1
|
Green AP, Klimm F, Marshall AS, Leetmaa R, Aryaman J, Gómez-Durán A, Chinnery PF, Jones NS. Cryptic mitochondrial DNA mutations coincide with mid-late life and are pathophysiologically informative in single cells across tissues and species. Nat Commun 2025; 16:2250. [PMID: 40050638 PMCID: PMC11885543 DOI: 10.1038/s41467-025-57286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Ageing is associated with a range of chronic diseases and has diverse hallmarks. Mitochondrial dysfunction is implicated in ageing, and mouse-models with artificially enhanced mitochondrial DNA mutation rates show accelerated ageing. A scarcely studied aspect of ageing, because it is invisible in aggregate analyses, is the accumulation of somatic mitochondrial DNA mutations which are unique to single cells (cryptic mutations). We find evidence of cryptic mitochondrial DNA mutations from diverse single-cell datasets, from three species, and discover: cryptic mutations constitute the vast majority of mitochondrial DNA mutations in aged post-mitotic tissues, that they can avoid selection, that their accumulation is consonant with theory we develop, hitting high levels coinciding with species specific mid-late life, and that their presence covaries with a majority of the hallmarks of ageing including protein misfolding and endoplasmic reticulum stress. We identify mechanistic links to endoplasmic reticulum stress experimentally and further give an indication that aged brain cells with high levels of cryptic mutations show markers of neurodegeneration and that calorie restriction slows the accumulation of cryptic mutations.
Collapse
Affiliation(s)
- Alistair P Green
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Florian Klimm
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Aidan S Marshall
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Rein Leetmaa
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Juvid Aryaman
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Aurora Gómez-Durán
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MitoPhenomics Lab, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Campus Vida Avenida Barcelona, A Coruña, Spain
| | - Patrick F Chinnery
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nick S Jones
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK.
- I-X Centre for AI in Science, Imperial White City Campus, London, UK.
| |
Collapse
|
2
|
Kobayashi H, Imanaka S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int J Mol Sci 2024; 25:13144. [PMID: 39684855 DOI: 10.3390/ijms252313144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The efficacy of assisted reproductive technologies (ARTs) in older women remains constrained, largely due to an incomplete understanding of the underlying pathophysiology. This review aims to consolidate the current knowledge on age-associated mitochondrial alterations and their implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA) mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up to 30 September 2024 were identified through a systematic search of electronic databases. The free radical theory proposes that reactive oxygen species (ROS) inflict damage on mtDNA and impair mitochondrial function essential for ATP generation in oocytes. Oocytes face prolonged pressure to repair mtDNA mutations, persisting for up to five decades. MtDNA exhibits limited capacity for double-strand break repair, heavily depending on poly ADP-ribose polymerase 1 (PARP1)-mediated repair of single-strand breaks. This process depletes nicotinamide adenine dinucleotide (NAD⁺) and ATP, creating a detrimental cycle where continued mtDNA repair further compromises oocyte functionality. Interventions that interrupt this destructive cycle may offer preventive benefits. In conclusion, the cumulative burden of mtDNA mutations and repair demands can lead to ATP depletion and elevate the risk of aneuploidy, ultimately contributing to ART failure in older women.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
3
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
4
|
Long S, Zheng Y, Deng X, Guo J, Xu Z, Scharffetter-Kochanek K, Dou Y, Jiang M. Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging. Commun Biol 2024; 7:1229. [PMID: 39354016 PMCID: PMC11445474 DOI: 10.1038/s42003-024-06888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Oocytes play a crucial role in transmitting maternal mitochondrial DNA (mtDNA), essential for the continuation of species. However, the effects of mitochondrial reactive oxygen species (ROS) on mammalian oocyte maturation and mtDNA maintenance remain unclear. We investigated this by conditionally knocking out the Sod2 gene in primordial follicles, elevating mitochondrial matrix ROS levels from early oocyte stages. Our data indicates that reproductive aging in Sod2 conditional knockout females begins at 6 months, with oxidative stress impairing oocyte quality, particularly affecting OXPHOS complex II and mtDNA-encoded mRNA levels. Despite unchanged mtDNA mutation load, mtDNA copy numbers exhibited significant variations. Strikingly, reducing mtDNA copy numbers by reducing mtSSB protein, crucial for mtDNA replication, accelerated reproductive aging onset to three months, underscoring the critical role of mtDNA copy number maintenance under oxidative stress conditions. This research provides new insights into the relationship among mitochondrial ROS, mtDNA, and reproductive aging, offering potential strategies for delaying aging-related fertility decline.
Collapse
Affiliation(s)
- Shiyun Long
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yunchao Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Jing Guo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Karin Scharffetter-Kochanek
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
| | - Yanmei Dou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
6
|
Finch CE. Senolytics and cell senescence: historical and evolutionary perspectives. Evol Med Public Health 2024; 12:82-85. [PMID: 38757096 PMCID: PMC11097598 DOI: 10.1093/emph/eoae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Indexed: 05/18/2024] Open
Abstract
Senolytics are a new class of anti-aging drugs developed to selectively kill 'senescent' cells that are considered harmful in normal aging. More than 20 drug trials are ongoing with diverse 'senolytic cocktails'. This commentary on recent reviews of senolytics gives a historical context of mammalian cell senescence that enabled these new drugs. While cell senescence is considered harmful to aging tissues, many studies show its essential role in some regenerative and developmental processes for which senolytic drugs may interfere. Longer-term studies of side effects are needed before senolytics are considered for general clinical practice. The wide occurrence of cell senescence in eukaryotes, yeast to fish to humans, and suggests an ancient eukaryotic process that evolved multiple phenotypes.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Sequeira AN, O’Keefe IP, Katju V, Bergthorsson U. Friend turned foe: selfish behavior of a spontaneously arising mitochondrial deletion in an experimentally evolved Caenorhabditis elegans population. G3 (BETHESDA, MD.) 2024; 14:jkae018. [PMID: 38261394 PMCID: PMC11090458 DOI: 10.1093/g3journal/jkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Selfish mitochondrial DNA (mtDNA) mutations are variants that can proliferate within cells and enjoy a replication or transmission bias without fitness benefits for the host. mtDNA deletions in Caenorhabditis elegans can reach high heteroplasmic frequencies despite significantly reducing fitness, illustrating how new mtDNA variants can give rise to genetic conflict between different levels of selection and between the nuclear and mitochondrial genomes. During a mutation accumulation experiment in C. elegans, a 1,034-bp deletion originated spontaneously and reached an 81.7% frequency within an experimental evolution line. This heteroplasmic mtDNA deletion, designated as meuDf1, eliminated portions of 2 protein-coding genes (coxIII and nd4) and tRNA-thr in entirety. mtDNA copy number in meuDf1 heteroplasmic individuals was 35% higher than in individuals with wild-type mitochondria. After backcrossing into a common genetic background, the meuDf1 mitotype was associated with reduction in several fitness traits and independent competition experiments found a 40% reduction in composite fitness. Experiments that relaxed individual selection by single individual bottlenecks demonstrated that the deletion-bearing mtDNA possessed a strong transmission bias, thereby qualifying it as a novel selfish mitotype.
Collapse
Affiliation(s)
- Abigail N Sequeira
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Ian P O’Keefe
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Department of Biochemistry and Molecular Biology, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Program in Evolutionary Biology, Department of Ecology and Genetics (IEG), Evolutionsbiologiskt centrum, Norbyvägen 18D, Uppsala University, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Program in Evolutionary Biology, Department of Ecology and Genetics (IEG), Evolutionsbiologiskt centrum, Norbyvägen 18D, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
8
|
Yang Z, Liu S, Pan X. Research progress on mitochondrial damage and repairing in oocytes: A review. Mitochondrion 2024; 75:101845. [PMID: 38237648 DOI: 10.1016/j.mito.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Oocytes are the female germ cells, which are susceptible to stress stimuli. The development of oocytes in the ovary is affected by many environmental and metabolic factors, food toxins, aging, and pathological factors. Mitochondria are the main target organelles of these factors, and the damage to mitochondrial structure and function can affect the production of ATP, the regulation of redox reactions, and apoptosis in oocytes. Mitochondrial damage is closely related to the decrease in oocyte quality and is the main factor leading to female infertility. Antioxidant foods or drugs have been used to prevent mitochondrial damage from some stressors or to repair damaged mitochondria, thereby improving oocyte development and female reproductive outcomes. In this paper, the damage of mitochondria during oocyte development by the above factors has been reviewed, and the relevant measures to alleviate the damage of mitochondria in oocytes have been discussed. Our findings may provide a theoretical basis and experimental basis for improving female fertility.
Collapse
Affiliation(s)
- Zheqing Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin 132013, Jilin, China
| | - Sitong Liu
- Department of Anatomy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xiaoyan Pan
- Center for Reproductive Medicine, Jilin Medical University, Jilin 132013, Jilin, China.
| |
Collapse
|
9
|
Ali MA, Gioscia-Ryan R, Yang D, Sutton NR, Tyrrell DJ. Cardiovascular aging: spotlight on mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H317-H333. [PMID: 38038719 PMCID: PMC11219063 DOI: 10.1152/ajpheart.00632.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Mitochondria are cellular organelles critical for ATP production and are particularly relevant to cardiovascular diseases including heart failure, atherosclerosis, ischemia-reperfusion injury, and cardiomyopathies. With advancing age, even in the absence of clinical disease, mitochondrial homeostasis becomes disrupted (e.g., redox balance, mitochondrial DNA damage, oxidative metabolism, and mitochondrial quality control). Mitochondrial dysregulation leads to the accumulation of damaged and dysfunctional mitochondria, producing excessive reactive oxygen species and perpetuating mitochondrial dysfunction. In addition, mitochondrial DNA, cardiolipin, and N-formyl peptides are potent activators of cell-intrinsic and -extrinsic inflammatory pathways. These age-related mitochondrial changes contribute to the development of cardiovascular diseases. This review covers the impact of aging on mitochondria and links these mechanisms to therapeutic implications for age-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Rachel Gioscia-Ryan
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Dongli Yang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nadia R Sutton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Daniel J Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
10
|
Arslan NP, Dawar P, Albayrak S, Doymus M, Azad F, Esim N, Taskin M. Fungi-derived natural antioxidants. Crit Rev Food Sci Nutr 2023; 65:1593-1616. [PMID: 38156661 DOI: 10.1080/10408398.2023.2298770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.
Collapse
Affiliation(s)
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Meryem Doymus
- Vocational School of Health Services of Hinis, Ataturk University, Erzurum, Turkey
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
11
|
Chen Z, Jin ZX, Cai J, Li R, Deng KQ, Ji YX, Lei F, Li HP, Lu Z, Li H. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy. J Mol Med (Berl) 2022; 100:1721-1739. [PMID: 36396746 DOI: 10.1007/s00109-022-02269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Metabolic cardiomyopathy is an emerging cause of heart failure in patients with obesity, insulin resistance, and diabetes. It is characterized by impaired myocardial metabolic flexibility, intramyocardial triglyceride accumulation, and lipotoxic damage in association with structural and functional alterations of the heart, unrelated to hypertension, coronary artery disease, and other cardiovascular diseases. Oxidative stress plays an important role in the development and progression of metabolic cardiomyopathy. Mitochondria are the most significant sources of reactive oxygen species (ROS) in cardiomyocytes. Disturbances in myocardial substrate metabolism induce mitochondrial adaptation and dysfunction, manifested as a mismatch between mitochondrial fatty acid oxidation and the electron transport chain (ETC) activity, which facilitates ROS production within the ETC components. In addition, non-ETC sources of mitochondrial ROS, such as β-oxidation of fatty acids, may also produce a considerable quantity of ROS in metabolic cardiomyopathy. Augmented ROS production in cardiomyocytes can induce a variety of effects, including the programming of myocardial energy substrate metabolism, modulation of metabolic inflammation, redox modification of ion channels and transporters, and cardiomyocyte apoptosis, ultimately leading to the structural and functional alterations of the heart. Based on the above mechanistic views, the present review summarizes the current understanding of the mechanisms underlying metabolic cardiomyopathy, focusing on the role of oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhao-Xia Jin
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Ruyan Li
- Northfield Mount Hermon School, Gill, MA, 01354, USA
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huo-Ping Li
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
- School of Basic Medical Science, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Ozaki M, Le TD, Inoue YH. Downregulating Mitochondrial DNA Polymerase γ in the Muscle Stimulated Autophagy, Apoptosis, and Muscle Aging-Related Phenotypes in Drosophila Adults. Biomolecules 2022; 12:biom12081105. [PMID: 36008999 PMCID: PMC9405705 DOI: 10.3390/biom12081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species, generated as by-products of mitochondrial electron transport, can induce damage to mitochondrial DNA (mtDNA) and proteins. Here, we investigated whether the moderate accumulation of mtDNA damage in adult muscles resulted in accelerated aging-related phenotypes in Drosophila. DNA polymerase γ (Polγ) is the sole mitochondrial DNA polymerase. The muscle-specific silencing of the genes encoding the polymerase subunits resulted in the partial accumulation of mtDNA with oxidative damage and a reduction in the mtDNA copy number. This subsequently resulted in the production of abnormal mitochondria with reduced membrane potential and, consequently, a partially reduced ATP quantity in the adult muscle. Immunostaining indicated a moderate increase in autophagy and mitophagy in adults with RNA interference of Polγ (PolγRNAi) muscle cells with abnormal mitochondria. In adult muscles showing continuous silencing of Polγ, malformation of both myofibrils and mitochondria was frequently observed. This was associated with the partially enhanced activation of pro-apoptotic caspases in the muscle. Adults with muscle-specific PolγRNAi exhibited a shortened lifespan, accelerated age-dependent impairment of locomotor activity, and disturbed circadian rhythms. Our findings in this Drosophila model contribute to understanding how the accumulation of mtDNA damage results in impaired mitochondrial activity and how this contributes to muscle aging.
Collapse
|
13
|
Diagnostic and Therapeutic Roles of Extracellular Vesicles in Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6742792. [PMID: 35979398 PMCID: PMC9377967 DOI: 10.1155/2022/6742792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 01/10/2023]
Abstract
Aging shows a decline in overall physical function, and cellular senescence is the powerful catalyst leading to aging. Considering that aging will be accompanied with the emergence of various aging-related diseases, research on new antiaging drugs is still valuable. Extracellular vesicles (EVs), as tools for intercellular communication, are important components of the senescence-associated secretory phenotype (SASP), and they can play pathological roles in the process of cellular senescence. In addition, EVs are similar to their original cells in functions. Therefore, EVs derived from pathological tissues or body fluids may be closely related to the progression of diseases and become potential biomarkers, while those from healthy cells may have therapeutic effects. Moreover, EVs are satisfactory drug carriers. At present, numerous studies have supported the idea that engineered EVs could improve drug targeting ability and utilization efficiency. Here, we summarize the characteristics of EVs and cellular senescence and focus on the diagnostic and therapeutic potential of EVs in various aging-related diseases, including Alzheimer disease, osteoporosis, cardiovascular disease, diabetes mellitus and its complications, and skin aging.
Collapse
|
14
|
Ju S, Chen H, Wang S, Lin J, Ma Y, Aroian RV, Peng D, Sun M. C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens. Commun Biol 2022; 5:643. [PMID: 35773333 PMCID: PMC9246835 DOI: 10.1038/s42003-022-03589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.
Collapse
Affiliation(s)
- Shouyong Ju
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqiao Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanli Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School Worcester, Worcester, MA, 01605-2377, USA
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Mitochondrial DNA Is a Vital Driving Force in Ischemia-Reperfusion Injury in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6235747. [PMID: 35620580 PMCID: PMC9129988 DOI: 10.1155/2022/6235747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
According to the latest Global Burden of Disease Study, cardiovascular disease (CVD) is the leading cause of death, and ischemic heart disease and stroke are the cause of death in approximately half of CVD patients. In CVD, mitochondrial dysfunction following ischemia-reperfusion (I/R) injury results in heart failure. The proper functioning of oxidative phosphorylation (OXPHOS) and the mitochondrial life cycle in cardiac mitochondria are closely related to mitochondrial DNA (mtDNA). Following myocardial I/R injury, mitochondria activate multiple repair and clearance mechanisms to repair damaged mtDNA. When these repair mechanisms are insufficient to restore the structure and function of mtDNA, irreversible mtDNA damage occurs, leading to mtDNA mutations. Since mtDNA mutations aggravate OXPHOS dysfunction and affect mitophagy, mtDNA mutation accumulation leads to leakage of mtDNA and proteins outside the mitochondria, inducing an innate immune response, aggravating cardiovascular injury, and leading to the need for external interventions to stop or slow the disease course. On the other hand, mtDNA released into the circulation after cardiac injury can serve as a biomarker for CVD diagnosis and prognosis. This article reviews the pathogenic basis and related research findings of mtDNA oxidative damage and mtDNA leak-triggered innate immune response associated with I/R injury in CVD and summarizes therapeutic options that target mtDNA.
Collapse
|
16
|
Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis. Nat Commun 2022; 13:651. [PMID: 35115503 PMCID: PMC8814026 DOI: 10.1038/s41467-022-28272-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Sustained mitochondrial fitness relies on coordinated biogenesis and clearance. Both processes are regulated by constant targeting of proteins into the organelle. Thus, mitochondrial protein import sets the pace for mitochondrial abundance and function. However, our understanding of mitochondrial protein translocation as a regulator of longevity remains enigmatic. Here, we targeted the main protein import translocases and assessed their contribution to mitochondrial abundance and organismal physiology. We find that reduction in cellular mitochondrial load through mitochondrial protein import system suppression, referred to as MitoMISS, elicits a distinct longevity paradigm. We show that MitoMISS triggers the mitochondrial unfolded protein response, orchestrating an adaptive reprogramming of metabolism. Glycolysis and de novo serine biosynthesis are causatively linked to longevity, whilst mitochondrial chaperone induction is dispensable for lifespan extension. Our findings extent the pro-longevity role of UPRmt and provide insight, relevant to the metabolic alterations that promote or undermine survival and longevity. Mitochondrial function is linked to lifespan. Here the authors show that inhibition of mitochondrial protein import leads to a reduction in mitochondrial abundance and extends lifespan in Caenorhabditis elegans via activation of glycolysis and de novo serine biosynthesis.
Collapse
|
17
|
Khaidakov M, Troshina V, Menglet D, Yusef Yusef, Plotkin A. The Annoying Flaws of Gerontological Research. Drug Metab Rev 2022; 54:95-100. [PMID: 35084271 DOI: 10.1080/03602532.2022.2035393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gerontological research has accelerated dramatically in the last few decades. However, despite increased public interest, federal funding, an army of researchers, and many notable discoveries and high-impact publications, the goal of achieving even a modest extension of human lifespan seems to be as far away as ever or, at best, remains within the realm of lifestyle and diet optimization efforts. Humanity has already benefited from a lifespan revolution in the first half of 20th Century, which was brought about by improved sanitation and hygiene, clean water, and our successful war on infectious diseases. Thanks to all these developments, in which gerontologists played no part, our expected lifespan increased by about 40% and our primary causes of death decidedly shifted from extrinsic to intrinsic causality. The next step is not that simple as it implies tackling intrinsic mechanisms of aging, and the lack of working human-specific antiaging solutions likely stems from flawed research strategies.
Collapse
Affiliation(s)
| | - Valeria Troshina
- Institute of Applied Medical Research, Dubna, Russian Federation
| | - Dmitry Menglet
- Institute of Applied Medical Research, Dubna, Russian Federation
| | - Yusef Yusef
- Research Institute of Eye Diseases, Moscow, Russian Federation
| | | |
Collapse
|
18
|
OUP accepted manuscript. Mutagenesis 2022; 37:155-163. [DOI: 10.1093/mutage/geac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/08/2022] [Indexed: 11/14/2022] Open
|
19
|
Holt AG, Davies AM. The Effect of Mitochondrial DNA Half-Life on Deletion Mutation Proliferation in Long Lived Cells. Acta Biotheor 2021; 69:671-695. [PMID: 34131800 DOI: 10.1007/s10441-021-09417-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
The proliferation of mitochondrial DNA (mtDNA) with deletion mutations has been linked to aging and age related neurodegenerative conditions. In this study we model the effect of mtDNA half-life on mtDNA competition and selection. It has been proposed that mutation deletions ([Formula: see text]) have a replicative advantage over wild-type ([Formula: see text]) and that this is detrimental to the host cell, especially in post-mitotic cells. An individual cell can be viewed as forming a closed ecosystem containing a large population of independently replicating mtDNA. Within this enclosed environment a selfishly replicating [Formula: see text] would compete with the [Formula: see text] for space and resources to the detriment of the host cell. In this paper, we use a computer simulation to model cell survival in an environment where [Formula: see text] compete with [Formula: see text] such that the cell expires upon [Formula: see text] extinction. We focus on the survival time for long lived post-mitotic cells, such as neurons. We confirm previous observations that [Formula: see text] do have a replicative advantage over [Formula: see text]. As expected, cell survival times diminished with increased mutation probabilities, however, the relationship between survival time and mutation rate was non-linear, that is, a ten-fold increase in mutation probability only halved the survival time. The results of our model also showed that a modest increase in half-life had a profound affect on extending cell survival time, thereby, mitigating the replicative advantage of [Formula: see text]. Given the relevance of mitochondrial dysfunction to various neurodegenerative conditions, we propose that therapies to increase mtDNA half-life could significantly delay their onset.
Collapse
|
20
|
Lakshmanan LN, Yee Z, Halliwell B, Gruber J, Gunawan R. Thermodynamic analysis of DNA hybridization signatures near mitochondrial DNA deletion breakpoints. iScience 2021; 24:102138. [PMID: 33665557 PMCID: PMC7900216 DOI: 10.1016/j.isci.2021.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Broad evidence in the literature supports double-strand breaks (DSBs) as initiators of mitochondrial DNA (mtDNA) deletion mutations. While DNA misalignment during DSB repair is commonly proposed as the mechanism by which DSBs cause deletion mutations, details such as the specific DNA repair errors are still lacking. Here, we used DNA hybridization thermodynamics to infer the sequence lengths of mtDNA misalignments that are associated with mtDNA deletions. We gathered and analyzed 9,921 previously reported mtDNA deletion breakpoints in human, rhesus monkey, mouse, rat, and Caenorhabditis elegans. Our analysis shows that a large fraction of mtDNA breakpoint positions can be explained by the thermodynamics of short ≤ 5-nt misalignments. The significance of short DNA misalignments supports an important role for erroneous non-homologous and micro-homology-dependent DSB repair in mtDNA deletion formation. The consistency of the results of our analysis across species further suggests a shared mode of mtDNA deletion mutagenesis.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Zhuangli Yee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
- Corresponding author
| |
Collapse
|
21
|
Elorza AA, Soffia JP. mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Front Cell Dev Biol 2021; 9:625020. [PMID: 33692999 PMCID: PMC7937615 DOI: 10.3389/fcell.2021.625020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The most common aging-associated diseases are cardiovascular diseases which affect 40% of elderly people. Elderly people are prone to suffer aging-associated diseases which are not only related to health and medical cost but also to labor, household productivity and mortality cost. Aging is becoming a world problem and it is estimated that 21.8% of global population will be older than 65 years old in 2050; and for the first time in human history, there will be more elderly people than children. It is well accepted that the origin of aging-associated cardiovascular diseases is mitochondrial dysfunction. Mitochondria have their own genome (mtDNA) that is circular, double-stranded, and 16,569 bp long in humans. There are between 500 to 6000 mtDNA copies per cell which are tissue-specific. As a by-product of ATP production, reactive oxygen species (ROS) are generated which damage proteins, lipids, and mtDNA. ROS-mutated mtDNA co-existing with wild type mtDNA is called mtDNA heteroplasmy. The progressive increase in mtDNA heteroplasmy causes progressive mitochondrial dysfunction leading to a loss in their bioenergetic capacity, disruption in the balance of mitochondrial fusion and fission events (mitochondrial dynamics, MtDy) and decreased mitophagy. This failure in mitochondrial physiology leads to the accumulation of depolarized and ROS-generating mitochondria. Thus, besides attenuated ATP production, dysfunctional mitochondria interfere with proper cellular metabolism and signaling pathways in cardiac cells, contributing to the development of aging-associated cardiovascular diseases. In this context, there is a growing interest to enhance mitochondrial function by decreasing mtDNA heteroplasmy. Reduction in mtDNA heteroplasmy is associated with increased mitophagy, proper MtDy balance and mitochondrial biogenesis; and those processes can delay the onset or progression of cardiovascular diseases. This has led to the development of mitochondrial therapies based on the application of nutritional, pharmacological and genetic treatments. Those seeking to have a positive impact on mtDNA integrity, mitochondrial biogenesis, dynamics and mitophagy in old and sick hearts. This review covers the current knowledge of mitochondrial physiopathology in aging, how disruption of OXPHOS or mitochondrial life cycle alter mtDNA and cardiac cell function; and novel mitochondrial therapies to protect and rescue our heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Alvaro A Elorza
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Juan Pablo Soffia
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
22
|
Endo M, Yokoi T, Hatazawa S, Kojima Y, Takahama S, Yoshihara R, Tanaka S, Hatakeyama S. The msh1 gene is responsible for short life span mutant natural death and functions to maintain mitochondrial DNA integrity. Fungal Genet Biol 2020; 144:103465. [PMID: 32949723 DOI: 10.1016/j.fgb.2020.103465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022]
Abstract
Wild-type filamentous fungus Neurospora crassa continues to grow its hyphae for a very lengthy period of time (>2 years), whereas mutations at the natural death (nd) locus shorten life span (approximately 20 days). By positional cloning based on heat augmented mutagen sensitivity of the nd strain, we identified a nonsense mutation in the msh1 gene, an eukaryotic homolog of bacterial MutS, and this mutation resulted in encoding non-functional polypeptide. By tagging with GFP, subcellular localization of the MSH1 protein in the mitochondria was observed, and knock out of the msh1 gene caused severe growth deficiency accompanying mitochondrial DNA (mtDNA) aberrations such as large-scale mtDNA deletions and rearrangements as seen in the nd strain. These results suggested that MSH1 may maintain mtDNA integrity. Thus, loss of function compromises mtDNA, leading to the acceleration of cellular aging.
Collapse
Affiliation(s)
- Mitsuyoshi Endo
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Takato Yokoi
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Suguru Hatazawa
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Yuna Kojima
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Shiena Takahama
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Ryouhei Yoshihara
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Shuuitsu Tanaka
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Shin Hatakeyama
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan.
| |
Collapse
|
23
|
Lawless C, Greaves L, Reeve AK, Turnbull DM, Vincent AE. The rise and rise of mitochondrial DNA mutations. Open Biol 2020; 10:200061. [PMID: 32428418 PMCID: PMC7276526 DOI: 10.1098/rsob.200061] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
How mitochondrial DNA mutations clonally expand in an individual cell is a question that has perplexed mitochondrial biologists for decades. A growing body of literature indicates that mitochondrial DNA mutations play a major role in ageing, metabolic diseases, neurodegenerative diseases, neuromuscular disorders and cancers. Importantly, this process of clonal expansion occurs for both inherited and somatic mitochondrial DNA mutations. To complicate matters further there are fundamental differences between mitochondrial DNA point mutations and deletions, and between mitotic and post-mitotic cells, that impact this pathogenic process. These differences, along with the challenges of investigating a longitudinal process occurring over decades in humans, have so far hindered progress towards understanding clonal expansion. Here we summarize our current understanding of the clonal expansion of mitochondrial DNA mutations in different tissues and highlight key unanswered questions. We then discuss the various existing biological models, along with their advantages and disadvantages. Finally, we explore what has been achieved with mathematical modelling so far and suggest future work to advance this important area of research.
Collapse
Affiliation(s)
| | | | | | - Doug M. Turnbull
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| |
Collapse
|
24
|
Chen D, Zhao Q, Xiong J, Lou X, Han Q, Wei X, Xie J, Li X, Zhou H, Shen L, Yang Y, Fang H, Lyu J. Systematic analysis of a mitochondrial disease-causing ND6 mutation in mitochondrial deficiency. Mol Genet Genomic Med 2020; 8:e1199. [PMID: 32162843 PMCID: PMC7216815 DOI: 10.1002/mgg3.1199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background The m.14487T>C mutation is recognized as a diagnostic mutation of mitochondrial disease during the past 16 years, emerging evidence suggests that mutant loads of m.14487T>C and disease phenotype are not closely correlated. Methods Immortalized lymphocytes were generated by coculturing the Epstein–Barr virus and lymphocytes from m.14487T>C carrier Chinese patient with Leigh syndrome. Fifteen cytoplasmic hybrid (cybrid) cell lines were generated by fusing mtDNA lacking 143B cells with platelets donated by patients. Mitochondrial function was systematically analyzed at transcriptomic, metabolomic, and biochemical levels. Results Unlike previous reports, we found that the assembly of mitochondrial respiratory chain complexes, mitochondrial respiration, and mitochondrial OXPHOS function was barely affected in cybrid cells carrying homoplastic m.14487T>C mutation. Mitochondrial dysfunction associated transcriptomic and metabolomic reprogramming were not detected in cybrid carrying homoplastic m.14487T>C. However, we found that mitochondrial function was impaired in patient‐derived immortalized lymphocytes. Conclusion Our data revealed that m.14487T>C mutation is insufficient to cause mitochondrial deficiency; additional modifier genes may be involved in m.14487T>C‐associated mitochondrial disease. Our results further demonstrated that a caution should be taken by solely use of m.14487T>C mutation for molecular diagnosis of mitochondrial disease.
Collapse
Affiliation(s)
- Deyu Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiongya Zhao
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jingting Xiong
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoting Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Qinxia Han
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiujuan Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueyun Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Peking University, Beijing, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
25
|
Knorre DA. Intracellular quality control of mitochondrial DNA: evidence and limitations. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190176. [PMID: 31787047 DOI: 10.1098/rstb.2019.0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells can harbour mitochondria with markedly different transmembrane potentials. Intracellular mitochondrial quality-control mechanisms (e.g. mitophagy) rely on this intracellular variation to distinguish functional and damaged (depolarized) mitochondria. Given that intracellular mitochondrial DNA (mtDNA) genetic variation can induce mitochondrial heterogeneity, mitophagy could remove deleterious mtDNA variants in cells. However, the reliance of mitophagy on the mitochondrial transmembrane potential suggests that mtDNAs with deleterious mutations in ATP synthase can evade the control. This evasion is possible because inhibition of ATP synthase can increase the mitochondrial transmembrane potential. Moreover, the linkage of the mtDNA genotype to individual mitochondrial performance is expected to be weak owing to intracellular mitochondrial intercomplementation. Nonetheless, I reason that intracellular mtDNA quality control is possible and crucial at the zygote stage of the life cycle. Indeed, species with biparental mtDNA inheritance or frequent 'leakage' of paternal mtDNA can be vulnerable to invasion of selfish mtDNAs at the stage of gamete fusion. Here, I critically review recent findings on intracellular mtDNA quality control by mitophagy and discuss other mechanisms by which the nuclear genome can affect the competition of mtDNA variants in the cell. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Dmitry A Knorre
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
| |
Collapse
|
26
|
Dubie JJ, Caraway AR, Stout MM, Katju V, Bergthorsson U. The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190174. [PMID: 31787044 DOI: 10.1098/rstb.2019.0174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial genomes can sustain mutations that are simultaneously detrimental to individual fitness and yet, can proliferate within individuals owing to a replicative advantage. We analysed the fitness effects and population dynamics of a mitochondrial genome containing a novel 499 bp deletion in the cytochrome b(1) (ctb-1) gene (Δctb-1) encoding the cytochrome b of complex III in Caenorhabditis elegans. Δctb-1 reached a high heteroplasmic frequency of 96% in one experimental line during a mutation accumulation experiment and was linked to additional spontaneous mutations in nd5 and tRNA-Asn. The Δctb-1 mutant mitotype imposed a significant fitness cost including a 65% and 52% reduction in productivity and competitive fitness, respectively, relative to individuals bearing wild-type (WT) mitochondria. Deletion-bearing worms were rapidly purged within a few generations when competed against WT mitochondrial DNA (mtDNA) bearing worms in experimental populations. By contrast, the Δctb-1 mitotype was able to persist in large populations comprising heteroplasmic individuals only, although the average intracellular frequency of Δctb-1 exhibited a slow decline owing to competition among individuals bearing different frequencies of the heteroplasmy. Within experimental lines subjected to severe population bottlenecks (n = 1), the relative intracellular frequency of Δctb-1 increased, which is a hallmark of selfish drive. A positive correlation between Δctb-1 and WT mtDNA copy-number suggests a mechanism that increases total mtDNA per se, and does not discern the Δctb-1 mitotype from the WT mtDNA. This study demonstrates the selfish nature of the Δctb-1 mitotype, given its transmission advantage and substantial fitness load for the host, and highlights the importance of population size for the population dynamics of selfish mtDNA. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Joseph James Dubie
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Avery Robert Caraway
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - McKenna Margaret Stout
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| |
Collapse
|
27
|
O'Hara R, Tedone E, Ludlow A, Huang E, Arosio B, Mari D, Shay JW. Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single-cell resolution. Genome Res 2019; 29:1878-1888. [PMID: 31548359 PMCID: PMC6836731 DOI: 10.1101/gr.250480.119] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria are involved in a number of diverse cellular functions, including energy production, metabolic regulation, apoptosis, calcium homeostasis, cell proliferation, and motility, as well as free radical generation. Mitochondrial DNA (mtDNA) is present at hundreds to thousands of copies per cell in a tissue-specific manner. mtDNA copy number also varies during aging and disease progression and therefore might be considered as a biomarker that mirrors alterations within the human body. Here, we present a new quantitative, highly sensitive droplet digital PCR (ddPCR) method, droplet digital mitochondrial DNA measurement (ddMDM), to measure mtDNA copy number not only from cell populations but also from single cells. Our developed assay can generate data in as little as 3 h, is optimized for 96-well plates, and also allows the direct use of cell lysates without the need for DNA purification or nuclear reference genes. We show that ddMDM is able to detect differences between samples whose mtDNA copy number was close enough as to be indistinguishable by other commonly used mtDNA quantitation methods. By utilizing ddMDM, we show quantitative changes in mtDNA content per cell across a wide variety of physiological contexts including cancer progression, cell cycle progression, human T cell activation, and human aging.
Collapse
Affiliation(s)
- Ryan O'Hara
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Enzo Tedone
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew Ludlow
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ejun Huang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, 20122 Milan, Italy.,Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, 20122 Milan, Italy.,Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
28
|
Mitochondrial DNA Variants and Common Diseases: A Mathematical Model for the Diversity of Age-Related mtDNA Mutations. Cells 2019; 8:cells8060608. [PMID: 31216686 PMCID: PMC6627076 DOI: 10.3390/cells8060608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is the only organelle in the human cell, besides the nucleus, with its own DNA (mtDNA). Since the mitochondrion is critical to the energy metabolism of the eukaryotic cell, it should be unsurprising, then, that a primary driver of cellular aging and related diseases is mtDNA instability over the life of an individual. The mutation rate of mammalian mtDNA is significantly higher than the mutation rate observed for nuclear DNA, due to the poor fidelity of DNA polymerase and the ROS-saturated environment present within the mitochondrion. In this review, we will discuss the current literature showing that mitochondrial dysfunction can contribute to age-related common diseases such as cancer, diabetes, and other commonly occurring diseases. We will then turn our attention to the likely role that mtDNA mutation plays in aging and senescence. Finally, we will use this context to develop a mathematical formula for estimating for the accumulation of somatic mtDNA mutations with age. This resulting model shows that almost 90% of non-proliferating cells would be expected to have at least 100 mutations per cell by the age of 70, and almost no cells would have fewer than 10 mutations, suggesting that mtDNA mutations may contribute significantly to many adult onset diseases.
Collapse
|
29
|
Hood WR, Williams AS, Hill GE. An Ecologist’s Guide to Mitochondrial DNA Mutations and Senescence. Integr Comp Biol 2019; 59:970-982. [DOI: 10.1093/icb/icz097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Longevity plays a key role in the fitness of organisms, so understanding the processes that underlie variance in senescence has long been a focus of ecologists and evolutionary biologists. For decades, the performance and ultimate decline of mitochondria have been implicated in the demise of somatic tissue, but exactly why mitochondrial function declines as individual’s age has remained elusive. A possible source of decline that has been of intense debate is mutations to the mitochondrial DNA. There are two primary sources of such mutations: oxidative damage, which is widely discussed by ecologists interested in aging, and mitochondrial replication error, which is less familiar to most ecologists. The goal of this review is to introduce ecologists and evolutionary biologists to the concept of mitochondrial replication error and to review the current status of research on the relative importance of replication error in senescence. We conclude by detailing some of the gaps in our knowledge that currently make it difficult to deduce the relative importance of replication error in wild populations and encourage organismal biologists to consider this variable both when interpreting their results and as viable measure to include in their studies.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ashley S Williams
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
30
|
Ng LF, Ng LT, van Breugel M, Halliwell B, Gruber J. Mitochondrial DNA Damage Does Not Determine C. elegans Lifespan. Front Genet 2019; 10:311. [PMID: 31031801 PMCID: PMC6473201 DOI: 10.3389/fgene.2019.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/21/2019] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial free radical theory of aging (mFRTA) proposes that accumulation of oxidative damage to macromolecules in mitochondria is a causative mechanism for aging. Accumulation of mitochondrial DNA (mtDNA) damage may be of particular interest in this context. While there is evidence for age-dependent accumulation of mtDNA damage, there have been only a limited number of investigations into mtDNA damage as a determinant of longevity. This lack of quantitative data regarding mtDNA damage is predominantly due to a lack of reliable assays to measure mtDNA damage. Here, we report adaptation of a quantitative real-time polymerase chain reaction (qRT-PCR) assay for the detection of sequence-specific mtDNA damage in C. elegans and apply this method to investigate the role of mtDNA damage in the aging of nematodes. We compare damage levels in old and young animals and also between wild-type animals and long-lived mutant strains or strains with modifications in ROS detoxification or production rates. We confirm an age-dependent increase in mtDNA damage levels in C. elegans but found that there is no simple relationship between mtDNA damage and lifespan. MtDNA damage levels were high in some mutants with long lifespan (and vice versa). We next investigated mtDNA damage, lifespan and healthspan effects in nematode subjected to exogenously elevated damage (UV- or γ-radiation induced). We, again, observed a complex relationship between damage and lifespan in such animals. Despite causing a significant elevation in mtDNA damage, γ-radiation did not shorten the lifespan of nematodes at any of the doses tested. When mtDNA damage levels were elevated significantly using UV-radiation, nematodes did suffer from shorter lifespan at the higher end of exposure tested. However, surprisingly, we also found hormetic lifespan and healthspan benefits in nematodes treated with intermediate doses of UV-radiation, despite the fact that mtDNA damage in these animals was also significantly elevated. Our results suggest that within a wide physiological range, the level of mtDNA damage does not control lifespan in C. elegans.
Collapse
Affiliation(s)
- Li Fang Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Li Theng Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Michiel van Breugel
- Environmental Science Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Abstract
Cell-to-cell heterogeneity drives a range of (patho)physiologically important phenomena, such as cell fate and chemotherapeutic resistance. The role of metabolism, and particularly of mitochondria, is increasingly being recognized as an important explanatory factor in cell-to-cell heterogeneity. Most eukaryotic cells possess a population of mitochondria, in the sense that mitochondrial DNA (mtDNA) is held in multiple copies per cell, where the sequence of each molecule can vary. Hence, intra-cellular mitochondrial heterogeneity is possible, which can induce inter-cellular mitochondrial heterogeneity, and may drive aspects of cellular noise. In this review, we discuss sources of mitochondrial heterogeneity (variations between mitochondria in the same cell, and mitochondrial variations between supposedly identical cells) from both genetic and non-genetic perspectives, and mitochondrial genotype-phenotype links. We discuss the apparent homeostasis of mtDNA copy number, the observation of pervasive intra-cellular mtDNA mutation (which is termed "microheteroplasmy"), and developments in the understanding of inter-cellular mtDNA mutation ("macroheteroplasmy"). We point to the relationship between mitochondrial supercomplexes, cristal structure, pH, and cardiolipin as a potential amplifier of the mitochondrial genotype-phenotype link. We also discuss mitochondrial membrane potential and networks as sources of mitochondrial heterogeneity, and their influence upon the mitochondrial genome. Finally, we revisit the idea of mitochondrial complementation as a means of dampening mitochondrial genotype-phenotype links in light of recent experimental developments. The diverse sources of mitochondrial heterogeneity, as well as their increasingly recognized role in contributing to cellular heterogeneity, highlights the need for future single-cell mitochondrial measurements in the context of cellular noise studies.
Collapse
Affiliation(s)
- Juvid Aryaman
- Department of Mathematics, Imperial College London, London, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Iain G. Johnston
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| | - Nick S. Jones
- Department of Mathematics, Imperial College London, London, United Kingdom
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Sasaki H, Hamatani T, Kamijo S, Iwai M, Kobanawa M, Ogawa S, Miyado K, Tanaka M. Impact of Oxidative Stress on Age-Associated Decline in Oocyte Developmental Competence. Front Endocrinol (Lausanne) 2019; 10:811. [PMID: 31824426 PMCID: PMC6882737 DOI: 10.3389/fendo.2019.00811] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Reproductive capacity in women starts to decline beyond their mid-30s and pregnancies in older women result in higher rates of miscarriage with aneuploidy. Age-related decline in fertility is strongly attributed to ovarian aging, diminished ovarian reserves, and decreased developmental competence of oocytes. In this review, we discuss the underlying mechanisms of age-related decline in oocyte quality, focusing on oxidative stress (OS) in oocytes. The primary cause is the accumulation of spontaneous damage to the mitochondria arising from increased reactive oxygen species (ROS) in oocytes, generated by the mitochondria themselves during daily biological metabolism. Mitochondrial dysfunction reduces ATP synthesis and influences the meiotic spindle assembly responsible for chromosomal segregation. Moreover, reproductively aged oocytes produce a decline in the fidelity of the protective mechanisms against ROS, namely the ROS-scavenging metabolism, repair of ROS-damaged DNA, and the proteasome and autophagy system for ROS-damaged proteins. Accordingly, increased ROS and increased vulnerability of oocytes to ROS lead to spindle instability, chromosomal abnormalities, telomere shortening, and reduced developmental competence of aged oocytes.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Toshio Hamatani
| | - Shintaro Kamijo
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Maki Iwai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kobanawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Ogawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Miyado
- National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Lakshmanan LN, Yee Z, Ng LF, Gunawan R, Halliwell B, Gruber J. Clonal expansion of mitochondrial DNA deletions is a private mechanism of aging in long-lived animals. Aging Cell 2018; 17:e12814. [PMID: 30043489 PMCID: PMC6156498 DOI: 10.1111/acel.12814] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Disruption of mitochondrial metabolism and loss of mitochondrial DNA (mtDNA) integrity are widely considered as evolutionarily conserved (public) mechanisms of aging (López-Otín et al., Cell, 153, 2013 and 1194). Human aging is associated with loss in skeletal muscle mass and function (Sarcopenia), contributing significantly to morbidity and mortality. Muscle aging is associated with loss of mtDNA integrity. In humans, clonally expanded mtDNA deletions colocalize with sites of fiber breakage and atrophy in skeletal muscle. mtDNA deletions may therefore play an important, possibly causal role in sarcopenia. The nematode Caenorhabditis elegans also exhibits age-dependent decline in mitochondrial function and a form of sarcopenia. However, it is unclear if mtDNA deletions play a role in C. elegans aging. Here, we report identification of 266 novel mtDNA deletions in aging nematodes. Analysis of the mtDNA mutation spectrum and quantification of mutation burden indicates that (a) mtDNA deletions in nematode are extremely rare, (b) there is no significant age-dependent increase in mtDNA deletions, and (c) there is little evidence for clonal expansion driving mtDNA deletion dynamics. Thus, mtDNA deletions are unlikely to drive the age-dependent functional decline commonly observed in C. elegans. Computational modeling of mtDNA dynamics in C. elegans indicates that the lifespan of short-lived animals such as C. elegans is likely too short to allow for significant clonal expansion of mtDNA deletions. Together, these findings suggest that clonal expansion of mtDNA deletions is likely a private mechanism of aging predominantly relevant in long-lived animals such as humans and rhesus monkey and possibly in rodents.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment GenopodeLausanneSwitzerland
| | - Zhuangli Yee
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Li Fang Ng
- Ageing Research Laboratory, Science DivisionYale‐NUS CollegeSingaporeSingapore
| | - Rudiyanto Gunawan
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment GenopodeLausanneSwitzerland
| | - Barry Halliwell
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Jan Gruber
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingapore
- Ageing Research Laboratory, Science DivisionYale‐NUS CollegeSingaporeSingapore
| |
Collapse
|