which a genome-wide collection of strains overexpressing a single gene was assayed for chronological lifespan (CLS). Only one group of proteins, those locating to the inner membrane and matrix of mitochondria, tended to extend CLS when abundantly overproduced. We selected two such strains—one overexpressing Qcr7 of the respiratory complex III, the other overexpressing Mrps28 of the small mitoribosomal subunit—and analyzed their transcriptomes. The uncovered shifts in RNA abundance in the two strains were nearly identical and highly suggestive. They implied a distortion in the co-translational assembly of respiratory complexes followed by retrograde signaling to the nucleus. The consequent reprogramming of the entire cellular metabolism towards the resistance to stress resulted in an enhanced ability to persist in a non-proliferating state. Our results show that surveillance of the inner mitochondrial membrane integrity is of outstanding importance for the cell. They also demonstrate that overexpression of single genes could be used effectively to elucidate the mitochondrion-nucleus crosstalk.
Collapse
Affiliation(s)
- Elzbieta Pogoda
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| |
Collapse
|
11
|
Mitochondrial control of cellular protein homeostasis. Biochem J 2021; 477:3033-3054. [PMID: 32845275 DOI: 10.1042/bcj20190654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Mitochondria are involved in several vital functions of the eukaryotic cell. The majority of mitochondrial proteins are coded by nuclear DNA. Constant import of proteins from the cytosol is a prerequisite for the efficient functioning of the organelle. The protein import into mitochondria is mediated by diverse import pathways and is continuously under watch by quality control systems. However, it is often challenged by both internal and external factors, such as oxidative stress or energy shortage. The impaired protein import and biogenesis leads to the accumulation of mitochondrial precursor proteins in the cytosol and activates several stress response pathways. These defense mechanisms engage a network of processes involving transcription, translation, and protein clearance to restore cellular protein homeostasis. In this review, we provide a comprehensive analysis of various factors and processes contributing to mitochondrial stress caused by protein biogenesis failure and summarize the recovery mechanisms employed by the cell.
Collapse
|
12
|
Sahu MK, Kaushik K, Das A, Jha H. In vitro and in silico antioxidant and antiproliferative activity of rhizospheric fungus Talaromyces purpureogenus isolate-ABRF2. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00303-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe present study evaluated the potential biological activities of rhizospheric fungi isolated from the Achanakmar Biosphere Reserve, India. Fungus, Talaromyces purpureogenus isolate-ABRF2 from the soil of the Achanakmar biosphere was characterized by using morphological, biochemical and molecular techniques. Fungus was screened for the production of secondary metabolites using a specific medium. The metabolites were extracted using a suitable solvent and each fraction was subsequently evaluated for their antioxidant, antimicrobial, antiproliferative and anti-aging properties. The ethanolic extract depicted the highest antioxidant activity with 83%, 79%, 80% and 74% as assessed by ferric reducing power, 2,2-diphenyl 1-picrylhydrazyl, 2,2′-azino-bis3-ethylbenzthiazoline-6-sulfonic and phosphomolybdenum assays, respectively. Similarly, ethanolic extracts depicted marked antimicrobial activity as compared with standard antibiotics and antifungal agents as well as demonstrated significant antiproliferative property against a panel of mammalian cancer cell lines. Furthermore, different fractions of the purified ethanolic extract obtained using adsorption column chromatography were evaluated for antiproliferative property and identification of an active metabolite in the purified fraction using gas chromatography–mass spectroscopy and nuclear magnetic resonance techniques yielded 3-methyl-4-oxo-pentanoic acid. Thus, the present study suggests that the active metabolite 3-methyl-4-oxo-pentanoic acid extracted from Talaromyces purpureogenus isolate-ABRF2 has a potential antiproliferative, anti-aging, and antimicrobial therapeutic properties that will be further evaluated using in vivo studies in future.
Collapse
|
13
|
Zhao W, Liu JX, Guo F, Liu XG. Yeast MED2 is involved in the endoplasmic reticulum stress response and modulation of the replicative lifespan. Mech Ageing Dev 2020; 192:111381. [PMID: 33045248 DOI: 10.1016/j.mad.2020.111381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae MED2/YDL005C is a subunit of the mediator complex (Mediator), which is responsible for tightly controlling the transcription of protein-coding genes by mediating the interaction of RNA polymerase II with gene-specific transcription factors. Although a high-throughput analysis in yeast showed that the MED2 protein exhibits altered cellular localization under hypoxic stress, no specific function of MED2 has been described to date. In this study, we first provided evidence that MED2 is involved in the endoplasmic reticulum (ER) stress response and modulation of the replicative life span. We showed that deletion of MED2 leads to sensitivity to the ER stress inducer tunicamycin (TM) as well as a shortened replicative lifespan (RLS), accompanied by increased intracellular ROS levels and hyperpolarization of mitochondria. On the other hand, overexpression of MED2 in wild-type (WT) yeast enhanced TM resistance and extended the RLS. In addition, the IRE1-HAC1 pathway was essential for the TM resistance of MED2-overexpressing cells. Moreover, we showed that MED2 deficiency enhances ER unfolded protein response (UPR) activity compared to that in WT cells. Collectively, these results suggest the novel role of MED2 as a regulator in maintaining ER homeostasis and longevity.
Collapse
Affiliation(s)
- Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Jia-Xin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Fang Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Xin-Guang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
14
|
Molenaars M, Daniels EG, Meurs A, Janssens GE, Houtkooper RH. Mitochondrial cross-compartmental signalling to maintain proteostasis and longevity. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190414. [PMID: 32362258 DOI: 10.1098/rstb.2019.0414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lifespan in eukaryotic species can be prolonged by shifting from cellular states favouring growth to those favouring maintenance and stress resistance. For instance, perturbations in mitochondrial oxidative phosphorylation (OXPHOS) can shift cells into this latter state and extend lifespan. Because mitochondria rely on proteins synthesized from nuclear as well as mitochondrial DNA, they need to constantly send and receive messages from other compartments of the cell in order to function properly and maintain homeostasis, and lifespan extension is often dependent on this cross-compartmental signalling. Here, we describe the mechanisms of bi-directional mitochondrial cross-compartmental signalling resulting in proteostasis and longevity. These proteostasis mechanisms are highly context-dependent, governed by the origin and extent of stress. Furthermore, we discuss the translatability of these mechanisms and explore therapeutic developments, such as the antibiotic studies targeting mitochondria or mitochondria-derived peptides as therapies for age-related diseases such as neurodegeneration and cancer. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Amber Meurs
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Crane MM, Chen KL, Blue BW, Kaeberlein M. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging. Proteomics 2020; 20:e1800420. [PMID: 31385433 PMCID: PMC7000301 DOI: 10.1002/pmic.201800420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Indexed: 02/02/2023]
Abstract
All organisms age, but the extent to which all organisms age the same way remains a fundamental unanswered question in biology. Across species, it is now clear that at least some aspects of aging are highly conserved and are perhaps universal, but other mechanisms of aging are private to individual species or sets of closely related species. Within the same species, however, it has generally been assumed that the molecular mechanisms of aging are largely invariant from one individual to the next. With the development of new tools for studying aging at the individual cell level in budding yeast, recent data has called this assumption into question. There is emerging evidence that individual yeast mother cells may undergo fundamentally different trajectories of aging. Individual trajectories of aging are difficult to study by traditional population level assays, but through the application of systems biology approaches combined with novel microfluidic technologies, it is now possible to observe and study these phenomena in real time. Understanding the spectrum of mechanisms that determine how different individuals age is a necessary step toward the goal of personalized geroscience, where healthy longevity is optimized for each individual.
Collapse
Affiliation(s)
- Matthew M Crane
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kenneth L Chen
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA,Department of Genome Sciences, University of Washington, Seattle, WA, USA,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Ben W. Blue
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
17
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|
18
|
Coyne LP, Chen XJ. Consequences of inner mitochondrial membrane protein misfolding. Mitochondrion 2019; 49:46-55. [PMID: 31195097 DOI: 10.1016/j.mito.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
Proteins embedded in the inner mitochondrial membrane (IMM) perform essential cellular functions. Maintaining the folding state of these proteins is therefore of the utmost importance, and this is ensured by IMM chaperones and proteases that refold and degrade unassembled and misfolded proteins. However, the physiological consequences specific to IMM protein misfolding remain obscure because deletion of these chaperones/proteases (the typical experimental strategy) often affects many mitochondrial processes other than protein folding and turnover. Thus, novel experimental systems are needed to evaluate the direct effects of misfolded protein on the membrane. Such a system has been developed in recent years. Studies suggest that numerous pathogenic mutations in isoform 1 of adenine nucleotide translocase (Ant1) cause its misfolding on the IMM. In this review, we first discuss potential mechanisms by which dominant Ant1 mutations may cause disease, highlighting IMM protein misfolding, per se, as a likely pathological factor. Then we discuss the intramitochondrial effects of Ant1 misfolding such as IMM proteostatic stress, respiratory chain dysfunction, and mtDNA instability. Finally, we summarize the mounting evidence that IMM proteostatic stress can perturb mitochondrial protein import to cause the toxic accumulation of mitochondrial proteins in the cytosol: a cell stress mechanism termed mitochondrial Precursor Overaccumulation Stress (mPOS).
Collapse
Affiliation(s)
- Liam P Coyne
- Departments of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Xin Jie Chen
- Departments of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
19
|
Muid KA, Kimyon Ö, Reza SH, Karakaya HC, Koc A. Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. Gene 2019; 706:172-180. [PMID: 31082499 DOI: 10.1016/j.gene.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of aging and longevity are still mostly unknown. Mitochondria play central roles in cellular metabolism and aging. In this study, we identified three deletion mutants of mitochondrial metabolism genes (ppa2∆, dss1∆, and afg3∆) that live longer than wild-type cells. These long-lived cells harbored significantly decreased amount of mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). Compared to the serpentine nature of wild-type mitochondria, a different dynamics and distribution pattern of mitochondria were observed in the mutants. Both young and old long-lived cells produced relatively low but adequate levels of ATP for cellular activities. The status of the retrograde signaling was checked by expression of CIT2 gene and found activated in long-lived mutants. The mutant cells were also profiled for their gene expression patterns, and genes that were differentially regulated were determined. All long-lived cells comprised similar pleiotropic phenotype regarding mitochondrial dynamics and functions. Thus, this study suggests that DSS1, PPA2, and AFG3 genes modulate the lifespan by altering the mitochondrial morphology and functions.
Collapse
Affiliation(s)
- K A Muid
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Önder Kimyon
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Shahadat Hasan Reza
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Huseyin Caglar Karakaya
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Ahmet Koc
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey; Inonu University, Medical School, Department of Medical Biology and Genetics, Battalgazi, Malatya, Turkey.
| |
Collapse
|
20
|
Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. Fertil Steril 2019; 111:197-204. [DOI: 10.1016/j.fertnstert.2018.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022]
|
21
|
Is Gcn4-induced autophagy the ultimate downstream mechanism by which hormesis extends yeast replicative lifespan? Curr Genet 2019; 65:717-720. [PMID: 30673825 DOI: 10.1007/s00294-019-00936-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022]
Abstract
The number of times a cell divides before irreversibly arresting is termed replicative lifespan. Despite discovery of many chemical, dietary and genetic interventions that extend replicative lifespan, usually first discovered in budding yeast and subsequently shown to apply to metazoans, there is still little understanding of the underlying molecular mechanisms involved. One unifying theme is that most, if not all, interventions that extend replicative lifespan induce "hormesis", where a little inflicted damage makes cells more able to resist similar challenges in the future. One of the many cellular changes that occur during hormesis is a global reduction in protein synthesis, which has been linked to enhanced longevity in many organisms. Our recent study in budding yeast found that it was not the reduction in protein synthesis per se, but rather the subsequent induction of the conserved Gcn4 transcriptional regulator and its ability to induce autophagy that was responsible for extending replicative lifespan. We propose that Gcn4-dependent induction of autophagy occurring downstream of reduced global protein synthesis may be a unifying molecular mechanism for many interventions that extend replicative lifespan.
Collapse
|
22
|
Yeast molecular chaperone gene SSB2 is involved in the endoplasmic reticulum stress response. Antonie van Leeuwenhoek 2018; 112:589-598. [DOI: 10.1007/s10482-018-1189-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
|
23
|
Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T, Itoh K. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutr 2018; 64:1-12. [PMID: 30705506 PMCID: PMC6348405 DOI: 10.3164/jcbn.18-37] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Recent investigations have clarified the importance of mitochondria in various age-related degenerative diseases, including late-onset Alzheimer’s disease and Parkinson’s disease. Although mitochondrial disturbances can be involved in every step of disease progression, several observations have demonstrated that a subtle mitochondrial functional disturbance is observed preceding the actual appearance of pathophysiological alterations and can be the target of early therapeutic intervention. The signals from damaged mitochondria are transferred to the nucleus, leading to the altered expression of nuclear-encoded genes, which includes mitochondrial proteins (i.e., mitochondrial retrograde signaling). Mitochondrial retrograde signaling improves mitochondrial perturbation (i.e., mitohormesis) and is considered a homeostatic stress response against intrinsic (ex. aging or pathological mutations) and extrinsic (ex. chemicals and pathogens) stimuli. There are several branches of the mitochondrial retrograde signaling, including mitochondrial unfolded protein response (UPRMT), but recent observations increasingly show the importance of the ISR-ATF4 pathway in mitochondrial retrograde signaling. Furthermore, Nrf2, a master regulator of the oxidative stress response, interacts with ATF4 and cooperatively upregulates a battery of antioxidant and antiapoptotic genes while repressing the ATF4-mediated proapoptotic gene, CHOP. In this review article, we summarized the upstream and downstream mechanisms of ATF4 activation during mitochondrial stresses and disturbances and discuss therapeutic intervention against degenerative diseases by using Nrf2 activators.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Máté János Engler
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
24
|
Hu Z, Xia B, Postnikoff SD, Shen ZJ, Tomoiaga AS, Harkness TA, Seol JH, Li W, Chen K, Tyler JK. Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan. eLife 2018; 7:35551. [PMID: 30117416 PMCID: PMC6097839 DOI: 10.7554/elife.35551] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Translational efficiency correlates with longevity, yet its role in lifespan determination remains unclear. Using ribosome profiling, translation efficiency is globally reduced during replicative aging in budding yeast by at least two mechanisms: Firstly, Ssd1 is induced during aging, sequestering mRNAs to P-bodies. Furthermore, Ssd1 overexpression in young cells reduced translation and extended lifespan, while loss of Ssd1 reduced the translational deficit of old cells and shortened lifespan. Secondly, phosphorylation of eIF2α, mediated by the stress kinase Gcn2, was elevated in old cells, contributing to the global reduction in translation without detectable induction of the downstream Gcn4 transcriptional activator. tRNA overexpression activated Gcn2 in young cells and extended lifespan in a manner dependent on Gcn4. Moreover, overexpression of Gcn4 sufficed to extend lifespan in an autophagy-dependent manner in the absence of changes in global translation, indicating that Gcn4-mediated autophagy induction is the ultimate downstream target of activated Gcn2, to extend lifespan.
Collapse
Affiliation(s)
- Zheng Hu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Bo Xia
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States.,Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States
| | - Spike Dl Postnikoff
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Alin S Tomoiaga
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States.,Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States.,Manhattan College, Bronx, United States
| | - Troy A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Ja Hwan Seol
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Wei Li
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Kaifu Chen
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, United States.,Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| |
Collapse
|
25
|
Wang T, Babayev E, Jiang Z, Li G, Zhang M, Esencan E, Horvath T, Seli E. Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. Aging Cell 2018; 17:e12784. [PMID: 29851234 PMCID: PMC6052477 DOI: 10.1111/acel.12784] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Caseinolytic peptidase P mediates degradation of unfolded mitochondrial proteins and activates mitochondrial unfolded protein response (mtUPR) to maintain protein homeostasis. Clpp-/- female mice generate a lower number of mature oocytes and two-cell embryos, and no blastocysts. Clpp-/- oocytes have smaller mitochondria, with lower aspect ratio (length/width), and decreased expression of genes that promote fusion. A 4-fold increase in atretic follicles at 3 months, and reduced number of primordial follicles at 6-12 months are observed in Clpp-/- ovaries. This is associated with upregulation of p-S6, p-S6K, p-4EBP1 and p-AKT473, p-mTOR2481 consistent with mTORC1 and mTORC2 activation, respectively, and Clpp-/- oocyte competence is partially rescued by mTOR inhibitor rapamycin. Our findings demonstrate that CLPP is required for oocyte and embryo development and oocyte mitochondrial function and dynamics. Absence of CLPP results in mTOR pathway activation, and accelerated depletion of ovarian follicular reserve.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
- Department of Obstetrics, Gynecology and Reproductive CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Elnur Babayev
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
- Present address:
Department of Obstetrics, Gynecology, and Reproductive SciencesNorthwestern UniversityChicagoIllinois
| | - Zongliang Jiang
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
- Present address:
School of Animal SciencesLouisiana State University Agricultural CenterBaton RougeLouisiana
| | - Guangxin Li
- Department of SurgeryYale School of MedicineNew HavenConnecticut
| | - Man Zhang
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| | - Ecem Esencan
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| | - Tamas Horvath
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
- Department of Comparative MedicineYale School of MedicineNew HavenConnecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| |
Collapse
|
26
|
Zhao W, Zhou T, Zheng HZ, Qiu KP, Cui HJ, Yu H, Liu XG. Yeast polyubiquitin gene UBI4 deficiency leads to early induction of apoptosis and shortened replicative lifespan. Cell Stress Chaperones 2018; 23:527-537. [PMID: 29116578 PMCID: PMC6045546 DOI: 10.1007/s12192-017-0860-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023] Open
Abstract
Ubiquitin is a 76-amino acid protein that is highly conserved among higher and lower eukaryotes. The polyubiquitin gene UBI4 encodes a unique precursor protein that contains five ubiquitin repeats organized in a head-to-tail arrangement. Although the involvement of the yeast polyubiquitin gene UBI4 in the stress response was reported long ago, there are no reports regarding the underlying mechanism of this involvement. In this study, we used UBI4-deletion and UBI4-overexpressing yeast strains as models to explore the potential mechanism by which UBI4 protects yeast cells against paraquat-induced oxidative stress. Here, we show that ubi4Δ cells exhibit oxidative stress, an apoptotic phenotype, and a decreased replicative lifespan. Additionally, the reduced resistance of ubi4Δ cells to paraquat that was observed in this study was rescued by overexpression of either the catalase or the mitochondrial superoxide dismutase SOD2. We also demonstrated that only SOD2 overexpression restored the replicative lifespan of ubi4Δ cells. In contrast to the case of ubi4Δ cells, UBI4 overexpression in wild-type yeast increases the yeast's resistance to paraquat, and this overexpression is associated with large pools of expressed ubiquitin and increased levels of ubiquitinated proteins. Collectively, these findings highlight the role of the polyubiquitin gene UBI4 in apoptosis and implicate UBI4 as a modulator of the replicative lifespan.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Tao Zhou
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Hua-Zhen Zheng
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Kun-Pei Qiu
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Hong-Jing Cui
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Hui Yu
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Xin-Guang Liu
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China.
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China.
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
27
|
Leonov A, Arlia-Ciommo A, Bourque SD, Koupaki O, Kyryakov P, Dakik P, McAuley M, Medkour Y, Mohammad K, Di Maulo T, Titorenko VI. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget 2018; 8:30672-30691. [PMID: 28410198 PMCID: PMC5458158 DOI: 10.18632/oncotarget.16766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously found that exogenously added lithocholic acid delays yeast chronological aging. We demonstrated that lithocholic acid enters the yeast cell, is sorted to mitochondria, resides in both mitochondrial membranes, changes the relative concentrations of different membrane phospholipids, triggers changes in the concentrations of many mitochondrial proteins, and alters some key aspects of mitochondrial functionality. We hypothesized that the lithocholic acid-driven changes in mitochondrial lipidome may have a causal role in the remodeling of mitochondrial proteome, which may in turn alter the functional state of mitochondria to create a mitochondrial pattern that delays yeast chronological aging. Here, we test this hypothesis by investigating how the ups1?, ups2? and psd1? mutations that eliminate enzymes involved in mitochondrial phospholipid metabolism influence the mitochondrial lipidome. We also assessed how these mutations affect the mitochondrial proteome, influence mitochondrial functionality and impinge on the efficiency of aging delay by lithocholic acid. Our findings provide evidence that 1) lithocholic acid initially creates a distinct pro-longevity pattern of mitochondrial lipidome by proportionally decreasing phosphatidylethanolamine and cardiolipin concentrations to maintain equimolar concentrations of these phospholipids, and by increasing phosphatidic acid concentration; 2) this pattern of mitochondrial lipidome allows to establish a specific, aging-delaying pattern of mitochondrial proteome; and 3) this pattern of mitochondrial proteome plays an essential role in creating a distinctive, geroprotective pattern of mitochondrial functionality.
Collapse
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Simon D Bourque
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Olivia Koupaki
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pavlo Kyryakov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Paméla Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Tamara Di Maulo
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
28
|
Abrhámová K, Nemčko F, Libus J, Převorovský M, Hálová M, Půta F, Folk P. Introns provide a platform for intergenic regulatory feedback of RPL22 paralogs in yeast. PLoS One 2018; 13:e0190685. [PMID: 29304067 PMCID: PMC5755908 DOI: 10.1371/journal.pone.0190685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023] Open
Abstract
Ribosomal protein genes (RPGs) in Saccharomyces cerevisiae are a remarkable regulatory group that may serve as a model for understanding genetic redundancy in evolutionary adaptations. Most RPGs exist as pairs of highly conserved functional paralogs with divergent untranslated regions and introns. We examined the roles of introns in strains with various combinations of intron and gene deletions in RPL22, RPL2, RPL16, RPL37, RPL17, RPS0, and RPS18 paralog pairs. We found that introns inhibited the expression of their genes in the RPL22 pair, with the RPL22B intron conferring a much stronger effect. While the WT RPL22A/RPL22B mRNA ratio was 93/7, the rpl22aΔi/RPL22B and RPL22A/rpl22bΔi ratios were >99/<1 and 60/40, respectively. The intron in RPL2A stimulated the expression of its own gene, but the removal of the other introns had little effect on expression of the corresponding gene pair. Rpl22 protein abundances corresponded to changes in mRNAs. Using splicing reporters containing endogenous intron sequences, we demonstrated that these effects were due to the inhibition of splicing by Rpl22 proteins but not by their RNA-binding mutant versions. Indeed, only WT Rpl22A/Rpl22B proteins (but not the mutants) interacted in a yeast three-hybrid system with an RPL22B intronic region between bp 165 and 236. Transcriptome analysis showed that both the total level of Rpl22 and the A/B ratio were important for maintaining the WT phenotype. The data presented here support the contention that the Rpl22B protein has a paralog-specific role. The RPL22 singleton of Kluyveromyces lactis, which did not undergo whole genome duplication, also responded to Rpl22-mediated inhibition in K. lactis cells. Vice versa, the overproduction of the K. lactis protein reduced the expression of RPL22A/B in S. cerevisiae. The extraribosomal function of of the K. lactis Rpl22 suggests that the loop regulating RPL22 paralogs of S. cerevisiae evolved from autoregulation.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Filip Nemčko
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Libus
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Hálová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
29
|
Singh P, Li R. Emerging roles for sphingolipids in cellular aging. Curr Genet 2017; 64:761-767. [PMID: 29260307 DOI: 10.1007/s00294-017-0799-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
Abstract
Aging is a gradual loss of physiological functions as organisms' progress in age. Although aging in multicellular organisms is complex, some fundamental mechanisms and pathways may be shared from the single cellular yeast to human. Budding yeast Saccharomyces cerevisiae has been established model system for aging studies. A yeast cell divides asymmetrically to produce two cells that differ in size and age. The one that is smaller coming from bud is a newborn cell that with a full replicative potential head irrespective of the replicative age of its mother-the larger cell from which the bud grows out before division. The age asymmetry between daughter and mother is thought to be dependent on asymmetric segregation of certain factors such as protein aggregates, extrachromosomal DNA (ERCs) and dysfunctional organelles during successive cell divisions of the yeast replicative lifespan (RLS). It is also thought that certain plasma membrane proteins, in particular multidrug-resistant (MDR) proteins, asymmetrically partition between the mother and the bud based on the age of the polypeptides. Functional decline associated with the molecular aging of those proteins contributes to the fitness decline at advance age. In our recent study, we showed that sphingolipids facilitate the age-dependent segregation of MDRs between daughter and mother cell. In this review, we highlight and discuss the potential mechanisms by which sphingolipids regulate the aging process in yeast and cells of vertebrate animals including human.
Collapse
Affiliation(s)
- Pushpendra Singh
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA. .,US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
30
|
CAN1 Arginine Permease Deficiency Extends Yeast Replicative Lifespan via Translational Activation of Stress Response Genes. Cell Rep 2017; 18:1884-1892. [PMID: 28228255 DOI: 10.1016/j.celrep.2017.01.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/27/2016] [Accepted: 01/29/2017] [Indexed: 12/18/2022] Open
Abstract
Transcriptional regulation plays an important role in the control of gene expression during aging. However, translation efficiency likely plays an equally important role in determining protein abundance, but it has been relatively understudied in this context. Here, we used RNA sequencing (RNA-seq) and ribosome profiling to investigate the role of translational regulation in lifespan extension by CAN1 gene deletion in yeast. Through comparison of the transcriptional and translational changes in cells lacking CAN1 with other long-lived mutants, we were able to identify critical regulatory factors, including transcription factors and mRNA-binding proteins, that coordinate transcriptional and translational responses. Together, our data support a model in which deletion of CAN1 extends replicative lifespan through increased translation of proteins that facilitate cellular response to stress. This study extends our understanding of the importance of translational control in regulating stress resistance and longevity.
Collapse
|
31
|
Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 2017; 19:109-120. [DOI: 10.1038/nrm.2017.110] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Postnikoff SD, Johnson JE, Tyler JK. The integrated stress response in budding yeast lifespan extension. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:368-375. [PMID: 29167799 PMCID: PMC5695854 DOI: 10.15698/mic2017.11.597] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022]
Abstract
Aging is a complex, multi-factorial biological process shared by all living organisms. It is manifested by a gradual accumulation of molecular alterations that lead to the decline of normal physiological functions in a time-dependent fashion. The ultimate goal of aging research is to develop therapeutic means to extend human lifespan, while reducing susceptibility to many age-related diseases including cancer, as well as metabolic, cardiovascular and neurodegenerative disorders. However, this first requires elucidation of the causes of aging, which has been greatly facilitated by the use of model organisms. In particular, the budding yeast Saccharomyces cerevisiae has been invaluable in the identification of conserved molecular and cellular determinants of aging and for the development of approaches to manipulate these aging determinants to extend lifespan. Strikingly, where examined, virtually all means to experimentally extend lifespan result in the induction of cellular stress responses. This review describes growing evidence in yeast that activation of the integrated stress response contributes significantly to lifespan extension. These findings demonstrate that yeast remains a powerful model system for elucidating conserved mechanisms to achieve lifespan extension that are likely to drive therapeutic approaches to extend human lifespan and healthspan.
Collapse
Affiliation(s)
- Spike D.L. Postnikoff
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065
| | - Jay E. Johnson
- Orentreich Foundation for the Advancement of Science, Cold Spring, NY
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065
| |
Collapse
|
33
|
The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan. Nat Commun 2017; 8:457. [PMID: 28878244 PMCID: PMC5587724 DOI: 10.1038/s41467-017-00539-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/07/2017] [Indexed: 01/21/2023] Open
Abstract
In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response. The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.
Collapse
|
34
|
A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. GeroScience 2017; 39:419-428. [PMID: 28707282 DOI: 10.1007/s11357-017-9988-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of growth and proliferation and mTOR inhibition is a promising therapy for a variety of diseases and disorders. Inhibition of mTOR complex I (mTORC1) with rapamycin delays aging and increases healthy longevity in laboratory animals and is used clinically at high doses to prevent organ transplant rejection and to treat some forms of cancer. Clinical use of rapamycin is associated with several unwanted side effects, however, and several strategies are being taken to identify mTORC1 inhibitors with fewer side effects. We describe here a yeast-based growth assay that can be used to screen for novel inhibitors of mTORC1. By testing compounds using a wild-type strain and isogenic cells lacking either TOR1 or FPR1, we can resolve not only whether a compound is an inhibitor of mTORC1 but also whether the inhibitor acts through a mechanism similar to rapamycin by binding Fpr1. Using this assay, we show that rapamycin derivatives behave similarly to rapamycin, while caffeine and the ATP competitive inhibitors Torin 1 and GSK2126458 are mTORC1 inhibitors in yeast that act independently of Fpr1. Some mTOR inhibitors in mammalian cells do not inhibit mTORC1 in yeast, and several nutraceutical compounds were not found to specifically inhibit mTOR but resulted in a general inhibition of yeast growth. Our screening method holds promise as a means of effectively assaying drug libraries for mTOR-inhibitory molecules in vivo that may be adapted as novel treatments to fight diseases and extend healthy longevity.
Collapse
|
35
|
Mouton-Liger F, Jacoupy M, Corvol JC, Corti O. PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease. Front Mol Neurosci 2017; 10:120. [PMID: 28507507 PMCID: PMC5410576 DOI: 10.3389/fnmol.2017.00120] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurodegenerative disease caused by the preferential, progressive degeneration of the dopaminergic (DA) neurons of the substantia nigra (SN) pars compacta. PD is characterized by a multifaceted pathological process involving protein misfolding, mitochondrial dysfunction, neuroinflammation and metabolism deregulation. The molecular mechanisms governing the complex interplay between the different facets of this process are still unknown. PARK2/Parkin and PARK6/PINK1, two genes responsible for familial forms of PD, act as a ubiquitous core signaling pathway, coupling mitochondrial stress to mitochondrial surveillance, by regulating mitochondrial dynamics, the removal of damaged mitochondrial components by mitochondria-derived vesicles, mitophagy, and mitochondrial biogenesis. Over the last decade, PINK1/Parkin-dependent mitochondrial quality control emerged as a pleiotropic regulatory pathway. Loss of its function impinges on a number of physiological processes suspected to contribute to PD pathogenesis. Its role in the regulation of innate immunity and inflammatory processes stands out, providing compelling support to the contribution of non-cell-autonomous immune mechanisms in PD. In this review, we illustrate the central role of this multifunctional pathway at the crossroads between mitochondrial stress, neuroinflammation and metabolism. We discuss how its dysfunction may contribute to PD pathogenesis and pinpoint major unresolved questions in the field.
Collapse
Affiliation(s)
- Francois Mouton-Liger
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| | - Maxime Jacoupy
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| | - Jean-Christophe Corvol
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France.,Department of Neurology, Institut National de la Santé et de la Recherche Médicale, Assistance-Publique Hôpitaux de Paris, CIC-1422, Hôpital Pitié-SalpêtrièreParis, France
| | - Olga Corti
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| |
Collapse
|
36
|
Zhao W, Zheng HZ, Zhou T, Hong XS, Cui HJ, Jiang ZW, Chen HJ, Zhou ZJ, Liu XG. CTT1 overexpression increases the replicative lifespan of MMS-sensitive Saccharomyces cerevisiae deficient in KSP1. Mech Ageing Dev 2017; 164:27-36. [PMID: 28347693 DOI: 10.1016/j.mad.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Ksplp is a nuclear-localized Ser/Thr kinase that is not essential for the vegetative growth of yeast. A global gene function analysis in yeast suggested that Ksplp was involved in the oxidative stress response; however, the underlying mechanism remains unclear. Here, we showed that KSP1-deficient yeast cells exhibit hypersensitivity to the DNA alkylating agent methyl methanesulphonate (MMS), and treatment of the KSP1-deficient strain with MMS could trigger abnormal mitochondrial membrane potential and up-regulate reactive oxygen species (ROS) production. In addition, the mRNA expression level of the catalase gene CTT1 (which encodes cytosolic catalase) and total catalase activity were strongly down-regulated in the KSP1-deleted strain compared with those in wild-type cells. Moreover, the KSP1 deficiency also leads to a shortened replicative lifespan, which could be restored by the increased expression of CTT1. On the other hand, KSP1-overexpressed (KSP1OX) yeast cells exhibited increased resistance towards MMS, an effect that was, at least in part, CTT1 independent. Collectively, these findings highlight the involvement of Ksplp in the DNA damage response and implicate Ksplp as a modulator of the replicative lifespan.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Hua-Zhen Zheng
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Tao Zhou
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Xiao-Shan Hong
- Institute of Gynecology, Women and Children's Hospital of Guangdong Province, Guangzhou 511442, China
| | - Hong-Jing Cui
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Zhi-Wen Jiang
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Hui-Ji Chen
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China
| | - Zhong-Jun Zhou
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xin-Guang Liu
- Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan 523808, China; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
37
|
Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 2016; 18:3-34. [PMID: 27804052 DOI: 10.1007/s10522-016-9666-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Aging is a multifactorial process determined by molecular, cellular and systemic factors and it is well established that advancing age is a leading risk factor for several neurodegenerative diseases. In fact, the close association of aging and neurodegenerative disorders has placed aging as the greatest social and economic challenge of the 21st century, and age-related diseases have also become a key priority for countries worldwide. The growing need to better understand both aging and neurodegenerative processes has led to the development of simple eukaryotic models amenable for mechanistic studies. Saccharomyces cerevisiae has proven to be an unprecedented experimental model to study the fundamental aspects of aging and to decipher the intricacies of neurodegenerative disorders greatly because the molecular mechanisms underlying these processes are evolutionarily conserved from yeast to human. Moreover, yeast offers several methodological advantages allowing a rapid and relatively easy way of establishing gene-protein-function associations. Here we review different aging theories, common cellular pathways driving aging and neurodegenerative diseases and discuss the major contributions of yeast to the state-of-art knowledge in both research fields.
Collapse
|
38
|
Molina-Serrano D, Schiza V, Demosthenous C, Stavrou E, Oppelt J, Kyriakou D, Liu W, Zisser G, Bergler H, Dang W, Kirmizis A. Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity. EMBO Rep 2016; 17:1829-1843. [PMID: 27799288 PMCID: PMC5167350 DOI: 10.15252/embr.201642540] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 01/07/2023] Open
Abstract
Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N‐alpha‐terminal acetyltransferase Nat4 and loss of its associated H4 N‐terminal acetylation (N‐acH4) extend yeast replicative lifespan. Notably, nat4Δ‐induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N‐acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N‐acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress‐response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ‐mediated longevity. Collectively, these findings establish histone N‐acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.
Collapse
Affiliation(s)
| | - Vassia Schiza
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Emmanouil Stavrou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Dimitris Kyriakou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Wei Liu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Gertrude Zisser
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität, Graz, Austria
| | - Helmut Bergler
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität, Graz, Austria
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
39
|
Smethurst DGJ, Cooper KF. ER fatalities-The role of ER-mitochondrial contact sites in yeast life and death decisions. Mech Ageing Dev 2016; 161:225-233. [PMID: 27507669 DOI: 10.1016/j.mad.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Following extracellular stress signals, all eukaryotic cells choose whether to elicit a pro-survival or pro-death response. The decision over which path to take is governed by the severity and duration of the damage. In response to mild stress, pro-survival programs are initiated (unfolded protein response, autophagy, mitophagy) whereas severe or chronic stress forces the cell to abandon these adaptive programs and shift towards regulated cell death to remove irreversibly damaged cells. Both pro-survival and pro-death programs involve regulated communication between the endoplasmic reticulum (ER) and mitochondria. In yeast, recent data suggest this inter-organelle contact is facilitated by the endoplasmic reticulum mitochondria encounter structure (ERMES). These membrane contacts are not only important for the exchange of cellular signals, but also play a role in mitochondrial tethering during mitophagy, mitochondrial fission and mitochondrial inheritance. This review focuses on recent findings in yeast that shed light on how ER-mitochondrial communication mediates critical cell fate decisions.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA.
| |
Collapse
|
40
|
Mitochondrial translation and cellular stress response. Cell Tissue Res 2016; 367:21-31. [DOI: 10.1007/s00441-016-2460-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023]
|
41
|
McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, Chou ACZ, Ahmed U, Carr D, Murakami CJ, Schleit J, Sutphin GL, Wasko BM, Bennett CF, Wang AM, Olsen B, Beyer RP, Bammler TK, Prunkard D, Johnson SC, Pennypacker JK, An E, Anies A, Castanza AS, Choi E, Dang N, Enerio S, Fletcher M, Fox L, Goswami S, Higgins SA, Holmberg MA, Hu D, Hui J, Jelic M, Jeong KS, Johnston E, Kerr EO, Kim J, Kim D, Kirkland K, Klum S, Kotireddy S, Liao E, Lim M, Lin MS, Lo WC, Lockshon D, Miller HA, Moller RM, Muller B, Oakes J, Pak DN, Peng ZJ, Pham KM, Pollard TG, Pradeep P, Pruett D, Rai D, Robison B, Rodriguez AA, Ros B, Sage M, Singh MK, Smith ED, Snead K, Solanky A, Spector BL, Steffen KK, Tchao BN, Ting MK, Vander Wende H, Wang D, Welton KL, Westman EA, Brem RB, Liu XG, Suh Y, Zhou Z, Kaeberlein M, Kennedy BK. A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging. Cell Metab 2015; 22:895-906. [PMID: 26456335 PMCID: PMC4862740 DOI: 10.1016/j.cmet.2015.09.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023]
Abstract
Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is nonadditive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging.
Collapse
Affiliation(s)
- Mark A McCormick
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Joe R Delaney
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Mitsuhiro Tsuchiya
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Scott Tsuchiyama
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anna Shemorry
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sylvia Sim
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Umema Ahmed
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Daniel Carr
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Jennifer Schleit
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - George L Sutphin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Christopher F Bennett
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brady Olsen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard P Beyer
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theodor K Bammler
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Donna Prunkard
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Simon C Johnson
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Elroy An
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Arieanna Anies
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony S Castanza
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Eunice Choi
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Nick Dang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shiena Enerio
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Marissa Fletcher
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lindsay Fox
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sarani Goswami
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sean A Higgins
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Molly A Holmberg
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Di Hu
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Jessica Hui
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Monika Jelic
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Ki-Soo Jeong
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elijah Johnston
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Emily O Kerr
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jin Kim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Diana Kim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Katie Kirkland
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shannon Klum
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Soumya Kotireddy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Eric Liao
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Lim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael S Lin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Winston C Lo
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dan Lockshon
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Hillary A Miller
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard M Moller
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brian Muller
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Jonathan Oakes
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Diana N Pak
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhao Jun Peng
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Kim M Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tom G Pollard
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Prarthana Pradeep
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dillon Pruett
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dilreet Rai
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Brett Robison
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Ariana A Rodriguez
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Bopharoth Ros
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Sage
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Manpreet K Singh
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Erica D Smith
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Katie Snead
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Amrita Solanky
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Benjamin L Spector
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Kristan K Steffen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Bie Nga Tchao
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Marc K Ting
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Helen Vander Wende
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Dennis Wang
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - K Linnea Welton
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Eric A Westman
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Xin-Guang Liu
- Aging Research Institute, Guangdong Medical College, Dongguan 523808, Guangdong, P.R. China
| | - Yousin Suh
- Aging Research Institute, Guangdong Medical College, Dongguan 523808, Guangdong, P.R. China; Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Zhongjun Zhou
- Department of Biochemistry, University of Hong Kong, Hong Kong
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Brian K Kennedy
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Protein synthesis as an integral quality control mechanism during ageing. Ageing Res Rev 2015; 23:75-89. [PMID: 25555680 DOI: 10.1016/j.arr.2014.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
Ageing is manifested as functional and structural deterioration that affects cell and tissue physiology. mRNA translation is a central cellular process, supplying cells with newly synthesized proteins. Accumulating evidence suggests that alterations in protein synthesis are not merely a corollary but rather a critical factor for the progression of ageing. Here, we survey protein synthesis regulatory mechanisms and focus on the pre-translational regulation of the process exerted by non-coding RNA species, RNA binding proteins and alterations of intrinsic RNA properties. In addition, we discuss the tight relationship between mRNA translation and two central pathways that modulate ageing, namely the insulin/IGF-1 and TOR signalling cascades. A thorough understanding of the complex interplay between protein synthesis regulation and ageing will provide critical insights into the pathogenesis of age-related disorders, associated with impaired proteostasis and protein quality control.
Collapse
|
43
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
44
|
Cui HJ, Liu XG, McCormick M, Wasko BM, Zhao W, He X, Yuan Y, Fang BX, Sun XR, Kennedy BK, Suh Y, Zhou ZJ, Kaeberlein M, Feng WL. PMT1 deficiency enhances basal UPR activity and extends replicative lifespan of Saccharomyces cerevisiae. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9788. [PMID: 25936926 PMCID: PMC4417673 DOI: 10.1007/s11357-015-9788-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Pmt1p is an important member of the protein O-mannosyltransferase (PMT) family of enzymes, which participates in the endoplasmic reticulum (ER) unfolded protein response (UPR), an important pathway for alleviating ER stress. ER stress and the UPR have been implicated in aging and age-related diseases in several organisms; however, a possible role for PMT1 in determining lifespan has not been previously described. In this study, we report that deletion of PMT1 increases replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae, while overexpression of PMT1 (PMT1-OX) reduces RLS. Relative to wild-type and PMT1-OX strains, the pmt1Δ strain had enhanced HAC1 mRNA splicing and elevated expression levels of UPR target genes. Furthermore, the increased RLS of the pmt1Δ strain could be completely abolished by deletion of either IRE1 or HAC1, two upstream modulators of the UPR. The double deletion strains pmt1Δhac1Δ and pmt1Δire1Δ also displayed generally reduced transcription of UPR target genes. Collectively, our results suggest that PMT1 deficiency enhances basal activity of the ER UPR and extends the RLS of yeast mother cells through a mechanism that requires both IRE1 and HAC1.
Collapse
Affiliation(s)
- Hong-Jing Cui
- />Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, 400016 People’s Republic of China
| | - Xin-Guang Liu
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Mark McCormick
- />Buck Institute for Research on Aging, Novato, CA 98945 USA
| | - Brian M. Wasko
- />Department of Pathology, University of Washington, Seattle, WA 98159 USA
| | - Wei Zhao
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Xin He
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Yuan Yuan
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Bing-Xiong Fang
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Xue-Rong Sun
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Brian K. Kennedy
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Buck Institute for Research on Aging, Novato, CA 98945 USA
| | - Yousin Suh
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Zhong-Jun Zhou
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Department of Biochemistry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong
| | - Matt Kaeberlein
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Department of Pathology, University of Washington, Seattle, WA 98159 USA
| | - Wen-Li Feng
- />Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, 400016 People’s Republic of China
| |
Collapse
|
45
|
Schulz AM, Haynes CM. UPR(mt)-mediated cytoprotection and organismal aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1448-56. [PMID: 25857997 DOI: 10.1016/j.bbabio.2015.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 12/20/2022]
Abstract
Time- or age-dependent accumulation of mitochondrial damage and dysfunction is strongly associated with aging [1]. Thus, a major biomedical goal is to identify and therapeutically manipulate those inherent programs that protect against mitochondrial dysfunction to promote cell survival and organismal health. The mitochondrial unfolded protein response (UPR(mt)) is such a protective transcriptional response mediated by mitochondrial-to-nuclear signaling that includes mitochondrial proteostasis genes to stabilize mitochondrial function, metabolic adaptations, as well as an innate immunity program. Here, we review the UPR(mt) and its role during a variety of forms of mitochondrial dysfunction including those caused by mutations in respiratory chain genes as well as upon exposure to pathogens that produce mitochondrial toxins. We also review recent data in support of and against the emerging role of the UPR(mt) during aging and longevity. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
- Anna M Schulz
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
46
|
Mechanisms by which different functional states of mitochondria define yeast longevity. Int J Mol Sci 2015; 16:5528-54. [PMID: 25768339 PMCID: PMC4394491 DOI: 10.3390/ijms16035528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial functionality is vital to organismal physiology. A body of evidence supports the notion that an age-related progressive decline in mitochondrial function is a hallmark of cellular and organismal aging in evolutionarily distant eukaryotes. Studies of the baker’s yeast Saccharomyces cerevisiae, a unicellular eukaryote, have led to discoveries of genes, signaling pathways and chemical compounds that modulate longevity-defining cellular processes in eukaryotic organisms across phyla. These studies have provided deep insights into mechanistic links that exist between different traits of mitochondrial functionality and cellular aging. The molecular mechanisms underlying the essential role of mitochondria as signaling organelles in yeast aging have begun to emerge. In this review, we discuss recent progress in understanding mechanisms by which different functional states of mitochondria define yeast longevity, outline the most important unanswered questions and suggest directions for future research.
Collapse
|
47
|
Serate J, Xie D, Pohlmann E, Donald C, Shabani M, Hinchman L, Higbee A, Mcgee M, La Reau A, Klinger GE, Li S, Myers CL, Boone C, Bates DM, Cavalier D, Eilert D, Oates LG, Sanford G, Sato TK, Dale B, Landick R, Piotrowski J, Ong RG, Zhang Y. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:180. [PMID: 26583044 PMCID: PMC4650398 DOI: 10.1186/s13068-015-0356-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/09/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics during the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. RESULTS Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. CONCLUSIONS Our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate, and also showed negligible effects on microbial performance. Although the levels of some of the lignocellulose degradation inhibitors were elevated by autoclaving the feedstocks prior to enzymatic hydrolysis, no significant effects on cell growth, sugar utilization, or ethanol production were seen during bacterial or yeast fermentations in hydrolysates produced using the two different methods.
Collapse
Affiliation(s)
- Jose Serate
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dan Xie
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Edward Pohlmann
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Charles Donald
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Mahboubeh Shabani
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Li Hinchman
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alan Higbee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Mick Mcgee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alex La Reau
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Grace E. Klinger
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Sheena Li
- />RIKEN Center for Sustainable Resource Science, Wako, Saitama Japan
| | - Chad L. Myers
- />Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Charles Boone
- />Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON Canada
| | - Donna M. Bates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dave Cavalier
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Dustin Eilert
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Lawrence G. Oates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Gregg Sanford
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Trey K. Sato
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Bruce Dale
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Robert Landick
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Jeff Piotrowski
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Rebecca Garlock Ong
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Yaoping Zhang
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
48
|
Bernhardt D, Hamann A, Osiewacz HD. The role of mitochondria in fungal aging. Curr Opin Microbiol 2014; 22:1-7. [PMID: 25299751 DOI: 10.1016/j.mib.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Time-dependent impairments of mitochondrial function play a key role in biological aging. Work on fungal aging models has been instrumental in unraveling basic mechanisms leading to mitochondrial dysfunction and the identification of different pathways active in keeping mitochondria 'healthy' over time. Pathways including those involved in reactive oxygen scavenging, repair of damage, proteostasis, mitochondrial dynamics, and biogenesis, are interconnected and part of a complex quality control system. The individual components of this network are limited in capacity. However, if the capacity of one pathway is overwhelmed, another one may be activated. The mechanisms controlling the underlying cross-talk are poorly understood and subject of intensive investigation.
Collapse
Affiliation(s)
- Dominik Bernhardt
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J.W. Goethe University, Frankfurt, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J.W. Goethe University, Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J.W. Goethe University, Frankfurt, Germany.
| |
Collapse
|
49
|
Liang X, Dickman MB, Becker DF. Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae. J Biol Chem 2014; 289:27794-806. [PMID: 25112878 PMCID: PMC4183814 DOI: 10.1074/jbc.m114.562827] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP(+)/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted.
Collapse
Affiliation(s)
- Xinwen Liang
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588 and
| | - Martin B Dickman
- the Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Donald F Becker
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588 and
| |
Collapse
|
50
|
Gatsi R, Schulze B, Rodríguez-Palero MJ, Hernando-Rodríguez B, Baumeister R, Artal-Sanz M. Prohibitin-mediated lifespan and mitochondrial stress implicate SGK-1, insulin/IGF and mTORC2 in C. elegans. PLoS One 2014; 9:e107671. [PMID: 25265021 PMCID: PMC4180437 DOI: 10.1371/journal.pone.0107671] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/13/2014] [Indexed: 12/29/2022] Open
Abstract
Lifespan regulation by mitochondrial proteins has been well described, however, the mechanism of this regulation is not fully understood. Amongst the mitochondrial proteins profoundly affecting ageing are prohibitins (PHB-1 and PHB-2). Paradoxically, in C. elegans prohibitin depletion shortens the lifespan of wild type animals while dramatically extending that of metabolically compromised animals, such as daf-2-insulin-receptor mutants. Here we show that amongst the three kinases known to act downstream of daf-2, only loss of function of sgk-1 recapitulates the ageing phenotype observed in daf-2 mutants upon prohibitin depletion. Interestingly, signalling through SGK-1 receives input from an additional pathway, parallel to DAF-2, for the prohibitin-mediated lifespan phenotype. We investigated the effect of prohibitin depletion on the mitochondrial unfolded protein response (UPRmt). Remarkably, the lifespan extension upon prohibitin elimination, of both daf-2 and sgk-1 mutants, is accompanied by suppression of the UPRmt induced by lack of prohibitin. On the contrary, gain of function of SGK-1 results in further shortening of lifespan and a further increase of the UPRmt in prohibitin depleted animals. Moreover, SGK-1 interacts with RICT-1 for the regulation of the UPRmt in a parallel pathway to DAF-2. Interestingly, prohibitin depletion in rict-1 loss of function mutant animals also causes lifespan extension. Finally, we reveal an unprecedented role for mTORC2-SGK-1 in the regulation of mitochodrial homeostasis. Together, these results give further insight into the mechanism of lifespan regulation by mitochondrial function and reveal a cross-talk of mitochondria with two key pathways, Insulin/IGF and mTORC2, for the regulation of ageing and stress response.
Collapse
Affiliation(s)
- Roxani Gatsi
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Bettina Schulze
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - María Jesús Rodríguez-Palero
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Blanca Hernando-Rodríguez
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Ralf Baumeister
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Marta Artal-Sanz
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|