1
|
Li H, Wang G, Tang Y, Wang L, Jiang Z, Liu J. Rhein alleviates diabetic cardiomyopathy by inhibiting mitochondrial dynamics disorder, apoptosis and hypertrophy in cardiomyocytes. Cell Signal 2025; 131:111734. [PMID: 40081546 DOI: 10.1016/j.cellsig.2025.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a significant cardiovascular complication in diabetic patients, and treatment regimens are limited. Rhein, a compound extracted from the herb rhubarb, was investigated in this study for its efficacy on DCM and the potential mechanism. METHODS Streptozotocin-induced DCM mice, high-glucose (HG)-treated neonatal rat cardiomyocytes (NRCMs), and H9c2 cells with ClpP knockdown were used for the study. We performed phenotypic and molecular mechanistic studies using immunoblotting, quantitative polymerase chain reaction, transmission electron microscopy, cardiac echocardiography, and histopathological analysis. RESULTS Rhein improved the cardiac function and myocardial fibrosis, and decreased the cross-sectional area of cardiomyocytes in the DCM mice. It also improved mitochondrial dynamic disorder as evidenced by a decreased ratio of mitochondrial fission-related proteins p-Drp1S616/ Drp1 and increased expression of mitochondrial fusion proteins (Opa1, Mfn1 and Mfn2). Rhein mitigated apoptosis as indicated by decreased apoptosis-related proteins (caspase 9, cleaved-caspase 3 and Bax) and increased anti-apoptosis protein Bcl2 in the heart tissue of DCM mice. Upregulations of cardiac hypertrophy associated genes (ANP, BNP and β-MHC) were significantly inhibited by Rhein treatment. In addition, the level of ClpP, a mitochondrial protease, was increased in DCM, but was normalized by Rhein treatment. However, ClpP knockdown exacerbated cardiomyocyte injury in the presence or absence of HG in H9c2 cells, indicating that a normal level of ClpP is essential for cardiomyocytes to survive. CONCLUSIONS Our results suggest that Rhein protects DCM by ameliorating mitochondrial dynamics disorder, inhibiting cardiomyocyte apoptosis, and myocardial hypertrophy. These protective effects of Rhein may be mediated by preventing ClpP upregulation.
Collapse
Affiliation(s)
- Hejuan Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Genwang Wang
- Department of Health Service, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Tang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Wu C, Chen D, Stout MB, Wu M, Wang S. Hallmarks of ovarian aging. Trends Endocrinol Metab 2025; 36:418-439. [PMID: 40000274 DOI: 10.1016/j.tem.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Ovarian aging is considered to be the pacemaker of female aging, and is linked to various comorbidities such as osteoporosis, cardiovascular diseases, and cognitive decline. Many efforts have been made to determine the mechanisms underlying ovarian aging, but their potential to act as hallmarks to predict and intervene in this process currently remains unclear. In this review we propose nine hallmarks as common features of ovarian aging: genomic instability, telomere attrition, epigenetic alterations, impaired autophagy, cellular senescence, deregulated nutrient-sensing, mitochondrial dysfunction, oxidative stress, and chronic inflammation. Understanding the interaction between these hallmarks poses a significant challenge but may also pave the way to the identification of pharmaceutical targets that can attenuate ovarian aging.
Collapse
Affiliation(s)
- Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| |
Collapse
|
3
|
Roberts LM, Herlihy N, Reig A, Titus S, Garcia-Milian R, Knight J, Yildirim RM, Margolis CK, Cakiroglu Y, Tiras B, Whitehead CV, Werner MD, Seli E. Transcriptomic landscape of cumulus cells from patients <38 years old with a history of poor ovarian response (POR) treated with platelet-rich plasma (PRP). Aging (Albany NY) 2025; 17:431-447. [PMID: 39976580 PMCID: PMC11892918 DOI: 10.18632/aging.206202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/09/2025] [Indexed: 03/08/2025]
Abstract
Intraovarian injection of autologous platelet-rich plasma (PRP) has recently been investigated as a potential treatment for patients with diminished ovarian reserve. In the current study, differential gene expression in cumulus cells obtained from patients treated with PRP was compared to controls. RNA sequencing libraries were constructed from the cumulus cells, and differential expression analysis was performed with a false discovery rate threshold of p-value ≤0.05 and Log2 fold change ≥0.584. RNA sequencing of cumulus cells revealed significant differences in gene expression when comparing those treated with PRP and resulted in a live birth (n = 5) to controls with live birth (n = 5), or to controls with failed implantation (n = 5). Similarly, when all samples treated with PRP (those that resulted in live birth or arrested embryos (n = 10)) were compared to all samples from controls (those that resulted in live birth, no pregnancy, or arrested embryos (n = 13)), gene expression was significantly different. Several pathways were consistently affected by PRP treatment through multiple comparisons, including carbohydrate metabolism, cell death and survival, cell growth and proliferation, and cell-to-cell signaling, all of which have been implicated in human causes of infertility.
Collapse
Affiliation(s)
- Leah M. Roberts
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Nola Herlihy
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Andres Reig
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Shiny Titus
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Hub, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT 06520, USA
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Raziye Melike Yildirim
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| | - Cheri K. Margolis
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Yigit Cakiroglu
- Department of Obstetrics and Gynecology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Bulent Tiras
- Department of Obstetrics and Gynecology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Marie D. Werner
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Emre Seli
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Wang M, Ma X, Zhang Q, Zhang H, Qiu S, Xu R, Pan Y. Rapamycin Increases the Development Competence of Yak ( Bos grunniens) Oocytes by Promoting Autophagy via Upregulating 17β-Estradiol and HIF-1α During In Vitro Maturation. Animals (Basel) 2025; 15:365. [PMID: 39943135 PMCID: PMC11816318 DOI: 10.3390/ani15030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
High-quality oocyte production strategies play an important role in animal-assisted reproductive biotechnologies, and rapamycin (Rap) has been commonly used to increase the development potential of mammalian oocytes. The purpose of this study is to evaluate the effects and possible molecular mechanisms of rap on the maturation of yak oocytes. Different concentrations of Rap were supplemented during in vitro maturation (IVM) of yak oocytes. The maturation rates of oocytes and development rates of parthenogenetically activated embryos were assessed. The levels of 17β-estradiol (E2) were detected via ELISA, and the expression of autophagy-related factors, steroidogenic enzymes, and HIF-1α was detected via qRT-PCR, western blotting, and fluorescence microscopy, respectively. In addition, the impacts of E2 and HIF-1α on Rap-mediated oocyte autophagy were investigated by investigating the activities of E2 and HIF-1α. Our results showed that 0.1 nM Rap substantially enhanced the developmental ability of yak oocytes. In this group, the levels of E2, CYP19A1, CYP17A1, and autophagy-related factors were also significantly increased, and the expression of ATG5 and BECN1 in subsequent embryos was also increased. Further analysis revealed that Rap tends to enhance the development competence of yak oocytes and that the levels of autophagy-related factors are reduced when the activity of E2 or HIF-1α is inhibited. Furthermore, the levels of E2, CYP19A1, and CYP17A1 were downregulated when the activity of HIF-1α was inhibited, and the levels of HIF-1α were also significantly reduced by the estrogen receptor antagonist G15. Nevertheless, the levels of CYP11A1 mRNA in mature yak COCs were not significantly different among these groups, a phenomenon which implies that the levels of E2 were not correlated with the CYP11A1 content in yak COCs. There was an increasing tendency for the development competence of yak oocytes at the optimum concentration of Rap during IVM. The potential underlying mechanism is that Rap can activate autophagy and upregulate the levels of E2 and HIF-1α in mature oocytes. Additionally, the levels of both E2 and HIF-1α are regulated by each other and involve Rap-regulated autophagy in oocytes.
Collapse
Affiliation(s)
- Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Ruihua Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| |
Collapse
|
5
|
Gu J, Hua R, Wu H, Guo C, Hai Z, Xiao Y, Yeung WSB, Liu K, Babayev E, Wang T. Salidroside Improves Oocyte Competence of Reproductively Old Mice by Enhancing Mitophagy. Aging Cell 2025:e14475. [PMID: 39789811 DOI: 10.1111/acel.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
The decline of oocyte quality with advanced maternal age has a detrimental effect on female fertility. However, there is limited knowledge of therapeutic options and their mechanisms to improve oocyte quality in reproductively older women. In this study, we demonstrated that supplementation of salidroside improves the oocyte quality of reproductively old mice. Salidroside improved the maturation, fertilization, and developmental competence of oocytes from reproductively old mice by maintaining the normal spindle/chromosome structure and mitochondrial function. Oocyte transcriptomic and micro-proteomic analysis revealed that salidroside restores oocyte quality by enhancing mitophagy in reproductively old mice. Our studies provide a new theoretical foundation for utilizing salidroside to improve oocyte quality in reproductively old females in the context of natural fertility or assisted reproduction.
Collapse
Affiliation(s)
- Jingkai Gu
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Renwu Hua
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Huayan Wu
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chenxi Guo
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhuo Hai
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuan Xiao
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - William S B Yeung
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kui Liu
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tianren Wang
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Yang X, Zhang Y, Zhang H. Cellular and molecular regulations of oocyte selection and activation in mammals. Curr Top Dev Biol 2024; 162:283-315. [PMID: 40180512 DOI: 10.1016/bs.ctdb.2024.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Oocytes, a uniquely pivotal cell population, play a central role in species continuity. In mammals, oogenesis involves distinct processes characterized by sequential rounds of selection, arrest, and activation to produce a limited number of mature eggs, fitting their high-survival yet high-cost fertility. During the embryonic phase, oocytes undergo intensive selection via cytoplasmic and organelle enrichment, accompanied by the onset and arrest of meiosis, thereby establishing primordial follicles (PFs) as a finite reproductive reserve. Subsequently, the majority of primary oocytes enter a dormant state and are gradually recruited through a process termed follicle activation, essential for maintaining orderly fertility. Following activation, oocytes undergo rapid growth, experiencing cycles of arrest and activation regulated by endocrine and paracrine signals, ultimately forming fertilizable eggs. Over the past two decades, advancements in genetically modified animal models, high-resolution imaging, and omics technologies have significantly enhanced our understanding of the cellular and molecular mechanisms that govern mammalian oogenesis. These advances offer profound insights into the regulatory mechanisms of mammalian reproduction and associated female infertility disorders. In this chapter, we provide an overview of current knowledge in mammalian oogenesis, with a particular emphasis on oocyte selection and activation in vivo.
Collapse
Affiliation(s)
- Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
7
|
Yildirim RM, Seli E. Mitochondria as determinants of reproductive senescence and competence: implications for diagnosis of embryo competence in assisted reproduction. Hum Reprod 2024; 39:2160-2170. [PMID: 39066612 DOI: 10.1093/humrep/deae171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are commonly recognized as the powerhouses of the cell, primarily responsible for energy production through oxidative phosphorylation. Alongside this vital function, they also play crucial roles in regulating calcium signaling, maintaining membrane potential, and modulating apoptosis. Their involvement in various cellular pathways becomes particularly evident during oogenesis and embryogenesis, where mitochondrial quantity, morphology, and distribution are tightly controlled. The efficiency of the mitochondrial network is maintained through multiple quality control mechanisms that are essential for reproductive success. These include mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy. Not surprisingly, mitochondrial dysfunction has been implicated in infertility and ovarian aging, prompting investigation into mitochondria as diagnostic and therapeutic targets in assisted reproduction. To date, mitochondrial DNA copy number in oocytes, cumulus cells, and trophectoderm biopsies, and fluorescent lifetime imaging microscopy-based assessment of NADH and flavin adenine dinucleotide content have been explored as potential predictors of embryo competence, yielding limited success. Despite challenges in the clinical application of mitochondrial diagnostic strategies, these enigmatic organelles have a significant impact on reproduction, and their potential role as diagnostic targets in assisted reproduction is likely to remain an active area of investigation in the foreseeable future.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Yildirim RM, Seli E. Mitochondria as therapeutic targets in assisted reproduction. Hum Reprod 2024; 39:2147-2159. [PMID: 39066614 DOI: 10.1093/humrep/deae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are essential organelles with specialized functions, which play crucial roles in energy production, calcium homeostasis, and programmed cell death. In oocytes, mitochondrial populations are inherited maternally and are vital for developmental competence. Dysfunction in mitochondrial quality control mechanisms can lead to reproductive failure. Due to their central role in oocyte and embryo development, mitochondria have been investigated as potential diagnostic and therapeutic targets in assisted reproduction. Pharmacological agents that target mitochondrial function and show promise in improving assisted reproduction outcomes include antioxidant coenzyme Q10 and mitoquinone, mammalian target of rapamycin signaling pathway inhibitor rapamycin, and nicotinamide mononucleotide. Mitochondrial replacement therapies (MRTs) offer solutions for infertility and mitochondrial disorders. Autologous germline mitochondrial energy transfer initially showed promise but failed to demonstrate significant benefits in clinical trials. Maternal spindle transfer (MST) and pronuclear transfer hold potential for preventing mitochondrial disease transmission and improving oocyte quality. Clinical trials of MST have shown promising outcomes, but larger studies are needed to confirm safety and efficacy. However, ethical and legislative challenges complicate the widespread implementation of MRTs.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Adelizzi A, Giri A, Di Donfrancesco A, Boito S, Prigione A, Bottani E, Bollati V, Tiranti V, Persico N, Brunetti D. Fetal and obstetrics manifestations of mitochondrial diseases. J Transl Med 2024; 22:853. [PMID: 39313811 PMCID: PMC11421203 DOI: 10.1186/s12967-024-05633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
During embryonic and neonatal development, mitochondria have essential effects on metabolic and energetic regulation, shaping cell fate decisions and leading to significant short- and long-term effects on embryonic and offspring health. Therefore, perturbation on mitochondrial function can have a pathological effect on pregnancy. Several shreds of evidence collected in preclinical models revealed that severe mitochondrial dysfunction is incompatible with life or leads to critical developmental defects, highlighting the importance of correct mitochondrial function during embryo-fetal development. The mechanism impairing the correct development is unknown and may include a dysfunctional metabolic switch in differentiating cells due to decreased ATP production or altered apoptotic signalling. Given the central role of mitochondria in embryonic and fetal development, the mitochondrial dysfunction typical of Mitochondrial Diseases (MDs) should, in principle, be detectable during pregnancy. However, little is known about the clinical manifestations of MDs in embryonic and fetal development. In this manuscript, we review preclinical and clinical evidence suggesting that MDs may affect fetal development and highlight the fetal and maternal outcomes that may provide a wake-up call for targeted genetic diagnosis.
Collapse
Affiliation(s)
- Alessia Adelizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Anastasia Giri
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessia Di Donfrancesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, 37124, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| |
Collapse
|
10
|
Cui X, Jing X. Stem cell-based therapeutic potential in female ovarian aging and infertility. J Ovarian Res 2024; 17:171. [PMID: 39182123 PMCID: PMC11344413 DOI: 10.1186/s13048-024-01492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Premature ovarian insufficiency (POI) is defined as onset of menopause characterized by amenorrhea, hypergonadotropism, and hypoestrogenism, before the age of 40 years. The POI is increasing, which seriously affects the quality of patients' life. Due to its diversity of pathogenic factors, complex pathogenesis and limited treatment methods, the search for finding effective treatment of POI has become a hotspot. Stem cells are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues, which is therapy is expected to be used in the treatment of POI. The aim of this review is to summarize the pathogenic mechanisms and the research progress of POI treatment with stem cells from different sources.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, 030001, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030001, China.
| |
Collapse
|
11
|
Wang ZH, Wang ZJ, Liu HC, Wang CY, Wang YQ, Yue Y, Zhao C, Wang G, Wan JP. Targeting mitochondria for ovarian aging: new insights into mechanisms and therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1417007. [PMID: 38952389 PMCID: PMC11215021 DOI: 10.3389/fendo.2024.1417007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.
Collapse
Affiliation(s)
- Zi-Han Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen-Jing Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Huai-Chao Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen-Yu Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Qi Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Yue
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoyun Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ji-Peng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Yildirim RM, Seli E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin Cell Dev Biol 2024; 159-160:52-61. [PMID: 38330625 DOI: 10.1016/j.semcdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Ma T, Xu G, Gao T, Zhao G, Huang G, Shi J, Chen J, Song J, Xia J, Ma X. Engineered Exosomes with ATF5-Modified mRNA Loaded in Injectable Thermogels Alleviate Osteoarthritis by Targeting the Mitochondrial Unfolded Protein Response. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21383-21399. [PMID: 38626424 DOI: 10.1021/acsami.3c17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1β-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.
Collapse
Affiliation(s)
- Tiancong Ma
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Guangyu Xu
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Tian Gao
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Guanglei Zhao
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Gangyong Huang
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jingsheng Shi
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jie Chen
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jian Song
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jun Xia
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Xiaosheng Ma
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| |
Collapse
|
14
|
Ahmed M, Riaz U, Lv H, Yang L. A Molecular Perspective and Role of NAD + in Ovarian Aging. Int J Mol Sci 2024; 25:4680. [PMID: 38731898 PMCID: PMC11083308 DOI: 10.3390/ijms25094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Collapse
Affiliation(s)
- Mehboob Ahmed
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Riaz
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Ju W, Zhao Y, Yu Y, Zhao S, Xiang S, Lian F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front Endocrinol (Lausanne) 2024; 15:1361289. [PMID: 38694941 PMCID: PMC11061492 DOI: 10.3389/fendo.2024.1361289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Mitochondria plays an essential role in regulating cellular metabolic homeostasis, proliferation/differentiation, and cell death. Mitochondrial dysfunction is implicated in many age-related pathologies. Evidence supports that the dysfunction of mitochondria and the decline of mitochondrial DNA copy number negatively affect ovarian aging. However, the mechanism of ovarian aging is still unclear. Treatment methods, including antioxidant applications, mitochondrial transplantation, emerging biomaterials, and advanced technologies, are being used to improve mitochondrial function and restore oocyte quality. This article reviews key evidence and research updates on mitochondrial damage in the pathogenesis of ovarian aging, emphasizing that mitochondrial damage may accelerate and lead to cellular senescence and ovarian aging, as well as exploring potential methods for using mitochondrial mechanisms to slow down aging and improve oocyte quality.
Collapse
Affiliation(s)
- Wenhan Ju
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuewen Zhao
- CReATe Fertility Centre, Toronto, ON, Canada
| | - Yi Yu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan Xiang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Lian
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Cimadomo D, Innocenti F, Taggi M, Saturno G, Campitiello MR, Guido M, Vaiarelli A, Ubaldi FM, Rienzi L. How should the best human embryo in vitro be? Current and future challenges for embryo selection. Minerva Obstet Gynecol 2024; 76:159-173. [PMID: 37326354 DOI: 10.23736/s2724-606x.23.05296-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In-vitro fertilization (IVF) aims at overcoming the causes of infertility and lead to a healthy live birth. To maximize IVF efficiency, it is critical to identify and transfer the most competent embryo within a cohort produced by a couple during a cycle. Conventional static embryo morphological assessment involves sequential observations under a light microscope at specific timepoints. The introduction of time-lapse technology enhanced morphological evaluation via the continuous monitoring of embryo preimplantation in vitro development, thereby unveiling features otherwise undetectable via multiple static assessments. Although an association exists, blastocyst morphology poorly predicts chromosomal competence. In fact, the only reliable approach currently available to diagnose the embryonic karyotype is trophectoderm biopsy and comprehensive chromosome testing to assess non-mosaic aneuploidies, namely preimplantation genetic testing for aneuploidies (PGT-A). Lately, the focus is shifting towards the fine-tuning of non-invasive technologies, such as "omic" analyses of waste products of IVF (e.g., spent culture media) and/or artificial intelligence-powered morphologic/morphodynamic evaluations. This review summarizes the main tools currently available to assess (or predict) embryo developmental, chromosomal, and reproductive competence, their strengths, the limitations, and the most probable future challenges.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy -
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Gaia Saturno
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maria R Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Maurizio Guido
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Filippo M Ubaldi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, Carlo Bo University of Urbino, Urbino, Italy
| |
Collapse
|
17
|
Feng HW, Zhao Y, Gao YL, Liu DT, Huo LJ. Caseinolytic mitochondrial matrix peptidase X is essential for homologous chromosome synapsis and recombination during meiosis of male mouse germ cells. Asian J Androl 2024; 26:165-174. [PMID: 37856231 PMCID: PMC10919424 DOI: 10.4103/aja202343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023] Open
Abstract
Meiosis is the process of producing haploid gametes through a series of complex chromosomal events and the coordinated action of various proteins. The mitochondrial protease complex (ClpXP), which consists of caseinolytic mitochondrial matrix peptidase X (ClpX) and caseinolytic protease P (ClpP) and mediates the degradation of misfolded, damaged, and oxidized proteins, is essential for maintaining mitochondrial homeostasis. ClpXP has been implicated in meiosis regulation, but its precise role is currently unknown. In this study, we engineered an inducible male germ cell-specific knockout caseinolytic mitochondrial matrix peptidase X ( ClpxcKO ) mouse model to investigate the function of ClpX in meiosis. We found that disrupting Clpx in male mice induced germ cell apoptosis and led to an absence of sperm in the epididymis. Specifically, it caused asynapsis of homologous chromosomes and impaired meiotic recombination, resulting in meiotic arrest in the zygotene-to-pachytene transition phase. The loss of ClpX compromised the double-strand break (DSB) repair machinery by markedly reducing the recruitment of DNA repair protein RAD51 homolog 1 (RAD51) to DSB sites. This dysfunction may be due to an insufficient supply of energy from the aberrant mitochondria in ClpxcKO spermatocytes, as discerned by electron microscopy. Furthermore, ubiquitination signals on chromosomes and the expression of oxidative phosphorylation subunits were both significantly attenuated in ClpxcKO spermatocytes. Taken together, we propose that ClpX is essential for maintaining mitochondrial protein homeostasis and ensuring homologous chromosome pairing, synapsis, and recombination in spermatocytes during meiotic prophase I.
Collapse
Affiliation(s)
- Hai-Wei Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yu Zhao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yan-Ling Gao
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518100, China
| | - Dong-Teng Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Cozzolino M, Ergun Y, Ristori E, Garg A, Imamoglu G, Seli E. Disruption of mitochondrial unfolded protein response results in telomere shortening in mouse oocytes and somatic cells. Aging (Albany NY) 2024; 16:2047-2060. [PMID: 38349865 PMCID: PMC10911389 DOI: 10.18632/aging.205543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/01/2023] [Indexed: 02/15/2024]
Abstract
Caseinolytic peptidase P (CLPP) plays a central role in mitochondrial unfolded protein response (mtUPR) by promoting the breakdown of misfolded proteins and setting in motion a cascade of reactions to re-establish protein homeostasis. Global germline deletion of Clpp in mice results in female infertility and accelerated follicular depletion. Telomeres are tandem repeats of 5'-TTAGGG-3' sequences found at the ends of the chromosomes. Telomeres are essential for maintaining chromosome stability during somatic cell division and their shortening is associated with cellular senescence and aging. In this study, we asked whether the infertility and ovarian aging phenotype caused by global germline deletion of Clpp is associated with somatic aging, and tested telomere length in tissues of young and aging mice. We found that impaired mtUPR caused by the lack of CLPP is associated with accelerated telomere shortening in both oocytes and somatic cells of aging mice. In addition, expression of several genes that maintain telomere integrity was decreased, and double-strand DNA breaks were increased in telomeric regions. Our results highlight how impaired mtUPR can affect telomere integrity and demonstrate a link between loss of mitochondrial protein hemostasis, infertility, and somatic aging.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA Roma, Rome, Italy
- IVIRMA Global Research Alliance, Fundacion IVI-IIS la Fe, Valencia, Spain
| | - Yagmur Ergun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Marlton, NJ 08053, USA
| | - Emma Ristori
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Akanksha Garg
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Gizem Imamoglu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| |
Collapse
|
19
|
Ergun Y, Imamoglu AG, Cozzolino M, Demirkiran C, Basar M, Garg A, Yildirim RM, Seli E. Mitochondrial Unfolded Protein Response Gene Clpp Is Required for Oocyte Function and Female Fertility. Int J Mol Sci 2024; 25:1866. [PMID: 38339144 PMCID: PMC10855406 DOI: 10.3390/ijms25031866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Mitochondrial unfolded protein stress response (mtUPR) plays a critical role in regulating cellular and metabolic stress response and helps maintain protein homeostasis. Caseinolytic peptidase P (CLPP) is one of the key regulators of mtUPR and promotes unfolded protein degradation. Previous studies demonstrated that global deletion of Clpp resulted in female infertility, whereas no impairment was found in the mouse model with targeted deletion of Clpp in cumulus/granulosa cells. These results suggest the need to delineate the function of Clpp in oocytes. In this study, we aimed to further explore the role of mtUPR in female reproductive competence and senescence using a mouse model. Oocyte-specific targeted deletion of Clpp in mice resulted in female subfertility associated with metabolic and functional abnormalities in oocytes, thus highlighting the importance of CLPP-mediated protein homeostasis in oocyte competence and reproductive function.
Collapse
Affiliation(s)
- Yagmur Ergun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Marlton, NJ 07920, USA
| | - Aysegul Gizem Imamoglu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mauro Cozzolino
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVI Roma, 00169 Rome, Italy
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Murat Basar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT 06477, USA
| | - Akanksha Garg
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT 06477, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| |
Collapse
|
20
|
Esbert M, Tao X, Ballesteros A, Yildirim RM, Scott RT, Seli E. Addition of rapamycin or co-culture with cumulus cells from younger reproductive age women does not improve rescue in vitro oocyte maturation or euploidy rates in older reproductive age women. Mol Hum Reprod 2024; 30:gaad048. [PMID: 38180884 DOI: 10.1093/molehr/gaad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/30/2023] [Indexed: 01/07/2024] Open
Abstract
Both spontaneously conceived pregnancies and those achieved using assisted reproduction decline with advancing maternal age. In this study, we tested if rapamycin and/or cumulus cells (CCs) from young donors could improve oocyte maturation and euploidy rates of germinal vesicle (GV) stage oocytes obtained from older women of reproductive age. A total of 498 GVs from 201 women >38 years (40.6 ± 1.8, mean ± SD) were included. GVs were randomly assigned into five groups for rescue IVM: control (with no CCs and no rapamycin); with autologous CCs; with autologous CCs and rapamycin; with CCs from young women (<35 years); and with CCs from young women and rapamycin. After 24 h of culture, the first polar body (PB) was biopsied in metaphase II oocytes, and the cytogenetic constitution was assessed using next-generation sequencing for both oocytes and PBs. Comparable maturation rates were found (56.2%, 60.0%, 46.5%, 51.7%, and 48.5% for groups 1-5, respectively; P = 0.30). Similarly, comparable euploidy rates were observed in the five groups (41.5%, 37.8%, 47.2%, 43.6%, and 47.8% for Groups 1-5, respectively; P = 0.87). Our findings indicate that rescue IVM is effective for obtaining mature euploid oocytes in older women of reproductive age, and that incubation with rapamycin or CCs obtained from young donors does not improve the maturation or euploidy rate.
Collapse
Affiliation(s)
- Marga Esbert
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
- IVIRMA Global Research Alliance, IVIRMA Barcelona, Barcelona, Spain
| | - Xin Tao
- JUNO Genetics, Basking Ridge, NJ, USA
| | | | - Raziye Melike Yildirim
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Richard T Scott
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Emre Seli
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Garg A, Seli E. Leukocyte telomere length and DNA methylome as biomarkers of ovarian reserve and embryo aneuploidy: the intricate relationship between somatic and reproductive aging. Fertil Steril 2024; 121:26-33. [PMID: 37979607 DOI: 10.1016/j.fertnstert.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
The average childbearing age among women continues to rise, leading to an increased prevalence of infertility and a subsequent increased use of assisted reproductive technologies (ARTs). Ovarian aging, especially diminished ovarian reserve and poor ovarian response, have been implicated as common causes of infertility. Telomere length and DNA methylation-based epigenetic clocks are established hallmarks of cellular aging; however, the interplay between somatic and ovarian aging remains unclear. There appears to be a lack of correlation between leukocyte telomere length and the DNA methylation age of somatic and ovarian cells. Both the telomere length and methylome of follicular somatic cells (granulosa and cumulus) appear to be unaffected by chronologic age, infertility, or processes that result in diminished ovarian reserve and poor ovarian response. As such, they are unlikely candidates as surrogate biomarkers of reproductive potential, response to stimulation, or ART outcome. Meanwhile, telomere or methylome changes in leukocytes associated with aging seem to correlate with reproductive function and may have the potential to aid the characterization of women with reproductive decline; however, current data are limited and larger studies evaluating this within an ART setting are warranted.
Collapse
Affiliation(s)
- Akanksha Garg
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut; IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, New Jersey.
| |
Collapse
|
22
|
Udagawa O. Oocyte Health and Quality: Implication of Mitochondria-related Organelle Interactions. Results Probl Cell Differ 2024; 73:25-42. [PMID: 39242373 DOI: 10.1007/978-3-031-62036-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among factors like hormonal imbalance and uterine condition, oocyte quality is regarded as one of the key factors involved in age-related decline in the reproductive capacity. Here, are discussions about the functions played by organelles within the oocyte in forming the next generation that is more suitable for survival. Many insights on the adaptation to aging and maintenance of quality can be obtained from: interactions between mitochondria and other organelles that enable the long life of primordial oocytes; characteristics of organelle interactions after breaking dormancy from primary oocytes to mature oocytes; and characteristics of interactions between mitochondria and other organelles of aged oocytes collected during the ovulatory cycle from elderly individuals and animals. This information would potentially be beneficial to the development of future therapeutic methods or agents.
Collapse
Affiliation(s)
- Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
23
|
Marchante M, Ramirez-Martin N, Buigues A, Martinez J, Pellicer N, Pellicer A, Herraiz S. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY) 2023; 15:10856-10874. [PMID: 37847151 PMCID: PMC10637815 DOI: 10.18632/aging.205086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Female fertility is negatively correlated with age, with noticeable declines in oocyte quantity and quality until menopause. To understand this physiological process and evaluate human approaches for treating age-related infertility, preclinical studies in appropriate animal models are needed. Thus, we aimed to characterize an immunodeficient physiological aging mouse model displaying ovarian characteristics of different stages during women's reproductive life. NOD/SCID mice of different ages (8-, 28-, and 36-40-week-old) were employed to mimic ovarian phenotypes of young, Advanced Maternal Age (AMA), and old women (~18-20-, ~36-38-, and >45-years-old, respectively). Mice were stimulated, mated, and sacrificed to recover oocytes and embryos. Then, ovarian reserve, follicular growth, ovarian stroma, mitochondrial dysfunction, and proteomic profiles were assessed. Age-matched C57BL/6 mice were employed to cross-validate the reproductive outcomes. The quantity and quality of oocytes were decreased in AMA and Old mice. These age-related effects associated spindle and chromosome abnormalities, along with decreased developmental competence to blastocyst stage. Old mice had less follicles, impaired follicle activation and growth, an ovarian stroma inconducive to growth, and increased mitochondrial dysfunctions. Proteomic analysis corroborated these histological findings. Based on that, NOD/SCID mice can be used to model different ovarian aging phenotypes and potentially test human anti-aging treatments.
Collapse
Affiliation(s)
- María Marchante
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia 46010, Spain
| | - Noelia Ramirez-Martin
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Anna Buigues
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Jessica Martinez
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| | - Nuria Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- IVIRMA Valencia, Valencia 46015, Spain
| | - Antonio Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
- IVIRMA Rome, Rome 00197, Italy
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation, Valencia 46026, Spain
- Reproductive Medicine Research Group, Instituto Investigación Sanitaria La Fe (IIS La Fe), Valencia 46026, Spain
| |
Collapse
|
24
|
Guo C, Xiao Y, Gu J, Zhao P, Hu Z, Zheng J, Hua R, Hai Z, Su J, Zhang JV, Yeung WSB, Wang T. ClpP/ClpX deficiency impairs mitochondrial functions and mTORC1 signaling during spermatogenesis. Commun Biol 2023; 6:1012. [PMID: 37798322 PMCID: PMC10556007 DOI: 10.1038/s42003-023-05372-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Caseinolytic protease proteolytic subunit (ClpP) and caseinolytic protease X (ClpX) are mitochondrial matrix peptidases that activate mitochondrial unfolded protein response to maintain protein homeostasis in the mitochondria. However, the role of ClpP and ClpX in spermatogenesis remains largely unknown. In this study, we demonstrated the importance of ClpP/ClpX for meiosis and spermatogenesis with two conditional knockout (cKO) mouse models. We found that ClpP/ClpX deficiency reduced mitochondrial functions and quantity in spermatocytes, affected energy supply during meiosis and attenuated zygotene-pachytene transformation of the male germ cells. The dysregulated spermatocytes finally underwent apoptosis resulting in decreased testicular size and vacuolar structures within the seminiferous tubules. We found mTORC1 pathway was over-activated after deletion of ClpP/ClpX in spermatocytes. Long-term inhibition of the mTORC1 signaling via rapamycin treatment in vivo partially rescue spermatogenesis. The data reveal the critical roles of ClpP and ClpX in regulating meiosis and spermatogenesis.
Collapse
Affiliation(s)
- Chenxi Guo
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yuan Xiao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jingkai Gu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Peikun Zhao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Zhe Hu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiahuan Zheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Renwu Hua
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhuo Hai
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jiaping Su
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, 518055, China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|
25
|
Sahin GN, Yildirim RM, Seli E. Embryonic arrest: causes and implications. Curr Opin Obstet Gynecol 2023; 35:184-192. [PMID: 37039141 DOI: 10.1097/gco.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
PURPOSE OF REVIEW Embryonic arrest is a key determinant of the number of euploid blastocysts obtained after IVF. Here, we review factors that are implicated in the developmental arrest of preimplantation embryos and their relevance for assisted reproduction outcomes. RECENT FINDINGS Among the treatment options available to infertile women, IVF is the one associated with most favorable outcomes. The cumulative pregnancy rates in women undergoing IVF are determined by aneuploidy rate (age), ovarian response to stimulation (ovarian reserve), and the rate of embryo developmental arrest. Mutations in maternal effect genes, especially those encoding for subcortical maternal complex, have been implicated in human embryo developmental arrest. In addition, perturbation of biological processes, such as mitochondrial unfolded protein response and long noncoding RNA regulatory pathways, may play a role. However, how each of these factors contributes to embryos' arrest in different cohorts and age groups has not been determined. SUMMARY Arrest of human embryos during preimplantation development is a common occurrence and is partly responsible for the limited number of euploid blastocysts obtained in assisted reproduction cycles. Although genetic and metabolic causes have been implicated, the mechanisms responsible for human embryo developmental arrest remain poorly characterized.
Collapse
Affiliation(s)
- Gizem N Sahin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Raziye M Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- IVIRMA New Jersey, Basking Ridge, New Jersey, USA
| |
Collapse
|
26
|
Liu C, Xu M, Guan Y, Li L, Liu W, Guo B, Sheng X, Zhang Y, Zhou J, Zhen X, Yan G, Sun H, Ding L. Decreased LONP1 expression contributes to DNA damage and meiotic defects in oocytes. Mol Reprod Dev 2023; 90:358-368. [PMID: 37392095 DOI: 10.1002/mrd.23694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/16/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Meiotic defects in oocytes are the primary reason for decreased female fertility with advanced maternal age. In this study, we revealed that decreased expression of ATP-dependent Lon peptidase 1 (LONP1) in aged oocytes and oocyte-specific depletion of LONP1 disrupt oocyte meiotic progression accompanying with mitochondrial dysfunction. In addition, LONP1 downregulation increased oocyte DNA damage. Moreover, we demonstrated that splicing factor proline and glutamine rich directly interacts with LONP1 and mediate the effect of LONP1 depletion on meiotic progression in oocytes. In summary, our data suggest that decreased expression of LONP1 is involved in advanced maternal age-related meiosis defects and that LONP1 represents a new therapeutic target to improve aged oocyte quality.
Collapse
Affiliation(s)
- Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Manlin Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yajie Guan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lilin Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Wenwen Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Bichun Guo
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, China
- Clinical Center for Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
27
|
Olivar-Villanueva M, Ren M, Schlame M, Phoon CK. The critical role of cardiolipin in metazoan differentiation, development, and maturation. Dev Dyn 2023; 252:691-712. [PMID: 36692477 PMCID: PMC10238668 DOI: 10.1002/dvdy.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiolipins are phospholipids that are central to proper mitochondrial functioning. Because mitochondria play crucial roles in differentiation, development, and maturation, we would also expect cardiolipin to play major roles in these processes. Indeed, cardiolipin has been implicated in the mechanism of three human diseases that affect young infants, implying developmental abnormalities. In this review, we will: (1) Review the biology of cardiolipin; (2) Outline the evidence for essential roles of cardiolipin during organismal development, including embryogenesis and cell maturation in vertebrate organisms; (3) Place the role(s) of cardiolipin during embryogenesis within the larger context of the roles of mitochondria in development; and (4) Suggest avenues for future research.
Collapse
Affiliation(s)
| | - Mindong Ren
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Coruhlu I, Tepekoy F. Regulation of proteolysis in bovine cumulus cells with possible inclusion of proton pump activators. Reprod Domest Anim 2023. [PMID: 37186329 DOI: 10.1111/rda.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE To reveal the effects of V-ATPase proton pump activation on lysosomal acidity and protein degradation in cultured cumulus cells. METHODS Cumulus cells from bovine ovaries were cultured in the presence of 10 and 50 μM doses of V-ATPase proton pump activators PIP2, PMA, and DOG for 12 and 24 hours. At the end of the culture period, the level of protein degradation was evaluated through DQ-Red-BSA analysis and the lysosomes were detected through a fluorescent probe. In addition, total and phosphorylated MAPK1/3 and AKT protein levels of cumulus cells were determined through western blotting. RESULTS PIP2 and PMA were shown to increase protein degradation and lysosomal acidity in cultured bovine cumulus cells, whereas DOG did not have any significant effects on these cells. Total and phosphorylated MAPK and AKT protein levels were higher in PIP2 and PMA groups compared to the control and DOG. CONCLUSION Particular proton pump activators can enhance protein degradation and lysosomal acidification in cultured bovine cumulus cells without having detrimental effects on cell signaling members required for cell viability and proper functioning. Due to the cellular interactions, increasing the lysosomal activity in cumulus cells in the culture environment could also affect the removal of protein aggregates in the oocytes. This strategy could be effective for improving in vitro maturation of the oocytes by providing proteostasis.
Collapse
Affiliation(s)
- Ipek Coruhlu
- Department of Histology and Embryology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Filiz Tepekoy
- Department of Histology and Embryology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Central Research Laboratory, Altinbas University, Istanbul, Turkey
- School of Human Sciences, College of Science and Engineering, University of Derby, Kedleston Road, Derby, UK
| |
Collapse
|
29
|
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res 2023; 16:67. [PMID: 37024976 PMCID: PMC10080932 DOI: 10.1186/s13048-023-01151-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Yuan X, Ma W, Chen S, Wang H, Zhong C, Gao L, Cui Y, Pu D, Tan R, Wu J. CLPP inhibition triggers apoptosis in human ovarian granulosa cells via COX5A abnormality-Mediated mitochondrial dysfunction. Front Genet 2023; 14:1141167. [PMID: 37007963 PMCID: PMC10065195 DOI: 10.3389/fgene.2023.1141167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by early loss of ovarian function before the age of 40 years. It is confirmed to have a strong and indispensable genetic component. Caseinolytic mitochondrial matrix peptidase proteolytic subunit (CLPP) is a key inducer of mitochondrial protein quality control for the clearance of misfolded or damaged proteins, which is necessary to maintain mitochondrial function. Previous findings have shown that the variation in CLPP is closely related to the occurrence of POI, which is consistent with our findings. This study identified a novel CLPP missense variant (c.628G > A) in a woman with POI who presented with secondary amenorrhea, ovarian dysfunction, and primary infertility. The variant was located in exon 5 and resulted in a change from alanine to threonine (p.Ala210Thr). Importantly, Clpp was mainly localized in the cytoplasm of mouse ovarian granulosa cells and oocytes, and was relatively highly expressed in granulosa cells. Moreover, the overexpression of c.628G > A variant in human ovarian granulosa cells decreased the proliferative capacity. Functional experiments revealed that the inhibition of CLPP decreased the content and activity of oxidative respiratory chain complex IV by affecting the degradation of aggregated or misfolded COX5A, leading to the accumulation of reactive oxygen species and reduction of mitochondrial membrane potential, ultimately activating the intrinsic apoptotic pathways. The present study demonstrated that CLPP affected the apoptosis of granulosa cells, which might be one of the mechanisms by which CLPP aberrations led to the development of POI.
Collapse
Affiliation(s)
- Xiong Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenjie Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuping Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiyuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chenyi Zhong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yugui Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danhua Pu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rongrong Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve. Reprod Sci 2023; 30:560-568. [PMID: 35739352 DOI: 10.1007/s43032-022-01014-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Mitochondria are dynamic organelles that regulate their size, shape, and morphology through mechanisms called fusion and fission, to continually adapt themselves to their bioenergetic environment. These mechanisms play a critical role to maintain the mitochondrial function under metabolic and environmental stress. Mitofusin 1 (MFN1) and mitofusin 2 (MFN2) are transmembrane GTPases that regulate mitochondrial fusion mechanism and are required for the maintenance of cellular homeostasis. In this study, we aimed to determine the role of mitofusins in female reproductive competence and senescence using a mouse model with oocyte-specific double deletion of Mfn1 and Mfn2, eliminating the potential functional redundancy of these two proteins. Oocyte-specific targeted double deletion of Mfn1 and Mfn2 in mice resulted in female infertility associated with impaired follicular development and oocyte maturation. It also resulted in altered mitochondrial dynamics and mitochondrial dysfunction. Lack of Mfn1 and Mfn2 in oocytes resulted in accelerated follicular depletion and impaired oocyte quality which are consistent with phenotype of reproductive aging.
Collapse
|
32
|
Li G, Gu J, Zhou X, Wu T, Li X, Hua R, Hai Z, Xiao Y, Su J, Yeung WSB, Liu K, Guo C, Wang T. Mitochondrial stress response gene Clpp deficiency impairs oocyte competence and deteriorate cyclophosphamide-induced ovarian damage in young mice. Front Endocrinol (Lausanne) 2023; 14:1122012. [PMID: 37033217 PMCID: PMC10081448 DOI: 10.3389/fendo.2023.1122012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Chemotherapy is extensively used to treat cancers and is often associated with ovarian damage and leads to premature ovarian insufficiency and infertility, while the role of mitochondria during ovarian damage with chemotherapy remains unknown. This study used a mouse model with oocyte-specific deletion of mitochondrial stress response gene Caseinolytic peptidase P (Clpp) to investigate mitochondrial homeostasis in oocytes from mice receiving a chemotherapeutic drug cyclophosphamide (CTX). We found that oocyte-specific deletion of Clpp reduced fecundity of the mice at advanced age. The deletion led to meiotic defects with elevated abnormal spindle rate and aneuploidy rate with impaired mitochondrial function in the MII oocytes from 8-week-old mice. Upon CTX treatment at 8-week-old, the oocyte competence and folliculogenesis from the oocyte-specific Clpp knockout mice was further deteriorated with dramatic impairment of mitochondrial distribution and function including elevated ROS level, decreased mitochondrial membrane potential, respiratory chain activity and ATP production. Taken together, the results indicate that that ClpP was required for oocyte competence during maturation and early folliculogenesis, and its deficiency deteriorate cyclophosphamide-induced ovarian damage.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingkai Gu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaomei Zhou
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ting Wu
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xian Li
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Renwu Hua
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhuo Hai
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuan Xiao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiaping Su
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Willian S. B. Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of HongKong, Hong Kong, Hong Kong SAR, China
| | - Chenxi Guo
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| | - Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| |
Collapse
|
33
|
Cozzolino M, Herraiz S, Cakiroglu Y, Garcia-Velasco JA, Tiras B, Pacheco A, Rabadan S, Kohls G, Barrio AI, Pellicer A, Seli E. Distress response in granulosa cells of women affected by PCOS with or without insulin resistance. Endocrine 2023; 79:200-207. [PMID: 36149529 DOI: 10.1007/s12020-022-03192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/03/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE In this study, we investigated whether metabolic dysfunction in women with Polycystic ovarian syndrome (PCOS) induces granulosa cell (GC) stress and activates in the endoplamatic reticulum and the mitochondria (UPRer and UPRmt, respectively). METHODS Women who were diagnosed with PCOS (based on the Rotterdam criteria), were divided into two groups, PCOS with insulin resistance (PCOS-IR; n = 20) and PCOS with no insulin resistance (PCOS-nIR; n = 20), and compared to healthy oocyte donors (CONT; n = 20). Insulin resistance (IR) was assessed on the results of homeostasis model assessment (HOMA) that determines IR using the concentration of fasting plasma glucose and fasting insuline. Expression of UPRer genes (i.e., IRE1, ATF4, ATF6, XBP1, BIP, and CHOP), and UPRmt genes (i.e., HSP60, HSP10, CLPP, and HSP40) was assessed in cumulus GCs by qRT-PCR. RESULTS We found that several genes involved in UPRer and UPRmt were overexpressed in the GCs of PCOS-IR and PCOS-nIR compared to CONT. IRE1, ATF4 and XBP1, that are activated by ER stress, were significantly overexpressed in PCOS-IR compared to CONT. BIP and CHOP were overexpressed in PCOS groups compared to CONT. HSP10 and HSP40 were upregulated in PCOS-IR and PCOS-nIR groups compared to the CONT. HSP60 and CLPP showed no statistical different expression in PCOS-IR and PCOS-nIR compared to CONT group. CONCLUSION Our findings suggest that the GCs of women with PCOS (with or without IR) are metabolically distressed and upregulate UPRer and UPRmt genes. Our study contributes to the understanding of the molecular mechanisms underlying the pathological changes that occur in the follicular microenvironment of women with PCOS.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
- IVIRMA, Roma, Italy.
- Universidad Rey Juan Carlos, Madrid, Spain.
- Grupo de investigación en Medicina Reproductiva, Fundación IVI-Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.
| | - Sonia Herraiz
- Grupo de investigación en Medicina Reproductiva, Fundación IVI-Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Yigit Cakiroglu
- Acibadem Maslak Hospital Assisted Reproductive Technologies Unit, Istanbul, Turkey
- Department of Obstetrics and Gynecology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Bulent Tiras
- Acibadem Maslak Hospital Assisted Reproductive Technologies Unit, Istanbul, Turkey
- Department of Obstetrics and Gynecology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | | | | | - Antonio Pellicer
- IVIRMA, Roma, Italy
- Grupo de investigación en Medicina Reproductiva, Fundación IVI-Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA New Jersey, Basking Ridge, NJ, USA
| |
Collapse
|
34
|
Key J, Gispert S, Koornneef L, Sleddens-Linkels E, Kohli A, Torres-Odio S, Koepf G, Amr S, Reichlmeir M, Harter PN, West AP, Münch C, Baarends WM, Auburger G. CLPP Depletion Causes Diplotene Arrest; Underlying Testis Mitochondrial Dysfunction Occurs with Accumulation of Perrault Proteins ERAL1, PEO1, and HARS2. Cells 2022; 12:52. [PMID: 36611846 PMCID: PMC9818230 DOI: 10.3390/cells12010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Human Perrault syndrome (PRLTS) is autosomal, recessively inherited, and characterized by ovarian insufficiency with hearing loss. Among the genetic causes are mutations of matrix peptidase CLPP, which trigger additional azoospermia. Here, we analyzed the impact of CLPP deficiency on male mouse meiosis stages. Histology, immunocytology, different OMICS and biochemical approaches, and RT-qPCR were employed in CLPP-null mouse testis. Meiotic chromosome pairing and synapsis proceeded normally. However, the foci number of the crossover marker MLH1 was slightly reduced, and foci persisted in diplotene, most likely due to premature desynapsis, associated with an accumulation of the DNA damage marker γH2AX. No meiotic M-phase cells were detected. Proteome profiles identified strong deficits of proteins involved in male meiotic prophase (HSPA2, SHCBP1L, DMRT7, and HSF5), versus an accumulation of AURKAIP1. Histone H3 cleavage, mtDNA extrusion, and cGAMP increase suggested innate immunity activation. However, the deletion of downstream STING/IFNAR failed to alleviate pathology. As markers of underlying mitochondrial pathology, we observed an accumulation of PRLTS proteins ERAL1, PEO1, and HARS2. We propose that the loss of CLPP leads to the extrusion of mitochondrial nucleotide-binding proteins to cytosol and nucleus, affecting late meiotic prophase progression, and causing cell death prior to M-phase entry. This phenotype is more severe than in mito-mice or mutator-mice.
Collapse
Affiliation(s)
- Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Aneesha Kohli
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Gabriele Koepf
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Shady Amr
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Marina Reichlmeir
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt am Main, Germany
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 35392 Gießen, Germany
| | - Willy M. Baarends
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
35
|
CENP-F-dependent DRP1 function regulates APC/C activity during oocyte meiosis I. Nat Commun 2022; 13:7732. [PMID: 36513638 PMCID: PMC9747930 DOI: 10.1038/s41467-022-35461-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Chromosome segregation is initiated by cohesin degradation, which is driven by anaphase-promoting complex/cyclosome (APC/C). Chromosome cohesin is removed by activated separase, with the degradation of securin and cyclinB1. Dynamin-related protein 1 (DRP1), a component of the mitochondrial fission machinery, is related to cyclin dynamics in mitosis progression. Here, we show that DRP1 is recruited to the kinetochore by centromeric Centromere protein F (CENP-F) after nuclear envelope breakdown in mouse oocytes. Loss of DRP1 during prometaphase leads to premature cohesin degradation and chromosome segregation. Importantly, acute DRP1 depletion activates separase by initiating cyclinB1 and securin degradation during the metaphase-to-anaphase transition. Finally, we demonstrate that DRP1 is bound to APC2 to restrain the E3 ligase activity of APC/C. In conclusion, DRP1 is a CENP-F-dependent atypical spindle assembly checkpoint (SAC) protein that modulates metaphase-to-anaphase transition by controlling APC/C activity during meiosis I in oocytes.
Collapse
|
36
|
Tucker EJ, Baker MJ, Hock DH, Warren JT, Jaillard S, Bell KM, Sreenivasan R, Bakhshalizadeh S, Hanna CA, Caruana NJ, Wortmann SB, Rahman S, Pitceathly RDS, Donadieu J, Alimi A, Launay V, Coppo P, Christin-Maitre S, Robevska G, van den Bergen J, Kline BL, Ayers KL, Stewart PN, Stroud DA, Stojanovski D, Sinclair AH. Premature Ovarian Insufficiency in CLPB Deficiency: Transcriptomic, Proteomic and Phenotypic Insights. J Clin Endocrinol Metab 2022; 107:3328-3340. [PMID: 36074910 PMCID: PMC9693831 DOI: 10.1210/clinem/dgac528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Premature ovarian insufficiency (POI) is a common form of female infertility that usually presents as an isolated condition but can be part of various genetic syndromes. Early diagnosis and treatment of POI can minimize comorbidity and improve health outcomes. OBJECTIVE We aimed to determine the genetic cause of syndromic POI, intellectual disability, neutropenia, and cataracts. METHODS We performed whole-exome sequencing (WES) followed by functional validation via RT-PCR, RNAseq, and quantitative proteomics, as well as clinical update of previously reported patients with variants in the caseinolytic peptidase B (CLPB) gene. RESULTS We identified causative variants in CLPB, encoding a mitochondrial disaggregase. Variants in this gene are known to cause an autosomal recessive syndrome involving 3-methylglutaconic aciduria, neurological dysfunction, cataracts, and neutropenia that is often fatal in childhood; however, there is likely a reporting bias toward severe cases. Using RNAseq and quantitative proteomics we validated causation and gained insight into genotype:phenotype correlation. Clinical follow-up of patients with CLPB deficiency who survived to adulthood identified POI and infertility as a common postpubertal ailment. CONCLUSION A novel splicing variant is associated with CLPB deficiency in an individual who survived to adulthood. POI is a common feature of postpubertal female individuals with CLPB deficiency. Patients with CLPB deficiency should be referred to pediatric gynecologists/endocrinologists for prompt POI diagnosis and hormone replacement therapy to minimize associated comorbidities.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Megan J Baker
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France
| | - Katrina M Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Chloe A Hanna
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Gynaecology, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg 5020, Austria
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen 6524, The Netherlands
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Jean Donadieu
- Sorbonne Université, Service d’Hémato-oncologie Pédiatrique, Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Paris 75006, France
- Registre Français des Neutropénies Congénitales, Hôpital Trousseau, Paris 75006, France
- Centre de Référence des Neutropénies Chroniques, AP-HP, Hôpital Trousseau, Paris 75006, France
| | - Aurelia Alimi
- Sorbonne Université, Service d’Hémato-oncologie Pédiatrique, Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Paris 75006, France
- Registre Français des Neutropénies Congénitales, Hôpital Trousseau, Paris 75006, France
- Centre de Référence des Neutropénies Chroniques, AP-HP, Hôpital Trousseau, Paris 75006, France
| | - Vincent Launay
- Hematologie, Centre Hospitalier de St Brieuc, Paris 22027, France
| | - Paul Coppo
- Sorbonne Université, Service d’hématologie Hôpital Saint-Antoine, AP-HP, Paris75006, France
| | - Sophie Christin-Maitre
- Sorbonne Université, Service d’Endocrinologie, diabétologie et médecine de la reproduction Hôpital Saint-Antoine, AP-HP, Paris75006, France
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jocelyn van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Brianna L Kline
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Phoebe N Stewart
- Department of Paediatrics, The Royal Hobart Hospital, Tasmania 7000, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
37
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
38
|
Tian Y, Liu X, Pei X, Gao H, Pan P, Yang Y. Mechanism of Mitochondrial Homeostasis Controlling Ovarian Physiology. Endocrinology 2022; 164:6828017. [PMID: 36378567 DOI: 10.1210/endocr/bqac189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 11/17/2022]
Abstract
Ovarian cells, including oocytes, granulosa/cumulus cells, theca cells, and stromal cells, contain abundant mitochondria, which play indispensable roles in the processes of ovarian follicle development. Ovarian function is closely controlled by mitochondrial proteostasis and mitostasis. While mitochondrial proteostasis and mitostasis are disturbed by several factors, leading to dysfunction of ovarian function and initiating the mitochondrial unfolded protein response (UPRmt) and mitophagy to maintain or recover ovarian function and mitochondrial function, clear interactions between the 2 pathways in the ovary have not been fully elucidated. Here, we comprehensively summarize the molecular networks or regulatory mechanisms behind further mitochondrial research in the ovary. This review provides novel insights into the interactions between the UPRmt and mitophagy in ovarian functions.
Collapse
Affiliation(s)
- Yuan Tian
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xinrui Liu
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanzhou Yang
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
39
|
Zhu L, Zhou T, Iyyappan R, Ming H, Dvoran M, Wang Y, Chen Q, Roberts RM, Susor A, Jiang Z. High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development. Development 2022; 149:dev200819. [PMID: 36227586 PMCID: PMC9687001 DOI: 10.1242/dev.200819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.
Collapse
Affiliation(s)
- Linkai Zhu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Yinjuan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - R. Michael Roberts
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
40
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
41
|
Low Expression of Mitofusin 1 Gene Leads to Mitochondrial Dysfunction and Embryonic Genome Activation Failure in Ovine-Bovine Inter-Species Cloned Embryos. Int J Mol Sci 2022; 23:ijms231710145. [PMID: 36077543 PMCID: PMC9456037 DOI: 10.3390/ijms231710145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events.
Collapse
|
42
|
LARS2 Regulates Apoptosis via ROS-Mediated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Ovarian Granulosa Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5501346. [PMID: 35585880 PMCID: PMC9110257 DOI: 10.1155/2022/5501346] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Several studies have indicated that mutations of LARS2 are associated with premature ovarian insufficiency (POI). However, the pathogenic mechanism of LARS2 in POI has not been reported yet. In the present study, the expression levels of LARS2 and E2F1 in granulosa cells (GCs) of POI patients were examined. CCK-8 and Edu assay were performed to determine the effect of LARS2 on cell proliferation. Apoptosis rate, mitochondrial membrane potential, reactive oxygen species (ROS), and cytoplasm Ca2+ levels were analyzed by flow cytometry. Western blot was conducted to evaluate the expression level of genes affected by LARS2. Transmission electron microscopy (TEM) was used to observe mitochondrial structure in GCs. Chromatin immunoprecipitation (ChIP) was used to evaluate the regulatory effect of E2F1 on Mfn-2 expression. Our results showed that LARS2 expression was downregulated in GCs of POI patients. Silencing of LARS2 inhibited cell proliferation and promoted the apoptosis of GCs. Meanwhile, LARS2 knockdown could induce mitochondrial dysfunction and accumulation of ROS levels. Moreover, ROS was found to be involved in the antiproliferation, proapoptotic, and endoplasmic reticulum (ER) stress effects of LARS2 knockdown. Furthermore, we also found that the expression level of E2F1 was positively correlated with LARS2. In addition, E2F1 could bind at the -61/-46 region of Mfn-2 promoter and regulated MFN-2 transcription. These findings demonstrated that LARS2 could promote the expression of E2F1. E2F1 mediated the effect of LARS2 on Mfn-2 expression via targeting the promoter region of Mfn-2, in which subsequently regulated cell proliferation and apoptosis, which resulted in the etiology of POI. This study will provide useful information for further investigations on the LARS2 in the occurrence of POI.
Collapse
|
43
|
Xiang X, Bao R, Wu Y, Luo Y. Targeting Mitochondrial Proteases for Therapy of Acute Myeloid Leukemia. Br J Pharmacol 2022; 179:3268-3282. [PMID: 35352341 DOI: 10.1111/bph.15844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Targeting cancer metabolism has emerged as an attractive approach to improve therapeutic regimens in acute myeloid leukemia (AML). Mitochondrial proteases are closely related to cancer metabolism, but their biological functions have not been well characterized in AML. According to different catogory, we comprehensively reviewed the role of mitochondrial proteases in AML. This review highlights some 'powerful' mitochondrial protease targets, including their biological function, chemical modulators, and applicative prospect in AML.
Collapse
Affiliation(s)
- Xinrong Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Bao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wu
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Yu TN, Cheng EH, Tsai HN, Lin PY, Chen CH, Huang CC, Lee TH, Lee MS. Assessment of Telomere Length and Mitochondrial DNA Copy Number in Granulosa Cells as Predictors of Aneuploidy Rate in Young Patients. J Clin Med 2022; 11:jcm11071824. [PMID: 35407431 PMCID: PMC9000104 DOI: 10.3390/jcm11071824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 01/10/2023] Open
Abstract
Background: To identify the correlation among female age, cellular aging markers, and aneuploidy rate in in vitro fertilization (IVF) and the preimplantation genetic test for aneuploidy (PGT-A) cycles. Methods: This is a prospective cohort study recruiting 110 infertile women between August 2017 and July 2018. They were divided into young-age (<38 years, n = 60) and advanced-age (≥38 years, n = 50) groups. Peripheral leukocytes were assessed, and the granulosa cells were pooled during oocyte pickup. Mitochondrial DNA (mtDNA) copy number and telomere length (TL) were measured using real-time polymerase chain reaction. PGT-A was performed on the NGS platform. Results: mtDNA copy number and TL were positively correlated in both leukocytes (rho = 0.477, p < 0.001) and granulosa cells (rho = 0.361, p < 0.001), but the two parameters in leukocytes were not correlated with those in granulosa cells. In the young-age group, TL in the granulosa cells was the only factor correlated with the aneuploidy rate (rho = −0.283, p = 0.044), whereas in the advanced-age group, age was the main factor (rho = 0.358, p = 0.018). Conclusions: TL in the granulosa cells was negatively correlated with the aneuploidy rate in the young-age group, supporting the application of PGT-A in younger women.
Collapse
Affiliation(s)
- Tzu-Ning Yu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - En-Hui Cheng
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Han-Ni Tsai
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Pin-Yao Lin
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Chien-Hong Chen
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Chun-Chia Huang
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (T.-H.L.); (M.-S.L.)
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (T.-H.L.); (M.-S.L.)
| |
Collapse
|
45
|
Abstract
The proteostasis network (PN) regulates protein synthesis, folding, and degradation and is critical for the health and function of all cells. The PN has been extensively studied in the context of aging and age-related diseases, and loss of proteostasis is regarded as a major contributor to many age-associated disorders. In contrast to somatic tissues, an important feature of germ cells is their ability to maintain a healthy proteome across generations. Accumulating evidence has now revealed multiple layers of PN regulation that support germ cell function, determine reproductive capacity during aging, and prioritize reproduction at the expense of somatic health. Here, we review recent insights into these different modes of regulation and their implications for reproductive and somatic aging.
Collapse
|
46
|
Sheng X, Liu C, Yan G, Li G, Liu J, Yang Y, Li S, Li Z, Zhou J, Zhen X, Zhang Y, Diao Z, Hu Y, Fu C, Yao B, Li C, Cao Y, Lu B, Yang Z, Qin Y, Sun H, Ding L. The mitochondrial protease LONP1 maintains oocyte development and survival by suppressing nuclear translocation of AIFM1 in mammals. EBioMedicine 2022; 75:103790. [PMID: 34974310 PMCID: PMC8733232 DOI: 10.1016/j.ebiom.2021.103790] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Oogenesis is a fundamental process of human reproduction, and mitochondria play crucial roles in oocyte competence. Mitochondrial ATP-dependent Lon protease 1 (LONP1) functions as a critical protein in maintaining mitochondrial and cellular homeostasis in somatic cells. However, the essential role of LONP1 in maintaining mammalian oogenesis is far from elucidated. METHODS Using conditional oocyte Lonp1-knockout mice, RNA sequencing (RNA-seq) and coimmunoprecipitation/liquid chromatography-mass spectrometry (Co-IP/LC-MS) technology, we analysed the functions of LONP1 in mammalian oogenesis. FINDINGS Conditional knockout of Lonp1 in mouse oocytes in both the primordial and growing follicle stages impairs follicular development and causes progressive oocyte death, ovarian reserve loss, and infertility. LONP1 directly interacts with apoptosis inducing factor mitochondria-associated 1 (AIFM1), and LONP1 ablation leads to the translocation of AIFM1 from the cytoplasm to the nucleus, causing apoptosis in mouse oocytes. In addition, women with pathogenic variants of LONP1 lack large antral follicles (>10 mm) in the ovaries, are infertile and present premature ovarian insufficiency. INTERPRETATION We demonstrated the function of LONP1 in regulating oocyte development and survival, and in-depth analysis of LONP1 will be crucial for elucidating the mechanisms underlying premature ovarian insufficiency. FUNDING This work was supported by grants from the National Key Research and Development Program of China (2018YFC1004701), the National Nature Science Foundation of China (82001629, 81871128, 81571391, 81401166, 82030040), the Jiangsu Province Social Development Project (BE2018602), the Jiangsu Provincial Medical Youth Talent (QNRC2016006), the Youth Program of the Natural Science Foundation of Jiangsu Province (BK20200116) and Jiangsu Province Postdoctoral Research Funding (2021K277B).
Collapse
Affiliation(s)
- Xiaoqiang Sheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Guangyu Li
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong University, Jinan, Shangdong 250021, China
| | - Jingyu Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yanjun Yang
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Shiyuan Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zhongxun Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jidong Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xin Zhen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yang Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zhenyu Diao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yali Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chuanhai Fu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bin Yao
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Chaojun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yu Cao
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University Medical School, Nanjing, Jiangsu 210093 China
| | - Yingying Qin
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong University, Jinan, Shangdong 250021, China.
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, Jiangsu 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu 210008, China; Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China; State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
47
|
Wang Y, Wang X, Long Q, Liu Y, Yin T, Sirota I, Ren F, Gu Z, Luo J. Reducing embryonic mtDNA copy number alters epigenetic profile of key hepatic lipolytic genes and causes abnormal lipid accumulation in adult mice. FEBS J 2021; 288:6828-6843. [PMID: 34258867 DOI: 10.1111/febs.16121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Adverse fetal environment, in particular a shortage or excess of nutrients, is associated with increased risks of metabolic diseases later in life. However, the molecular mechanisms underlying this developmental origin of adult diseases remain unclear. Here, we directly tested the role of mitochondrial stress in mediating fetal programming in mice by enzymatically depleting mtDNA in zygotes. mtDNA-targeted plasmid microinjection is used to reduce embryonic mtDNA copy number directly, followed by embryo transfer. Mice with reduced zygote mtDNA copy number were born morphologically normal and showed no accelerated body weight gain. However, at 5 months of age these mice showed markedly increased hepatic lipidosis and became glucose-intolerant. Hepatic mRNA and protein expressions of peroxisome proliferator-activated receptor α (Pparα), a key transcriptional regulator of lipid metabolism, were significantly decreased as a result of increased DNA methylation in its proximal regulatory region. These results indicate that perturbation of mitochondrial function around the periconceptional period causes hypermethylation and thus suppressed expression of PPARα in fetal liver, leading to impaired hepatic lipid metabolism. Our findings provide the first direct evidence that mitochondrial stress mediates epigenetic changes associated with fetal programming of adult diseases in a mammalian system.
Collapse
Affiliation(s)
- Yakun Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qiaoming Long
- Cam-Su Mouse Genomic Resource Center, Soochow University, China
| | - Yuanwu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Tao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Inna Sirota
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Chiaratti MR. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 2021; 13:967-981. [PMID: 35059021 PMCID: PMC8724343 DOI: 10.1007/s12551-021-00891-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an "orthodox" elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905 Brazil
| |
Collapse
|
49
|
Huang P, Zhou Y, Tang W, Ren C, Jiang A, Wang X, Qian X, Zhou Z, Gong A. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice. J Nutr Biochem 2021; 101:108911. [PMID: 34801690 DOI: 10.1016/j.jnutbio.2021.108911] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
Ovarian aging affects the reproductive health of elderly women due to decline in oocyte quality, which is closely related to mitochondrial dysfunction. Nicotinamide mononucleotide (NMN), as a precursor of NAD+, effectively regulate mitochondria metabolism in mice. However, roles of NMN in improving age-related diminished ovary reserve remain to be determined. In present study, 4, 8, 12, 24, 40-week old female ICR mice were collected and a 20-week-long administration of NMN was conducted to 40-week-old mice (60WN), meanwhile the control group is given water (60WC). First, we found that 20-week-long administration of NMN to 40-week-old mice exhibited anti-aging and anti-inflammatory effects on organ structures, along with the improvement of estrus cycle condition and endocrine function. The number of primordial, primary, secondary, antral follicles and corpora luteum of ovaries in 60WN group was significantly increased compared with those in 60WC group. Additionally, the protein and gene expressions of P16 of ovaries were significantly reduced in 60WN group than in 60WC group. the mitochondria biogenesis, autophagy level, and proteases activity enhanced in granulosa cells after 20-week-administration of NMN. Present results indicate that NMN has the potential to save diminished ovary reserve by long-term treatment, providing a basis for exploring the role of NMN in anti-ovarian aging by enhancing the mitophagy level of granulosa cells.
Collapse
Affiliation(s)
- Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yan Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Weihong Tang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Anqi Jiang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xuxin Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
50
|
Gu LF, Chen JQ, Lin QY, Yang YZ. Roles of mitochondrial unfolded protein response in mammalian stem cells. World J Stem Cells 2021; 13:737-752. [PMID: 34367475 PMCID: PMC8316864 DOI: 10.4252/wjsc.v13.i7.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress. Under physiological and pathological conditions, the UPRmt is the key to maintaining intracellular homeostasis and proteostasis. Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development, metabolism, and immune processes. UPRmt dysfunction leads to a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease, and immune disease. Stem cells have a special ability to self-renew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues. These cells are involved in development, tissue renewal, and some disease processes. Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in stem cells are not fully understood. The roles and functions of the UPRmt depend on stem cell type. Therefore, this paper summarizes the potential significance of the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced pluripotent stem cells. The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
Collapse
Affiliation(s)
- Li-Fang Gu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Qi Chen
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qing-Yin Lin
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan-Zhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750001, Ningxia Hui Autonomous Region, China.
| |
Collapse
|