1
|
Kukowka A, Brzuchalski B, Kurzawski M, Malinowski D, Białecka MA. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes (Basel) 2023; 14:1392. [PMID: 37510297 PMCID: PMC10379323 DOI: 10.3390/genes14071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Increasing alcohol consumption by women of childbearing age contributes to more frequent cases of fetal alcohol spectrum disorder. The cause of the syndrome is fetal alcohol exposure, particularly what is referred to as high prenatal alcohol exposure. Low metabolic activity of fetal enzymes shifts the burden of ethanol removal to maternal metabolism. One of the factors influencing the pathogenesis of FASD is the genetic background. It can determine the rate of elimination of ethanol, thus increasing or decreasing the time of fetal exposure to ethanol and also decreasing its concentration. Genetic polymorphisms could potentially play a significant role in these processes. In the present study, we considered three polymorphisms of genes implicated in the synthesis of enzymes involved in ethanol metabolism, i.e., ADH1b (rs1229984), ADH1b/c (rs1789891), and CYP2E1 (rs3813867). The studied group consisted of 303 children and 251 mothers. Both mothers' and children's genotypes were considered in our analysis. There were no statistically significant differences between the respective groups of genotypes of the studied polymorphisms. However, the genetic background of FASD is still elusive.
Collapse
Affiliation(s)
- Arnold Kukowka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Bogusław Brzuchalski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Monika Anna Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| |
Collapse
|
2
|
O'Brien NL, Quadri G, Lightley I, Sharp SI, Guerrini I, Smith I, Heydtmann M, Morgan MY, Thomson AD, Bass NJ, McHugh PC, McQuillin A. SLC19A1 Genetic Variation Leads to Altered Thiamine Diphosphate Transport: Implications for the Risk of Developing Wernicke-Korsakoff's Syndrome. Alcohol Alcohol 2022; 57:581-588. [PMID: 35952336 DOI: 10.1093/alcalc/agac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/29/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Wernicke-Korsakoff syndrome (WKS) is commonly associated with chronic alcohol misuse, a condition known to have multiple detrimental effects on thiamine metabolism. This study was conducted to identify genetic variants that may contribute to the development of WKS in individuals with alcohol dependence syndrome through alteration of thiamine transport into cells. METHODS Exome sequencing data from a panel of genes related to alcohol metabolism and thiamine pathways were analysed in a discovery cohort of 29 individuals with WKS to identify possible genetic risk variants associated with its development. Variant frequencies in this discovery cohort were compared with European frequencies in the Genome Aggregation Database browser, and those present at significantly higher frequencies were genotyped in an additional cohort of 87 alcohol-dependent cases with WKS and 197 alcohol-dependent cognitively intact controls. RESULTS Thirty non-synonymous variants were identified in the discovery cohort and, after filtering, 23 were taken forward and genotyped in the case-control cohort. Of these SLC19A1:rs1051266:G was nominally associated with WKS. SLC19A1 encodes the reduced folate carrier, a major transporter for physiological folate in plasma; rs1051266 is reported to impact folate transport. Thiamine pyrophosphate (TPP) efflux was significantly decreased in HEK293 cells, stably transfected with rs1051266:G, under thiamine deficient conditions when compared with the efflux from cells transfected with rs1051266:A (P = 5.7 × 10-11). CONCLUSION This study provides evidence for the role of genetic variation in the SLC19A1 gene, which may contribute to the development of WKS in vivo through modulation of TPP transport in cells.
Collapse
Affiliation(s)
- Niamh L O'Brien
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Giorgia Quadri
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Iain Lightley
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, UK
| | - Sally I Sharp
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Irene Guerrini
- Erith Health Centre, South London and Maudsley NHS Foundation Trust, London, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Iain Smith
- Alcohol Related Brain Injury Team, Stirling, UK
| | - Mathis Heydtmann
- Department of Gastroenterology, Dumfries & Galloway Royal Infirmary, Cargenbridge, Dumfries, UK
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, UK
| | - Allan D Thomson
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Nicholas J Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Patrick C McHugh
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, UK
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| |
Collapse
|
3
|
Schaschl H, Göllner T, Morris DL. Positive selection acts on regulatory genetic variants in populations of European ancestry that affect ALDH2 gene expression. Sci Rep 2022; 12:4563. [PMID: 35296751 PMCID: PMC8927298 DOI: 10.1038/s41598-022-08588-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
ALDH2 is a key enzyme in alcohol metabolism that protects cells from acetaldehyde toxicity. Using iHS, iSAFE and FST statistics, we identified regulatory acting variants affecting ALDH2 gene expression under positive selection in populations of European ancestry. Several SNPs (rs3184504, rs4766578, rs10774625, rs597808, rs653178, rs847892, rs2013002) that function as eQTLs for ALDH2 in various tissues showed evidence of strong positive selection. Very large pairwise FST values indicated high genetic differentiation at these loci between populations of European ancestry and populations of other global ancestries. Estimating the timing of positive selection on the beneficial alleles suggests that these variants were recently adapted approximately 3000-3700 years ago. The derived beneficial alleles are in complete linkage disequilibrium with the derived ALDH2 promoter variant rs886205, which is associated with higher transcriptional activity. The SNPs rs4766578 and rs847892 are located in binding sequences for the transcription factor HNF4A, which is an important regulatory element of ALDH2 gene expression. In contrast to the missense variant ALDH2 rs671 (ALDH2*2), which is common only in East Asian populations and is associated with greatly reduced enzyme activity and alcohol intolerance, the beneficial alleles of the regulatory variants identified in this study are associated with increased expression of ALDH2. This suggests adaptation of Europeans to higher alcohol consumption.
Collapse
Affiliation(s)
- Helmut Schaschl
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Tobias Göllner
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - David L Morris
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
4
|
Legaz I, Pérez-Cárceles MD, de la Calle I, Arjona F, Roca M, Cejudo P, Luna A, Osuna E. Genetic susceptibility to nicotine and/or alcohol addiction: a systematic review. TOXIN REV 2021; 40:371-382. [DOI: 10.1080/15569543.2019.1619085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Isabel Legaz
- University of Murcia - Espinardo Campus, Murcia, Spain
| | - M. D. Pérez-Cárceles
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | - Miriam Roca
- University of Murcia - Espinardo Campus, Murcia, Spain
| | - Pablo Cejudo
- University of Murcia - Espinardo Campus, Murcia, Spain
| | - Aurelio Luna
- University of Murcia - Espinardo Campus, Murcia, Spain
| | - Eduardo Osuna
- University of Murcia - Espinardo Campus, Murcia, Spain
| |
Collapse
|
5
|
Ayuso P, García-Martín E, Cornejo-García JA, Agúndez JAG, Ladero JM. Genetic Variants of Alcohol Metabolizing Enzymes and Alcohol-Related Liver Cirrhosis Risk. J Pers Med 2021; 11:jpm11050409. [PMID: 34068303 PMCID: PMC8153263 DOI: 10.3390/jpm11050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 11/25/2022] Open
Abstract
Alcohol-related liver disease (ARLD) is a major public health issue caused by excessive alcohol consumption. ARLD encompasses a wide range of chronic liver lesions, alcohol-related liver cirrhosis being the most severe and harmful state. Variations in the genes encoding the enzymes, which play an active role in ethanol metabolism, might influence alcohol exposure and hence be considered as risk factors of developing cirrhosis. We conducted a case-control study in which 164 alcohol-related liver cirrhosis patients and 272 healthy controls were genotyped for the following functional single nucleotide variations (SNVs): ADH1B gene, rs1229984, rs1041969, rs6413413, and rs2066702; ADH1C gene, rs35385902, rs283413, rs34195308, rs1693482, and rs35719513; CYP2E1 gene, rs3813867. Furthermore, copy number variations (CNVs) for ADH1A, ADH1B, ADH1C, and CYP2E1 genes were analyzed. A significant protective association with the risk of developing alcohol-related liver cirrhosis was observed between the mutant alleles of SNVs ADH1B rs1229984 (Pc value = 0.037) and ADH1C rs283413 (Pc value = 0.037). We identified CNVs in all genes studied, ADH1A gene deletions being more common in alcohol-related liver cirrhosis patients than in control subjects, although the association lost statistical significance after multivariate analyses. Our findings support that susceptibility to alcohol-related liver cirrhosis is related to variations in alcohol metabolism genes.
Collapse
Affiliation(s)
- Pedro Ayuso
- ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, UEx, 10003 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
- Correspondence:
| | - Elena García-Martín
- ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, UEx, 10003 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. Cornejo-García
- ARADyAL, Instituto de Salud Carlos III Research Laboratory, IBIMA, Regional University Hospital of Málaga, UMA, 29010 Málaga, Spain;
| | - José A. G. Agúndez
- ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, UEx, 10003 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José María Ladero
- Service of Gastroenterology (Liver Unit), Hospital Clínico San Carlos, Universidad Complutense Medical School, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Genomics and epigenomics of addiction. Am J Med Genet B Neuropsychiatr Genet 2021; 186:128-139. [PMID: 33819378 DOI: 10.1002/ajmg.b.32843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
Recent progress in the genomics and epigenomics of addiction has contributed to improving our understanding of this complex mental disorder's etiology, filling the gap between genes, environment, and behavior. We review the behavioral genetic studies reporting gene and environment interactions that explain the polygenetic contribution to the resilience and vulnerability to develop addiction. We discuss the evidence of polymorphic candidate genes that confer susceptibility to develop addiction as well as the studies of specific epigenetic marks that contribute to vulnerability and resilience to addictive-like behavior. A particular emphasis has been devoted to the miRNA changes that are considered potential biomarkers. The increasing knowledge about the technology required to alter miRNA expression may provide promising novel therapeutic tools. Finally, we give future directions for the field's progress in disentangling the connection between genes, environment, and behavior.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Pablo Calvé
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alejandra García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eric Senabre
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
7
|
Li W, Thygesen JH, O'Brien NL, Heydtmann M, Smith I, Degenhardt F, Nöthen MM, Morgan MY, Bass NJ, McQuillin A. The influence of regression models on genome-wide association studies of alcohol dependence: a comparison of binary and quantitative analyses. Psychiatr Genet 2021; 31:13-20. [PMID: 33290381 DOI: 10.1097/ypg.0000000000000268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) of alcohol dependence syndrome (ADS) offer a platform to detect genetic risk loci. However, the majority of the ADS GWAS undertaken, to date, have utilized a case-control design and have failed to identify consistently replicable loci with the exception of protective variants within the alcohol metabolizing genes, notably ADH1B. The ADS phenotype shows considerable variability which means that the use of quantitative variables as a proxy for the severity of ADS has the potential to facilitate identification of risk loci by increasing statistical power. The current study aims to examine the influences of using binary and adjusted quantitative measures of ADS on GWAS outcomes and on calculated polygenic risk scores (PRS). METHODS A GWAS was performed in 1251 healthy controls with no history of excess alcohol use and 739 patients with ADS classified using binary DMS-IV criteria. Two additional GWAS were undertaken using a quantitative score based on DSM-IV criteria, which were applied assuming both normal and non-normal distributions of the phenotypic variables. PRS analyses were performed utilizing the data from the binary and the quantitative trait analyses. RESULTS No associations were identified at genome-wide significance in any of the individual GWAS; results were comparable in all three. The top associated single nucleotide polymorphism was located on the alcohol dehydrogenase gene cluster on chromosome 4, consistent with previous ADS GWAS. The quantitative trait analysis adjusted for the distribution of the criterion score and the associated PRS had the smallest standard errors and thus the greatest precision. CONCLUSION Further exploitation of the use of qualitative trait analysis in GWAS in ADS is warranted.
Collapse
Affiliation(s)
- Wenqianglong Li
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| | - Johan Hilge Thygesen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| | - Niamh Louise O'Brien
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| | - Mathis Heydtmann
- Royal Alexandria Hospital, NHS Greater Glasgow and Clyde, Paisley
| | - Iain Smith
- Glasgow Addiction Services, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| | - Markus Maria Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn
| | - Marsha Yvonne Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Nicholas James Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| |
Collapse
|
8
|
McQuire C, Daniel R, Hurt L, Kemp A, Paranjothy S. The causal web of foetal alcohol spectrum disorders: a review and causal diagram. Eur Child Adolesc Psychiatry 2020; 29:575-594. [PMID: 30648224 PMCID: PMC7250957 DOI: 10.1007/s00787-018-1264-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
Foetal alcohol spectrum disorders (FASDs) are a leading cause of developmental disability. Prenatal alcohol use is the sole necessary cause of FASD, but it is not always sufficient. Multiple factors influence a child's susceptibility to FASD following prenatal alcohol exposure. Much of the FASD risk factor literature has been limited to discussions of association, rather than causation. While knowledge of predictor variables is important for identifying who is most at risk of FASD and for targeting interventions, causal knowledge is important for identifying effective mechanisms for prevention and intervention programmes. We conducted a systematic search and narrative synthesis of the evidence and used this to create a causal diagram (directed acyclic graph; DAG) to describe the causal pathways to FASD. Our results show that the aetiology of FASD is multifaceted and complex. FASD risk is determined by a range of lifestyle, sociodemographic, maternal, social, gestational, and genetic factors. The causal diagram that we present in this review provides a comprehensive summary of causal risk factors for FASD and can be used as a tool to inform data collection and statistical modelling strategies to minimise bias in future studies of FASD.
Collapse
Affiliation(s)
- Cheryl McQuire
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK.
| | - R. Daniel
- Division of Population Medicine, Cardiff University, 3rd Floor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS UK
| | - L. Hurt
- Division of Population Medicine, Cardiff University, 3rd Floor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS UK
| | - A. Kemp
- Division of Population Medicine, Cardiff University, 3rd Floor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS UK
| | - S. Paranjothy
- Division of Population Medicine, Cardiff University, 3rd Floor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS UK
| |
Collapse
|
9
|
Translational Molecular Approaches in Substance Abuse Research. Handb Exp Pharmacol 2019; 258:31-60. [PMID: 31628598 DOI: 10.1007/164_2019_259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Excessive abuse of psychoactive substances is one of the leading contributors to morbidity and mortality worldwide. In this book chapter, we review translational research strategies that are applied in the pursuit of new and more effective therapeutics for substance use disorder (SUD). The complex, multidimensional nature of psychiatric disorders like SUD presents difficult challenges to investigators. While animal models are critical for outlining the mechanistic relationships between defined behaviors and genetic and/or molecular changes, the heterogeneous pathophysiology of brain diseases is uniquely human, necessitating the use of human studies and translational research schemes. Translational research describes a cross-species approach in which findings from human patient-based data can be used to guide molecular genetic investigations in preclinical animal models in order to delineate the mechanisms of reward circuitry changes in the addicted state. Results from animal studies can then inform clinical investigations toward the development of novel treatments for SUD. Here we describe the strategies that are used to identify and functionally validate genetic variants in the human genome which may contribute to increased risk for SUD, starting from early candidate gene approaches to more recent genome-wide association studies. We will next examine studies aimed at understanding how transcriptional and epigenetic dysregulation in SUD can persistently alter cellular function in the disease state. In our discussion, we then focus on examples from the literature illustrating molecular genetic methodologies that have been applied to studies of different substances of abuse - from alcohol and nicotine to stimulants and opioids - in order to exemplify how these approaches can both delineate the underlying molecular systems driving drug addiction and provide insights into the genetic basis of SUD.
Collapse
|
10
|
Brazel DM, Jiang Y, Hughey JM, Turcot V, Zhan X, Gong J, Batini C, Weissenkampen JD, Liu M, Barnes DR, Bertelsen S, Chou YL, Erzurumluoglu AM, Faul JD, Haessler J, Hammerschlag AR, Hsu C, Kapoor M, Lai D, Le N, de Leeuw CA, Loukola A, Mangino M, Melbourne CA, Pistis G, Qaiser B, Rohde R, Shao Y, Stringham H, Wetherill L, Zhao W, Agrawal A, Bierut L, Chen C, Eaton CB, Goate A, Haiman C, Heath A, Iacono WG, Martin NG, Polderman TJ, Reiner A, Rice J, Schlessinger D, Scholte HS, Smith JA, Tardif JC, Tindle HA, van der Leij AR, Boehnke M, Chang-Claude J, Cucca F, David SP, Foroud T, Howson JMM, Kardia SLR, Kooperberg C, Laakso M, Lettre G, Madden P, McGue M, North K, Posthuma D, Spector T, Stram D, Tobin MD, Weir DR, Kaprio J, Abecasis GR, Liu DJ, Vrieze S. Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use. Biol Psychiatry 2019; 85:946-955. [PMID: 30679032 PMCID: PMC6534468 DOI: 10.1016/j.biopsych.2018.11.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.
Collapse
Affiliation(s)
- David M Brazel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jordan M Hughey
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Valérie Turcot
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Xiaowei Zhan
- Department of Clinical Science, Center for Genetics of Host Defense, University of Texas Southwestern, Dallas, Texas
| | - Jian Gong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chiara Batini
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - J Dylan Weissenkampen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - MengZhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel R Barnes
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Bertelsen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yi-Ling Chou
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | | | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Jeff Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anke R Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Chris Hsu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nhung Le
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Anu Loukola
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom; National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, United Kingdom
| | - Carl A Melbourne
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Beenish Qaiser
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Rebecca Rohde
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yaming Shao
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Heather Stringham
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, Head and Neck Surgery Center, University of Washington, Seattle, Washington; Department of Otolaryngology, Head and Neck Surgery Center, University of Washington, Seattle, Washington
| | - Charles B Eaton
- Department of Family Medicine, Brown University, Providence, Rhode Island
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | | | - Tinca J Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, Head and Neck Surgery Center, University of Washington, Seattle, Washington
| | - John Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri
| | - David Schlessinger
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Jean-Claude Tardif
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Hilary A Tindle
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Andries R van der Leij
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael Boehnke
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Sean P David
- Department of Medicine, Stanford University, Stanford, California
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joanna M M Howson
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markku Laakso
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Guillaume Lettre
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Clinical Genetics, VU University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Timothy Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Daniel Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Gonçalo R Abecasis
- Regeneron Pharmaceuticals, Tarrytown, New York; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
11
|
Klein K, Tremmel R, Winter S, Fehr S, Battke F, Scheurenbrand T, Schaeffeler E, Biskup S, Schwab M, Zanger UM. A New Panel-Based Next-Generation Sequencing Method for ADME Genes Reveals Novel Associations of Common and Rare Variants With Expression in a Human Liver Cohort. Front Genet 2019; 10:7. [PMID: 30766545 PMCID: PMC6365429 DOI: 10.3389/fgene.2019.00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/09/2019] [Indexed: 01/10/2023] Open
Abstract
We developed a panel-based NGS pipeline for comprehensive analysis of 340 genes involved in absorption, distribution, metabolism and excretion (ADME) of drugs, other xenobiotics, and endogenous substances. The 340 genes comprised phase I and II enzymes, drug transporters and regulator/modifier genes within their entire coding regions, adjacent intron regions and 5' and 3'UTR regions, resulting in a total panel size of 1,382 kbp. We applied the ADME NGS panel to sequence genomic DNA from 150 Caucasian liver donors with available comprehensive gene expression data. This revealed an average read-depth of 343 (range 27-811), while 99% of the 340 genes were covered on average at least 100-fold. Direct comparison of variant annotation with 363 available genotypes determined independently by other methods revealed an overall accuracy of >99%. Of 15,727 SNV and small INDEL variants, 12,022 had a minor allele frequency (MAF) below 2%, including 8,937 singletons. In total we found 7,273 novel variants. Functional predictions were computed for coding variants (n = 4,017) by three algorithms (Polyphen 2, Provean, and SIFT), resulting in 1,466 variants (36.5%) concordantly predicted to be damaging, while 1,019 variants (25.4%) were predicted to be tolerable. In agreement with other studies we found that less common variants were enriched for deleterious variants. Cis-eQTL analysis of variants with (MAF ≥ 2%) revealed significant associations for 90 variants in 31 genes after Bonferroni correction, most of which were located in non-coding regions. For less common variants (MAF < 2%), we applied the SKAT-O test and identified significant associations to gene expression for ADH1C and GSTO1. Moreover, our data allow comparison of functional predictions with additional phenotypic data to prioritize variants for further analysis.
Collapse
Affiliation(s)
- Kathrin Klein
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| | - Sarah Fehr
- CeGaT GmbH, Tübingen, Germany
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Florian Battke
- CeGaT GmbH, Tübingen, Germany
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Tim Scheurenbrand
- CeGaT GmbH, Tübingen, Germany
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| | - Saskia Biskup
- CeGaT GmbH, Tübingen, Germany
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ulrich M. Zanger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Medical School, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Bach P, Zois E, Vollstädt-Klein S, Kirsch M, Hoffmann S, Jorde A, Frank J, Charlet K, Treutlein J, Beck A, Heinz A, Walter H, Rietschel M, Kiefer F. Association of the alcohol dehydrogenase gene polymorphism rs1789891 with gray matter brain volume, alcohol consumption, alcohol craving and relapse risk. Addict Biol 2019; 24:110-120. [PMID: 29058369 DOI: 10.1111/adb.12571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/27/2017] [Accepted: 09/12/2017] [Indexed: 11/27/2022]
Abstract
Alcohol metabolizing enzymes, such as the alcohol dehydrogenases and the aldehyde dehydrogenases, regulate the levels of acetaldehyde in the blood and play an important role in the development and maintenance of alcohol addiction. Recent genome-wide systematic searches found associations between a single nucleotide polymorphism (rs1789891, risk allele: A, protective allele: C) in the alcohol dehydrogenase gene cluster and the risk of alcohol dependence. The current study investigated the effect of this single nucleotide polymorphism on alcohol consumption, craving for alcohol, relapse risk and brain gray matter volume. Alcohol-dependent patients (n = 74) and controls (n = 43) were screened, genotyped and underwent magnetic resonance imaging scanning, and relapse data were collected during 3 months following the experiment. Alcohol-dependent A allele carriers reported increased alcohol craving and higher alcohol consumption compared with the group of alcohol-dependent individuals homozygous for the C allele, which displayed craving values similar to the control group. Further, follow-up data indicated that A allele carriers relapsed earlier to heavy drinking compared with individuals with two C alleles. Analyses of gray matter volume indicated a significant genotype difference in the patient group: individuals with two C alleles had reduced gray matter volume in the left and right superior, middle and inferior temporal gyri. Findings of the current study further support the relevance of genetic variants in alcohol metabolizing enzymes to addictive behavior, brain tissue volume and relapse risk. Genotype-dependent differences in acetaldehyde formation, implicated by earlier studies, might be the biological substrate of the genotype differences.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Evangelos Zois
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Martina Kirsch
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Anne Jorde
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Katrin Charlet
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Anne Beck
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
13
|
Edenberg HJ, McClintick JN. Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review. Alcohol Clin Exp Res 2018; 42:2281-2297. [PMID: 30320893 PMCID: PMC6286250 DOI: 10.1111/acer.13904] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/07/2018] [Indexed: 12/20/2022]
Abstract
Alcohol use disorders (AUDs) are complex traits, meaning that variations in many genes contribute to the risk, as does the environment. Although the total genetic contribution to risk is substantial, most individual variations make only very small contributions. By far the strongest contributors are functional variations in 2 genes involved in alcohol (ethanol [EtOH]) metabolism. A functional variant in alcohol dehydrogenase 1B (ADH1B) is protective in people of European and Asian descent, and a different functional variant in the same gene is protective in those of African descent. A strongly protective variant in aldehyde dehydrogenase 2 (ALDH2) is essentially only found in Asians. This highlights the need to study a wide range of populations. The likely mechanism of protection against heavy drinking and AUDs in both cases is alteration in the rate of metabolism of EtOH that at least transiently elevates acetaldehyde. Other ADH and ALDH variants, including functional variations in ADH1C, have also been implicated in affecting drinking behavior and risk for alcoholism. The pattern of linkage disequilibrium in the ADH region and the differences among populations complicate analyses, particularly of regulatory variants. This critical review focuses upon the ADH and ALDH genes as they affect AUDs.
Collapse
Affiliation(s)
- Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jeanette N. McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
14
|
Chi YC, Lee SL, Lee YP, Lai CL, Yin SJ. Modeling of Human Hepatic and Gastrointestinal Ethanol Metabolism with Kinetic-Mechanism-Based Full-Rate Equations of the Component Alcohol Dehydrogenase Isozymes and Allozymes. Chem Res Toxicol 2018; 31:556-569. [PMID: 29847918 DOI: 10.1021/acs.chemrestox.8b00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcohol dehydrogenase (ADH) is the principal enzyme responsible for the metabolism of ethanol. Human ADH constitutes a complex family of isozymes and allozymes with striking variation in kinetic properties and tissue distribution. The liver and the gastrointestinal tract are the major sites for first-pass metabolism (FPM). The quantitative contributions of ADH isozymes and ethnically distinct allozymes to cellular ethanol metabolism remain poorly understood. To address this issue, kinetic mechanism and the steady-state full-rate equations for recombinant human class I ADH1A, ADH1B (including allozymes ADH1B1, ADH1B2, and ADH1B3), ADH1C (including allozymes ADH1C1 and ADH1C2), class II ADH2, and class IV ADH4 were determined by initial velocity, product inhibition, and dead-end inhibition experiments in 0.1 M sodium phosphate at pH 7.5 and 25 °C. Models of the hepatic and gastrointestinal metabolisms of ethanol were constructed by linear combination of the numerical full-rate equations of the component isozymes and allozymes in target organs. The organ simulations indicate that in homozygous ADH1B*1/*1 livers, a representative genotype among ethnically distinct populations due to high prevalence of the allele, major contributors at 1 to 10 mM ethanol are ADH1B1 (45% to 24%) and the ADH1C allozymes (54% to 40%). The simulated activities at 1 to 50 mM ethanol for the gastrointestinal tract (total mucosae of ADH1C*1/*1-ADH4 stomach and the ADH1C*1/*1-ADH2 duodenum and jejunum) account for 0.68%-0.76% of that for the ADH1B*1/*1-ADH1C*1/*1 liver, suggesting gastrointestinal tract plays a relatively minor role in the human FPM of ethanol. Based on the flow-limited sinusoidal perfusion model, the simulated hepatic Kmapp, Vmaxapp, and Ci at a 95% clearance of ethanol for ADH1B*1/*1-ADH1C*1/*1 livers are compatible to that documented in hepatic vein catheterization and pharmacokinetic studies with humans that controlled for the genotypes. The model simulations suggest that slightly higher or similar ethanol elimination rates for ADH1B*2/*2 and ADH1B*3/*3 individuals compared with those for ADH1B*1/*1 individuals may result from higher hepatocellular acetaldehyde.
Collapse
Affiliation(s)
- Yu-Chou Chi
- Department of Biochemistry , National Defense Medical Center , 161 Minchuan East Road Section 6 , Taipei 11490 , Taiwan
| | - Shou-Lun Lee
- Department of Biological Science and Technology , China Medical University , 91 Hsueh-Shih Road , Taichung 40402 , Taiwan
| | - Yung-Ping Lee
- Department of Biochemistry , National Defense Medical Center , 161 Minchuan East Road Section 6 , Taipei 11490 , Taiwan
| | - Ching-Long Lai
- Department of Nursing , Chang Gung University of Science and Technology , 261 Wenhwa First Road , Taoyuan City 33303 , Taiwan
| | - Shih-Jiun Yin
- Department of Biochemistry , National Defense Medical Center , 161 Minchuan East Road Section 6 , Taipei 11490 , Taiwan
| |
Collapse
|
15
|
Christensen AI, Nordestgaard BG, Tolstrup JS. Alcohol Intake and Risk of Ischemic and Haemorrhagic Stroke: Results from a Mendelian Randomisation Study. J Stroke 2018; 20:218-227. [PMID: 29886720 PMCID: PMC6007300 DOI: 10.5853/jos.2017.01466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/24/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE To test whether alcohol intake, both observational and estimated by genetic instruments, is associated with risk of ischemic and haemorrhagic stroke. METHODS We used data from the Copenhagen City Heart Study 1991 to 1994 and 2001 to 2003, and the Copenhagen General Population Study 2003 to 2012 (n=78,546). As measure of alcohol exposure, self-reported consumption and genetic variation in alcohol metabolizing genes (alcohol dehydrogenase ADH1B and ADH1C) as instrumental variables were used. Stroke diagnoses were obtained from a validated hospital register. RESULTS During follow-up 2,535 cases of ischemic and haemorrhagic stroke occurred. Low and moderate alcohol intake (1 to 20 drinks/week) was associated with reduced risk of stroke. The hazard ratios associated with drinking 1 to 6, 7 to 13, and 14 to 20 drinks/week were 0.84 (95% confidence interval [CI], 0.76 to 0.92), 0.83 (95% CI, 0.73 to 0.94), and 0.84 (95% CI, 0.73 to 0.97), respectively, compared with drinking <1 drink/day. ADH1B and ADH1C genotypes were not associated with risk of stroke. Further analysis to test the included measures revealed that increasing alcohol intake (per 1 drink/day) was positively associated with risk of alcoholic liver cirrhosis, but not associated with risk of stroke, and that increasing blood pressure (per systolic 10 mm Hg) was not associated with risk of alcoholic liver cirrhosis, but positively associated with risk of stroke. CONCLUSIONS Low and moderate self-reported alcohol intake was associated with reduced risk of stroke. The result was not supported by the result from the causal genetic analysis.
Collapse
Affiliation(s)
- Anne I Christensen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Janne S Tolstrup
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW With the advent of the genome-wide association study (GWAS), our understanding of the genetics of addiction has made significant strides forward. Here, we summarize genetic loci containing variants identified at genome-wide statistical significance (P < 5 × 10-8) and independently replicated, review evidence of functional or regulatory effects for GWAS-identified variants, and outline multi-omics approaches to enhance discovery and characterize addiction loci. RECENT FINDINGS Replicable GWAS findings span 11 genetic loci for smoking, eight loci for alcohol, and two loci for illicit drugs combined and include missense functional variants and noncoding variants with regulatory effects in human brain tissues traditionally viewed as addiction-relevant (e.g., prefrontal cortex [PFC]) and, more recently, tissues often overlooked (e.g., cerebellum). GWAS analyses have discovered several novel, replicable variants contributing to addiction. Using larger sample sizes from harmonized datasets and new approaches to integrate GWAS with multiple 'omics data across human brain tissues holds great promise to significantly advance our understanding of the biology underlying addiction.
Collapse
Affiliation(s)
- Dana B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle Park, NC, 27709, USA.
| | - Christina A Markunas
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Eric O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Cleveland HH, Schlomer GL, Vandenbergh DJ, Wolf PSA, Feinberg M, Greenberg M, Spoth R, Redmond C. Associations between alcohol dehydrogenase genes and alcohol use across early and middle adolescence: Moderation × Preventive intervention. Dev Psychopathol 2018; 30:297-313. [PMID: 28534462 PMCID: PMC6367729 DOI: 10.1017/s0954579417000633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Data from the in-school sample of the PROSPER preventive intervention dissemination trial were used to investigate associations between alcohol dehydrogenase genes and alcohol use across adolescence, and whether substance misuse interventions in the 6th and 7th grades (targeting parenting, family functioning, social norms, youth decision making, and peer group affiliations) modified associations between these genes and adolescent use. Primary analyses were run on a sample of 1,885 individuals and included three steps. First, we estimated unconditional growth curve models with separate slopes for alcohol use from 6th to 9th grade and from 9th to 12th grade, as well as the intercept at Grade 9. Second, we used intervention condition and three alcohol dehydrogenase genes, 1B (ADH1B), 1C (ADH1C), and 4 (ADH4) to predict variance in slopes and intercept. Third, we examined whether genetic influences on model slopes and intercepts were moderated by intervention condition. The results indicated that the increase in alcohol use was greater in early adolescence than in middle adolescence; two of the genes, ADH1B and ADH1C, significantly predicted early adolescent slope and Grade 9 intercept, and associations between ADH1C and both early adolescent slope and intercept were significantly different across control and intervention conditions.
Collapse
Affiliation(s)
- H Harrington Cleveland
- Professor of Human Development and Family Studies, The Pennsylvania State University, 234 Health & Human Development Building, The Pennsylvania State University, University Park, PA 16803, 814-867-2370,
| | - Gabriel L Schlomer
- University of Albany, SUNY, Assistant Professor, Educational Psychology & Methodology, ED 225, Albany, NY 12222, 518-442-5150,
| | - David J. Vandenbergh
- Professor of Biobehavioral Health, The Pennsylvania State University, 258A HHD Building, The Pennsylvania State University, University Park, PA 16802, 814-863-8430,
| | - Pedro S. A. Wolf
- The Pennsylvania State University, Behavioral Scientist, Northup Grumman, Falls Church, VA,
| | - Mark Feinberg
- The Pennsylvania State University, Research Professor of Health and Human Development, 314 Biobehavioral Health Building, The Pennsylvania State University, State College, PA 16801, 814-865-7375,
| | - Mark Greenberg
- The Pennsylvania State University, Edna Peterson Bennett Endowed Chair in Prevention Research, Professor of Human Development and Psychology, 306 BBH Building, The Pennsylvania State University, University Park, PA 16802, 814-863-0112,
| | - Richard Spoth
- Iowa State University, Human Development and Family Studies, Ames, IA 50010, 515-294-9752,
| | - Cleve Redmond
- Iowa State University, Human Development and Family Studies, Ames, IA 50010, 515-294-0114,
| |
Collapse
|
18
|
Wolf JM, Simon D, Béria JU, Tietzmann DC, Stein AT, Lunge VR. Analysis of the Association of Nonsynonymous Polymorphisms in ADH Genes with Hazardous Drinking in HIV-1-Positive Individuals. Alcohol Clin Exp Res 2017; 41:1866-1874. [PMID: 28833276 DOI: 10.1111/acer.13486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hazardous drinking (HD) is a serious health problem in people infected with human immunodeficiency virus type 1 (HIV-1). Single nucleotide polymorphisms (SNPs) in alcohol dehydrogenase (ADH) genes have been associated with HD in different populations, but there were no data about this in HIV-1-positive individuals. This study investigated the association of 4 nonsynonymous SNPs in ADH genes (Arg48His and Arg370Cys in ADH1B gene; Arg272Gln and Ile350Val in ADH1C gene) with HD in people living with HIV-1. METHODS This case-control study included 365 HIV-1-positive individuals (121 with HD and 244 without HD). Sociodemographic variables were collected with a standardized individual questionnaire. HD (score ≥8) and binge drinking (BD) (drinks on the same occasion ≥5) were detected with the Alcohol Use Disorders Identification Test. The 4 SNPs were genotyped by the polymerase chain reaction-restriction fragment length polymorphism method. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were calculated using logistic regression analysis. The Bonferroni correction was used (considering the 4 SNPs studied). RESULTS There were no significant differences in the frequencies of Arg370Cys, Arg272Gln, and Ile350Val polymorphisms between HD cases and controls. Otherwise, Arg/His genotype (rs1229984) in ADH1B gene showed a protective effect against HD (aOR = 0.36; 95% CI: 0.14 to 0.90) and BD (aOR = 0.49; 95% CI: 0.21 to 0.95). Nevertheless, these differences were no longer significant after Bonferroni correction. CONCLUSIONS The results of this study suggest a possible effect of the Arg48His genotype on the protection against HD in HIV-1-positive individuals.
Collapse
Affiliation(s)
- Jonas Michel Wolf
- Laboratório de Diagnóstico Molecular , Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde , Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - Daniel Simon
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde , Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | | | | | - Airton Tetelbom Stein
- Fundação Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre, Brazil
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular , Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde , Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| |
Collapse
|
19
|
Way MJ, Ali MA, McQuillin A, Morgan MY. Genetic variants in ALDH1B1 and alcohol dependence risk in a British and Irish population: A bioinformatic and genetic study. PLoS One 2017; 12:e0177009. [PMID: 28594837 PMCID: PMC5464525 DOI: 10.1371/journal.pone.0177009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/20/2017] [Indexed: 12/30/2022] Open
Abstract
Alcohol is metabolized in the liver via the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Polymorphisms in the genes encoding these enzymes, which are common in East Asian populations, can alter enzyme kinetics and hence the risk of alcohol dependence and its sequelae. One of the most important genetic variants, in this regards, is the single nucleotide polymorphism (SNP) rs671 in ALDH2, the gene encoding the primary acetaldehyde metabolizing enzyme ALDH2. However, the protective allele of rs671 is absent in most Europeans although ALDH1B1, which shares significant sequence homology with ALDH2, contains several, potentially functional, missense SNPs that do occur in European populations. The aims of this study were: (i) to use bioinformatic techniques to characterize the possible effects of selected variants in ALDH1B1 on protein structure and function; and, (ii) to genotype three missense and one stop-gain, protein-altering, non-synonymous SNPs in 1478 alcohol dependent cases and 1254 controls of matched British and Irish ancestry. No significant allelic associations were observed between the three missense SNPs and alcohol dependence risk. The minor allele frequency of rs142427338 (Gln378Ter) was higher in alcohol dependent cases than in controls (allelic P = 0.19, OR = 2.98, [0.62–14.37]) but as this SNP is very rare the study was likely underpowered to detect an association with alcohol dependence risk. This potential association will needs to be further evaluated in other large, independent European populations.
Collapse
Affiliation(s)
- Michael J. Way
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
- UCL Institute for Liver & Digestive Health, Department of Medicine, Royal Free Campus, University College London, London, United Kingdom
| | - M. Adam Ali
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
- UCL Institute for Liver & Digestive Health, Department of Medicine, Royal Free Campus, University College London, London, United Kingdom
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Marsha Y. Morgan
- UCL Institute for Liver & Digestive Health, Department of Medicine, Royal Free Campus, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Neuman MG, French SW, Zakhari S, Malnick S, Seitz HK, Cohen LB, Salaspuro M, Voinea-Griffin A, Barasch A, Kirpich IA, Thomes PG, Schrum LW, Donohue TM, Kharbanda KK, Cruz M, Opris M. Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Exp Mol Pathol 2017; 102:162-180. [PMID: 28077318 DOI: 10.1016/j.yexmp.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Stephen Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Andreea Voinea-Griffin
- Public Health Science Texas A&M University, College of Dentistry, Dallas University, TX, USA
| | - Andrei Barasch
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura W Schrum
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Terrence M Donohue
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marcus Cruz
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Opris
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| |
Collapse
|
21
|
Vu KN, Ballantyne CM, Hoogeveen RC, Nambi V, Volcik KA, Boerwinkle E, Morrison AC. Causal Role of Alcohol Consumption in an Improved Lipid Profile: The Atherosclerosis Risk in Communities (ARIC) Study. PLoS One 2016; 11:e0148765. [PMID: 26849558 PMCID: PMC4744040 DOI: 10.1371/journal.pone.0148765] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Health benefits of low-to-moderate alcohol consumption may operate through an improved lipid profile. A Mendelian randomization (MR) approach was used to examine whether alcohol consumption causally affects lipid levels. METHODS This analysis involved 10,893 European Americans (EA) from the Atherosclerosis Risk in Communities (ARIC) study. Common and rare variants in alcohol dehydrogenase and acetaldehyde dehydrogenase genes were evaluated for MR assumptions. Five variants, residing in the ADH1B, ADH1C, and ADH4 genes, were selected as genetic instruments and were combined into an unweighted genetic score. Triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-c) and its subfractions (HDL2-c and HDL3-c), low-density lipoprotein cholesterol (LDL-c), small dense LDL-c (sdLDL-c), apolipoprotein B (apoB), and lipoprotein (a) (Lp(a)) levels were analyzed. RESULTS Alcohol consumption significantly increased HDL2-c and reduced TG, total cholesterol, LDL-c, sdLDL-c, and apoB levels. For each of these lipids a non-linear trend was observed. Compared to the first quartile of alcohol consumption, the third quartile had a 12.3% lower level of TG (p < 0.001), a 7.71 mg/dL lower level of total cholesterol (p = 0.007), a 10.3% higher level of HDL2-c (p = 0.007), a 6.87 mg/dL lower level of LDL-c (p = 0.012), a 7.4% lower level of sdLDL-c (p = 0.037), and a 3.5% lower level of apoB (p = 0.058, poverall = 0.022). CONCLUSIONS This study supports the causal role of regular low-to-moderate alcohol consumption in increasing HDL2-c, reducing TG, total cholesterol, and LDL-c, and provides evidence for the novel finding that low-to-moderate consumption of alcohol reduces apoB and sdLDL-c levels among EA. However, given the nonlinearity of the effect of alcohol consumption, even within the range of low-to-moderate drinking, increased consumption does not always result in a larger benefit.
Collapse
Affiliation(s)
- Khanh N. Vu
- School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Christie M. Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, Texas, United States of America
- Houston Methodist Debakey Heart and Vascular Center, Houston, Texas, United States of America
| | - Ron C. Hoogeveen
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, Texas, United States of America
- Houston Methodist Debakey Heart and Vascular Center, Houston, Texas, United States of America
| | - Vijay Nambi
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, Texas, United States of America
- Houston Methodist Debakey Heart and Vascular Center, Houston, Texas, United States of America
- Michael E DeBakey Veterans Affairs Hospital, Houston, Texas, United States of America
| | - Kelly A. Volcik
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alanna C. Morrison
- School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 2015; 47:1443-8. [PMID: 26482880 DOI: 10.1038/ng.3417] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
Alcohol misuse is the leading cause of cirrhosis and the second most common indication for liver transplantation in the Western world. We performed a genome-wide association study for alcohol-related cirrhosis in individuals of European descent (712 cases and 1,426 controls) with subsequent validation in two independent European cohorts (1,148 cases and 922 controls). We identified variants in the MBOAT7 (P = 1.03 × 10(-9)) and TM6SF2 (P = 7.89 × 10(-10)) genes as new risk loci and confirmed rs738409 in PNPLA3 as an important risk locus for alcohol-related cirrhosis (P = 1.54 × 10(-48)) at a genome-wide level of significance. These three loci have a role in lipid processing, suggesting that lipid turnover is important in the pathogenesis of alcohol-related cirrhosis.
Collapse
|
23
|
The functional GRM3 Kozak sequence variant rs148754219 affects the risk of schizophrenia and alcohol dependence as well as bipolar disorder. Psychiatr Genet 2015; 24:277-8. [PMID: 25046171 PMCID: PMC4272221 DOI: 10.1097/ypg.0000000000000050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Oniszczenko W, Rybakowski JK, Dragan WŁ, Grzywacz A, Samochowiec J. The ADH gene cluster SNP rs1789891 and temperamental dimensions in patients with alcohol dependence and affective disorders. Scand J Psychol 2015; 56:420-7. [PMID: 26013422 DOI: 10.1111/sjop.12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 04/02/2015] [Indexed: 11/29/2022]
Abstract
This study had three objectives: (1) to assess the relationship between the single nucleotide polymorphism (SNP) rs1789891 in the alcohol dehydrogenase gene cluster and alcohol dependence and affective disorders; (2) to assess the differences in the Regulative Theory of Temperament (RTT) traits between an alcohol dependent group, an affective disorders group, and a healthy group; and (3) to assess the relationship between rs1789891 and temperament traits in a healthy group, taking into account the interaction of genotype and sex. The SNP rs1789891 was genotyped in a group of 194 alcohol dependent men, aged 21 to 71 years; 137 patients with affective disorders, including 51 males and 86 females, aged 19 to 85 years; and a group of 207 healthy individuals, including 89 males and 118 females, aged 18 to 71 years. Temperament traits (briskness, perseveration, sensory sensitivity, emotional reactivity, endurance, and activity) were assessed in all groups using the Formal Characteristics of Behaviour-Temperament Inventory. The comparative analysis of genotypic frequencies showed no significant differences between patients with alcoholism or affective disorders and those in the control group. Alcohol dependent men and the affective disorder group were characterised by higher levels of emotional reactivity (p-value 1.4e-5 and 9.84e-7, respectively) and lower levels of briskness, sensory sensitivity, endurance, and activity (p-value from 3.76e-8 to 0.012) when compared to the healthy group. The rs1789891 polymorphism was associated with briskness (p = 0.02), sensory sensitivity (p = 0.036), and activity (p = 0.049). None of the results were statistically significant after Bonferroni correction.
Collapse
Affiliation(s)
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Anna Grzywacz
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|