1
|
Vetter VM, Demircan K, Homann J, Chillon TS, Mülleder M, Shomroni O, Steinhagen-Thiessen E, Ralser M, Lill CM, Bertram L, Schomburg L, Demuth I. Low blood levels of selenium, selenoprotein P and GPx3 are associated with accelerated biological aging: results from the Berlin Aging Study II (BASE-II). Clin Epigenetics 2025; 17:62. [PMID: 40275394 PMCID: PMC12023433 DOI: 10.1186/s13148-025-01863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Biological age reflects inter-individual differences in biological function and capacity beyond chronological age. DNA methylation age (DNAmA) and its deviation from chronological age, DNAmA acceleration (DNAmAA), which was calculated as residuals of leukocyte cell count adjusted linear regression of DNAmA on chronological age, were used to estimate biological age in this study. Low levels of serum selenium, selenoprotein P (SELENOP), and the selenocysteine-containing glutathione peroxidase 3 (GPx3) are associated with adverse health outcomes and selenium supplementation is discussed as an anti-aging intervention. METHODS In this study, we cross-sectionally analyzed 1568 older participants from the observational Berlin Aging Study II (mean age ± SD: 68.8 ± 3.7 years, 51% women). Serum selenium was measured by total reflection X-ray fluorescence (TXRF) spectroscopy and SELENOP was determined by sandwich ELISA. GPx3 was assessed as part of a proteomics dataset using liquid chromatography-mass spectrometry (LC-MS). The relationship between selenium biomarkers and epigenetic clock measures was analyzed using linear regression analyses. P values and 95% confidence intervals (not adjusted for multiple testing) are stated for each analysis. RESULTS Participants with deficient serum selenium levels (< 90 μg/L) had a higher rate of biological aging (DunedinPACE, β = - 0.02, SE = 0.01, 95% CI - 0.033 to - 0.004, p = 0.010, n = 865). This association remained statistically significant after adjustment for age, sex, BMI, smoking, and first four genetic principal components (β = - 0.02, SE = 0.01, 95% CI - 0.034 to - 0.004, p = 0.012, n = 757). Compared to the highest quartile, participants in the lowest quartile of SELENOP levels showed an accelerated biological aging rate (DunedinPACE, β = - 0.03, SE = 0.01, 95% CI - 0.051 to - 0.008, p = 0.007, n = 740, fully adjusted model). Similarly, after adjustment for confounders, accelerated biological age was found in participants within the lowest GPx3 quartile compared to participants in the fourth quartile (DunedinPACE, β = - 0.04, SE = 0.01, 95% CI - 0.06 to - 0.02, p = 0.001, n = 674 and GrimAge, β = - 0.98, SE = 0.32, 95% CI - 1.6 to - 0.4, p = 0.002, n = 608). Only the association with GPx3 remained statistically significant after multiple testing correction. CONCLUSION Our study suggests that low levels of selenium biomarkers are associated with accelerated biological aging measured through epigenetic clocks. This effect was not substantially changed after adjustment for known confounders.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Kamil Demircan
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Jan Homann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Thilo Samson Chillon
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Orr Shomroni
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Markus Ralser
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christina M Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lutz Schomburg
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
2
|
Liu T, Conley YP, Erickson KI, Miao H, Connolly CG, Ormsbee MJ, Li C. 12-Year Physical Activity Trajectories and Epigenetic Age Acceleration Among Middle-Aged and Older Adults. Biol Res Nurs 2025:10998004251334415. [PMID: 40232180 DOI: 10.1177/10998004251334415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Purpose: To examine the association between trajectories of physical activity (PA) over 12 years and epigenetic age acceleration (EAA) in 3600 middle-aged and older adults of the Health and Retirement Study. Methods: Latent variable mixture modeling identified subgroups with similar trajectories of vigorous, moderate, and light PA from 2004 to 2016. Six EAAs, including Horvath's age acceleration, Hannum's age acceleration, GrimAge acceleration, PhenoAge acceleration, DunedinPoAm acceleration, and ZhangAA were calculated by regressing epigenetic age on chronological age in 2016. Linear regression models tested associations of PA trajectories with EAAs, controlling for age, sex, race, education, smoking, alcohol consumption, and depression. Results: Five trajectories were identified for each PA type. Moderate and light PA trajectories were stable or slightly changed over time. In contrast, vigorous PA trajectories were either consistently low (27.2%), slightly increased at a low level (14.9%), decreased from moderate to low levels (25.9%), increased to a high level (11.9%), or consistently high (20.1%). Moderate PA trajectories were negatively associated with EAA across six epigenetic clocks (p < .01). Light PA trajectories were not associated with any EAA. Vigorous PA trajectories were associated with slower GrimAge acceleration (p = .004) and DunedinPoAm acceleration (p = .03). Participants that showed consistently high or increasing vigorous PA had slower EAA compared to those with consistently low vigorous PA. Conclusion: Moderate and vigorous, but not light, PA trajectories were associated with slower EAAs.
Collapse
Affiliation(s)
- Tingting Liu
- Florida State University College of Nursing, Tallahassee, FL, USA
| | - Yvette P Conley
- University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Orlando, FL, USA
- Department of Psychology, University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Hongyu Miao
- Florida State University College of Nursing, Tallahassee, FL, USA
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Michael J Ormsbee
- Institute of Sports Sciences & Medicine, Florida State University College of Health and Human Sciences, Tallahassee, FL, USA
| | - Changwei Li
- Department of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Marttila S. Immune cell composition is an important contributor to epigenetic age variation. Epigenomics 2025; 17:373-375. [PMID: 40047040 PMCID: PMC11980466 DOI: 10.1080/17501911.2025.2476391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/04/2025] [Indexed: 04/08/2025] Open
Affiliation(s)
- Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- GEREC, Gerontology Research Center, Tampere University, Tampere, Finland
- Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Wedemeyer SA, Jones NE, Raza IGA, Green FM, Xiao Y, Semwal MK, Garza AK, Archuleta KS, Wimberly KL, Venables T, Holländer GA, Griffith AV. Paracrine FGF21 dynamically modulates mTOR signaling to regulate thymus function across the lifespan. NATURE AGING 2025; 5:588-606. [PMID: 39972173 PMCID: PMC12003089 DOI: 10.1038/s43587-024-00801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Consequences of age-associated thymic atrophy include declining T-cell responsiveness to pathogens and vaccines and diminished T-cell self-tolerance. Cortical thymic epithelial cells (cTECs) are primary targets of thymic aging, and recent studies suggested that their maintenance requires mTOR signaling downstream of medullary TEC (mTEC)-derived growth factors. Here, to test this hypothesis, we generated a knock-in mouse model in which FGF21 and mCherry are expressed by most mTECs. We find that mTEC-derived FGF21 promotes temporally distinct patterns of mTORC1 and mTORC2 signaling in cTECs, promotes thymus and individual cTEC growth and maintenance, increases T-cell responsiveness to viral infection, and diminishes indicators of peripheral autoimmunity in older mice. The effects of FGF21 overexpression on thymus size and mTOR signaling were abrogated by treatment with the mTOR inhibitor rapamycin. These results reveal a mechanism by which paracrine FGF21 signaling regulates thymus size and function throughout the lifespan, as well as potential therapeutic targets for improving T-cell function and tolerance in aging.
Collapse
Affiliation(s)
- Sarah A Wedemeyer
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas E Jones
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Freedom M Green
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yangming Xiao
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Manpreet K Semwal
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Math and Science, Our Lady of the Lake University, San Antonio, TX, USA
| | - Aaron K Garza
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kahealani S Archuleta
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kymberly L Wimberly
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas Venables
- Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Georg A Holländer
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital, Basel, Switzerland
- Developmental Immunology, Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ann V Griffith
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Kusters CDJ, Horvath S. Quantification of Epigenetic Aging in Public Health. Annu Rev Public Health 2025; 46:91-110. [PMID: 39681336 DOI: 10.1146/annurev-publhealth-060222-015657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Estimators of biological age hold promise for use in preventive medicine, for early detection of chronic conditions, and for monitoring the effectiveness of interventions aimed at improving population health. Among the promising biomarkers in this field are DNA methylation-based biomarkers, commonly referred to as epigenetic clocks. This review provides a survey of these clocks, with an emphasis on second-generation clocks that predict human morbidity and mortality. It explores the validity of epigenetic clocks when considering factors such as race, sex differences, lifestyle, and environmental influences. Furthermore, the review addresses the current challenges and limitations in this research area.
Collapse
Affiliation(s)
- Cynthia D J Kusters
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA;
| | - Steve Horvath
- Altos Labs, Cambridge, United Kingdom;
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, California, USA
| |
Collapse
|
6
|
Noble A, Adams A, Nowak J, Cheng G, Nayak K, Quinn A, Kristiansen M, Kalla R, Ventham NT, Giachero F, Jayamanne C, Hansen R, Hold GL, El-Omar E, Croft NM, Wilson D, Beattie RM, Ashton JJ, Zilbauer M, Ennis S, Uhlig HH, Satsangi J. The Circulating Methylome in Childhood-Onset Inflammatory Bowel Disease. J Crohns Colitis 2025; 19:jjae157. [PMID: 39365013 PMCID: PMC11945304 DOI: 10.1093/ecco-jcc/jjae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The genetic contribution to inflammatory bowel disease (IBD), encompassing both Crohn's disease (CD) and ulcerative colitis (UC), accounts for around 20% of disease variance, highlighting the need to characterize environmental and epigenetic influences. Recently, considerable progress has been made in characterizing the adult methylome in epigenome-wide association studies. METHODS We report detailed analysis of the circulating methylome in 86 patients with childhood-onset CD and UC and 30 controls using the Illumina Infinium Human MethylationEPIC platform. RESULTS We derived and validated a 4-probe methylation biomarker (RPS6KA2, VMP1, CFI, and ARHGEF3), with specificity and high diagnostic accuracy for pediatric IBD in UK and North American cohorts (area under the curve: 0.90-0.94). Significant epigenetic age acceleration is present at diagnosis, with the greatest observed in CD patients. Cis-methylation quantitative trait loci (meQTL) analysis identifies genetic determinants underlying epigenetic alterations notably within the HLA 6p22.1-p21.33 region. Passive smoking exposure is associated with the development of UC rather than CD, contrary to previous findings. CONCLUSIONS These data provide new insights into epigenetic alterations in IBD and illustrate the reproducibility and translational potential of epigenome-wide association studies in complex diseases.
Collapse
Affiliation(s)
- Alexandra Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jan Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Guo Cheng
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Aisling Quinn
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| | - Mark Kristiansen
- UCL Genomics, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Rahul Kalla
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas T Ventham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Federica Giachero
- Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke’s Hospital, Cambridge, UK
| | - Chamara Jayamanne
- Department of Paediatrics, John Radcliffe Hospital, Oxford University Hospital NHS Trust, Oxford, UK
| | - Richard Hansen
- Department of Child Health, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, New South Wales, Australia
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas M Croft
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Wilson
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Children and Young People, Edinburgh, UK
- Department of Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - R Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK
| | - James J Ashton
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke’s Hospital, Cambridge, UK
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Fotopoulou F, Rodríguez-Correa E, Dussiau C, Milsom MD. Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging? Exp Hematol 2025; 143:104698. [PMID: 39725143 DOI: 10.1016/j.exphem.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues. This review reappraises an HSC-centric view of hematopoietic aging by exploring how the entire hematopoietic hierarchy, from stem cells to mature cells, contributes to age-related disorders. It highlights the decline of both innate and adaptive immunity, leading to increased susceptibility to infections and cancer, and the rise of autoimmunity as peripheral immune cells undergo aging-induced changes. It explores the concept of "inflammaging," where persistent, low-grade inflammation driven by old immune cells creates a cycle of tissue damage and disease. Additionally, this review delves into the roles of inflammation and homeostatic regulation in age-related conditions such as thrombotic events and anemia, arguing that these issues arise from broader dysfunctions rather than stemming from HSC functional attrition alone. In summary, this review highlights the importance of taking a holistic approach to studying hematopoietic aging and its related pathologies. By looking beyond just stem cells and considering the full spectrum of age-associated changes, one can better capture the complexity of aging and attempt to develop preventative or rejuvenation strategies that target multiple facets of this process.
Collapse
Affiliation(s)
- Foteini Fotopoulou
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Esther Rodríguez-Correa
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Charles Dussiau
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
| |
Collapse
|
8
|
Marttila S, Rajić S, Ciantar J, Mak JKL, Junttila IS, Kummola L, Hägg S, Raitoharju E, Kananen L. Biological aging of different blood cell types. GeroScience 2025; 47:1075-1092. [PMID: 39060678 PMCID: PMC11872950 DOI: 10.1007/s11357-024-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Biological age (BA) captures detrimental age-related changes. The best-known and most-used BA indicators include DNA methylation-based epigenetic clocks and telomere length (TL). The most common biological sample material for epidemiological aging studies, whole blood, is composed of different cell types. We aimed to compare differences in BAs between blood cell types and assessed the BA indicators' cell type-specific associations with chronological age (CA). An analysis of DNA methylation-based BA indicators, including TL, methylation level at cg16867657 in ELOVL2, as well as the Hannum, Horvath, DNAmPhenoAge, and DunedinPACE epigenetic clocks, was performed on 428 biological samples of 12 blood cell types. BA values were different in the majority of the pairwise comparisons between cell types, as well as in comparison to whole blood (p < 0.05). DNAmPhenoAge showed the largest cell type differences, up to 44.5 years and DNA methylation-based TL showed the lowest differences. T cells generally had the "youngest" BA values, with differences across subsets, whereas monocytes had the "oldest" values. All BA indicators, except DunedinPACE, strongly correlated with CA within a cell type. Some differences such as DNAmPhenoAge-difference between naïve CD4 + T cells and monocytes were constant regardless of the blood donor's CA (range 20-80 years), while for DunedinPACE they were not. In conclusion, DNA methylation-based indicators of BA exhibit cell type-specific characteristics. Our results have implications for understanding the molecular mechanisms underlying epigenetic clocks and underscore the importance of considering cell composition when utilizing them as indicators for the success of aging interventions.
Collapse
Affiliation(s)
- Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Gerontology Research Center, Tampere University, Tampere, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland.
| | - Sonja Rajić
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ilkka S Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Northern Finland Laboratory Centre (NordLab), Oulu, Finland
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Emma Raitoharju
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Laura Kananen
- Gerontology Research Center, Tampere University, Tampere, Finland.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
- Faculty of Social Sciences (Health Sciences), Tampere University, Tampere, Finland.
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
9
|
Gaetano C, Atlante S, Gottardi Zamperla M, Barbi V, Gentilini D, Illi B, Malavolta M, Martelli F, Farsetti A. The COVID-19 legacy: consequences for the human DNA methylome and therapeutic perspectives. GeroScience 2025; 47:483-501. [PMID: 39497009 PMCID: PMC11872859 DOI: 10.1007/s11357-024-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
The COVID-19 pandemic has left a lasting legacy on human health, extending beyond the acute phase of infection. This article explores the evidence suggesting that SARS-CoV-2 infection can induce persistent epigenetic modifications, particularly in DNA methylation patterns, with potential long-term consequences for individuals' health and aging trajectories. The review discusses the potential of DNA methylation-based biomarkers, such as epigenetic clocks, to identify individuals at risk for accelerated aging and tailor personalized interventions. Integrating epigenetic clock analysis into clinical management could mark a new era of personalized treatment for COVID-19, possibly helping clinicians to understand patient susceptibility to severe outcomes and establish preventive strategies. Several valuable reviews address the role of epigenetics in infectious diseases, including the Sars-CoV-2 infection. However, this article provides an original overview of the current understanding of the epigenetic dimensions of COVID-19, offering insights into the long-term health implications of the pandemic. While acknowledging the limitations of current data, we emphasize the need for future research to unravel the precise mechanisms underlying COVID-19-induced epigenetic changes and to explore potential approaches to target these modifications.
Collapse
Affiliation(s)
- Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | | | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Fabio Martelli
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy.
| |
Collapse
|
10
|
Fukumoto T, Shimosawa T, Yakabe M, Yoshida S, Yoshida Y. Recent advances in biomarkers for senescence: Bridging basic research to clinic. Geriatr Gerontol Int 2025; 25:139-147. [PMID: 39754295 DOI: 10.1111/ggi.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/31/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
In this review, we review the current status of biomarkers for aging and possible perspectives on anti-aging or rejuvenation from the standpoint of biomarkers. Aging is observed in all cells and organs, and we focused on research into senescence in the skin, musculoskeletal system, immune system, and cardiovascular system. Commonly used biomarkers include SA-βgal, cell-cycle markers, senescence-associated secretory phenotype (SASP) factors, damage-associated molecular patterns (DAMPs), and DNA-damage-related markers. In addition, each organ or cell has its specific markers. Generally speaking, a combination of biomarkers is required to define age-related changes. When considering the translation of basic research, biomarkers that are highly sensitive, highly specific, with validation and reliability as well as being non-invasive are optimal; however, currently reported markers do not fulfill the prerequisite for biomarkers. In addition, rodent models of aging do not necessarily represent human aging, and markers in rodent or cell models are not applicable in clinical settings. The prerequisite of clinically applicable biomarkers is that they provide useful information for clinical decision-making, such as predicting disease risk, diagnosing disease, monitoring disease progression, or guiding treatment decisions. Therefore, the development of non-invasive robust, reliable, and useful biomarkers in humans is necessary to develop anti-aging therapy for humans. Geriatr Gerontol Int 2025; 25: 139-147.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, Graduate School of Medicine, International University of Health and Welfare, Hyogo, Japan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yohko Yoshida
- Department of Advanced Senotherapeutics and Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Martínez-Enguita D, Hillerton T, Åkesson J, Kling D, Lerm M, Gustafsson M. Precise and interpretable neural networks reveal epigenetic signatures of aging across youth in health and disease. FRONTIERS IN AGING 2025; 5:1526146. [PMID: 39916723 PMCID: PMC11799293 DOI: 10.3389/fragi.2024.1526146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
Introduction DNA methylation (DNAm) age clocks are powerful tools for measuring biological age, providing insights into aging risks and outcomes beyond chronological age. While traditional models are effective, their interpretability is limited by their dependence on small and potentially stochastic sets of CpG sites. Here, we propose that the reliability of DNAm age clocks should stem from their capacity to detect comprehensive and targeted aging signatures. Methods We compiled publicly available DNAm whole-blood samples (n = 17,726) comprising the entire human lifespan (0-112 years). We used a pre-trained network-coherent autoencoder (NCAE) to compress DNAm data into embeddings, with which we trained interpretable neural network epigenetic clocks. We then retrieved their age-specific epigenetic signatures of aging and examined their functional enrichments in age-associated biological processes. Results We introduce NCAE-CombClock, a novel highly precise (R2 = 0.978, mean absolute error = 1.96 years) deep neural network age clock integrating data-driven DNAm embeddings and established CpG age markers. Additionally, we developed a suite of interpretable NCAE-Age neural network classifiers tailored for adolescence and young adulthood. These clocks can accurately classify individuals at critical developmental ages in youth (AUROC = 0.953, 0.972, and 0.927, for 15, 18, and 21 years) and capture fine-grained, single-year DNAm signatures of aging that are enriched in biological processes associated with anatomic and neuronal development, immunoregulation, and metabolism. We showcased the practical applicability of this approach by identifying candidate mechanisms underlying the altered pace of aging observed in pediatric Crohn's disease. Discussion In this study, we present a deep neural network epigenetic clock, named NCAE-CombClock, that improves age prediction accuracy in large datasets, and a suite of explainable neural network clocks for robust age classification across youth. Our models offer broad applications in personalized medicine and aging research, providing a valuable resource for interpreting aging trajectories in health and disease.
Collapse
Affiliation(s)
- David Martínez-Enguita
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Thomas Hillerton
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Julia Åkesson
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Daniel Kling
- Department of Forensic Genetics and Toxicology, Swedish National Board of Forensic Medicine, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Sugrue VJ, Prescott M, Glendining KA, Bond DM, Horvath S, Anderson GM, Garratt M, Campbell RE, Hore TA. The androgen clock is an epigenetic predictor of long-term male hormone exposure. Proc Natl Acad Sci U S A 2025; 122:e2420087121. [PMID: 39805019 PMCID: PMC11760496 DOI: 10.1073/pnas.2420087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Aging is a complex process characterized by biological decline and a wide range of molecular alterations to cells, including changes to DNA methylation. In this study, we used a male-specific epigenetic marker of aging to build an epigenetic predictor that measures long-term androgen exposure in sheep and mice (median absolute error of 4.3 and 1.4 mo, respectively). We term this predictor the androgen clock and show its "tick" is mediated by the androgen receptor and can be accelerated beyond that in normal male mice by supplementing females with dihydrotestosterone. Conversely, the removal of androgens by castration in sheep completely halted the androgen clock. In addition to potential applications in medicine and agriculture, we predict the androgen clock will prove a useful model to understand the mechanisms and processes of age-associated DNA methylation change because it can be precisely enhanced and halted using small molecule manipulation with few additional effects on the cell.
Collapse
Affiliation(s)
| | - Melanie Prescott
- Department of Physiology, University of Otago, Dunedin9016, New Zealand
| | | | - Donna M. Bond
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | - Steve Horvath
- Altos Laboratories, Cambridge Institute of Science, CambridgeCB21 6GQ, United Kingdom
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA90095
| | - Greg M. Anderson
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | - Michael Garratt
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| | | | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin9016, New Zealand
| |
Collapse
|
13
|
Xu K, Hernández B, Arpawong TE, Camuzeaux S, Chekmeneva E, Crimmins EM, Elliott P, Fiorito G, Jiménez B, Kenny RA, McCrory C, McLoughlin S, Pinto R, Sands C, Vineis P, Lau CHE, Robinson O. Assessing Metabolic Ageing via DNA Methylation Surrogate Markers: A Multicohort Study in Britain, Ireland and the USA. Aging Cell 2025:e14484. [PMID: 39829316 DOI: 10.1111/acel.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
Metabolomics and epigenomics have been used to develop 'ageing clocks' that assess biological age and identify 'accelerated ageing'. While metabolites are subject to short-term variation, DNA methylation (DNAm) may capture longer-term metabolic changes. We aimed to develop a hybrid DNAm-metabolic clock using DNAm as metabolite surrogates ('DNAm-metabolites') for age prediction. Within the UK Airwave cohort (n = 820), we developed DNAm metabolites by regressing 594 metabolites on DNAm and selected 177 DNAm metabolites and 193 metabolites to construct 'DNAm-metabolic' and 'metabolic' clocks. We evaluated clocks in their age prediction and association with noncommunicable disease risk factors. We additionally validated the DNAm-metabolic clock for the prediction of age and health outcomes in The Irish Longitudinal Study of Ageing (TILDA, n = 488) and the Health and Retirement Study (HRS, n = 4018). Around 70% of DNAm metabolites showed significant metabolite correlations (Pearson's r: > 0.30, p < 10-4) in the Airwave test set and overall stronger age associations than metabolites. The DNAm-metabolic clock was enriched for metabolic traits and was associated (p < 0.05) with male sex, heavy drinking, anxiety, depression and trauma. In TILDA and HRS, the DNAm-metabolic clock predicted age (r = 0.73 and 0.69), disability and gait speed (p < 0.05). In HRS, it additionally predicted time to death, diabetes, cardiovascular disease, frailty and grip strength. DNAm metabolite surrogates may facilitate metabolic studies using only DNAm data. Clocks built from DNAm metabolites provided a novel approach to assess metabolic ageing, potentially enabling early detection of metabolic-related diseases for personalised medicine.
Collapse
Affiliation(s)
- Kexin Xu
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC WIMM Centre of Computational Biology, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Belinda Hernández
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Stephane Camuzeaux
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
| | - Elena Chekmeneva
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Giovani Fiorito
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Beatriz Jiménez
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Cathal McCrory
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sinead McLoughlin
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rui Pinto
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Caroline Sands
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
| | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
14
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
15
|
Lu JK, Wang W, Soh J, Sandalova E, Lim ZM, Seetharaman SK, Han JDJ, Teo DB, Kennedy BK, Goh J, Maier AB. Characterizing biomarkers of ageing in Singaporeans: the ABIOS observational study protocol. GeroScience 2025:10.1007/s11357-025-01511-1. [PMID: 39825169 DOI: 10.1007/s11357-025-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Ageing is the primary driver of age-associated chronic diseases and conditions. Asian populations have traditionally been underrepresented in studies understanding age-related diseases. Thus, the Ageing BIOmarker Study in Singaporeans (ABIOS) aims to characterise biomarkers of ageing in Singaporeans, exploring associations between molecular, physiological, and digital biomarkers of ageing. This is a single-centre, cross-sectional study that recruits healthy community-dwelling adults (≥ 21 years) from three different ethnic groups (Chinese, Malay, and Indian). Molecular biomarkers of ageing include multi-omics approaches, such as DNA methylation analysis and metabolic and inflammatory proteomic profiling in blood, saliva, and stool. Physiological biomarkers of ageing include bone density, body composition, skin autofluorescence, arterial stiffness, physical performance (e.g., muscle strength and flexibility), cognition, and nutritional status. Digital biomarkers of ageing include three-dimensional facial morphology and objectively measured physical activity. Additional measures, such as habitual physical activity, dietary patterns, and medical history, are also examined. The associations between the molecular, physiological, and digital phenotypes will be explored. This study is expected to generate a comprehensive profile of molecular, physiological, and digital biomarkers of ageing in Chinese, Malay, and Indian populations in Singapore. By integrating diverse age-related biomarkers, clinical indicators, and lifestyle factors, ABIOS will offer unique insights into the ageing process specific to Southeast Asian populations. These findings can help identify markers of biological ageing, uncover ethnic-specific patterns, and reveal modifiable lifestyle factors for healthier ageing. The results could inform evidence-based health policies, personalized interventions, and future cross-ethnic comparative studies to enhance understanding of ageing biology across diverse populations.
Collapse
Affiliation(s)
- Jessica K Lu
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Academy for Healthy Longevity, Yong Loo Lin School of Medicine National University of Singapore, Singapore, Singapore
| | - Weilan Wang
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Academy for Healthy Longevity, Yong Loo Lin School of Medicine National University of Singapore, Singapore, Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi Meng Lim
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Academy for Healthy Longevity, Yong Loo Lin School of Medicine National University of Singapore, Singapore, Singapore
| | - Santosh Kumar Seetharaman
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Ageing Programme, Alexandra Hospital, Singapore, Singapore
- Division of Geriatric Medicine, National University Hospital, Singapore, Singapore
| | - Jing-Dong Jackie Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China
| | - Desmond B Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Fast and Chronic Programmes, Alexandra Hospital, Singapore, Singapore
- Division of Advanced Internal Medicine, National University Hospital, Singapore, Singapore
| | - Brian K Kennedy
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jorming Goh
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Van Der Boechorstsraat 7, 1081 BT, Amsterdam, The Netherlands.
- NUS Academy for Healthy Longevity, Yong Loo Lin School of Medicine National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Sullivan J, Nicholson T, Hazeldine J, Moiemen N, Lord JM. Accelerated epigenetic ageing after burn injury. GeroScience 2025:10.1007/s11357-024-01433-4. [PMID: 39821820 DOI: 10.1007/s11357-024-01433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 01/19/2025] Open
Abstract
Individuals who suffer a major burn injury are at higher risk of developing a range of age-associated diseases prematurely leading to an increase in mortality in adult and juvenile burn injury survivors. One possible explanation is that injury is accelerating the biological ageing process. To test this hypothesis, we analysed DNA methylation in peripheral blood mononuclear cells from adult burn-injured patients (> 5%TBSA) upon admission to hospital and 6 months later, to calculate an epigenetic clock value which can be used to determine biological age. Fifty-three burn-injured participants (mean age 45.43 years, 49 male, mean TBSA 37.65%) were recruited at admission and 34 again 6 months post injury (mean age 40.4 years, 34 male, mean TBSA 30.91%). Twenty-nine healthy controls (mean age 43.69 years, 24 male) were also recruited. Epigenetic age acceleration at admission by PhenoAge was + 7.2 years (P = 8.31e-5) but by month 6 was not significantly different from healthy controls. PCGrimAge acceleration was + 9.23 years at admission (P = 5.79e-11) and remained 4.18 years higher than in controls by month 6 (P = 2.64e-6). At admission, the burn-injured participants had a Dunedin PACE of ageing score 31.65% higher than the control group (P = 2.14e-12), the equivalent of + 115 days per year of biological ageing. Six months post injury the Dunedin PACE of ageing remained significantly higher (+ 11.36%, 41 days/year) than in the control group (P = 3.99e-5). No differences were seen using the Horvath and Hannum clocks. Enrichment analysis revealed that key pathways enriched with burn injury related to immune function, activation, and inflammation. The results reveal that epigenetic age, specifically the PACE of ageing and PCGrimAge, was accelerated in burn-injured adults at admission, with some return towards control values by 6 months. That these two clocks are built upon morbidity outcomes suggests that the injury is invoking a biological response that increases the risk of disease. Burn injury in adults induces epigenetic changes suggestive of an acceleration of the ageing process, which may contribute to the increased morbidity and mortality in these patients.
Collapse
Affiliation(s)
- Jack Sullivan
- Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- Scar Free Foundation Centre for Conflict Wound Research, University Hospital Birmingham, Birmingham, UK.
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK.
| | - Thomas Nicholson
- Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Sarcopenia and Multimorbidity Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Jon Hazeldine
- Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospital Birmingham, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Naiem Moiemen
- Scar Free Foundation Centre for Conflict Wound Research, University Hospital Birmingham, Birmingham, UK
- Burns Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Janet M Lord
- Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospital Birmingham, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- Burns Research Centre, University Hospital Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Sharma-Oates A, Dunne N, Raza K, Padyukov L, Rivera N, van der Helm-van Mil A, Pratt AG, Duggal NA, Jones SW, Lord JM. Ethnicity-specific patterns of epigenetic age acceleration in rheumatoid arthritis. GeroScience 2025:10.1007/s11357-025-01508-w. [PMID: 39797936 DOI: 10.1007/s11357-025-01508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Rheumatoid arthritis (RA) is an age-related chronic inflammatory disease which may include accelerated biological ageing processes in its pathogenesis. To determine if increased biological age is associated with risk of RA and/or is present once disease is established. We used DNA methylation to compare biological age (epigenetic age) of immune cells in adults at risk of RA and those with confirmed RA, including twins discordant for RA. The established RA studies were secondary analyses of existing DNA methylation data. Sub-group analysis considered the influence of ethnicity. Four epigenetic clocks were used to determine DNA methylation age. DNA methylation age was no different in adults at risk of RA in the Leiden Clinically Suspect Arthralgia (CSA) cohort (n = 38 developed RA, n = 24 did not), and there was also no difference in DNA methylation age between 77 UK twins discordant for RA, or adults with established RA from the Swedish EIRA cohort (n = 342) compared to healthy controls (n = 328). A sub-group analysis of RA patients of South Asian ethnicity (10 RA patients, 14 healthy controls) showed DNA methylation age acceleration of 3.3 years (p = 0.00014) using the mean DNA methylation age of four epigenetic clocks. Our study suggests that epigenetic age acceleration may be differentially influenced by South Asian ethnicity, but that RA was not generally associated with accelerated epigenetic age. The higher epigenetic age in the South Asian patients may explain the earlier age of onset in this minority ethnic population.
Collapse
Affiliation(s)
| | - Niall Dunne
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | | | | | | | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Department of Rheumatology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK.
| |
Collapse
|
18
|
Levy JJ, Diallo AB, Saldias Montivero MK, Gabbita S, Salas LA, Christensen BC. Insights to aging prediction with AI based epigenetic clocks. Epigenomics 2025; 17:49-57. [PMID: 39584810 DOI: 10.1080/17501911.2024.2432854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Over the past century, human lifespan has increased remarkably, yet the inevitability of aging persists. The disparity between biological age, which reflects pathological deterioration and disease, and chronological age, indicative of normal aging, has driven prior research focused on identifying mechanisms that could inform interventions to reverse excessive age-related deterioration and reduce morbidity and mortality. DNA methylation has emerged as an important predictor of age, leading to the development of epigenetic clocks that quantify the extent of pathological deterioration beyond what is typically expected for a given age. Machine learning technologies offer promising avenues to enhance our understanding of the biological mechanisms governing aging by further elucidating the gap between biological and chronological ages. This perspective article examines current algorithmic approaches to epigenetic clocks, explores the use of machine learning for age estimation from DNA methylation, and discusses how refining the interpretation of ML methods and tailoring their inferences for specific patient populations and cell types can amplify the utility of these technologies in age prediction. By harnessing insights from machine learning, we are well-positioned to effectively adapt, customize and personalize interventions aimed at aging.
Collapse
Affiliation(s)
- Joshua J Levy
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH, USA
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| | - Alos B Diallo
- Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| | | | - Sameer Gabbita
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lucas A Salas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Molecular and Cellular Biology Program, Guarini School of Graduate and Advanced Studies, Hanover, NH, USA
| |
Collapse
|
19
|
Yang Y, Fan L, Li M, Wang Z. Immune senescence: A key player in cancer biology. Semin Cancer Biol 2025; 108:71-82. [PMID: 39675646 DOI: 10.1016/j.semcancer.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
With the rapid development of immunological techniques in recent years, our understanding of immune senescence has gradually deepened, but the role of immune senescence in cancer biology remains incompletely elucidated. Understanding these mechanisms and interactions is crucial for the development of tumor biology. This review examines five key areas: the classification and main features of immune senescence, factors influencing immune cell senescence in cancer, the reciprocal causal cycle between immune senescence and malignancy, and the potential of immune senescence as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Kiselev IS, Baulina NM, Favorova OO. Epigenetic Clock: DNA Methylation as a Marker of Biological Age and Age-Associated Diseases. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S356-S372. [PMID: 40164166 DOI: 10.1134/s0006297924602843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 04/02/2025]
Abstract
Age is one of the key criteria of human health used in practical medicine to predict the risk of common chronic diseases. However, biological age, which reflects the state of an individual organism, functional capabilities, social well-being, and risk of premature death from various causes, often does not coincide with chronological age. To determine biological age of a particular individuals and the rate of their aging, specific panels of DNA methylation markers called "epigenetic clock" (EC) were proposed. This review summarizes the data about the main types of ECs developed to date and their key characteristics. We described the results of works studying individual aging rates in common age-associated diseases and outlined main directions, development of which could expand application of ECs in fundamental and practical medicine. There is no doubt that revealing complex mechanisms underlying interaction between the rate of epigenetic aging and the risk of age-associated diseases could play a key role for prediction and early diagnosis, as well as for the development of preventive measures that could delay onset of the disease.
Collapse
Affiliation(s)
- Ivan S Kiselev
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Natalia M Baulina
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Olga O Favorova
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| |
Collapse
|
21
|
Burdusel D, Doeppner TR, Surugiu R, Hermann DM, Olaru DG, Popa-Wagner A. The Intersection of Epigenetics and Senolytics in Mechanisms of Aging and Therapeutic Approaches. Biomolecules 2024; 15:18. [PMID: 39858413 PMCID: PMC11762397 DOI: 10.3390/biom15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging. Senolytics, a class of drugs targeting and eliminating senescent cells, address the accumulation of dysfunctional cells that contribute to tissue degradation and chronic inflammation through the senescence-associated secretory phenotype. This scoping review examines the intersection of epigenetic mechanisms and senolytic therapies in aging, focusing on their combined potential for therapeutic interventions. Senescent cells display distinct epigenetic signatures, such as DNA hypermethylation and histone modifications, which can be targeted to enhance senolytic efficacy. Epigenetic reprogramming strategies, such as induced pluripotent stem cells, may further complement senolytics by rejuvenating aged cells. Integrating epigenetic modulation with senolytic therapy offers a dual approach to improving healthspan and mitigating age-related pathologies. This narrative review underscores the need for continued research into the molecular mechanisms underlying these interactions and suggests future directions for therapeutic development, including clinical trials, biomarker discovery, and combination therapies that synergistically target aging processes.
Collapse
Affiliation(s)
- Daiana Burdusel
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Thorsten R. Doeppner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany;
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Roxana Surugiu
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Dirk M. Hermann
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Denissa Greta Olaru
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
22
|
Liang R, Tang Q, Chen J, Zhu L. Epigenetic Clocks: Beyond Biological Age, Using the Past to Predict the Present and Future. Aging Dis 2024:AD.2024.1495. [PMID: 39751861 DOI: 10.14336/ad.2024.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Predicting health trajectories and accurately measuring aging processes across the human lifespan remain profound scientific challenges. Assessing the effectiveness and impact of interventions targeting aging is even more elusive, largely due to the intricate, multidimensional nature of aging-a process that defies simple quantification. Traditional biomarkers offer only partial perspectives, capturing limited aspects of the aging landscape. Yet, over the past decade, groundbreaking advancements have emerged. Epigenetic clocks, derived from DNA methylation patterns, have established themselves as powerful aging biomarkers, capable of estimating biological age and assessing aging rates across diverse tissues with remarkable precision. These clocks provide predictive insights into mortality and age-related disease risks, effectively distinguishing biological age from chronological age and illuminating enduring questions in gerontology. Despite significant progress in epigenetic clock development, substantial challenges remain, underscoring the need for continued investigation to fully unlock their potential in the science of aging.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
23
|
DeConne TM, Buckley DJ, Trott DW, Martens CR. The role of T cells in vascular aging, hypertension, and atherosclerosis. Am J Physiol Heart Circ Physiol 2024; 327:H1345-H1360. [PMID: 39423035 DOI: 10.1152/ajpheart.00570.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Vascular dysfunction has emerged as a significant risk factor for the development of cardio- and cerebrovascular diseases (CVDs), which are currently the leading cause of morbidity and mortality worldwide. T lymphocytes (T cells) have been shown to be important modulators of vascular function in primary aging and CVDs, likely by producing inflammatory cytokines and reactive oxygen species that influence vasoprotective molecules. This review summarizes the role of T cells on vascular function in aging, hypertension, and atherosclerosis in animals and humans, and discusses potential T-cell targeted therapeutics to prevent, delay, or reverse vascular dysfunction.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - David J Buckley
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
24
|
Hernandez Cordero AI, Leung JM. ERJ advances: epigenetic ageing and leveraging DNA methylation in chronic respiratory diseases. Eur Respir J 2024; 64:2401257. [PMID: 39362670 PMCID: PMC11561405 DOI: 10.1183/13993003.01257-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Chronic respiratory diseases are the third leading cause of death and affect more than 450 million people worldwide [1]. Major risk factors such as cigarette smoking have long been studied in their pathogenesis, but as the global population ages, increasing attention must now be paid to the contributory role of ageing [2]. Epidemiological evidence indicates a decline in lung health over time with lung function classically reaching its peak between 20–30 years of age and starting an inevitable descent thereafter [3]. Modern paradigms suggest that this rise and descent may occur at different rates along the lifespan, which may indicate that the links between age and lung function may be variable between individuals [4]. Deciphering how lung ageing influences the development of chronic respiratory diseases may hold powerful clues into novel therapeutics and management strategies. Epigenetic age is a novel biomarker utilising DNA methylation profiles that can detect accelerated biological ageing. Potential uses in respiratory disease include risk stratification for vulnerable patients and prognostication for poor clinical outcomes. https://bit.ly/3ZMTAK1
Collapse
Affiliation(s)
- Ana I Hernandez Cordero
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
- Edwin S.H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
- Edwin S.H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Zhao Y, Li X, Wang K, Iyer G, Sakowski SA, Zhao L, Teener S, Bakulski KM, Dou JF, Traynor BJ, Karnovsky A, Batterman SA, Feldman EL, Sartor MA, Goutman SA. Epigenetic age acceleration is associated with occupational exposures, sex, and survival in amyotrophic lateral sclerosis. EBioMedicine 2024; 109:105383. [PMID: 39369616 PMCID: PMC11491892 DOI: 10.1016/j.ebiom.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is linked to ageing and genetic and environmental risk factors, yet underlying mechanisms are incompletely understood. We aimed to evaluate epigenetic age acceleration (EAA), i.e., DNA methylation (DNAm) age acceleration, and its association with ALS case status and survival. METHODS In this study, we included 428 ALS and 288 control samples collected between 2011 and 2021. We calculated EAA using the GrimAge residual method from ALS and control blood samples and grouped participants with ALS into three ageing groups (fast, normal, slow). We associated EAA with ALS case status and survival, stratified by sex, and correlated it with environmental and biological factors through occupational exposure assessments, immune cell proportions, and transcriptome changes. FINDINGS Participants with ALS had higher average EAA by 1.80 ± 0.30 years (p < 0.0001) versus controls. Participants with ALS in the fast ageing group had a hazard ratio of 1.52 (95% confidence interval 1.16-2.00, p = 0.0028) referenced to the normal ageing group. In males, this hazard ratio was 1.55 (95% confidence interval 1.11-2.17, p = 0.010), and EAA was positively correlated with high-risk occupational exposures including particulate matter (adj.p < 0.0001) and metals (adj.p = 0.0087). Also, in male participants with ALS, EAA was positively correlated with neutrophil proportions and was negatively correlated with CD4+ T cell proportions. Pathways dysregulated in participants with ALS with fast ageing included spliceosome, nucleocytoplasmic transport, axon guidance, and interferons. INTERPRETATION EAA was associated with ALS case status and, at least in males, with shorter survival after diagnosis. The effect of EAA on ALS was partially explained by occupational exposures and immune cell proportions in a sex-dependent manner. These findings highlight the complex interactions of ageing and exposures in ALS. FUNDING NIH, CDC/National ALS Registry, ALS Association, Dr. Randall Whitcomb Fund for ALS Genetics, Peter Clark Fund for ALS Research, Sinai Medical Staff Foundation, Scott L. Pranger ALS Clinic Fund, NeuroNetwork Therapeutic Discovery Fund, NeuroNetwork for Emerging Therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xiayan Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gayatri Iyer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Samuel Teener
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stuart A Batterman
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Holmes HE, Valentin RE, Jernerén F, de Jager Loots CA, Refsum H, Smith AD, Guarente L, Dellinger RW, Sampson D. Elevated homocysteine is associated with increased rates of epigenetic aging in a population with mild cognitive impairment. Aging Cell 2024; 23:e14255. [PMID: 38937999 PMCID: PMC11464110 DOI: 10.1111/acel.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Elevated plasma total homocysteine (tHcy) is associated with the development of Alzheimer's disease and other forms of dementia. In this study, we report the relationship between tHcy and epigenetic age in older adults with mild cognitive impairment from the VITACOG study. Epigenetic age and rate of aging (ROA) were assessed using various epigenetic clocks, including those developed by Horvath and Hannum, DNAmPhenoAge, and with a focus on Index, a new principal component-based epigenetic clock that, like DNAmPhenoAge, is trained to predict an individual's "PhenoAge." We identified significant associations between tHcy levels and ROA, suggesting that hyperhomocysteinemic individuals were aging at a faster rate. Moreover, Index revealed a normalization of accelerated epigenetic aging in these individuals following treatment with tHcy-lowering B-vitamins. Our results indicate that elevated tHcy is a risk factor for accelerated epigenetic aging, and this can be ameliorated with B-vitamins. These findings have broad relevance for the sizable proportion of the worldwide population with elevated tHcy.
Collapse
Affiliation(s)
| | | | - Fredrik Jernerén
- From the Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
| | - Celeste A. de Jager Loots
- From the Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of PharmacologyUniversity of OxfordOxfordUK
- Ageing Epidemiology Research Unit, School of Public HealthImperial College LondonLondonUK
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - A. David Smith
- From the Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of PharmacologyUniversity of OxfordOxfordUK
| | - Leonard Guarente
- Elysium HealthNew YorkNew YorkUSA
- Department of BiologyMITCambridgeMassachusettsUSA
| | | | | | | |
Collapse
|
27
|
McGee KC, Sullivan J, Hazeldine J, Schmunk LJ, Martin-Herranz DE, Jackson T, Lord JM. A combination nutritional supplement reduces DNA methylation age only in older adults with a raised epigenetic age. GeroScience 2024; 46:4333-4347. [PMID: 38528176 PMCID: PMC11336001 DOI: 10.1007/s11357-024-01138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
An increase in systemic inflammation (inflammaging) is one of the hallmarks of aging. Epigenetic (DNA methylation) clocks can quantify the degree of biological aging and this can be reversed by lifestyle and pharmacological intervention. We aimed to investigate whether a multi-component nutritional supplement could reduce systemic inflammation and epigenetic age in healthy older adults.We recruited 80 healthy older participants (mean age ± SD: 71.85 ± 6.23; males = 31, females = 49). Blood and saliva were obtained pre and post a 12-week course of a multi-component supplement, containing: Vitamin B3, Vitamin C, Vitamin D, Omega 3 fish oils, Resveratrol, Olive fruit phenols and Astaxanthin. Plasma GDF-15 and C-reactive protein (CRP) concentrations were quantified as markers of biological aging and inflammation respectively. DNA methylation was assessed in whole blood and saliva and used to derive epigenetic age using various clock algorithms.No difference between the epigenetic and chronological ages of participants was observed pre- and post-treatment by the blood-based Horvath or Hannum clocks, or the saliva-based InflammAge clock. However, in those with epigenetic age acceleration of ≥ 2 years at baseline, a significant reduction in epigenetic age (p = 0.015) and epigenetic age acceleration (p = 0.0058) was observed post-treatment using the saliva-based InflammAge clock. No differences were observed pre- and post-treatment in plasma GDF-15 and CRP, though participants with CRP indicative of an elevated cardiovascular disease risk (hsCRP ≥ 3µg/ml), had a reduction in CRP post-supplementation (p = 0.0195).Our data suggest a possible benefit of combined nutritional supplementation in individuals with an accelerated epigenetic age and inflammaging.
Collapse
Affiliation(s)
- Kirsty C McGee
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jack Sullivan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | | | - Thomas Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedcial Research Centre, University Hopsital Birmingham and University of Birmingham, Birmingham, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- NIHR Birmingham Biomedcial Research Centre, University Hopsital Birmingham and University of Birmingham, Birmingham, UK.
| |
Collapse
|
28
|
Lee DW, Lim YH, Choi YJ, Kim S, Shin CH, Lee YA, Kim BN, Kim JI, Hong YC. Prenatal and early-life air pollutant exposure and epigenetic aging acceleration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116823. [PMID: 39096687 DOI: 10.1016/j.ecoenv.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND This study investigated the association of prenatal and early childhood exposure to air pollution with epigenetic age acceleration (EAA) at six years of age using the Environment and Development of Children Cohort (EDC Cohort) MATERIALS & METHODS: Air pollution, including particulate matter [< 2.5 µm (PM2.5) and < 10 µm (PM10) in an aerodynamic diameter], nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2) were estimated based on the residential address for two periods: 1) during the whole pregnancy, and 2) for one year before the follow-up in children at six years of age. The methylation levels in whole blood at six years of age were measured, and the methylation clocks, including Horvath's clock, Horvath's skin and blood clock, PedBE, and Wu's clock, were estimated. Multivariate linear regression models were constructed to analyze the association between EAA and air pollutants. RESULTS A total of 76 children in EDC cohort were enrolled in this study. During the whole pregnancy, interquartile range (IQR) increases in exposure to PM2.5 (4.56 μg/m3) and CO (0.156 ppm) were associated with 0.406 years and 0.799 years of EAA (Horvath's clock), respectively. An IQR increase in PM2.5 (4.76 μg/m3) for one year before the child was six years of age was associated with 0.509 years of EAA (Horvath's clock) and 0.289 years of EAA (Wu's clock). PM10 (4.30 μg/m3) and O3 (0.003 ppm) exposure in the period were also associated with EAA in Horvath's clock (0.280 years) and EAA in Horvath's skin and blood clock (0.163 years), respectively. CONCLUSION We found that prenatal and childhood exposure to ambient air pollutants is associated with EAA among children. The results suggest that air pollution could induce excess biological aging even in prenatal and early life.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inha University, Incheon, the Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, the Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, the Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, the Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, the Republic of Korea
| | - Yun-Chul Hong
- Department of Humans Systems Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
29
|
Gorelov R, Weiner A, Huebner A, Yagi M, Haghani A, Brooke R, Horvath S, Hochedlinger K. Dissecting the impact of differentiation stage, replicative history, and cell type composition on epigenetic clocks. Stem Cell Reports 2024; 19:1242-1254. [PMID: 39178844 PMCID: PMC11411293 DOI: 10.1016/j.stemcr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
Epigenetic clocks, built on DNA methylation patterns of bulk tissues, are powerful age predictors, but their biological basis remains incompletely understood. Here, we conducted a comparative analysis of epigenetic age in murine muscle, epithelial, and blood cell types across lifespan. Strikingly, our results show that cellular subpopulations within these tissues, including adult stem and progenitor cells as well as their differentiated progeny, exhibit different epigenetic ages. Accordingly, we experimentally demonstrate that clocks can be skewed by age-associated changes in tissue composition. Mechanistically, we provide evidence that the observed variation in epigenetic age among adult stem cells correlates with their proliferative state, and, fittingly, forced proliferation of stem cells leads to increases in epigenetic age. Collectively, our analyses elucidate the impact of cell type composition, differentiation state, and replicative potential on epigenetic age, which has implications for the interpretation of existing clocks and should inform the development of more sensitive clocks.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Weiner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Masaki Yagi
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA 90502, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA; Epigenetic Clock Development Foundation, Torrance, CA 90502, USA; Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Kim JJ, Ahn A, Ying JY, Pollens-Voigt J, Ludlow AT. Effect of aging and exercise on hTERT expression in thymus tissue of hTERT transgenic bacterial artificial chromosome mice. GeroScience 2024:10.1007/s11357-024-01319-5. [PMID: 39222198 DOI: 10.1007/s11357-024-01319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Telomere shortening occurs with aging in immune cells and may be related to immunosenescence. Exercise can upregulate telomerase activity and attenuate telomere shortening in immune cells, but it is unknown if exercise impacts other immune tissues such as the thymus. This study aimed to examine human telomerase reverse transcriptase (hTERT) alternative splicing (AS) in response to aging and exercise in thymus tissue. Transgenic mice with a human TERT bacterial artificial chromosome integrated into its genome (hTERT-BAC) were utilized in two different exercise models. Mice of different ages were assigned to an exercise cage (running wheel) or not for 3 weeks prior to thymus tissue excision. Middle-aged mice (16 months) were exposed or not to treadmill running (30 min at 60% maximum speed) prior to thymus collection. hTERT transcript variants were measured by RT-PCR. hTERT transcripts decreased with aging (r = - 0.7511, p < 0.0001) and 3 weeks of wheel running did not counteract this reduction. The ratio of exons 7/8 containing hTERT to total hTERT transcripts increased with aging (r = 0.3669, p = 0.0423) but 3 weeks of voluntary wheel running attenuated this aging-driven effect (r = 0.2013, p = 0.4719). Aging increased the expression of senescence marker p16 with no impact of wheel running. Thymus regeneration transcription factor, Foxn1, went down with age with no impact of wheel running exercise. Acute treadmill exercise did not induce any significant changes in thymus hTERT expression or AS variant ratio (p > 0.05). In summary, thymic hTERT expression is reduced with aging. Exercise counteracted a shift in hTERT AS ratio with age. Our data demonstrate that aging impacts telomerase expression and that exercise impacts dysregulated splicing that occurs with aging.
Collapse
Affiliation(s)
- Jeongjin J Kim
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alexander Ahn
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Y Ying
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
31
|
Panchin AY, Ogmen A, Blagodatski AS, Egorova A, Batin M, Glinin T. Targeting multiple hallmarks of mammalian aging with combinations of interventions. Aging (Albany NY) 2024; 16:12073-12100. [PMID: 39159129 PMCID: PMC11386927 DOI: 10.18632/aging.206078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Aging is currently viewed as a result of multiple biological processes that manifest themselves independently, reinforce each other and in their totality lead to the aged phenotype. Genetic and pharmaceutical approaches targeting specific underlying causes of aging have been used to extend the lifespan and healthspan of model organisms ranging from yeast to mammals. However, most interventions display only a modest benefit. This outcome is to be expected if we consider that even if one aging process is successfully treated, other aging pathways may remain intact. Hence solving the problem of aging may require targeting not one but many of its underlying causes at once. Here we review the challenges and successes of combination therapies aimed at increasing the lifespan of mammals and propose novel directions for their development. We conclude that both additive and synergistic effects on mammalian lifespan can be achieved by combining interventions that target the same or different hallmarks of aging. However, the number of studies in which multiple hallmarks were targeted simultaneously is surprisingly limited. We argue that this approach is as promising as it is understudied.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Sector of Molecular Evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna Ogmen
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Artem S Blagodatski
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Timofey Glinin
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Surgery, Endocrine Neoplasia Laboratory, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Gigliotti G, Joshi R, Khalid A, Widmer D, Boccellino M, Viggiano D. Epigenetics, Microbiome and Personalized Medicine: Focus on Kidney Disease. Int J Mol Sci 2024; 25:8592. [PMID: 39201279 PMCID: PMC11354516 DOI: 10.3390/ijms25168592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Personalized medicine, which involves modifying treatment strategies/drug dosages based on massive laboratory/imaging data, faces large statistical and study design problems. The authors believe that the use of continuous multidimensional data, such as those regarding gut microbiota, or binary multidimensional systems properly transformed into a continuous variable, such as the epigenetic clock, offer an advantageous scenario for the design of trials of personalized medicine. We will discuss examples focusing on kidney diseases, specifically on IgA nephropathy. While gut dysbiosis can provide a treatment strategy to restore the standard gut microbiota using probiotics, transforming epigenetic omics data into epigenetic clocks offers a promising tool for personalized acute and chronic kidney disease care. Epigenetic clocks involve a complex transformation of DNA methylome data into estimated biological age. These clocks can identify people at high risk of developing kidney problems even before symptoms appear. Some of the effects of both the epigenetic clock and microbiota on kidney diseases seem to be mediated by endothelial dysfunction. These "big data" (epigenetic clocks and microbiota) can help tailor treatment plans by pinpointing patients likely to experience rapid declines or those who might not need overly aggressive therapies.
Collapse
Affiliation(s)
| | - Rashmi Joshi
- Department Translational Medical Sciences, University of Campania, 81100 Naples, Italy; (R.J.); (A.K.); (D.V.)
| | - Anam Khalid
- Department Translational Medical Sciences, University of Campania, 81100 Naples, Italy; (R.J.); (A.K.); (D.V.)
| | | | - Mariarosaria Boccellino
- Department Experimental Medicine, University of Campania, 81100 Naples, Italy
- Department Life Sciences, Health and Health Professions, Link University, 00165 Rome, Italy
| | - Davide Viggiano
- Department Translational Medical Sciences, University of Campania, 81100 Naples, Italy; (R.J.); (A.K.); (D.V.)
| |
Collapse
|
33
|
Wang Y, Li R, Zhao F, Wang S, Zhang Y, Fan D, Han S. Metabolic engineering of Komagataella phaffii for the efficient utilization of methanol. Microb Cell Fact 2024; 23:198. [PMID: 39014373 PMCID: PMC11253385 DOI: 10.1186/s12934-024-02475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Komagataella phaffii, a type of methanotrophic yeast, can use methanol, a favorable non-sugar substrate in eco-friendly bio-manufacturing. The dissimilation pathway in K. phaffii leads to the loss of carbon atoms in the form of CO2. However, the ΔFLD strain, engineered to lack formaldehyde dehydrogenase-an essential enzyme in the dissimilation pathway-displayed growth defects when exposed to a methanol-containing medium. RESULTS Inhibiting the dissimilation pathway triggers an excessive accumulation of formaldehyde and a decline in the intracellular NAD+/NADH ratio. Here, we designed dual-enzyme complex with the alcohol oxidase1/dihydroxyacetone synthase1 (Aox1/Das1), enhancing the regeneration of the formaldehyde receptor xylulose-5-phosphate (Xu5P). This strategy mitigated the harmful effects of formaldehyde accumulation and associated toxicity to cells. Concurrently, we elevated the NAD+/NADH ratio by overexpressing isocitrate dehydrogenase in the TCA cycle, promoting intracellular redox homeostasis. The OD600 of the optimized combination of the above strategies, strain DF02-1, was 4.28 times higher than that of the control strain DF00 (ΔFLD, HIS4+) under 1% methanol. Subsequently, the heterologous expression of methanol oxidase Mox from Hansenula polymorpha in strain DF02-1 resulted in the recombinant strain DF02-4, which displayed a growth at an OD600 4.08 times higher than that the control strain DF00 in medium containing 3% methanol. CONCLUSIONS The reduction of formaldehyde accumulation, the increase of NAD+/NADH ratio, and the enhancement of methanol oxidation effectively improved the efficient utilization of a high methanol concentration by strain ΔFLD strain lacking formaldehyde dehydrogenase. The modification strategies implemented in this study collectively serve as a foundational framework for advancing the efficient utilization of methanol in K. phaffii.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruisi Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Shuai Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dexun Fan
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
34
|
Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Arch Med Res 2024; 55:103033. [PMID: 38955096 DOI: 10.1016/j.arcmed.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | | | | | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paola Garcia-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
35
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
36
|
Sandalova E, Maier AB. Targeting the epigenetically older individuals for geroprotective trials: the use of DNA methylation clocks. Biogerontology 2024; 25:423-431. [PMID: 37968337 DOI: 10.1007/s10522-023-10077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/15/2023] [Indexed: 11/17/2023]
Abstract
Chronological age is the most important risk factor for the incidence of age-related diseases. The pace of ageing determines the magnitude of that risk and can be expressed as biological age. Targeting fundamental pathways of human aging with geroprotectors has the potential to lower the biological age and therewith prolong the healthspan, the period of life one spends in good health. Target populations for geroprotective interventions should be chosen based on the ageing mechanisms being addressed and the expected effect of the geroprotector on the primary outcome. Biomarkers of ageing, such as DNA methylation age, can be used to select populations for geroprotective interventions and as a surrogate outcome. Here, the use of DNA methylation clocks for selecting target populations for geroprotective intervention is explored.
Collapse
Affiliation(s)
- Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore.
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore.
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Kawamura T, Higuchi M, Ito T, Kawakami R, Usui C, McGreevy KM, Horvath S, Zsolt R, Torii S, Suzuki K, Ishii K, Sakamoto S, Oka K, Muraoka I, Tanisawa K. Healthy Japanese dietary pattern is associated with slower biological aging in older men: WASEDA'S health study. Front Nutr 2024; 11:1373806. [PMID: 38854166 PMCID: PMC11157009 DOI: 10.3389/fnut.2024.1373806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024] Open
Abstract
Aging is the greatest risk factor for numerous diseases and mortality, and establishing geroprotective interventions targeting aging is required. Previous studies have suggested that healthy dietary patterns, such as the Mediterranean diet, are associated with delayed biological aging; however, these associations depend on nationality and sex. Therefore, this study aimed to investigate the relationship between dietary patterns identified through principal component analysis and biological aging in older men of Japan, one of the countries with the longest life expectancies. Principal component analysis identified two dietary patterns: a healthy Japanese dietary pattern and a Western-style dietary pattern. Eight epigenetic clocks, some of the most accurate aging biomarkers, were identified using DNA methylation data from whole-blood samples. Correlation analyses revealed that healthy Japanese dietary patterns were significantly negatively or positively correlated with multiple epigenetic age accelerations (AgeAccel), including AgeAccelGrim, FitAgeAccel, and age-adjusted DNAm-based telomere length (DNAmTLAdjAge). Conversely, the Western-style dietary pattern was observed not to correlate significantly with any of the examined AgeAccels or age-adjusted values. After adjusting for covariates, the healthy Japanese dietary pattern remained significantly positively correlated with DNAmTLAdjAge. Regression analysis showed that healthy Japanese dietary pattern contributed less to epigenetic age acceleration than smoking status. These findings suggest that a Western-style dietary pattern may not be associated with biological aging, whereas a healthy Japanese dietary pattern is associated with delayed biological aging in older Japanese men. Our findings provide evidence that healthy dietary patterns may have mild beneficial effects on delayed biological aging in older Japanese men.
Collapse
Affiliation(s)
- Takuji Kawamura
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Tomoko Ito
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
- Department of Food and Nutrition, Tokyo Kasei University, Tokyo, Japan
| | - Ryoko Kawakami
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Chiyoko Usui
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
- Center for Liberal Education and Learning, Sophia University, Tokyo, Japan
| | - Kristen M. McGreevy
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Altos Labs, San Diego Institute of Science, San Diego, CA, United States
| | - Radak Zsolt
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Suguru Torii
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Kaori Ishii
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Shizuo Sakamoto
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- Faculty of Sport Science, Surugadai University, Saitama, Japan
| | - Koichiro Oka
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Isao Muraoka
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
38
|
Stankiewicz LN, Rossi FMV, Zandstra PW. Rebuilding and rebooting immunity with stem cells. Cell Stem Cell 2024; 31:597-616. [PMID: 38593798 DOI: 10.1016/j.stem.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
39
|
Bierhoff H. [Genetics, epigenetics, and environmental factors in life expectancy-What role does nature-versus-nurture play in aging?]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67:521-527. [PMID: 38637469 PMCID: PMC11093831 DOI: 10.1007/s00103-024-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
In Germany and worldwide, the average age of the population is continuously rising. With this general increase in chronological age, the focus on biological age, meaning the actual health and fitness status, is becoming more and more important. The key question is to what extent the age-related decline in fitness is genetically predetermined or malleable by environmental factors and lifestyle.Many epigenetic studies in aging research have provided interesting insights in this nature-versus-nurture debate. In most model organisms, aging is associated with specific epigenetic changes, which can be countered by certain interventions like moderate caloric restriction or increased physical activity. Since these interventions also have positive effects on lifespan and health, epigenetics appears to be the interface between environmental factors and the aging process. This notion is supported by the fact that an epigenetic drift occurs through the life course of identical twins, which is related to the different manifestations of aging symptoms. Furthermore, biological age can be determined with high precision based on DNA methylation patterns, further emphasizing the importance of epigenetics in aging.This article provides an overview of the importance of genetic and epigenetic parameters for life expectancy. A major focus will be on the possibilities of maintaining a young epigenome through lifestyle and environmental factors, thereby slowing down biological aging.
Collapse
Affiliation(s)
- Holger Bierhoff
- Institut für Biochemie und Biophysik, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, 07745, Jena, Deutschland.
- Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut (FLI), Jena, Deutschland.
| |
Collapse
|
40
|
Abbott A. Hacking the immune system could slow ageing - here's how. Nature 2024; 629:276-278. [PMID: 38714810 DOI: 10.1038/d41586-024-01274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2024]
|
41
|
Tan DX. Mitochondrial dysfunction, a weakest link of network of aging, relation to innate intramitochondrial immunity of DNA recognition receptors. Mitochondrion 2024; 76:101886. [PMID: 38663836 DOI: 10.1016/j.mito.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Aging probably is the most complexed process in biology. It is manifested by a variety of hallmarks. These hallmarks weave a network of aging; however, each hallmark is not uniformly strong for the network. It is the weakest link determining the strengthening of the network of aging, or the maximum lifespan of an organism. Therefore, only improvement of the weakest link has the chance to increase the maximum lifespan but not others. We hypothesize that mitochondrial dysfunction is the weakest link of the network of aging. It may origin from the innate intramitochondrial immunity related to the activities of pathogen DNA recognition receptors. These receptors recognize mtDNA as the PAMP or DAMP to initiate the immune or inflammatory reactions. Evidence has shown that several of these receptors including TLR9, cGAS and IFI16 can be translocated into mitochondria. The potentially intramitochondrial presented pathogen DNA recognition receptors have the capacity to attack the exposed second structures of the mtDNA during its transcriptional or especially the replicational processes, leading to the mtDNA mutation, deletion, heteroplasmy colonization, mitochondrial dysfunction, and alterations of other hallmarks, as well as aging. Pre-consumption of the intramitochondrial presented pathogen DNA recognition receptors by medical interventions including development of mitochondrial targeted small molecule which can neutralize these receptors may retard or even reverse the aging to significantly improve the maximum lifespan of the organisms.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
42
|
Zhao J, Li H, Qu J, Zong X, Liu Y, Kuang Z, Wang H. A multi-organization epigenetic age prediction based on a channel attention perceptron networks. Front Genet 2024; 15:1393856. [PMID: 38725481 PMCID: PMC11080615 DOI: 10.3389/fgene.2024.1393856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
DNA methylation indicates the individual's aging, so-called Epigenetic clocks, which will improve the research and diagnosis of aging diseases by investigating the correlation between methylation loci and human aging. Although this discovery has inspired many researchers to develop traditional computational methods to quantify the correlation and predict the chronological age, the performance bottleneck delayed access to the practical application. Since artificial intelligence technology brought great opportunities in research, we proposed a perceptron model integrating a channel attention mechanism named PerSEClock. The model was trained on 24,516 CpG loci that can utilize the samples from all types of methylation identification platforms and tested on 15 independent datasets against seven methylation-based age prediction methods. PerSEClock demonstrated the ability to assign varying weights to different CpG loci. This feature allows the model to enhance the weight of age-related loci while reducing the weight of irrelevant loci. The method is free to use for academics at www.dnamclock.com/#/original.
Collapse
Affiliation(s)
- Jian Zhao
- School of Computer Science and Technology, Changchun University, Changchun, China
| | - Haixia Li
- School of Computer Science and Technology, Changchun University, Changchun, China
| | - Jing Qu
- School of Computer Science and Technology, Jilin University, Changchun, China
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Xizeng Zong
- Clinical Research Centre, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Yuchen Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Zhejun Kuang
- School of Computer Science and Technology, Changchun University, Changchun, China
| | - Han Wang
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| |
Collapse
|
43
|
Landsberger T, Amit I, Alon U. Geroprotective interventions converge on gene expression programs of reduced inflammation and restored fatty acid metabolism. GeroScience 2024; 46:1627-1639. [PMID: 37698783 PMCID: PMC10828297 DOI: 10.1007/s11357-023-00915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
Understanding the mechanisms of geroprotective interventions is central to aging research. We compare four prominent interventions: senolysis, caloric restriction, in vivo partial reprogramming, and heterochronic parabiosis. Using published mice transcriptomic data, we juxtapose these interventions against normal aging. We find a gene expression program common to all four interventions, in which inflammation is reduced and several metabolic processes, especially fatty acid metabolism, are increased. Normal aging exhibits the inverse of this signature across multiple organs and tissues. A similar inverse signature arises in three chronic inflammation disease models in a non-aging context, suggesting that the shift in metabolism occurs downstream of inflammation. Chronic inflammation is also shown to accelerate transcriptomic age. We conclude that a core mechanism of geroprotective interventions acts through the reduction of inflammation with downstream effects that restore fatty acid metabolism. This supports the notion of directly targeting genes associated with these pathways to mitigate age-related deterioration.
Collapse
Affiliation(s)
- Tomer Landsberger
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Patel L, Roy A, Alvior AMB, Yuan M, Baig S, Bunting KV, Hodson J, Gehmlich K, Lord JM, Geberhiwot T, Steeds RP. Phenoage and longitudinal changes on transthoracic echocardiography in Alström syndrome: a disease of accelerated ageing? GeroScience 2024; 46:1989-1999. [PMID: 37782438 PMCID: PMC10828353 DOI: 10.1007/s11357-023-00959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
Alström syndrome (AS) is an ultra-rare disorder characterised by early-onset multi-organ dysfunction, such as insulin resistance, obesity, dyslipidaemia, and renal and cardiovascular disease. The objective is to explore whether AS is a disease of accelerated ageing and whether changes over time on echocardiography could reflect accelerated cardiac ageing. Cross-sectional measurement of Phenoage and retrospective analysis of serial echocardiography were performed between March 2012 and November 2022. The setting is a single national tertiary service jointly run by health service and patient charity. Forty-five adult patients aged over 16 years were included, 64% were male and 67% of White ethnicity. The median Phenoage was 48 years (interquartile range [IQR]: 35-72) in the 34 patients for whom this was calculable, which was significantly higher than the median chronological age of 29 years (IQR: 22-39, p<0.001). Phenoage was higher than chronological age in 85% (N=29) of patients, with a median difference of +18 years (IQR: +4, +34). On echocardiography, significant decreases were observed over time in left ventricular (LV) size at end-diastole (average of 0.046 cm per year, p<0.001) and end-systole (1.1% per year, p=0.025), with significant increase in posterior wall thickness at end-diastole (0.009 cm per year, p=0.008). LV systolic function measured by global longitudinal strain reduced (0.34 percentage points per year, p=0.020) and E/e'lat increased (2.5% per year, p=0.019). Most AS patients display a higher Phenoage compared to chronological age. Cardiac changes in AS patients were also reflective of accelerated ageing, with a reduction in LV size and increased wall thickening. AS may be a paradigm disease for premature ageing.
Collapse
Affiliation(s)
- Leena Patel
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
- Department of Cardiology, University Hospital Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK.
| | - Amor Mia B Alvior
- Department of Cardiology, University Hospital Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK
| | - Mengshi Yuan
- Department of Cardiology, University Hospital Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK
| | - Shanat Baig
- Department of Cardiology, University Hospital Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK
| | - Karina V Bunting
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospital Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK
| | - James Hodson
- Research Development and Innovation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Tarekegn Geberhiwot
- Department of Endocrinology, University Hospital Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Richard P Steeds
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospital Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK
| |
Collapse
|
45
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
46
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
47
|
Falckenhayn C, Bienkowska A, Söhle J, Wegner K, Raddatz G, Kristof B, Kuck D, Siegner R, Kaufmann R, Korn J, Baumann S, Lange D, Schepky A, Völzke H, Kaderali L, Winnefeld M, Lyko F, Grönniger E. Identification of dihydromyricetin as a natural DNA methylation inhibitor with rejuvenating activity in human skin. FRONTIERS IN AGING 2024; 4:1258184. [PMID: 38500495 PMCID: PMC10944877 DOI: 10.3389/fragi.2023.1258184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 03/20/2024]
Abstract
Changes in DNA methylation patterning have been reported to be a key hallmark of aged human skin. The altered DNA methylation patterns are correlated with deregulated gene expression and impaired tissue functionality, leading to the well-known skin aging phenotype. Searching for small molecules, which correct the aged methylation pattern therefore represents a novel and attractive strategy for the identification of anti-aging compounds. DNMT1 maintains epigenetic information by copying methylation patterns from the parental (methylated) strand to the newly synthesized strand after DNA replication. We hypothesized that a modest inhibition of this process promotes the restoration of the ground-state epigenetic pattern, thereby inducing rejuvenating effects. In this study, we screened a library of 1800 natural substances and 640 FDA-approved drugs and identified the well-known antioxidant and anti-inflammatory molecule dihydromyricetin (DHM) as an inhibitor of the DNA methyltransferase DNMT1. DHM is the active ingredient of several plants with medicinal use and showed robust inhibition of DNMT1 in biochemical assays. We also analyzed the effect of DHM in cultivated keratinocytes by array-based methylation profiling and observed a moderate, but significant global hypomethylation effect upon treatment. To further characterize DHM-induced methylation changes, we used published DNA methylation clocks and newly established age predictors to demonstrate that the DHM-induced methylation change is associated with a reduction in the biological age of the cells. Further studies also revealed re-activation of age-dependently hypermethylated and silenced genes in vivo and a reduction in age-dependent epidermal thinning in a 3-dimensional skin model. Our findings thus establish DHM as an epigenetic inhibitor with rejuvenating effects for aged human skin.
Collapse
Affiliation(s)
| | - Agata Bienkowska
- Beiersdorf AG, Research and Development, Hamburg, Germany
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jörn Söhle
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Katrin Wegner
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Guenter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Boris Kristof
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Dirk Kuck
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ralf Siegner
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Ronny Kaufmann
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Julia Korn
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Sascha Baumann
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Daniela Lange
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | | | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Marc Winnefeld
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Elke Grönniger
- Beiersdorf AG, Research and Development, Hamburg, Germany
| |
Collapse
|
48
|
Zhang Z, Reynolds SR, Stolrow HG, Chen J, Christensen BC, Salas LA. Deciphering the role of immune cell composition in epigenetic age acceleration: Insights from cell-type deconvolution applied to human blood epigenetic clocks. Aging Cell 2024; 23:e14071. [PMID: 38146185 PMCID: PMC10928575 DOI: 10.1111/acel.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Aging is a significant risk factor for various human disorders, and DNA methylation clocks have emerged as powerful tools for estimating biological age and predicting health-related outcomes. Methylation data from blood DNA has been a focus of more recently developed DNA methylation clocks. However, the impact of immune cell composition on epigenetic age acceleration (EAA) remains unclear as only some clocks incorporate partial cell type composition information when analyzing EAA. We investigated associations of 12 immune cell types measured by cell-type deconvolution with EAA predicted by six widely-used DNA methylation clocks in data from >10,000 blood samples. We observed significant associations of immune cell composition with EAA for all six clocks tested. Across the clocks, nine or more of the 12 cell types tested exhibited significant associations with EAA. Higher memory lymphocyte subtype proportions were associated with increased EAA, and naïve lymphocyte subtypes were associated with decreased EAA. To demonstrate the potential confounding of EAA by immune cell composition, we applied EAA in rheumatoid arthritis. Our research maps immune cell type contributions to EAA in human blood and offers opportunities to adjust for immune cell composition in EAA studies to a significantly more granular level. Understanding associations of EAA with immune profiles has implications for the interpretation of epigenetic age and its relevance in aging and disease research. Our detailed map of immune cell type contributions serves as a resource for studies utilizing epigenetic clocks across diverse research fields, including aging-related diseases, precision medicine, and therapeutic interventions.
Collapse
Affiliation(s)
- Ze Zhang
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Dartmouth Cancer CenterDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
- Quantitative Biomedical Sciences ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
| | - Samuel R. Reynolds
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
| | - Hannah G. Stolrow
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Dartmouth Cancer CenterDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
| | - Ji‐Qing Chen
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Molecular and Cellular Biology ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
| | - Brock C. Christensen
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Dartmouth Cancer CenterDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
- Quantitative Biomedical Sciences ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
- Molecular and Cellular Biology ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
| | - Lucas A. Salas
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Dartmouth Cancer CenterDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
- Quantitative Biomedical Sciences ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
- Molecular and Cellular Biology ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
| |
Collapse
|
49
|
Tamman AJF, Koller D, Nagamatsu S, Cabrera-Mendoza B, Abdallah C, Krystal JH, Gelernter J, Montalvo-Ortiz JL, Polimanti R, Pietrzak RH. Psychosocial moderators of polygenic risk scores of inflammatory biomarkers in relation to GrimAge. Neuropsychopharmacology 2024; 49:699-708. [PMID: 37848731 PMCID: PMC10876568 DOI: 10.1038/s41386-023-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
GrimAge acceleration has previously predicted age-related morbidities and mortality. In the current study, we sought to examine how GrimAge is associated with genetic predisposition for systemic inflammation and whether psychosocial factors moderate this association. Military veterans from the National Health and Resilience in Veterans study, which surveyed a nationally representative sample of European American male veterans, provided saliva samples for genotyping (N = 1135). We derived polygenic risk scores (PRS) from the UK Biobank as markers of genetic predisposition to inflammation. Results revealed that PRS for three inflammatory PRS markers-HDL (lower), apolipoprotein B (lower), and gamma-glutamyl transferase (higher)-were associated with accelerated GrimAge. Additionally, these PRS interacted with a range of potentially modifiable psychosocial variables, such as exercise and gratitude, previously identified as associated with accelerated GrimAge. Using gene enrichment, we identified anti-inflammatory and antihistamine drugs that perturbate pathways of genes highly represented in the inflammatory PRS, laying the groundwork for future work to evaluate the potential of these drugs in mitigating epigenetic aging.
Collapse
Affiliation(s)
- Amanda J F Tamman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA.
| | - Dora Koller
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sheila Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Janitza L Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Social and Behavioral Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
50
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|