1
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Xiao Y, Zhang L, Zhou H, Cui Y, Chen K, Zhang H, Wu Q, Liu F. Berberine extends healthspan and delays neurodegenerative diseases in Caenorhabditis elegans through ROS-dependent PMK-1/SKN-1 activation. Arch Gerontol Geriatr 2025; 128:105644. [PMID: 39357500 DOI: 10.1016/j.archger.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress, or the chronic generation of reactive oxygen species (ROS), is thought to contribute to the progression of aging and aging related diseases. However, low degree of ROS generation has repeatedly been shown to be associated with beneficial outcomes via activation of protective signaling pathways. Berberine, a natural alkaloid isolated from Rhizomacoptidis, has a long history of medicinal use in both Ayurvedic and traditional Chinese medicine, which possesses anti-cancer, anti-inflammatory and anti-neurodegenerative properties. In this study, we utilize Caenorhabditis elegans to examine the mechanisms by which berberine influences healthspan and neurodegenerative diseases. We find that 10 μM berberine significantly extends healthy lifespan in wild type C. elegans. We further show that berberine generates ROS, which is followed by activation of PMK-1/SKN-1 to extend healthspan. Intriguingly, berberine also delays neurodegenerative diseases such as Alzheimer's and polyglutamine diseases in a PMK-1/SKN-1dependent manner. Our work suggests that berberine may be a viable candidate for the prevention and treatment of aging and aging related diseases.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China.
| | - Li Zhang
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Hanlin Zhou
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Yingwen Cui
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Keer Chen
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Han Zhang
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Qinyi Wu
- Yunnan University of Chinese Medicine, Kunming, Yunnan 650000, China.
| | - Fang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China.
| |
Collapse
|
3
|
Zhou L, Li R, Wang F, Zhou R, Xia Y, Jiang X, Cheng S, Wang F, Li D, Zhang J, Mao L, Cai X, Zhang H, Qiu J, Tian X, Zou Z, Chen C. N6-methyladenosine demethylase FTO regulates neuronal oxidative stress via YTHDC1-ATF3 axis in arsenic-induced cognitive dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135736. [PMID: 39265400 DOI: 10.1016/j.jhazmat.2024.135736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Excessive exposure to metals in daily life has been proposed as an environmental risk factor for neurological disorders. Oxidative stress is an inevitable stage involved in the neurotoxic effects induced by metals, nevertheless, the underlying mechanisms are still unclear. In this study, we used arsenic as a representative environmental heavy metal to induce neuronal oxidative stress and demonstrated that both in vitro and in vivo exposure to arsenic significantly increased the level of N6-methyladenosine (m6A) by down-regulating its demethylase FTO. Importantly, the results obtained from FTO transgenic mice and FTO overexpressed/knockout cells indicated that FTO likely regulated neuronal oxidative stress by modulating activating transcription factor 3 (ATF3) in a m6A-dependent manner. We also identified the specific m6A reader protein, YTHDC1, which interacted with ATF3 and thereby affecting its regulatory effects on oxidative stress. To further explore potential intervention strategies, cerebral metabolomics was conducted and we newly identified myo-inositol as a metabolite that exhibited potential in protecting against arsenic-induced oxidative stress and cognitive dysfunction. Overall, these findings provide new insights into the importance of the FTO-ATF3 signaling axis in neuronal oxidative stress from an m6A perspective, and highlight a beneficial metabolite that can counteract the oxidative stress induced by arsenic.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Renjie Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fu Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruiqi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Cai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Sheng Y, Abreu A, Markovich Z, Ebea P, Davis L, Park E, Sheng P, Xie M, Han SM, Xiao R. A mitochondrial unfolded protein response-independent role of DVE-1 in longevity regulation. Cell Rep 2024; 43:114889. [PMID: 39423131 DOI: 10.1016/j.celrep.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The special AT-rich sequence-binding (SATB) protein DVE-1 is widely recognized for its pivotal involvement in orchestrating the retrograde mitochondrial unfolded protein response (mitoUPR) in C. elegans. In our study of downstream factors contributing to lifespan extension in sensory ciliary mutants, we find that DVE-1 is crucial for this longevity effect independent of its canonical mitoUPR function. Additionally, DVE-1 also influences lifespan under conditions of dietary restriction and germline loss, again distinct from its role in mitoUPR. Mechanistically, while mitochondrial stress typically prompts nuclear accumulation of DVE-1 to initiate the transcriptional mitoUPR program, these long-lived mutants reduce DVE-1 nuclear accumulation, likely by enhancing its cytosolic translocation. This observation suggests a cytosolic role for DVE-1 in lifespan extension. Overall, our study implies that, in contrast to the more narrowly defined role of the mitoUPR-related transcription factor ATFS-1, DVE-1 may possess broader functions than previously recognized in modulating longevity and defending against stress.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pearl Ebea
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Leah Davis
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Park
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute on Aging, University of Florida, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Da W, Chen Q, Shen B. The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration. Biol Res 2024; 57:37. [PMID: 38824571 PMCID: PMC11143644 DOI: 10.1186/s40659-024-00494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 06/03/2024] Open
Abstract
It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Quan Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Kim KH, Lee CB. Socialized mitochondria: mitonuclear crosstalk in stress. Exp Mol Med 2024; 56:1033-1042. [PMID: 38689084 PMCID: PMC11148012 DOI: 10.1038/s12276-024-01211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Traditionally, mitochondria are considered sites of energy production. However, recent studies have suggested that mitochondria are signaling organelles that are involved in intracellular interactions with other organelles. Remarkably, stressed mitochondria appear to induce a beneficial response that restores mitochondrial function and cellular homeostasis. These mitochondrial stress-centered signaling pathways have been rapidly elucidated in multiple organisms. In this review, we examine current perspectives on how mitochondria communicate with the rest of the cell, highlighting mitochondria-to-nucleus (mitonuclear) communication under various stresses. Our understanding of mitochondria as signaling organelles may provide new insights into disease susceptibility and lifespan extension.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea.
| | - Cho Bi Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea
| |
Collapse
|
7
|
Gettings SM, Timbury W, Dmochowska A, Sharma R, McGonigle R, MacKenzie LE, Miquelard-Garnier G, Bourbia N. Polyethylene terephthalate (PET) micro- and nanoplastic particles affect the mitochondrial efficiency of human brain vascular pericytes without inducing oxidative stress. NANOIMPACT 2024; 34:100508. [PMID: 38663501 DOI: 10.1016/j.impact.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The objective of this investigation was to evaluate the influence of micro- and nanoplastic particles composed of polyethylene terephthalate (PET), a significant contributor to plastic pollution, on human brain vascular pericytes. Specifically, we delved into their impact on mitochondrial functionality, oxidative stress, and the expression of genes associated with oxidative stress, ferroptosis and mitochondrial functions. Our findings demonstrate that the exposure of a monoculture of human brain vascular pericytes to PET particles in vitro at a concentration of 50 μg/ml for a duration of 3, 6 and 10 days did not elicit oxidative stress. Notably, we observed a reduction in various aspects of mitochondrial respiration, including maximal respiration, spare respiratory capacity, and ATP production in pericytes subjected to PET particles for 3 days, with a mitochondrial function recovery at 6 and 10 days. Furthermore, there were no statistically significant alterations in mitochondrial DNA copy number, or in the expression of genes linked to oxidative stress and ferroptosis, but an increase of the expression of the gene mitochondrial transcription factor A (TFAM) was noted at 3 days exposure. These outcomes suggest that, at a concentration of 50 μg/ml, PET particles do not induce oxidative stress in human brain vascular pericytes. Instead, at 3 days exposure, PET exposure impairs mitochondrial functions, but this is recovered at 6-day exposure. This seems to indicate a potential mitochondrial hormesis response (mitohormesis) is incited, involving the gene TFAM. Further investigations are warranted to explore the stages of mitohormesis and the potential consequences of plastics on the integrity of the blood-brain barrier and intercellular interactions. This research contributes to our comprehension of the potential repercussions of nanoplastic pollution on human health and underscores the imperative need for ongoing examinations into the exposure to plastic particles.
Collapse
Affiliation(s)
- Sean M Gettings
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - William Timbury
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Anna Dmochowska
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Riddhi Sharma
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Rebecca McGonigle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Lewis E MacKenzie
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Nora Bourbia
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK.
| |
Collapse
|
8
|
Fernández Miyakawa ME, Casanova NA, Kogut MH. How did antibiotic growth promoters increase growth and feed efficiency in poultry? Poult Sci 2024; 103:103278. [PMID: 38052127 PMCID: PMC10746532 DOI: 10.1016/j.psj.2023.103278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
It has been hypothesized that reducing the bioenergetic costs of gut inflammation as an explanation for the effect of antibiotic growth promoters (AGPs) on animal efficiency, framing some observations but not explaining the increase in growth rate or the prevention of infectious diseases. The host's ability to adapt to alterations in environmental conditions and to maintain health involves managing all physiological interactions that regulate homeostasis. Thus, metabolic pathways are vital in regulating physiological health as the energetic demands of the host guides most biological functions. Mitochondria are not only the metabolic heart of the cell because of their role in energy metabolism and oxidative phosphorylation, but also a central hub of signal transduction pathways that receive messages about the health and nutritional states of cells and tissues. In response, mitochondria direct cellular and tissue physiological alterations throughout the host. The endosymbiotic theory suggests that mitochondria evolved from prokaryotes, emphasizing the idea that these organelles can be affected by some antibiotics. Indeed, therapeutic levels of several antibiotics can be toxic to mitochondria, but subtherapeutic levels may improve mitochondrial function and defense mechanisms by inducing an adaptive response of the cell, resulting in mitokine production which coordinates an array of adaptive responses of the host to the stressor(s). This adaptive stress response is also observed in several bacteria species, suggesting that this protective mechanism has been preserved during evolution. Concordantly, gut microbiome modulation by subinhibitory concentration of AGPs could be the result of direct stimulation rather than inhibition of determined microbial species. In eukaryotes, these adaptive responses of the mitochondria to internal and external environmental conditions, can promote growth rate of the organism as an evolutionary strategy to overcome potential negative conditions. We hypothesize that direct and indirect subtherapeutic AGP regulation of mitochondria functional output can regulate homeostatic control mechanisms in a manner similar to those involved with disease tolerance.
Collapse
Affiliation(s)
- Mariano Enrique Fernández Miyakawa
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina..
| | - Natalia Andrea Casanova
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| |
Collapse
|
9
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
10
|
Bhattacharya S. Can the Toxic Heavy Metals Be Beneficial at Trace Levels? Understanding Their Outranged Biological Functions. J Environ Pathol Toxicol Oncol 2024; 43:71-77. [PMID: 37824371 DOI: 10.1615/jenvironpatholtoxicoloncol.2023049292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Heavy metal toxicity poses a serious danger to the environment and its inhabitants on a global scale. The harmful heavy metals that are not necessary but are still dangerous, such as lead, arsenic, cadmium, and mercury are frequently linked to pollution and the resulting health problems. Despite several gross ill effects, toxic heavy metals have been found to show beneficial biological activity when applied at very low or trace levels. This article aims to collate such investigations conducted during the last two decades with trace levels of cadmium, mercury and arsenic toxicity against animal systems. There are a total of 13 pre-clinical works demonstrating the protective or beneficial effect of mercury, cadmium and arsenic at trace levels. Such literature reports with lead could not be found. From the outcome of the current literature investigation it is evident that, trace levels of toxic heavy metals namely arsenic, cadmium and mercury possess remarkable protective and beneficial effects chiefly on growth, developmental and reproductive parameters against animal systems pre-clinically, in contrast to their known toxic effects-operated by multiple mechanisms which provided some empirical support for further understanding of the outranged biological functions of the heavy metals. Further mechanistic works on this sphere may pave the way for a better understanding of the protective role of toxic heavy metals for the accomplishment of animals including humans.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
11
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Zhang C, Li H, Yang Y, Zhou X, Zhuang D, Liu W, Wang K, Wang P, Zhang W, Bai Y, Ma H, Gao B, Wang R. Induced mechanism of phosphatase hormesis by Cd ions and rhizosphere metabolites of Trifolium repens L. CHEMOSPHERE 2023; 344:140219. [PMID: 37741368 DOI: 10.1016/j.chemosphere.2023.140219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Rhizosphere phosphatases can exhibit hormetic effects in response to cadmium (Cd) ion stimulation. However, understanding the mechanisms underlying hormesis effects on soil ecosystems is challenging as studies on hormesis are usually specific to an organism, cell, or organ. To comprehensively investigate the mechanism of phosphatase hormesis, this study utilized in situ zymography and metabolomics to analyze the rhizosphere of Trifolium repens L. (white clover). Zymograms showed that rhizosphere phosphatase displayed a hormetic effect in 10 mg kg-1 Cd contaminated soil, with a hotspot area 1.8 times larger than non-Cd contaminated soil and a slight increase in enzyme activity. Nevertheless, the phosphatase activity was substantially suppressed upon elevating the Cd concentration in the soil to 50 mg kg-1. Differential metabolite identification and KEEG pathway enrichment analysis revealed that both rhizosphere organic acids and amino acid compounds positively affected phosphatase activity, and both were able to stabilize complexation with Cd ions via carboxyl groups. Besides, molecular docking models suggested that Cd ions act as cofactors to induce the formation of hydrogen bonds between amino acids/organic acids and phosphatase residues to form a triplet complex with a more stable structure, thereby improving phosphatase activity. The results indicated that amino acids and organic acids are heavily enriched in the rhizosphere of white clover and form a particular structure with soil Cd ions and phosphatase, which is essential for inducing the phosphatase hormesis as a detoxification mechanism in the rhizosphere micro-ecosystem.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; Ministry of Education Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xulun Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Damiao Zhuang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wengang Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Pengkai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wenxin Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yaran Bai
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haotian Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Bingqian Gao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Rui Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
13
|
Srivastava V, Gross E. Mitophagy-promoting agents and their ability to promote healthy-aging. Biochem Soc Trans 2023; 51:1811-1846. [PMID: 37650304 PMCID: PMC10657188 DOI: 10.1042/bst20221363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers' convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| | - Einav Gross
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| |
Collapse
|
14
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
15
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
16
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
17
|
San-Millán I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12040782. [PMID: 37107158 PMCID: PMC10135185 DOI: 10.3390/antiox12040782] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer's disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non-communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an "intervention". However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non-communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the "metabolic rehabilitation" of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Guidarelli A, Spina A, Fiorani M, Zito E, Cantoni O. Arsenite enhances ERO1α expression via ryanodine receptor dependent and independent mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104080. [PMID: 36781116 DOI: 10.1016/j.etap.2023.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Arsenite is a potent carcinogen and toxic compound inducing an array of deleterious effects via different mechanisms, which include the Ca2+-dependent formation of reactive oxygen species. The mechanism whereby the metalloid affects Ca2+ homeostasis involves an initial stimulation of the inositol 1, 4, 5-triphosphate receptor, an event associated with an endoplasmic reticulum (ER) stress leading to increased ERO1α expression, and ERO1α dependent activation of the ryanodine receptor (RyR). Ca2+ release from the RyR is then critically connected with the mitochondrial accumulation of Ca2+. We now report that the resulting formation of mitochondrial superoxide triggers a second mechanism of ER stress dependent ERO1α expression, which however fails to impact on Ca2+ release from the RyR or, more generally, on Ca2+ homeostasis. Our results therefore demonstrate that arsenite stimulates two different and sequential mechanisms leading to increased ERO1α expression with different functions, possibly due to their different subcellular compartmentalization.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
19
|
Calderón-DuPont D, Romero-Córdoba S, Tello JK, Espinosa A, Guerrero B, Contreras AV, Morán-Ramos S, Díaz-Villaseñor A. Impaired white adipose tissue fatty acid metabolism in mice fed a high-fat diet worsened by arsenic exposure, primarily affecting retroperitoneal adipose tissue. Toxicol Appl Pharmacol 2023; 468:116428. [PMID: 36801214 DOI: 10.1016/j.taap.2023.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Fatty acid (FA) metabolism dysfunction of white adipose tissue (WAT) underlies obesity and insulin resistance in response to high calorie intake and/or endocrine-disrupting chemicals (EDCs), among other factors. Arsenic is an EDC that has been associated with metabolic syndrome and diabetes. However, the combined effect of a high-fat diet (HFD) and arsenic exposure on WAT FA metabolism has been little studied. FA metabolism was evaluated in visceral (epididymal and retroperitoneal) and subcutaneous WAT of C57BL/6 male mice fed control or HFD (12 and 40% kcal fat, respectively) for 16 weeks together with an environmentally relevant chronic arsenic exposure through drinking water (100 μg/l) during the second half of the study. In mice fed HFD, arsenic potentiated the increase of serum markers of selective insulin resistance in WAT and fatty acid re-esterification and the decrease in the lipolysis index. Retroperitoneal was the WAT most affected, where the combination of arsenic and HFD in contrast to HFD, generated higher weight, larger adipocytes, increased triglyceride content, and decreased fasting stimulated lipolysis evidenced by lower phosphorylation of HSL and perilipin. At the transcriptional level, arsenic in mice fed either diet downregulated genes involved in fatty acid uptake (LPL, CD36), oxidation (PPARα, CPT1), lipolysis (ADRß3) and glycerol transport (AQP7 and AQP9). Additionally, arsenic potentiated hyperinsulinemia induced by HFD, despite a slight increase in weight gain and food efficiency. Thus, the second hit of arsenic in sensitized mice by HFD worsens fatty acid metabolism impairment in WAT, mainly retroperitoneal, along with an exacerbated insulin resistance phenotype.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Jessica K Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Maestría en Nutrición Clínica, Universidad Anáhuac Campus Norte, Estado de México 52786, Mexico
| | - Aranza Espinosa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Brenda Guerrero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Alejandra V Contreras
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Translational Molecular Biomarkers, Merck & Co., Inc, Rahway, NJ, USA
| | - Sofia Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico.
| |
Collapse
|
20
|
Quevarec L, Réale D, Dufourcq-Sekatcheff E, Armant O, Adam-Guillermin C, Bonzom JM. Ionizing radiation affects the demography and the evolution of Caenorhabditis elegans populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114353. [PMID: 36516628 DOI: 10.1016/j.ecoenv.2022.114353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Ionizing radiation can reduce survival, reproduction and affect development, and lead to the extinction of populations if their evolutionary response is insufficient. However, demographic and evolutionary studies on the effects of ionizing radiation are still scarce. Using an experimental evolution approach, we analyzed population growth rate and associated change in life history traits across generations in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h-1 of ionizing radiation (gamma external irradiation). We found a higher population growth rate in the 1.4 mGy.h-1 treatment and a lower in the 50.0 mGy.h-1 treatment compared to the control. Realized fecundity was lower in both 1.4 and 50.0 mGy.h-1 than control treatment. High irradiation levels decreased brood size from self-fertilized hermaphrodites, specifically early brood size. Finally, high irradiation levels decreased hatching success compared to the control condition. In reciprocal-transplant experiments, we found that life in low irradiation conditions led to the evolution of higher hatching success and late brood size. These changes could provide better tolerance against ionizing radiation, investing more in self-maintenance than in reproduction. These evolutionary changes were with some costs of adaptation. This study shows that ionizing radiation has both demographic and evolutionary consequences on populations.
Collapse
Affiliation(s)
- Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France.
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Elizabeth Dufourcq-Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache 13115, Saint Paul Lez Durance, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France.
| |
Collapse
|
21
|
Liu F, Wang H, Zhu X, Jiang N, Pan F, Song C, Yu C, Yu C, Qin Y, Hui J, Li S, Xiao Y, Liu Y. Sanguinarine promotes healthspan and innate immunity through a conserved mechanism of ROS-mediated PMK-1/SKN-1 activation. iScience 2022; 25:103874. [PMID: 35243236 PMCID: PMC8857505 DOI: 10.1016/j.isci.2022.103874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/31/2022] Open
Abstract
The longevity of an organism is influenced by both genetic and environmental factors. With respect to genetic factors, a significant effort is being made to identify pharmacological agents that extend lifespan by targeting pathways with a defined role in the aging process. Sanguinarine (San) is a benzophenanthridine alkaloid that exerts a broad spectrum of properties. In this study, we utilized Caenorhabditis elegans to examine the mechanisms by which sanguinarine influences aging and innate immunity. We find that 0.2 μM sanguinarine extends healthspan in C. elegans. We further show that sanguinarine generates reactive oxygen species (ROS), which is followed by the activation of PMK-1/SKN-1pathway to extend healthspan. Intriguingly, sanguinarine increases resistance to pathogens by reducing the bacterial burden in the intestine. In addition, we also find that sanguinarine enhances innate immunity through PMK-1/SKN-1 pathway. Our data suggest that sanguinarine may be a viable candidate for the treatment of age-related disorders. Sanguinarine extends healthspan in C. elegans Sanguinarine-induced ROS activates the PMK-1/SKN-1 pathway to extend healthspan Sanguinarine increases resistance to pathogens by reducing the bacterial burden Sanguinarine enhances innate immunity through PMK-1/SKN-1 pathway
Collapse
Affiliation(s)
- Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Haijuan Wang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Feng Pan
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Changwei Song
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Chunbo Yu
- College of Basic Medicine, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Ying Qin
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Jing Hui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
| | - Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
- Corresponding author
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, GZ 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, GZ 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, GZ 563000, China
- Corresponding author
| |
Collapse
|
22
|
Wetzker R. Hormesis Meetings at the Royal Palace. Dose Response 2022; 19:15593258211056835. [PMID: 34987333 PMCID: PMC8669123 DOI: 10.1177/15593258211056835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
This commentary describes the origin and the main results of experimental work on adaptive stress responses at the university town Jena in Germany. These cooperative research activities exemplify the heuristic power of the hormesis phenomenon.
Collapse
Affiliation(s)
- Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Oleson BJ, Bazopoulou D, Jakob U. Shaping longevity early in life: developmental ROS and H3K4me3 set the clock. Cell Cycle 2021; 20:2337-2347. [PMID: 34657571 PMCID: PMC8794500 DOI: 10.1080/15384101.2021.1986317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Studies in Caenorhabditis elegans have revealed that even a genetically identical population of animals exposed to the same environment displays a remarkable level of variability in individual lifespan. Stochasticity factors, occurring seemingly by chance or at random, are thought to account for a large part of this variability. Recent studies in our lab using C. elegans now revealed that naturally occurring variations in the levels of reactive oxygen species experienced early in life contribute to the observed lifespan variability, and likely serve as stochasticity factors in aging. Here, we will highlight how developmental events can positively shape lifespan and stress responses via a redox-sensitive epigenetic regulator, and discuss the outstanding questions and future directions on the complex relationship between reactive oxygen species and aging.
Collapse
Affiliation(s)
- Bryndon J. Oleson
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Daphne Bazopoulou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA,CONTACT Ursula Jakob Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
24
|
Abstract
Glutathione (GSH) is the most abundant cellular antioxidant. As reactive oxygen species (ROS) are widely believed to promote aging and age-related diseases, and antioxidants can neutralize ROS, it follows that GSH and its precursor, N-acetyl cysteine (NAC), are among the most popular dietary supplements. However, the long- term effects of GSH or NAC on healthy animals have not been thoroughly investigated. We employed C. elegans to demonstrate that chronic administration of GSH or NAC to young or aged animals perturbs global gene expression, inhibits skn-1-mediated transcription, and accelerates aging. In contrast, limiting the consumption of dietary thiols, including those naturally derived from the microbiota, extended lifespan. Pharmacological GSH restriction activates the unfolded protein response and increases proteotoxic stress resistance in worms and human cells. It is thus advantageous for healthy individuals to avoid excessive dietary antioxidants and, instead, rely on intrinsic GSH biosynthesis, which is fine-tuned to match the cellular redox status and to promote homeostatic ROS signaling.
Collapse
|
25
|
Survival upon Staphylococcus aureus mediated wound infection in Caenorhabditis elegans and the mechanism entailed. Microb Pathog 2021; 157:104952. [PMID: 34022354 DOI: 10.1016/j.micpath.2021.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
Infection following injury is one of the major threats which causes huge economic burden in wound care management all over the world. Injury often results with poor healing when coupled by following infection. In contrast to this, we observed enhanced survival of wound infected worms compared to wounded worms in Caenorhabditis elegans wound model while infecting with Staphylococcus aureus. Hence, the study was intended to identify the mechanism for the enhanced survival of wound infected worms through LCMS/MS based high throughput proteomic analysis. Bioinformatics analyses of the identified protein players indicated differential enrichment of several pathways including MAPK signaling, oxidative phosphorylation and phosphatidylinositol signaling. Inhibition of oxidative phosphorylation and phosphatidylinositol signaling through chemical treatment showed complete reversal of the enhanced survival during wound infection nevertheless mutant of MAPK pathway did not reverse the same. Consequently, it was delineated that oxidative phosphorylation and phosphatidylinositol signaling are crucial for the survival. In this regard, elevated calcium signals and ROS including O- and H2O2 were observed in wounded and wound infected worms. Consequently, it was insinuated that presence of pathogen stress could have incited survival in wound infected worms with the aid of elevated ROS and calcium signals.
Collapse
|
26
|
Admasu TD, Barardo D, Ng LF, Batchu KC, Cazenave-Gassiot A, Wenk MR, Gruber J. A small-molecule Psora-4 acts as a caloric restriction mimetic to promote longevity in C. elegans. GeroScience 2021; 44:1029-1046. [PMID: 33988831 DOI: 10.1007/s11357-021-00374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/20/2021] [Indexed: 10/21/2022] Open
Abstract
In populations around the world, the fraction of humans aged 65 and above is increasing at an unprecedented rate. Aging is the main risk factor for the most important degenerative diseases and this demographic shift poses significant social, economic, and medical challenges. Pharmacological interventions directly targeting mechanisms of aging are an emerging strategy to delay or prevent age-dependent diseases. Successful application of this approach has the potential to yield dramatic health, social, and economic benefits. Psora-4 is an inhibitor of the voltage-gated potassium channel, Kv1.3, that has previously been shown to increase longevity and health span in the nematode Caenorhabditis elegans (C. elegans). Our recent discovery that Psora-4 lifespan benefits in C. elegans are synergistic with those of several other lifespan-extending drugs has motivated us to investigate further the mechanism by which Psora-4 extends lifespan. Here, we report that Psora-4 increases the production of free radicals and modulates genes related to stress response and that its effect intersects closely with the target set of caloric restriction (CR) genes, suggesting that it, in part, acts as CR mimetic. This effect may be related to the role of potassium channels in energy metabolism. Our discovery of a potassium channel blocker as a CR mimetic suggests a novel avenue for mimicking CR and extending a healthy lifespan.
Collapse
Affiliation(s)
- Tesfahun Dessale Admasu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117608, Singapore
- SENS Research Foundation Research Center, Mountain View, CA, 94041, USA
| | - Diogo Barardo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117608, Singapore
- Science Divisions, Yale-NUS College, Singapore, 138527, Singapore
| | - Li Fang Ng
- Science Divisions, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117608, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117608, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117608, Singapore.
- Science Divisions, Yale-NUS College, Singapore, 138527, Singapore.
| |
Collapse
|
27
|
Health and longevity studies in C. elegans: the "healthy worm database" reveals strengths, weaknesses and gaps of test compound-based studies. Biogerontology 2021; 22:215-236. [PMID: 33683565 PMCID: PMC7973913 DOI: 10.1007/s10522-021-09913-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Several biogerontology databases exist that focus on genetic or gene expression data linked to health as well as survival, subsequent to compound treatments or genetic manipulations in animal models. However, none of these has yet collected experimental results of compound-related health changes. Since quality of life is often regarded as more valuable than length of life, we aim to fill this gap with the “Healthy Worm Database” (http://healthy-worm-database.eu). Literature describing health-related compound studies in the aging model Caenorhabditis elegans was screened, and data for 440 compounds collected. The database considers 189 publications describing 89 different phenotypes measured in 2995 different conditions. Besides enabling a targeted search for promising compounds for further investigations, this database also offers insights into the research field of studies on healthy aging based on a frequently used model organism. Some weaknesses of C. elegans-based aging studies, like underrepresented phenotypes, especially concerning cognitive functions, as well as the convenience-based use of young worms as the starting point for compound treatment or phenotype measurement are discussed. In conclusion, the database provides an anchor for the search for compounds affecting health, with a link to public databases, and it further highlights some potential shortcomings in current aging research.
Collapse
|
28
|
A mild heat stress increases resistance to heat of dFOXO Drosophila melanogaster mutants but less in wild-type flies. Biogerontology 2021; 22:237-251. [PMID: 33665732 PMCID: PMC7931791 DOI: 10.1007/s10522-021-09914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 10/25/2022]
Abstract
While severe stresses have deleterious effects, mild stresses can have beneficial effects called hormetic effects. This study observed survival time at 37.5 °C and at 13-16 days of age of wild-type Drosophila melanogaster flies and dFOXO mutants, after they were subjected to 5 or 10 min daily at 37.5 °C for 5 days starting at 5 days of age. This mild stress increased survival time of the mutants, this effect being nearly not observed in wild-type flies. Previous studies showed that another mild stress, the cold, can increase survival time to heat of wild-type flies, but not of dFOXO mutants, while hypergravity increased survival time of mutants but not of wild-type flies. Therefore, three mild stresses, cold, hypergravity, and heat can increase resistance to heat but the pathways mediating this effect are seemingly different, as cold does not increase resistance in dFOXO mutants but increases it in wild-type flies, while hypergravity and heat have opposite effects. It appears that dFOXO may be needed or not to observe hormetic effects.
Collapse
|
29
|
Fan D, Wang S, Guo Y, Zhu Y, Agathokleous E, Ahmad S, Han J. Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition: The role of background Cd contamination and time as additional factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143771. [PMID: 33229081 DOI: 10.1016/j.scitotenv.2020.143771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Hormesis is an intriguing phenomenon characterized by low-dose stimulation and high-dose inhibition. The hormetic phenomena have been frequently reported in the past decades, but the researches on the biphasic responses of soil enzymes are still limited. The main objective of this study is to explore dose response of alkaline phosphatase (ALP) to Cd (0, 0.003, 0.03, 0.3, 3.0 and 30 mg/kg) in the presence of different levels of background Cd contamination (bulk soil with no added Cd, BS; low background Cd, LB; medium background Cd, MB; and high background Cd, HB). ALP activity at 0.003-0.3 mg Cd/kg was 13-39% higher than that of the control (0 mg Cd/kg) for HB after 7 d. Similarly, the enzyme activities at 0.003-0.03 mg Cd/kg were 2-25% and 14-17% higher than those of the controls for MB and HB after 60 d. After 90 d, ALP activities at 0.3-3.0 mg Cd/kg increased by 11-17% for LB. The dose-response curves had the shape of an inverted U, showing biphasic responses at days 7 (HB), 60 (MB and HB) and 90 (LB). After 60 days of exposure, total operational taxonomic units (OTU) numbers and unique species exposed to Cd stress displayed hormetic-response curve for MB. The relative abundances of Agrobacterium, Salinimicrobiums, Bacilllus, and Oceanobacillus displayed significantly positive correlations with ALP activity. This suggested that bacterial communities potentially contribute to ALP's hormesis. This study further provides new insights into the ecological mechanisms of pollutant-induced hormesis, and substantially contributes to the ecological risk assessment of Cd pollution.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Shengyan Wang
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Yanhui Guo
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Yongli Zhu
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China; Co-Innovation Center for the Sustainable Forestry in Southern Jiangsu Province, Nanjing, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing, Jiangsu, China.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China.
| | - Sajjad Ahmad
- Department of Civil and Environmental Engineering, University of Nevada, Las Vegas, NV 89154-4015, USA.
| | - Jiangang Han
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China; Co-Innovation Center for the Sustainable Forestry in Southern Jiangsu Province, Nanjing, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front Cell Dev Biol 2021; 9:628157. [PMID: 33644065 PMCID: PMC7905231 DOI: 10.3389/fcell.2021.628157] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is the greatest risk factor for a multitude of diseases including cardiovascular disease, neurodegeneration and cancer. Despite decades of research dedicated to understanding aging, the mechanisms underlying the aging process remain incompletely understood. The widely-accepted free radical theory of aging (FRTA) proposes that the accumulation of oxidative damage caused by reactive oxygen species (ROS) is one of the primary causes of aging. To define the relationship between ROS and aging, there have been two main approaches: comparative studies that measure outcomes related to ROS across species with different lifespans, and experimental studies that modulate ROS levels within a single species using either a genetic or pharmacologic approach. Comparative studies have shown that levels of ROS and oxidative damage are inversely correlated with lifespan. While these studies in general support the FRTA, this type of experiment can only demonstrate correlation, not causation. Experimental studies involving the manipulation of ROS levels in model organisms have generally shown that interventions that increase ROS tend to decrease lifespan, while interventions that decrease ROS tend to increase lifespan. However, there are also multiple examples in which the opposite is observed: increasing ROS levels results in extended longevity, and decreasing ROS levels results in shortened lifespan. While these studies contradict the predictions of the FRTA, these experiments have been performed in a very limited number of species, all of which have a relatively short lifespan. Overall, the data suggest that the relationship between ROS and lifespan is complex, and that ROS can have both beneficial or detrimental effects on longevity depending on the species and conditions. Accordingly, the relationship between ROS and aging is difficult to generalize across the tree of life.
Collapse
Affiliation(s)
- Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Jalal A, Oliveira Junior JCD, Ribeiro JS, Fernandes GC, Mariano GG, Trindade VDR, Reis ARD. Hormesis in plants: Physiological and biochemical responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111225. [PMID: 32916526 DOI: 10.1016/j.ecoenv.2020.111225] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 05/28/2023]
Abstract
Hormesis is a favorable response to low level exposures to substance or to adverse conditions. This phenomenon has become a target to achieve greater crop productivity. This review aimed to address the physiological mechanisms for the induction of hormesis in plants. Some herbicides present a hormetic dose response. Among them, those with active ingredients glyphosate, 2,4-D and paraquat. The application of glyphosate as a hormesis promoter is therefore showing promess . Glyphosate has prominent role in shikimic acid pathway, decreasing lignin synthesis resulting in improved growth and productivity of several crops. Further studies are still needed to estimate optimal doses for other herbicides of crops or agricultural interest. Biostimulants are also important, since they promote effects on secondary metabolic pathways and production of reactive oxygen species (ROS). When ROS are produced, hydrogen peroxide act as a signaling molecule that promote cell walls malleability allowing inward water transport causing cell expansion. . Plants'ability to overcome several abiotic stress conditions is desirable to avoid losses in crop productivity and economic losses. This review compiles information on how hormesis in plants can be used to achieve new production levels.
Collapse
Affiliation(s)
- Arshad Jalal
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | | | - Janaína Santos Ribeiro
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | - Guilherme Carlos Fernandes
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | - Giovana Guerra Mariano
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | | | - André Rodrigues Dos Reis
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, Postal Code 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
32
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
33
|
Abstract
Aging is an inevitable biological phenomenon displayed by single cells and organs to entire organismal systems. Aging as a biological process is characterized as a progressive decline in intrinsic biological function. Understanding the causative mechanisms of aging has always captured the imagination of researchers since time immemorial. Although both biological and chronological aging are well defined and studied in terms of genetic, epigenetic, and lifestyle predispositions, the hallmarks of aging in terms of small molecules (i.e., endogenous metabolites to chemical exposures) are limited to obscure. On top of the endogenous metabolites leading to the onset and progression of healthy aging, human beings are constantly exposed to a natural and anthropogenic "chemical" environment round the clock, from conception till death, affecting one's physiology, health and well-being, and disease predisposition. The research community has started gaining sizeable insights into deciphering the aging factors such as immunosenescence, nutrition, frailty, inflamm-aging, and diseases till date, without much input from their interaction with exogenous chemical exposures. The "exposome" around us, mostly, accelerates the process of aging by affecting the internal biological pathways and signaling mechanisms that result in the deterioration of human health. However, the entirety of exposome on human aging is far from established. This review intends to catalog the known and established associations of the exposome from past studies focusing on aging in humans and other model organisms. Further discussed are the current technologies and informatics tools that enable the study of aging exposotypes, and thus, provide a window of opportunities and challenges to study the "aging exposome" in granular details.
Collapse
|
34
|
Nassar M, Dargham A, Jamleh A, Tamura Y, Hiraishi N, Tagami J. The Hormetic Effect of Arsenic Trioxide on Rat Pulpal Cells: An In Vitro Preliminary Study. Eur J Dent 2020; 15:222-227. [PMID: 33126286 PMCID: PMC8184270 DOI: 10.1055/s-0040-1718637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives
Despite the agreement that there is no longer any indication for arsenic use in modern endodontics, some concerns are surfacing about the minute amount of arsenic trioxide (As
2
O
3
) released from Portland cement-based materials. The present study investigated the effect of different concentrations of As
2
O
3
on rat pulpal cells and the efficacy of
N
-acetylcysteine (NAC) in preventing As
2
O
3
-mediated toxicity.
Materials and Methods
Cytotoxicities of 50, 10, or 5 µm As
2
O
3
and the effect of cells co-treatment with 50 µm As
2
O
3
and 5,000 µm NAC or 500 µm NAC were tested at 24 hours or 3 days. Cell viability was assessed by means of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and cellular morphological changes were observed under phase contrast microscope.
Statistical Analysis
Two-way analysis of variance with Tukey’s post-hoc test was used to evaluate differences between the groups (α = 0.05).
Results
At both exposure times, 50 µm As
2
O
3
resulted in lower optical density (OD) values when compared with 10 or 5 µm As
2
O
3
. At 24 hours, 10 µm As
2
O
3
resulted in a higher OD value compared with the control; however, at 3 days the difference was statistically insignificant. At each exposure time, the OD value of 5 µm As
2
O
3
group was comparable to the control and 10 µm As
2
O
3
group. There were no significant differences between 50 µm As
2
O
3
group and 500 μm NAC+50 μm As
2
O
3
group; however, these two groups had lower OD values when compared with 5,000 μm NAC+50 μm As
2
O
3
group at 24 hours and 3 days. The latter group showed significantly lower OD value in comparison with the control at 24 hours and 3 days. Control cells were polygonal-shaped while 50 µm As
2
O
3
-treated cells exhibited contracted and spherical morphology with increased intercellular spaces. At 24 hours, 10 μm and 5 µm As
2
O
3
-treated cells were slightly hypertrophic. Cells co-treated with NAC and As
2
O
3
showed increased intercellular spaces and lower cellular density compared with the control.
Conclusions
As
2
O
3
displayed a hormetic effect on pulpal cells; however, the proliferative effect induced by low As
2
O
3
concentrations should be interpreted with caution. NAC did not prevent As
2
O
3
-mediated toxicity; however, it demonstrated potential for ameliorating this toxicity.
Collapse
Affiliation(s)
- Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Dargham
- Ras Al Khaimah College of Dental Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ahmed Jamleh
- Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Yukihiko Tamura
- Department of Bio-Matrix (Dental Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
35
|
|
36
|
Barrere-Cain R, Allard P. An Understudied Dimension: Why Age Needs to Be Considered When Studying Epigenetic-Environment Interactions. Epigenet Insights 2020; 13:2516865720947014. [PMID: 32864568 PMCID: PMC7430070 DOI: 10.1177/2516865720947014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 02/02/2023] Open
Abstract
We live in a complex chemical environment where there are an estimated 350 000 chemical compounds or mixtures commercially produced. A strong body of literature shows that there are time points during early development when an organism’s epigenome is particularly sensitive to chemicals in its environment. What is less understood is how gene-environment and epigenetic-environment interactions change with age. This question is bidirectional: (1) how do chemicals in the environment affect the aging process and (2) how does aging affect an organism’s response to its chemical environment? The study of gene-environment interactions with age is especially important because, in many parts of the world, older individuals are a large and rapidly growing proportion of the population and because aging is a process universal to most of the animal kingdom. Epigenetics has emerged as a crucial framework for studying aging as epigenetic pathways, often triggered by environmental stimuli, have been shown to be essential regulators of the aging process. In this perspective article, we delineate the connection between aging, epigenetics, and environmental exposures. We discuss why it is essential to consider age when researching how an organism interacts with its environment. We describe recent advances in understanding how the chemical environment affects aging and the gap in research on how age affects an organism’s response to the environment. Finally, we highlight how model organisms and network approaches can help fill this crucial gap. Taken together, systemic changes that occur in the epigenome with age indicate that adult organisms cannot be treated as a homogeneous population and that there are discrete mechanisms modulating the aging epigenome that we do not yet understand.
Collapse
Affiliation(s)
- Rio Barrere-Cain
- Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick Allard
- Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
37
|
Zhang X, Zhong HQ, Chu ZW, Zuo X, Wang L, Ren XL, Ma H, Du RY, Ju JJ, Ye XL, Huang CP, Zhu JH, Wu HM. Arsenic induces transgenerational behavior disorders in Caenorhabditis elegans and its underlying mechanisms. CHEMOSPHERE 2020; 252:126510. [PMID: 32203783 DOI: 10.1016/j.chemosphere.2020.126510] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 05/19/2023]
Abstract
The present study aimed to identify the effects of arsenic on behaviors in Caenorhabditis elegans (C. elegans) and the transgenerational effects. The synchronized C. elegans (P generation) were exposed to 0, 0.2, 1.0, and 5.0 mM NaAsO2 and the subsequent generations (F1 and F2) were maintained on fresh nematode growth medium (NGM). The behaviors and growth were recorded at 0, 12, 24, 36, 48, 60, and 72 h post synchronization. The results demonstrated that arsenic affected various indicators regarding the behavior (head thrash, body bend, movement speed, wavelength, amplitude and so on) and in general the effects started to accumulate from 24 h and lasted throughout the exposure. The behavior impairments were transgenerational with varying patterns, amongst the head thrash and body bend responded most sensitively though the responses gradually declined across generations. Arsenic exposure inhibited the growth (body length, body width, and body area) in P C. elegans from 24 h to 60 h, however there was no difference between treatments groups and the control at 72 h. Arsenic led to a dose-dependent degeneration of dopaminergic neurons in C. elegans, and inhibition of BAS-1 and CAT-2 expressions. The expressions of GCS-1, GSS-1, and SKN-1 were induced by arsenic exposure. Overall, chronic arsenic exposure impaired the behaviors and there were transgenerational effects. The head thrash and body bend responded most sensitively. Arsenic induced behavioral disorders might be attributed to degeneration of dopaminergic neurons which was associated with oxidative stress.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hai-Qing Zhong
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhong-Wei Chu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiang Zuo
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Li Wang
- Department of Occupational and Environmental Health Science, Baotou Medical College, Baotou, Inner Mongolia, 014030, China
| | - Xiao-Li Ren
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hao Ma
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruo-Yi Du
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing-Juan Ju
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Lei Ye
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chen-Ping Huang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Hong-Mei Wu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
38
|
Babich R, Hamlin H, Thayer L, Dorr M, Wei Z, Neilson A, Jayasundara N. Mitochondrial response and resilience to anthropogenic chemicals during embryonic development. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108759. [PMID: 32259593 DOI: 10.1016/j.cbpc.2020.108759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
Mitochondria are integral to maintaining cellular homeostasis. Optimum mitochondrial function is critical during embryonic development, as they play a key role in early signaling cascades and epigenetic programming, in addition to sustaining an adequate energy production. Mitochondria are sensitive targets of environmental toxins, potentially even at levels considered safe under current regulatory limits. Most mitochondrial analyses have focused only on chemical exposure effects in vitro or in isolated mitochondria. However, comparatively little is known about mitochondrial effects of chemical exposure during vertebrate embryogenesis, especially during the recovery phase following a chemical insult. Here, we used the zebrafish (Danio rerio), in a 96-well plate system, to examine mitochondrial effects of 24 chemicals including pharmaceuticals, industrial chemicals, and agrochemicals. We used oxygen consumption rate (OCR) during embryogenesis as a proxy for mitochondrial function. Embryonic OCR (eOCR) was measured in clean egg water immediately following 24 h of chemical exposure and subsequently for an additional 8 h. Each chemical, dependent upon the concentration, resulted in a unique eOCR response profile. While some eOCR effects were persistent or recoverable over time, some effects were only detected several hours after being removed from the exposure. Non-monotonic dose response effects as well as mitochondrial hormesis were also detected following exposure to some chemicals. Collectively, our study shows that mitochondrial response to chemicals are highly dynamic and warrant careful consideration when determining mitochondrial toxicity of a given chemical.
Collapse
Affiliation(s)
- Remy Babich
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA.
| | - Heather Hamlin
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - LeeAnne Thayer
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Madeline Dorr
- The Department of Mathematics and Statistics, University of Maine, Orono, ME, 04469, USA
| | - Zheng Wei
- The Department of Mathematics and Statistics, University of Maine, Orono, ME, 04469, USA
| | | | - Nishad Jayasundara
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
39
|
Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, Port J, Bi Q, Navarrete G, Brandhorst S, Lewis KN, Wan J, Swerdloff R, Mattison JA, Buffenstein R, Breton CV, Wang C, Longo V, Atzmon G, Wallace D, Barzilai N, Cohen P. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY) 2020; 12:11185-11199. [PMID: 32575074 PMCID: PMC7343442 DOI: 10.18632/aging.103534] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
Humanin is a member of a new family of peptides that are encoded by short open reading frames within the mitochondrial genome. It is conserved in animals and is both neuroprotective and cytoprotective. Here we report that in C. elegans the overexpression of humanin is sufficient to increase lifespan, dependent on daf-16/Foxo. Humanin transgenic mice have many phenotypes that overlap with the worm phenotypes and, similar to exogenous humanin treatment, have increased protection against toxic insults. Treating middle-aged mice twice weekly with the potent humanin analogue HNG, humanin improves metabolic healthspan parameters and reduces inflammatory markers. In multiple species, humanin levels generally decline with age, but here we show that levels are surprisingly stable in the naked mole-rat, a model of negligible senescence. Furthermore, in children of centenarians, who are more likely to become centenarians themselves, circulating humanin levels are much greater than age-matched control subjects. Further linking humanin to healthspan, we observe that humanin levels are decreased in human diseases such as Alzheimer's disease and MELAS (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes). Together, these studies are the first to demonstrate that humanin is linked to improved healthspan and increased lifespan.
Collapse
Affiliation(s)
- Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal H. Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - YanHe Lue
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - James Hoang
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Noel Guerrero
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jenna Port
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuli Bi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gerardo Navarrete
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sebastian Brandhorst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaitlyn Noel Lewis
- Department of Physiology, The Barshop Institute, University of Texas Health at San Antonio, TX 78229, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ronald Swerdloff
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, Dickerson, MD 20892, USA
| | - Rochelle Buffenstein
- Department of Physiology, The Barshop Institute, University of Texas Health at San Antonio, TX 78229, USA
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
| | - Christina Wang
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Valter Longo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
40
|
Sun Y, Li M, Zhao D, Li X, Yang C, Wang X. Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans. eLife 2020; 9:55745. [PMID: 32482227 PMCID: PMC7274789 DOI: 10.7554/elife.55745] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Lysosomes play important roles in cellular degradation to maintain cell homeostasis. In order to understand whether and how lysosomes alter with age and contribute to lifespan regulation, we characterized multiple properties of lysosomes during the aging process in C. elegans. We uncovered age-dependent alterations in lysosomal morphology, motility, acidity and degradation activity, all of which indicate a decline in lysosome function with age. The age-associated lysosomal changes are suppressed in the long-lived mutants daf-2, eat-2 and isp-1, which extend lifespan by inhibiting insulin/IGF-1 signaling, reducing food intake and impairing mitochondrial function, respectively. We found that 43 lysosome genes exhibit reduced expression with age, including genes encoding subunits of the proton pump V-ATPase and cathepsin proteases. The expression of lysosome genes is upregulated in the long-lived mutants, and this upregulation requires the functions of DAF-16/FOXO and SKN-1/NRF2 transcription factors. Impairing lysosome function affects clearance of aggregate-prone proteins and disrupts lifespan extension in daf-2, eat-2 and isp-1 worms. Our data indicate that lysosome function is modulated by multiple longevity pathways and is important for lifespan extension.
Collapse
Affiliation(s)
- Yanan Sun
- College of Life science, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Meijiao Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Dongfeng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Di Rosa G, Brunetti G, Scuto M, Trovato Salinaro A, Calabrese EJ, Crea R, Schmitz-Linneweber C, Calabrese V, Saul N. Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson's Models. Int J Mol Sci 2020; 21:E3893. [PMID: 32486023 PMCID: PMC7312680 DOI: 10.3390/ijms21113893] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent late-age onset neurodegenerative disorder, affecting 1% of the population after the age of about 60 years old and 4% of those over 80 years old, causing motor impairments and cognitive dysfunction. Increasing evidence indicates that Mediterranean diet (MD) exerts beneficial effects in maintaining health, especially during ageing and by the prevention of neurodegenerative disorders. In this regard, olive oil and its biophenolic constituents like hydroxytyrosol (HT) have received growing attention in the past years. Thus, in the current study we test the health-promoting effects of two hydroxytyrosol preparations, pure HT and Hidrox® (HD), which is hydroxytyrosol in its "natural" environment, in the established invertebrate model organism Caenorhabditis elegans. HD exposure led to much stronger beneficial locomotion effects in wild type worms compared to HT in the same concentration. Consistent to this finding, in OW13 worms, a PD-model characterized by α-synuclein expression in muscles, HD exhibited a significant higher effect on α-synuclein accumulation and swim performance than HT, an effect partly confirmed also in swim assays with the UA44 strain, which features α-synuclein expression in DA-neurons. Interestingly, beneficial effects of HD and HT treatment with similar strength were detected in the lifespan and autofluorescence of wild-type nematodes, in the neuronal health of UA44 worms as well as in the locomotion of rotenone-induced PD-model. Thus, the hypothesis that HD features higher healthspan-promoting abilities than HT was at least partly confirmed. Our study demonstrates that HD polyphenolic extract treatment has the potential to partly prevent or even treat ageing-related neurodegenerative diseases and ageing itself. Future investigations including mammalian models and human clinical trials are needed to uncover the full potential of these olive compounds.
Collapse
Affiliation(s)
- Gabriele Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Giovanni Brunetti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Christian Schmitz-Linneweber
- Faculty of Life Sciences, Institute of Biology, Molecular Genetics Group, Humboldt University of Berlin, Philippstr. 13, House 22, 10115 Berlin, Germany; (C.S.-L.); (N.S.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Nadine Saul
- Faculty of Life Sciences, Institute of Biology, Molecular Genetics Group, Humboldt University of Berlin, Philippstr. 13, House 22, 10115 Berlin, Germany; (C.S.-L.); (N.S.)
| |
Collapse
|
42
|
Brunetti G, Di Rosa G, Scuto M, Leri M, Stefani M, Schmitz-Linneweber C, Calabrese V, Saul N. Healthspan Maintenance and Prevention of Parkinson's-like Phenotypes with Hydroxytyrosol and Oleuropein Aglycone in C. elegans. Int J Mol Sci 2020; 21:ijms21072588. [PMID: 32276415 PMCID: PMC7178172 DOI: 10.3390/ijms21072588] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Numerous studies highlighted the beneficial effects of the Mediterranean diet (MD) in maintaining health, especially during ageing. Even neurodegeneration, which is part of the natural ageing process, as well as the foundation of ageing-related neurodegenerative disorders like Alzheimer’s and Parkinson’s disease (PD), was successfully targeted by MD. In this regard, olive oil and its polyphenolic constituents have received increasing attention in the last years. Thus, this study focuses on two main olive oil polyphenols, hydroxytyrosol (HT) and oleuropein aglycone (OLE), and their effects on ageing symptoms with special attention to PD. In order to avoid long-lasting, expensive, and ethically controversial experiments, the established invertebrate model organism Caenorhabditis elegans was used to test HT and OLE treatments. Interestingly, both polyphenols were able to increase the survival after heat stress, but only HT could prolong the lifespan in unstressed conditions. Furthermore, in aged worms, HT and OLE caused improvements of locomotive behavior and the attenuation of autofluorescence as a marker for ageing. In addition, by using three different C. elegans PD models, HT and OLE were shown i) to enhance locomotion in worms suffering from α-synuclein-expression in muscles or rotenone exposure, ii) to reduce α-synuclein accumulation in muscles cells, and iii) to prevent neurodegeneration in α-synuclein-containing dopaminergic neurons. Hormesis, antioxidative capacities and an activity-boost of the proteasome & phase II detoxifying enzymes are discussed as potential underlying causes for these beneficial effects. Further biological and medical trials are indicated to assess the full potential of HT and OLE and to uncover their mode of action.
Collapse
Affiliation(s)
- Giovanni Brunetti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.B.); (G.D.R.); (M.S.)
| | - Gabriele Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.B.); (G.D.R.); (M.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.B.); (G.D.R.); (M.S.)
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.S.)
- Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Viale Pieraccini, 6 - 50139 Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.S.)
| | - Christian Schmitz-Linneweber
- Humboldt University of Berlin, Faculty of Life Sciences, Institute of Biology, Molecular Genetics Group, Philippstr. 13, House 22, 10115 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.B.); (G.D.R.); (M.S.)
- Correspondence: (V.C.); (N.S.)
| | - Nadine Saul
- Humboldt University of Berlin, Faculty of Life Sciences, Institute of Biology, Molecular Genetics Group, Philippstr. 13, House 22, 10115 Berlin, Germany;
- Correspondence: (V.C.); (N.S.)
| |
Collapse
|
43
|
Berry R, López-Martínez G. A dose of experimental hormesis: When mild stress protects and improves animal performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110658. [PMID: 31954863 PMCID: PMC7066548 DOI: 10.1016/j.cbpa.2020.110658] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/22/2023]
Abstract
The adaptive response characterized by a biphasic curve is known as hormesis. In a hormesis framework, exposure to low doses leads to protective and beneficial responses while exposures to high doses are damaging and detrimental. Comparative physiologists have studied hormesis for over a century, but our understanding of hormesis is fragmented due to rifts in consensus and taxonomic-specific terminology. Hormesis has been and is currently known by multiple names; preconditioning, conditioning, pretreatment, cross tolerance, adaptive homeostasis, and rapid stress hardening (mostly low temperature: rapid cold hardening). These are the most common names used to describe adaptive stress responses in animals. These responses are mechanistically similar, while having stress-specific responses, but they all can fall under the umbrella of hormesis. Here we review how hormesis studies have revealed animal performance benefits in response to changes in oxygen, temperature, ionizing radiation, heavy metals, pesticides, dehydration, gravity, and crowding. And how almost universally, hormetic responses are characterized by increases in performance that include either increases in reproduction, longevity, or both. And while the field can benefit from additional mechanistic work, we know that many of these responses are rooted in increases of antioxidants and oxidative stress protective mechanisms; including heat shock proteins. There is a clear, yet not fully elucidated, overlap between hormesis and the preparation for oxidative stress theory; which predicts part of the responses associated with hormesis. We discuss this, and the need for additional work into animal hormetic effects particularly focusing on the cost of hormesis.
Collapse
Affiliation(s)
- Raymond Berry
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America
| | - Giancarlo López-Martínez
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
44
|
Katkova-Zhukotskaya OA, Eremina SY, Shakulov RS, Mironov AS. Culturing Caenorhabditis elegans on Escherichia coli Strains Lacking the Synthesis of bo' and bd-I Terminal Oxidases Extends the Nematode Lifespan. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795419120068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Dilberger B, Baumanns S, Schmitt F, Schmiedl T, Hardt M, Wenzel U, Eckert GP. Mitochondrial Oxidative Stress Impairs Energy Metabolism and Reduces Stress Resistance and Longevity of C. elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6840540. [PMID: 31827694 PMCID: PMC6885289 DOI: 10.1155/2019/6840540] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mitochondria supply cellular energy and are key regulators of intrinsic cell death and consequently affect longevity. The nematode Caenorhabditis elegans is frequently used for lifespan assays. Using paraquat (PQ) as a generator of reactive oxygen species, we here describe its effects on the acceleration of aging and the associated dysfunctions at the level of mitochondria. METHODS Nematodes were incubated with various concentrations of paraquat in a heat-stress resistance assay (37°C) using nucleic staining. The most effective concentration was validated under physiological conditions, and chemotaxis was assayed. Mitochondrial membrane potential (ΔΨm) was measured using rhodamine 123, and activity of respiratory chain complexes determined using a Clark-type electrode in isolated mitochondria. Energetic metabolites in the form of pyruvate, lactate, and ATP were determined using commercial kits. Mitochondrial integrity and structure was investigated using transmission electron microscopy. Live imaging after staining with fluorescent dyes was used to measure mitochondrial and cytosolic ROS. Expression of longevity- and mitogenesis-related genes were evaluated using qRT-PCR. RESULTS PQ (5 mM) significantly increased ROS formation in nematodes and reduced the chemotaxis, the physiological lifespan, and the survival in assays for heat-stress resistance. The number of fragmented mitochondria significantly increased. The ∆Ψm, the activities of complexes I-IV of the mitochondrial respiratory chain, and the levels of pyruvate and lactate were significantly reduced, whereas ATP production was not affected. Transcript levels of genetic marker genes, atfs-1, atp-2, skn-1, and sir-2.1, were significantly upregulated after PQ incubation, which implicates a close connection between mitochondrial dysfunction and oxidative stress response. Expression levels of aak-2 and daf-16 were unchanged. CONCLUSION Using paraquat as a stressor, we here describe the association of oxidative stress, restricted energy metabolism, and reduced stress resistance and longevity in the nematode Caenorhabditis elegans making it a readily accessible in vivo model for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Benjamin Dilberger
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Stefan Baumanns
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Fabian Schmitt
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Tommy Schmiedl
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gunter P. Eckert
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
46
|
Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Res Rev 2019; 55:100941. [PMID: 31408714 DOI: 10.1016/j.arr.2019.100941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Senotherapy is an antiageing strategy. It refers to selective killing of senescent cells by senolytic agents, strengthening the activity of immune cells that eliminate senescent cells or alleviating the secretory phenotype (SASP) of senescent cells. As senescent cells accumulate with age and are considered to be at the root of age-related disorders, senotherapy seems to be very promising in improving healthspan. Genetic approaches, which allowed to selectively induce death of senescent cells in transgenic mice, provided proof-of-concept evidence that elimination of senescent cells can be a therapeutic approach for treating many age-related diseases. Translating these results into humans is based on searching for synthetic and natural compounds, which are able to exert such beneficial effects. The major challenge in the field is to show efficacy, safety and tolerability of senotherapy in humans. The question is how these therapeutics can influence senescence of non-dividing post-mitotic cells. Another issue concerns senescence of cancer cells induced during therapy as there is a risk of resumption of senescent cell division that could terminate in cancer renewal. Thus, development of an effective senotherapeutic strategy is also an urgent issue in cancer treatment. Different aspects, both beneficial and potentially detrimental, will be discussed in this review.
Collapse
|
47
|
Reigada I, Moliner C, Valero MS, Weinkove D, Langa E, Gómez Rincón C. Antioxidant and Antiaging Effects of Licorice on the Caenorhabditis elegans Model. J Med Food 2019; 23:72-78. [PMID: 31545123 DOI: 10.1089/jmf.2019.0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The causative relationship between oxidative stress and aging remains controversial, but it is a fact that many of the pathologies of age-related diseases are associated with oxidative stress. Phytochemicals may reduce damage from oxidative stress; the intake of these through diet could represent a strategy to lessen their pathological consequences. The popular and widely consumed licorice (Glycyrrhiza glabra) is a rich source of potential antioxidants. The aim of this study was to investigate whether licorice increases the oxidative stress resistance and lifespan of the animal model Caenorhabditis elegans. Licorice roots ethanolic extract showed in vitro antioxidant activity, with an IC50 of 51.17 μg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) as free radical. C. elegans pretreated with licorice showed an increase of survival rate when exposed to the oxidant juglone, being this increase up to ∼33.56%. This pretreated population also showed an increase in lifespan of 14.28% at a concentration of 250 μg/mL. In conclusion, we suggest that licorice has a high antioxidant capability both in vitro and in vivo and that this activity may explain the observed extension of lifespan.
Collapse
Affiliation(s)
- Inés Reigada
- Department of Pharmacy, Faculty of Health Science, San Jorge University, Zaragoza, Spain
| | - Cristina Moliner
- Department of Pharmacy, Faculty of Health Science, San Jorge University, Zaragoza, Spain
| | - Marta Sofía Valero
- Department of Pharmacology and Physiology, Faculty of Health and Sports Sciences. Zargoza University, Zaragoza, Spain
| | - David Weinkove
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Elisa Langa
- Department of Pharmacy, Faculty of Health Science, San Jorge University, Zaragoza, Spain
| | - Carlota Gómez Rincón
- Department of Pharmacy, Faculty of Health Science, San Jorge University, Zaragoza, Spain
| |
Collapse
|
48
|
Abstract
The field of aging research has progressed significantly over the past decades. Exogenously and endogenously inflicted molecular damage ranging from genotoxic to organellar damage drives the aging process. Repair mechanisms and compensatory responses counteract the detrimental consequences of the various damage types. Here, we discuss recent progress in understanding cellular mechanisms and interconnections between signaling pathways that control longevity. We summarize cell-autonomous and non-cell-autonomous mechanisms that impact the cellular and organismal aging process
Collapse
Affiliation(s)
- Robert Bayersdorf
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
49
|
Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet 2019; 10:435. [PMID: 31139208 PMCID: PMC6527603 DOI: 10.3389/fgene.2019.00435] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a general degenerative process related to deterioration of cell functions in the entire organism. Mitochondria, which play a key role in energy homeostasis and metabolism of reactive oxygen species (ROS), require lifetime control and constant renewal. This explains recently peaked interest in the processes of mitochondrial biogenesis and mitophagy. The principal event of mitochondrial metabolism is regulation of mitochondrial DNA (mtDNA) transcription and translation, which is a complex coordinated process that involves at least two systems of transcription factors. It is commonly believed that its major regulatory proteins are PGC-1α and PGC-1β, which act as key factors connecting several regulator cascades involved in the control of mitochondrial metabolism. In recent years, the number of publications on the essential role of Nrf2/ARE signaling in the regulation of mitochondrial biogenesis has grown exponentially. Nrf2 is induced by various xenobiotics and oxidants that oxidize some Nrf2 negative regulators. Thus, ROS, in particular H2O2, were found to be strong Nrf2 activators. At present, there are two major concepts of mitochondrial biogenesis. Some authors suggest direct involvement of Nrf2 in the regulation of this process. Others believe that Nrf2 regulates expression of the antioxidant genes, while the major and only regulator of mitochondrial biogenesis is PGC-1α. Several studies have demonstrated the existence of the regulatory loop involving both PGC-1α and Nrf2. In this review, we summarized recent data on the Nrf2 role in mitochondrial biogenesis and its interaction with PGC-1α in the context of extending longevity.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
50
|
Haque MN, Eom HJ, Nam SE, Shin YK, Rhee JS. Chlorothalonil induces oxidative stress and reduces enzymatic activities of Na+/K+-ATPase and acetylcholinesterase in gill tissues of marine bivalves. PLoS One 2019; 14:e0214236. [PMID: 30964867 PMCID: PMC6456286 DOI: 10.1371/journal.pone.0214236] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/09/2019] [Indexed: 12/19/2022] Open
Abstract
Chlorothalonil is a thiol-reactive antifoulant that disperses widely and has been found in the marine environment. However, there is limited information on the deleterious effects of chlorothalonil in marine mollusks. In this study, we evaluated the effects of chlorothalonil on the gill tissues of the Pacific oyster, Crassostrea gigas and the blue mussel, Mytilus edulis after exposure to different concentrations of chlorothalonil (0.1, 1, and 10 μg L−1) for 96 h. Following exposure to 1 and/or 10 μg L−1 of chlorothalonil, malondialdehyde (MDA) levels significantly increased in the gill tissues of C. gigas and M. edulis compared to that in the control group at 96 h. Similarly, glutathione (GSH) levels were significantly affected in both bivalves after chlorothalonil exposure. The chlorothalonil treatment caused a significant time- and concentration-dependent increase in the activity of enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR), in the antioxidant defense system. Furthermore, 10 μg L−1 of chlorothalonil resulted in significant inhibitions in the enzymatic activity of Na+/K+-ATPase and acetylcholinesterase (AChE). These results suggest that chlorothalonil induces potential oxidative stress and changes in osmoregulation and the cholinergic system in bivalve gill tissues. This information will be a useful reference for the potential toxicity of chlorothalonil in marine bivalves.
Collapse
Affiliation(s)
- Md. Niamul Haque
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, South Korea
| | - Hye-Jin Eom
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| | - Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| | - Yun Kyung Shin
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, South Korea
- Institute of Green Environmental Research Center, Yeonsugu, Incheon, South Korea
- * E-mail:
| |
Collapse
|