1
|
Honeycutt SC, Gilles-Thomas EA, Lichte DD, McSain SL, Mukherjee A, Loney GC. Behavioral economics of polysubstance use: The role of orexin-1 receptors in nicotine-induced augmentation of synthetic opioid consumption. Neuropharmacology 2025; 274:110467. [PMID: 40246272 DOI: 10.1016/j.neuropharm.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Nicotine and opioid use disorders are highly comorbid in clinical populations. Ongoing nicotine administration facilitates opioid consumption in both rodents and humans. Moreover, preclinical studies support that former exposure to nicotine solely during adolescence augments opioid consumption in adulthood similarly to acute nicotine administration. This suggests that developmental nicotine exposure persistently alters the neural substrates underlying motivation in a manner that resembles the acute pharmacological actions of nicotine. The orexin system mediates motivation to consume opioids in large part through signaling at orexin-1 receptors (ORX1Rs). Both developmental nicotine exposure and acute nicotine administration profoundly alter functioning of the orexin system which may mediate the reinforcing enhancing properties of nicotine. Here, we used behavioral economic procedures to generate demand curves for consumption of the synthetic, short-acting, μ-opioid receptor agonist remifentanil (RMF) in adulthood following prior adolescent nicotine exposure (ANE) and again following reintroduction of acute nicotine administration (ANA). We found that ANE was sufficient to augment multiple indices of the motivational value of RMF in adulthood and these effects were further exacerbated by ANA given during RMF self-administration sessions. Additionally, we demonstrate that systemic antagonism of ORX1Rs with SB-334867 is more efficacious in limiting motivation for RMF in nicotine-exposed rats relative to controls and this differential efficacy was even greater in ANA conditions relative to former ANE. These findings support that nicotine-induced facilitation of orexin signaling may mechanistically contribute to augmented opioid consumption offering critical insight for treatment options for a population that is particularly vulnerable to developing opioid use disorder.
Collapse
Affiliation(s)
- Sarah C Honeycutt
- Department of Psychology, Program in Behavioral Neuroscience, The State University of New York University at Buffalo, Buffalo, NY, USA
| | - Elizabeth A Gilles-Thomas
- Department of Psychology, Program in Behavioral Neuroscience, The State University of New York University at Buffalo, Buffalo, NY, USA
| | - David D Lichte
- Department of Psychology, Program in Behavioral Neuroscience, The State University of New York University at Buffalo, Buffalo, NY, USA
| | - Shannon L McSain
- Department of Psychology, Program in Behavioral Neuroscience, The State University of New York University at Buffalo, Buffalo, NY, USA
| | - Ashmita Mukherjee
- Department of Psychology, Program in Behavioral Neuroscience, The State University of New York University at Buffalo, Buffalo, NY, USA
| | - Gregory C Loney
- Department of Psychology, Program in Behavioral Neuroscience, The State University of New York University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
2
|
Chen Y, Xiao T, Kimbrough A. Escalation of intravenous fentanyl self-administration and assessment of withdrawal behavior in male and female mice. Psychopharmacology (Berl) 2025; 242:1419-1435. [PMID: 39730840 DOI: 10.1007/s00213-024-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
RATIONALE The rise in overdose deaths from synthetic opioids, especially fentanyl, necessitates the development of preclinical models to study fentanyl use disorder (FUD). While there has been progress with rodent models, additional translationally relevant models are needed to examine excessive fentanyl intake and withdrawal signs. OBJECTIVE The current study aimed to develop a translationally relevant preclinical mouse model of FUD by employing chronic intravenous fentanyl self-administration (IVSA). METHODS The study performed intravenous self-administration (IVSA) of fentanyl in male and female C57BL/6J mice for 14 days. Mechanical pain sensitivity during withdrawal was assessed using the von Frey test. Anxiety-like behavior was evaluated via the open field test one week into abstinence, and drug seeking behavior after extended abstinence was assessed at four weeks abstinence. RESULTS Both male and female mice demonstrated a significant escalation in fentanyl intake over the 14 days of self-administration, with significant front-loading observed in the final days of self-administration. Mice showed increased mechanical pain sensitivity at 36 and 48hours withdrawal from fentanyl. At 1-week abstinence from fentanyl, mice exhibited increased anxiety-like behavior compared to naive mice. Four weeks into abstinence from fentanyl, mice maintained lever-pressing behavior on the previous reward-associated active lever, with significantly higher active lever pressing compared to inactive lever pressing. CONCLUSIONS The study establishes a translationally relevant mouse model of IVSA of fentanyl, effectively encapsulating critical aspects of FUD, including escalation of drug intake, front-loading behavior, withdrawal signs, and drug-seeking behavior into extended abstinence. This model offers a robust basis for further exploration into behavioral and neurobiological mechanisms involved in fentanyl dependence and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47904, USA
| | - Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47904, USA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47904, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, 47904, USA.
| |
Collapse
|
3
|
Samson KR, Bashford AR, España RA. Dual Hypocretin Receptor Antagonism Reduces Oxycodone Seeking During Abstinence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647321. [PMID: 40236179 PMCID: PMC11996545 DOI: 10.1101/2025.04.05.647321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A major barrier in the treatment of opioid use disorder is persistent drug craving during abstinence. While opioid-based medications have been used to treat opioid use disorder for decades, there is an urgent need for novel, non-opioid-based pharmacotherapies. The hypocretin/orexin (hypocretin) system is a promising target for treating opioid use disorder due to its influence on motivation for drugs of abuse through actions on dopamine transmission. We recently showed that intermittent access (IntA) to oxycodone promoted sustained oxycodone seeking and alterations in dopamine transmission during abstinence. In the current studies, we investigated to what extent suvorexant, an FDA-approved dual hypocretin receptor antagonist, reduces oxycodone seeking and restores dopamine function during abstinence. Results indicated that IntA to oxycodone produced sustained cue-induced oxycodone seeking after a 14-day abstinence period, which was associated with reduced dopamine uptake in the nucleus accumbens core as we have previously shown. Treatment with suvorexant 24 h prior to a cue-induced seeking test significantly reduced oxycodone seeking and normalized aberrant dopamine uptake. These findings suggest that targeting hypocretin receptors may be a promising strategy for reducing opioid craving and associated neuroadaptations, thus lowering the risk of relapse.
Collapse
|
4
|
Rakowski EA, King CP, Thompson BM, Santos G, Holmes E, Solberg Woods LC, Polesskaya O, Palmer AA, Meyer PJ. Dissociation of intake and incentive sensitization during intermittent- and continuous-access heroin self-administration in rats. Psychopharmacology (Berl) 2025; 242:867-883. [PMID: 39979648 PMCID: PMC11890364 DOI: 10.1007/s00213-025-06762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
RATIONALE Opioid misuse is a prominent public health concern, although patterns of use may confer different vulnerability to relapse. Continuous-access (ContA) self-administration has traditionally been used in preclinical models to study drug-motivated behaviors and produces robust escalation of intake and tolerance development. Alternatively, studies using intermittent access (IntA), where self-administration occurs in discrete drug-available periods, suggest that overall intake may be dissociable from subsequent increases in motivation (i.e., incentive sensitization). However, IntA paradigms have focused primarily on psychostimulants like cocaine and methamphetamine and have not been as comprehensively studied with opioids. OBJECTIVE We compared two paradigms of heroin self-administration, ContA and IntA, to assess their effect on heroin intake and motivation. METHODS Male and female rats were trained to self-administer heroin, then were transitioned to either ContA or IntA paradigms. Following self-administration, rats were tested in progressive-ratio, behavioral economics threshold probe, and conditioned reinforcement tests to measure motivation-related behaviors. RESULTS Both patterns of intake evoked similar heroin-directed motivation during progressive-ratio and conditioned reinforcement tests, despite lower overall intake throughout IntA for male rats. Females had similar responding between treatments in self-administration and progressive-ratio even though IntA rats had less time to earn infusions. During threshold probe, IntA-trained subjects showed more inelastic responding (lower α values), suggesting a greater degree of dependence-like behavior. CONCLUSIONS These results suggest the importance of dissociating heroin intake from incentive sensitization and emphasize the significance of sex differences as a modifier of heroin consumption and motivation.
Collapse
Affiliation(s)
| | - Christopher P King
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Brady M Thompson
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Gabriel Santos
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Esther Holmes
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
5
|
Berry EA, Huhulea EN, Ishibashi M, McGregor R, Siegel JM, Leonard CS. Chronic but not acute morphine exposure reversibly impairs spike generation and repetitive firing in a functionally distinct subpopulation of orexin neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644444. [PMID: 40196653 PMCID: PMC11974729 DOI: 10.1101/2025.03.20.644444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Orexin (hypocretin) neuropeptides regulate numerous essential functions including sleep/wake state stability and reward processing. Orexin synthesizing neurons respond to drug cues and undergo structural changes following persistent drug exposure. Post-mortem brains from opioid users, and opioid-treated rodents have orexin somata that become ~20 % smaller and ~50% more numerous and are postulated to promote hyper-motivation for drug-seeking though increased orexin release. Biophysical considerations suggest that decreased soma size should increase cellular excitability, however the impact of chronic opioids on firing ability, which drives peptide release, has not been explored. To test this, we assessed the intrinsic electrophysiological properties of orexin neurons by whole-cell recordings in slices from male orexin-EGFP mice treated by daily morphine or saline injections for two weeks. Paradoxically, we found that while daily morphine decreased average soma size, it impaired excitability in a subpopulation of orexin neurons identified by electrophysiological criteria as "H-type", while entirely sparing "D-type" neurons. This impairment was manifest by smaller, broader action potentials, variable firing and a downscaling of firing gain. These adaptations required more than a single morphine dose and recovered, along with soma size, after four weeks of passive withdrawal. Taken together, these observations indicate that daily opioid exposure differentially impacts H-type orexin neurons and predicts that the ability of these neurons to encode synaptic inputs into spike trains and to release neuropeptides becomes impaired in conjunction with opioid dependence.
Collapse
Affiliation(s)
| | - Ellen N. Huhulea
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Masaru Ishibashi
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ronald McGregor
- Neuropsychiatric Institute, University of California, Los Angeles, CA and Veterans Administration, Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute, University of California, Los Angeles, CA and Veterans Administration, Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Pratelli M, Spitzer NC. Drugs of abuse drive neurotransmitter plasticity that alters behavior: implications for mental health. Front Behav Neurosci 2025; 19:1551213. [PMID: 40177329 PMCID: PMC11962007 DOI: 10.3389/fnbeh.2025.1551213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Neurotransmission is a complex process with multiple levels of regulation that, when altered, can significantly impact mental health. Neurons in the adult brain can release more than one transmitter and environmental stimuli can change the type of transmitter neurons express. Changes in the transmitter neurons express can generate changes in animal behavior. The ability of neurons to express multiple transmitters and/or switch them in response to environmental stimuli likely evolved to provide flexibility and complexity to neuronal circuit function in an ever-changing environment. However, this adaptability can become maladaptive when generating behavioral alterations that are unfit for the environment in which the animal lives or the tasks it needs to perform. Repeated exposure to addictive substances induces long-lasting molecular and synaptic changes, driving the appearance of maladaptive behaviors that can result in drug misuse and addiction. Recent findings have shown that one way drugs of abuse alter the brain is by inducing changes in the transmitter neurons express. Here, we review evidence of prolonged exposure to addictive substances inducing changes in the number of neurons expressing the neuropeptide orexin, the neuromodulator dopamine, and the inhibitory transmitter GABA. These findings show that drug-induced transmitter plasticity is conserved across species, that addictive substances belonging to different classes of chemicals can induce the same type of plasticity, and that exposure to only one drug can cause different neuronal types to change the transmitter they express. Importantly, drug-induced transmitter plasticity contributes to the long-term negative effects of drug consumption, and it can, in some cases, be either prevented or reversed to alleviate these outcomes. Regional neuronal hyperactivity appears to modulate the appearance and stabilization of drug-induced changes in transmitter expression, which are no longer observed when activity is normalized. Overall, these findings underscore the importance of continuing to investigate the extent and behavioral significance of drug-induced neurotransmitter plasticity and exploring whether non-invasive strategies can be used to reverse it as a means to mitigate the maladaptive effects of drug use.
Collapse
Affiliation(s)
- Marta Pratelli
- Department of Neurobiology, School of Biological Sciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Department of Neurobiology, School of Biological Sciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Li N, Huang L, Zhang B, Zhu W, Dai W, Li S, Xu H. The mechanism of different orexin/hypocretin neuronal projections in wakefulness and sleep. Brain Res 2025; 1850:149408. [PMID: 39706239 DOI: 10.1016/j.brainres.2024.149408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Since the discovery of orexin/hypocretin, numerous studies have accumulated evidence demonstrating its key role in various aspects of neuromodulation, including addiction, motivation, and arousal. This paper focuses on the projection of orexin neurons to specific target brain regions through distinct neural pathways to regulate sleep and arousal. We provide a detailed discussion of the projection mechanisms of orexin neurons to downstream neurons, particularly emphasizing their activation of monoaminergic and cholinergic neurons associated with arousal. Additionally, we briefly explore the immune response and inflammatory factors linked to the loss of orexin neurons. Our findings underscore the significance of understanding specific neural projections in the generation and maintenance of arousal, which could guide advancements in neuroscience and lead to new therapeutic opportunities for treating insomnia or narcolepsy.
Collapse
Affiliation(s)
- Nanxi Li
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University.
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Martin CE, Bjork JM, Keyser-Marcus L, Sabo RT, Pignatello T, Simmons K, La Rosa C, Arias AJ, Ramey T, Moeller FG. Phase 1b/2a safety study of lemborexant as an adjunctive treatment for insomnia to buprenorphine-naloxone for opioid use disorder: A randomized controlled trial. DRUG AND ALCOHOL DEPENDENCE REPORTS 2025; 14:100304. [PMID: 39807348 PMCID: PMC11728975 DOI: 10.1016/j.dadr.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Background Evidence supports the common incidence of sleep disturbance in opioid use disorder (OUD) as a potential marker of disrupted orexin system functioning. This study evaluated the initial safety and tolerability of a challenge dose of lemborexant, a dual orexin antagonist, as an adjunct to buprenorphine/naloxone. Methods Patients (18-65 years old) with OUD receiving sublingual buprenorphine/naloxone, with a Pittsburgh Sleep Quality Index total score of 6 or higher, were recruited from outpatient clinics. After randomization, while being monitored on an inpatient research unit over two 10-hour daytime periods, participants received a placebo or lemborexant (5 mg on day one and 10 mg on day two) along with buprenorphine/naloxone. Primary outcomes included safety and tolerability: adverse events, physiologic measures, sedation level assessments. Generalized linear mixed model analysis assessed the effect of study drug and time on outcomes. Results N=18 (14=male, 4=female) were randomized to lemborexant (n=12) or placebo (n=6). No unanticipated problems occurred; five adverse events occurred in the lemborexant group and two in the placebo group with no serious adverse events. None of the physiologic measures showed a significant interaction of time and placebo vs. lemborexant (5 or 10 mg): Pulse oximetry (F=0.6; p=0.84), End-tidal CO2 (F=0.5; p=0.91), Heart rate (F=0.6; p=0.82), Systolic blood pressure (F=0.7; p=0.73), Diastolic blood pressure (F=2.0; p=0.06). At 9 hours after study drug administration, all participants returned to baseline sedation levels and were discharged. Conclusions Findings support the initial safety and tolerability of lemborexant as an adjunctive treatment for insomnia in humans receiving buprenorphine for OUD. Future longitudinal work is warranted with larger samples.
Collapse
Affiliation(s)
- Caitlin E. Martin
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA 23219, USA
| | - James M. Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA 23219, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Lori Keyser-Marcus
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA 23219, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Roy T. Sabo
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Tiffany Pignatello
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA 23219, USA
| | - Kameron Simmons
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA 23219, USA
| | - Christina La Rosa
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA 23219, USA
| | - Albert J. Arias
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA 23219, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Tatiana Ramey
- National Institute on Drug Abuse, 9000 Rockville Pike, Baltimore, MD 20892, USA
| | - F. Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA 23219, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
9
|
Equihua-Benítez AC, Espinoza-Abad R, García-García F. Sleep Loss and Substance Use Disorders: An Issue from Adolescents to Adults. Behav Sci (Basel) 2025; 15:220. [PMID: 40001851 PMCID: PMC11852296 DOI: 10.3390/bs15020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Unsatisfactory sleep is a worldwide concern, as evidenced by the high prevalence of insomnia symptoms and diagnosis in the general population, and an issue that has also risen among adolescents. These circumstances are a cause of worry due to, among other factors, the observed bidirectional association of sleep disturbances and the risk of substance use disorder development. In this regard, across the globe, several reports indicate that substance consumption is at an all-time high, with alcohol, nicotine, and cannabis leading the charts. Additionally, the age of onset has dropped, with reports suggesting that first contact is usually during adolescence. Although the nature of the link between poor sleep and substance use disorder development is still not fully understood, it is possible that an overactive orexinergic system could play a role, as it has been observed that treatment with orexinergic antagonists improves insomnia symptoms and that postmortem studies show an increase in orexin immunoreactive neurons in sections obtained from habitual opioid consumers. We further argue that it is during adolescence that this maladaptive loop can be established, priming for the development of substance use disorders.
Collapse
Affiliation(s)
- Ana Clementina Equihua-Benítez
- Biology Sleep Laboratory, Biomedicine Department, Health Sciences Institute, Veracruzana University, Xalapa 91190, Ver, Mexico;
| | - Rodolfo Espinoza-Abad
- Graduate Program in Health Sciences, Health Sciences Institute, Veracruzana University, Xalapa 91190, Ver, Mexico;
| | - Fabio García-García
- Biology Sleep Laboratory, Biomedicine Department, Health Sciences Institute, Veracruzana University, Xalapa 91190, Ver, Mexico;
| |
Collapse
|
10
|
Aliev F, De Sa Nogueira D, Aston-Jones G, Dick DM. Genetic associations between orexin genes and phenotypes related to behavioral regulation in humans, including substance use. Mol Psychiatry 2025:10.1038/s41380-025-02895-4. [PMID: 39880903 DOI: 10.1038/s41380-025-02895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The hypothalamic neuropeptide system of orexin (hypocretin) neurons provides projections throughout the neuraxis and has been linked to sleep regulation, feeding and motivation for salient rewards including drugs of abuse. However, relatively little has been done to examine genes associated with orexin signaling and specific behavioral phenotypes in humans. Here, we tested for association of twenty-seven genes involved in orexin signaling with behavioral phenotypes in humans. We tested the full gene set, functional subsets, and individual genes involved in orexin signaling. Our primary phenotype of interest was Externalizing, a composite factor comprised of behaviors and disorders associated with reward-seeking, motivation, and behavioral regulation. We also tested for association with additional phenotypes that have been related to orexin regulation in model organism studies, including alcohol consumption, problematic alcohol use, daytime sleepiness, insomnia, cigarettes per day, smoking initiation, and body mass index. The composite set of 27 genes corresponding to orexin function was highly associated with Externalizing, as well as with alcohol consumption, insomnia, cigarettes per day, smoking initiation and BMI. In addition, all gene subsets (except the OXR2/HCRTR2 subset) were associated with Externalizing. BMI was significantly associated with all gene subsets. The "validated factors for PPOX/HCRT" and "PPOX/HCRT upregulation" gene subsets also were associated with alcohol consumption. Individually, 8 genes showed a strong association with Externalizing, 12 with BMI, 7 with smoking initiation, 3 with alcohol consumption, and 2 with problematic alcohol use, after correction for multiple testing. This study indicates that orexin genes are associated with multiple behaviors and disorders related to self-regulation in humans. This is consistent with prior work in animals that implicated orexin signaling in motivational activation induced by salient stimuli, and supports the hypothesis that orexin signaling is an important potential therapeutic target for numerous behavioral disorders.
Collapse
Affiliation(s)
- Fazil Aliev
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - David De Sa Nogueira
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - Danielle M Dick
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Mohammadkhani A, Mitchell C, James MH, Borgland SL, Dayas CV. Contribution of hypothalamic orexin (hypocretin) circuits to pathologies of motivation. Br J Pharmacol 2024; 181:4430-4449. [PMID: 39317446 PMCID: PMC11458361 DOI: 10.1111/bph.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 09/26/2024] Open
Abstract
The orexin (also known as hypocretin) system, consisting of neuropeptides orexin-A and orexin-B, was discovered over 25 years ago and was immediately identified as a central regulator of sleep and wakefulness. These peptides interact with two G-protein coupled receptors, orexin 1 (OX1) and orexin 2 (OX2) receptors which are capable of coupling to all heterotrimeric G-protein subfamilies, but primarily transduce increases in calcium signalling. Orexin neurons are regulated by a variety of transmitter systems and environmental stimuli that signal reward availability, including food and drug related cues. Orexin neurons are also activated by anticipation, stress, cues predicting motivationally relevant information, including those predicting drugs of abuse, and engage neuromodulatory systems, including dopamine neurons of the ventral tegmental area (VTA) to respond to these signals. As such, orexin neurons have been characterized as motivational activators that coordinate a range of functions, including feeding and arousal, that allow the individual to respond to motivationally relevant information, critical for survival. This review focuses on the role of orexins in appetitive motivation and highlights a role for these neuropeptides in pathologies characterized by inappropriately high levels of motivated arousal (overeating, anxiety and substance use disorders) versus those in which motivation is impaired (depression).
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Caitlin Mitchell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| | - Morgan H James
- Department of Psychiatry and Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
12
|
McQueney AJ, Garcia EJ. Biological sex modulates the efficacy of 2,5-dimethoxy-4-iodoamphetamine (DOI) to mitigate fentanyl demand. Drug Alcohol Depend 2024; 263:112426. [PMID: 39217832 DOI: 10.1016/j.drugalcdep.2024.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Overdose deaths remain high for opioid use disorder, emphasizing the need to pursue innovative therapeutics. Classic psychedelic drugs that engage many monoamine receptors mitigate opioid use. Here, we tested the hypothesis that the preferential serotonin 5-HT2AR agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI) could reduce the demand for fentanyl in a preclinical model of fentanyl self-administration. METHODS Male and female Sprague-Dawley rats (n = 25-29) were implanted with indwelling jugular catheters and allowed to self-administer fentanyl (3.2μg/kg/infusion). Rats progressed to a novel low price twice within-session threshold procedure where rats sampled the lowest price twice before decreasing the dose of fentanyl by a ¼ log every 10minutes across 11 doses. Once stable, rats were pretreated with saline or DOI (0.01, 0.03, 1mg/kg). Fentanyl consumption was analyzed using an exponentiated demand function to extract the dependent variables, Q0 and α. RESULTS Male and female rats acquired fentanyl self-administration in the lowest price twice within-session threshold procedure. DOI dose-dependently altered fentanyl intake such that 5-HT2AR activation decreased Q0 in female rats but increased Q0 in male rats. For demand elasticity, DOI increased α in male rats but did not alter α in female rats. DOI did not alter inactive lever presses or latency. CONCLUSION DOI reduces consumption at minimally constrained costs but did not affect the reinforcement value of fentanyl in female rats. Alternatively, DOI significantly reduced the reinforcement value of fentanyl in male rats. Biological sex alters the therapeutic efficacy of DOI and 5-HT2AR activation sex-dependently alters opioid reinforcement.
Collapse
Affiliation(s)
- Alice J McQueney
- Neuroscience and Behavior, Psychology Department, University of Nebraska at Omaha, Omaha, NE, USA
| | - Erik J Garcia
- Neuroscience and Behavior, Psychology Department, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
13
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
14
|
McGregor R, Wu MF, Thannickal TC, Li S, Siegel JM. Opioid-induced neuroanatomical, microglial and behavioral changes are blocked by suvorexant without diminishing opioid analgesia. NATURE. MENTAL HEALTH 2024; 2:1018-1031. [PMID: 39989723 PMCID: PMC11845277 DOI: 10.1038/s44220-024-00278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/31/2024] [Indexed: 02/25/2025]
Abstract
Heroin use disorder in humans and chronic opioid administration to mice result in an increase in the number and a decrease in the size of detected hypocretin (Hcrt, or orexin) neurons. Chronic morphine administration to mice increases Hcrt axonal projections to the ventral tegmental area (VTA), the level of tyrosine hydroxylase (TH) in VTA and the number of detected TH+ cells in VTA, and activates VTA and hypothalamic microglia. Co-administration of morphine with the dual Hcrt receptor antagonist suvorexant prevents morphine-induced changes in the number and size of Hcrt neurons, the increase in Hcrt projections to the VTA and microglial activation in the VTA and hypothalamus. Co-administration of suvorexant with morphine also prevents morphine anticipatory behavior and reduces opioid withdrawal symptoms. However, suvorexant does not diminish morphine analgesia. Here we show that combined administration of opioids and suvorexant may reduce the addiction potential of opioid use for pain relief in humans while maintaining the analgesic effects of opioids.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- These authors contributed equally: Ronald McGregor, Ming-Fung Wu
| | - Ming-Fung Wu
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- These authors contributed equally: Ronald McGregor, Ming-Fung Wu
| | - Thomas C. Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Songlin Li
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
15
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
16
|
Khatri SN, Sadek S, Kendrick PT, Bondy EO, Hong M, Pauss S, Luo D, Prisinzano TE, Dunn KE, Marusich JA, Beckmann JS, Hinds TD, Gipson CD. Xylazine suppresses fentanyl consumption during self-administration and induces a unique sex-specific withdrawal syndrome that is not altered by naloxone in rats. Exp Clin Psychopharmacol 2024; 32:150-157. [PMID: 37470999 PMCID: PMC10799160 DOI: 10.1037/pha0000670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Prescription and illicit opioid use are a public health crisis, with the landscape shifting to fentanyl use. Since fentanyl is 100-fold more potent than morphine, its use is associated with a higher risk of fatal overdose that can be remediated through naloxone (Narcan) administration. However, recent reports indicate that xylazine, an anesthetic, is increasingly detected in accidental fentanyl overdose deaths. Anecdotal reports suggest that xylazine may prolong the fentanyl "high," alter the onset of fentanyl withdrawal, and increase resistance to naloxone-induced reversal of overdose. To date, no preclinical studies have evaluated the impacts of xylazine on fentanyl self-administration (SA; 2.5 μg/kg/infusion) or withdrawal to our knowledge. We established a rat model of xylazine/fentanyl co-SA and withdrawal and evaluated outcomes as a function of biological sex. When administered alone, chronic xylazine (2.5 mg/kg, intraperitoneal) induced unique sex-specific withdrawal symptomatology, whereby females showed delayed onset of signs and a possible enhancement of sensitivity to the motor-suppressing effects of xylazine. Xylazine reduced fentanyl consumption in both male and female rats regardless of whether it was experimenter-administered or added to the intravenous fentanyl product (0.05, 0.10, and 0.5 mg/kg/infusion) when compared to fentanyl SA alone. Interestingly, this effect was dose-dependent when self-administered intravenously. Naloxone (0.1 mg/kg, subcutaneous injection) did not increase somatic signs of fentanyl withdrawal, regardless of the inclusion of xylazine in the fentanyl infusion in either sex; however, somatic signs of withdrawal were higher across time points in females after xylazine/fentanyl co-SA regardless of naloxone exposure as compared to females following fentanyl SA alone. Together, these results indicate that xylazine/fentanyl co-SA dose-dependently suppressed fentanyl intake in both sexes and induced a unique withdrawal syndrome in females that was not altered by acute naloxone treatment. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Shailesh N. Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Percell T. Kendrick
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Emma O. Bondy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Mei Hong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Sally Pauss
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Dan Luo
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY
| | - Thomas E. Prisinzano
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY
| | - Kelly E. Dunn
- Psychiatry and Behavioral Sciences Department, Johns Hopkins University, Baltimore, MD
| | - Julie A. Marusich
- Center for Drug Discovery, RTI International, Research Triangle Park, NC
| | | | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Cassandra D. Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| |
Collapse
|
17
|
Collier AD, Yasmin N, Karatayev O, Abdulai AR, Yu B, Fam M, Campbell S, Leibowitz SF. Embryonic ethanol exposure and optogenetic activation of hypocretin neurons stimulate similar behaviors early in life associated with later alcohol consumption. Sci Rep 2024; 14:3021. [PMID: 38321123 PMCID: PMC10847468 DOI: 10.1038/s41598-024-52465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The initiation of alcohol use early in life is one of the strongest predictors of developing a future alcohol use disorder. Clinical studies have identified specific behaviors during early childhood that predict an increased risk for excess alcohol consumption later in life. These behaviors, including increased hyperactivity, anxiety, novelty-seeking, exploratory behavior, impulsivity, and alcohol-seeking, are similarly stimulated in children and adolescent offspring of mothers who drink alcohol during pregnancy. Here we tested larval zebrafish in addition to young pre-weanling rats and found this repertoire of early behaviors along with the overconsumption of alcohol during adolescence to be increased by embryonic ethanol exposure. With hypocretin/orexin (Hcrt) neurons known to be stimulated by ethanol and involved in mediating these alcohol-related behaviors, we tested their function in larval zebrafish and found optogenetic activation of Hcrt neurons to stimulate these same early alcohol-related behaviors and later alcohol intake, suggesting that these neurons have an important role in producing these behaviors. Together, these results show zebrafish to be an especially useful animal model for investigating the diverse neuronal systems mediating behavioral changes at young ages that are produced by embryonic ethanol exposure and predict an increased risk for developing alcohol use disorder.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Abdul R Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Samantha Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Coffey KR, Nickelson WB, Dawkins AJ, Neumaier JF. Rapid appearance of negative emotion during oral fentanyl self-administration in male and female rats. Addict Biol 2023; 28:e13344. [PMID: 38017643 PMCID: PMC10745948 DOI: 10.1111/adb.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 11/30/2023]
Abstract
Opioid use disorder has become an epidemic in the United States, fuelled by the widespread availability of fentanyl, which produces rapid and intense euphoria followed by severe withdrawal and emotional distress. We developed a new preclinical model of fentanyl seeking in outbred male and female rats using volitional oral self-administration (SA) that can be readily applied in labs without intravascular access. Using a traditional two-lever operant procedure, rats learned to take oral fentanyl vigorously, escalated intake across sessions, and readily reinstated responding to conditioned cues after extinction. Oral SA also revealed individual and sex differences that are essential to studying substance use risk propensity. During a behavioural economics task, rats displayed inelastic demand curves and maintained stable intake across a wide range of fentanyl concentrations. Oral SA was also neatly patterned, with distinct 'loading' and 'maintenance' phases of responding within each session. Using our software DeepSqueak, we analysed ultrasonic vocalizations (USVs), which are innate expressions of current emotional state in rats. Rats produced 50 kHz USVs during loading then shifted quickly to 22 kHz calls despite ongoing maintenance of oral fentanyl taking, reflecting a transition to negative reinforcement. Using fibre photometry, we found that the lateral habenula differentially processed drug cues and drug consumption depending on affective state, with potentiated modulation by drug cues and consumption during the negative affective maintenance phase. Together, these results indicate a rapid progression from positive to negative reinforcement occurs even within an active drug taking session, revealing a within-session opponent process.
Collapse
Affiliation(s)
- Kevin R. Coffey
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, 98105, USA
| | - William B. Nickelson
- Mental Illness Research, Education and Clinical Center, Puget Sound VA Health Care System, 1660 S Columbian Way, Seattle, WA 98108
| | - Aliyah J. Dawkins
- Mental Illness Research, Education and Clinical Center, Puget Sound VA Health Care System, 1660 S Columbian Way, Seattle, WA 98108
| | - John F. Neumaier
- Mental Illness Research, Education and Clinical Center, Puget Sound VA Health Care System, 1660 S Columbian Way, Seattle, WA 98108
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, 98105, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, 98105, USA
| |
Collapse
|
19
|
Illenberger JM, Flores-Ramirez FJ, Pascasio G, Matzeu A, Martin-Fardon R. Daily treatment with the dual orexin receptor antagonist DORA-12 during oxycodone abstinence decreases oxycodone conditioned reinstatement. Neuropharmacology 2023; 239:109685. [PMID: 37579870 PMCID: PMC10529002 DOI: 10.1016/j.neuropharm.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Chronic opioid use disturbs circadian rhythm and sleep, encouraging opioid use and relapse. The orexin (OX) system is recruited by opioids and regulates physiological processes including sleep. Dual OX receptor antagonists (DORAs), developed for insomnia treatment, may relieve withdrawal-associated sleep disturbances. This study investigated whether DORA-12, a recently developed DORA, reduces physiological activity disturbances during oxycodone abstinence and consequently prevents oxycodone-seeking behavior. Male and female Wistar rats were trained to intravenously self-administer oxycodone (0.15 mg/kg, 21 sessions; 8 h/session) in the presence of a contextual/discriminative stimulus (SD). The rats were subsequently housed individually (22 h/day) to monitor activity, food and water intake. They received DORA-12 (0-30 mg/kg, p.o.) after undergoing daily 1-h extinction training (14 days). After extinction, the rats were tested for oxycodone-seeking behavior elicited by the SD. Hypothalamus sections were processed to assess oxycodone- or DORA-12-associated changes to the OX cell number. In males, oxycodone-associated increases in activity during the light-phase, reinstatement, and decreases in the number of OX cells observed in the vehicle-treated group were not observed with DORA-12-treatment. Oxycodone-associated increases in light-phase food and water intake were not observed by day 14 of 3 mg/kg DORA-12-treatment and dark-phase water intake was increased across treatment days. In females, OX cell number was unaffected by oxycodone or DORA-12. Three and 30 mg/kg DORA-12 increased females' day 7 dark-phase activity and decreased reinstatement. Thirty mg/kg DORA-12 reduced oxycodone-associated increases in light-phase food and water intake. The results suggest that DORA-12 improves oxycodone-induced disruptions to physiological activities and reduces relapse.
Collapse
Affiliation(s)
- Jessica M Illenberger
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | | | - Glenn Pascasio
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Alessandra Matzeu
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Rémi Martin-Fardon
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
20
|
Little KM, Kosten TA. Focus on fentanyl in females: Sex and gender differences in the physiological and behavioral effects of fentanyl. Front Neuroendocrinol 2023; 71:101096. [PMID: 37597668 DOI: 10.1016/j.yfrne.2023.101096] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The prevalence of opioid use disorder and overdose continues to harm the U.S. population and is further exacerbated by the use of the synthetic opioid, fentanyl, and its analogs. Gender differences in the effects of fentanyl are not well understood. The present article reviews evidence for gender and sex differences in the physiological and behavioral effects of fentanyl in humans and animals. Biological sex seems to be a foundational driver in addiction vulnerability and affects mechanisms related to opioid use including fentanyl. Fentanyl has distinct pharmacodynamics and enhanced efficacy relative to other opioids that highlights the need to investigate how females may be uniquely altered by its use. Behavioral and physiological responses to fentanyl are found to differ by sex and gender in many cases, including outputs like affective symptoms, analgesia, tolerance, and withdrawal emphasizing the need for further research about the role of biological sex on fentanyl use.
Collapse
Affiliation(s)
- Kaitlyn M Little
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, United States.
| |
Collapse
|
21
|
Robinson MJF, Bonmariage QSA, Samaha AN. Unpredictable, intermittent access to sucrose or water promotes increased reward pursuit in rats. Behav Brain Res 2023; 453:114612. [PMID: 37544370 DOI: 10.1016/j.bbr.2023.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Reward uncertainty can sensitize reward pathways, promoting increased reward-seeking and -taking behaviours. This is relevant to human conditions such as pathological gambling, eating disorders and drug addiction. In the context of addiction, preclinical self-administration procedures have been developed to model the intermittency of human drug use. These intermittent-access (IntA) procedures involve intermittent but predictable access to drug during self-administration sessions. However, human drug use typically involves intermittent and unpredictable drug access. We introduce a new procedure modeling unpredictable, intermittent access (UIntA) to a reinforcer, and we compare it to procedures that provide predictable reinforcer availability; continuous (ContA) or intermittent (IntA) access. Female rats self-administered water or liquid sucrose in daily hour-long sessions. IntA and ContA rats had access to a fixed volume of water or sucrose (0.1 ml), under a fixed ratio 3 schedule of reinforcement. IntA rats had predictable 5-min reinforcer ON and 25-min reinforcer OFF periods. ContA rats had 60 min of reinforcer access during each session. For UIntA rats, variation in the length of ON and OFF periods (1, 5 or 9 min/period), response requirement (variable ratio 3 schedule of reinforcement), reinforcer probability (50%) and quantity (0, 0.1 or 0.2 ml) introduced reward uncertainty. Following 14 daily self-administration sessions, UIntA rats showed the highest levels of responding for water or sucrose under progressive ratio conditions, responding under extinction conditions, and cue-induced reinstatement of sucrose seeking. Thus, unpredictable, intermittent reward access promotes increased reward pursuit. This has implications for modeling addiction and other disorders of increased reward seeking.
Collapse
Affiliation(s)
- Mike J F Robinson
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Qi Shan A Bonmariage
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Neural Signaling and Circuitry Research Group (SNC), Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, Montréal, QC H3T 1J4, Canada; Neuroscience and Mental Health Strategy of the Université de Montréal (SENSUM), Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
22
|
Gage GA, Muench MA, Jee C, Kearns DN, Chen H, Tunstall BJ. Intermittent-access operant alcohol self-administration promotes binge-like drinking and drinking despite negative consequences in male and female heterogeneous stock rats. Neuropharmacology 2023; 235:109564. [PMID: 37149215 PMCID: PMC10247413 DOI: 10.1016/j.neuropharm.2023.109564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The study of Alcohol Use Disorders (AUD) in preclinical models is hampered by difficulty in training rodents to voluntarily consume high levels of alcohol. The intermittency of alcohol access/exposure is well known to modulate alcohol consumption (e.g., alcohol deprivation effect, intermittent-access two-bottle-choice) and recently, intermittent access operant self-administration procedures have been used to produce more intense and binge-like self-administration of intravenous psychostimulant and opioid drugs. In the present study, we sought to systematically manipulate the intermittency of operant self-administered alcohol access to determine the feasibility of promoting more intensified, binge-like alcohol consumption. To this end, 24 male and 23 female NIH Heterogeneous Stock rats were trained to self-administer 10% w/v ethanol, before being split into three different-access groups. Short Access (ShA) rats continued receiving 30-min training sessions, Long Access (LgA) rats received 16-h sessions, and Intermittent Access (IntA) rats received 16-h sessions, wherein the hourly alcohol-access periods were shortened over sessions, down to 2 min. IntA rats demonstrated an increasingly binge-like pattern of alcohol drinking in response to restriction of alcohol access, while ShA and LgA rats maintained stable intake. All groups were tested on orthogonal measures of alcohol-seeking and quinine-punished alcohol drinking. The IntA rats displayed the most punishment-resistant drinking. In a separate experiment, we replicated our main finding, that intermittent access promotes a more binge-like pattern of alcohol self-administration using 8 male and 8 female Wistar rats. In conclusion, intermittent access to self-administered alcohol promotes more intensified self-administration. This approach may be useful in developing preclinical models of binge-like alcohol consumption in AUD.
Collapse
Affiliation(s)
- Grey A Gage
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marissa A Muench
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David N Kearns
- Psychology Department, American University, Washington, DC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
23
|
Strickland JC, Hatton KW, Hays LR, Rayapati AO, Lile JA, Rush CR, Stoops WW. Use of drug purchase tasks in medications development research: orexin system regulation of cocaine and drug demand. Behav Pharmacol 2023; 34:275-286. [PMID: 37403694 PMCID: PMC10328554 DOI: 10.1097/fbp.0000000000000731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Commodity purchase tasks provide a useful method for evaluating behavioral economic demand in the human laboratory. Recent research has shown how responding to purchase tasks for blinded drug administration can be used to study abuse liability. This analysis uses data from a human laboratory study to highlight how similar procedures may be particularly useful for understanding momentary changes in drug valuation when screening novel interventions. Eight nontreatment-seeking participants with cocaine use disorder (one with partial data) were enrolled in a cross-over, double-blind, randomized inpatient study. Participants were maintained on the Food and Drug Administration-approved insomnia medication suvorexant (oral; 0, 5, 10, 20 mg/day) in randomized order with experimental sessions completed after at least 3 days of maintenance on each suvorexant dose. Experimental sessions included administration of a sample dose of 0, 10 and 30 mg/70 kg intravenous cocaine. Analyses focused on purchase tasks for the blinded sample dose as well as alcohol, cigarettes and chocolate completed 15 min after the sample dose. As expected based on abuse liability, near zero demand was observed for placebo with dose-related increases in cocaine demand. Suvorexant maintenance increased cocaine demand in a dose-related manner with the greatest increase observed for the 10 mg/kg cocaine dose. Increased demand under suvorexant maintenance was also observed for alcohol. No effect of cocaine administration was observed for alcohol, cigarette, or chocolate demand. These data support the validity of demand procedures for measuring blinded drug demand. Findings also parallel self-administration data from this study by showing increases in cocaine use motivation under suvorexant maintenance.
Collapse
Affiliation(s)
- Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kevin W Hatton
- Department of Anesthesiology, University of Kentucky College of Medicine
| | - Lon R Hays
- Department of Psychiatry, University of Kentucky College of Medicine
| | - Abner O Rayapati
- Department of Psychiatry, University of Kentucky College of Medicine
| | - Joshua A Lile
- Department of Psychiatry, University of Kentucky College of Medicine
- Department of Behavioral Science, University of Kentucky College of Medicine
- Department of Psychology, University of Kentucky College of Arts and Sciences
| | - Craig R Rush
- Department of Psychiatry, University of Kentucky College of Medicine
- Department of Behavioral Science, University of Kentucky College of Medicine
- Department of Psychology, University of Kentucky College of Arts and Sciences
| | - William W Stoops
- Department of Psychiatry, University of Kentucky College of Medicine
- Department of Behavioral Science, University of Kentucky College of Medicine
- Department of Psychology, University of Kentucky College of Arts and Sciences
- Center on Drug and Alcohol Research, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
24
|
Monroe SC, Radke AK. Opioid withdrawal: role in addiction and neural mechanisms. Psychopharmacology (Berl) 2023; 240:1417-1433. [PMID: 37162529 PMCID: PMC11166123 DOI: 10.1007/s00213-023-06370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to mediate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychological features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.
Collapse
Affiliation(s)
- Sean C Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA.
| |
Collapse
|
25
|
Xia L, Liu HY, Wang BY, Lin HN, Wang MC, Ren JX. A review of physiological functions of orexin: From instinctive responses to subjective cognition. Medicine (Baltimore) 2023; 102:e34206. [PMID: 37390267 PMCID: PMC10313292 DOI: 10.1097/md.0000000000034206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Orexin, also known as hypocretin, is an excitatory neuropeptide secreted by the hypothalamus. Orexin is divided into orexin-A (OXA) and orexin-B (OXB), which are derived from a common precursor secreted by hypothalamic neurons. Orexin acts on orexin receptor-1 (OX1R) and orexin receptor-2 (OX2R). Orexin neurons, as well as receptors, are widely distributed in various regions of the brain as well as in the peripheral system and have a wider range of functions. This paper reviews the latest research results of orexin in the aspects of food intake, sleep, addiction, depression and anxiety. Because orexin has certain physiological functions in many systems, we further explored the possibility of orexin as a new target for the treatment of bulimia, anorexia nervosa, insomnia, lethargy, anxiety and depression. It is precisely because orexin has physiological functions in multiple systems that orexin, as a new target for the treatment of the above diseases, has potential contradictions. For example, it promotes the function of 1 system and may inhibit the function of another system. How to study a new drug, which can not only treat the diseases of this system, but also do not affect other system functions, is what we need to focus on.
Collapse
Affiliation(s)
- LiBo Xia
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Yan Liu
- Department of Medical Section, Changchun Second Hospital, Changchun, China
| | - Bi Yan Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Ning Lin
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Meng Chen Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Ji-Xiang Ren
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| |
Collapse
|
26
|
Moline M, Asakura S, Beuckman C, Landry I, Setnik B, Ashworth J, Henningfield JE. The abuse potential of lemborexant, a dual orexin receptor antagonist, according to the 8 factors of the Controlled Substances Act. Psychopharmacology (Berl) 2023; 240:699-711. [PMID: 36749354 PMCID: PMC10006052 DOI: 10.1007/s00213-023-06320-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023]
Abstract
RATIONALE Lemborexant (LEM) is a dual orexin receptor antagonist (DORA) approved in multiple countries including the USA, Japan, Canada, Australia, and several Asian countries for the treatment of insomnia in adults. As a compound with central nervous system activity, it is important to understand the abuse potential of LEM with respect to public health. OBJECTIVES This review discusses data for LEM relevant to each of the 8 factors of the United States Controlled Substances Act. RESULTS LEM did not demonstrate abuse potential in nonclinical testing and was associated with a low incidence of abuse-related adverse events in clinical study participants with insomnia disorder. Similar to other DORAs that have been evaluated (eg., almorexant, suvorexant (SUV), and daridorexant), LEM and the positive controls (zolpidem and SUV) also showed drug liking in a phase 1 abuse potential study that enrolled subjects who used sedatives recreationally. However, internet surveillance of SUV and the FDA Adverse Events Reporting System suggests that drugs in the DORA class display very low abuse-related risks in the community. Additionally, as described in FDA-approved labeling, it does not carry physical dependence and withdrawal risks. CONCLUSIONS LEM, similar to most other prescription insomnia medications, was placed into Schedule IV. However, LEM and other drugs in the DORA class may have a lower potential for abuse as suggested by real-world postmarketing data from federal surveys and internet surveillance, and thus may have lower risks to public health than Schedule IV benzodiazepines and nonbenzodiazepine hypnotics that potentiate GABA signaling.
Collapse
Affiliation(s)
- Margaret Moline
- Eisai Inc., 200 Metro Boulevard, Nutley, Jersey, NJ, 07110, USA.
| | | | | | | | - Beatrice Setnik
- Altasciences, Laval, Quebec, Canada and the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | - Jack E Henningfield
- Pinney Associates, Inc., Bethesda, MD, USA.,The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
D'Ottavio G, Reverte I, Ragozzino D, Meringolo M, Milella MS, Boix F, Venniro M, Badiani A, Caprioli D. Increased heroin intake and relapse vulnerability in intermittent relative to continuous self-administration: Sex differences in rats. Br J Pharmacol 2023; 180:910-926. [PMID: 34986504 PMCID: PMC9253203 DOI: 10.1111/bph.15791] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Studies using intermittent-access drug self-administration show increased motivation to take and seek cocaine and fentanyl, relative to continuous access. In this study, we examined the effects of intermittent- and continuous-access self-administration on heroin intake, patterns of self-administration and cue-induced heroin-seeking, after forced or voluntary abstinence, in male and female rats. We also modelled brain levels of heroin and its active metabolites. EXPERIMENTAL APPROACH Rats were trained to self-administer a palatable solution and then heroin (0.075 mg·kg-1 per inf) either continuously (6 h·day-1 ; 10 days) or intermittently (6 h·day-1 ; 5-min access every 30-min; 10 days). Brain levels of heroin and its metabolites were modelled using a pharmacokinetic software. Next, heroin-seeking was assessed after 1 or 21 abstinence days. Between tests, rats underwent either forced or voluntary abstinence. The oestrous cycle was measured using a vaginal smear test. KEY RESULTS Intermittent access exacerbated heroin self-administration and was characterized by a burst-like intake, yielding higher brain peaks of heroin and 6-monoacetylmorphine concentrations. Moreover, intermittent access increased cue-induced heroin-seeking during early, but not late abstinence. Heroin-seeking was higher in females after intermittent, but not continuous access, and this effect was independent of the oestrous cycle. CONCLUSIONS AND IMPLICATIONS Intermittent heroin access in rats resembles critical features of heroin use disorder: a self-administration pattern characterized by repeated large doses of heroin and higher relapse vulnerability during early abstinence. This has significant implications for refining animal models of substance use disorder and for better understanding of the neuroadaptations responsible for this disorder. LINKED ARTICLES This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Ginevra D'Ottavio
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Ingrid Reverte
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Davide Ragozzino
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Meringolo
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Michele Stanislaw Milella
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Toxicology Unit, Policlinico Umberto I University Hospital, Rome, Italy
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aldo Badiani
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Sussex Addiction Research and Intervention Centre (SARIC) and School of Psychology, University of Sussex, Brighton, UK
| | - Daniele Caprioli
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
28
|
Sneddon EA, Masters BM, Ream KD, Fennell KA, DeMedio JN, Cash MM, Hollingsworth BP, Pandrangi S, Thach CM, Shi H, Radke AK. Sex chromosome and gonadal hormone contributions to binge-like and aversion-resistant ethanol drinking behaviors in Four Core Genotypes mice. Front Psychiatry 2023; 14:1098387. [PMID: 36960454 PMCID: PMC10027717 DOI: 10.3389/fpsyt.2023.1098387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction While substantial research has focused on the contribution of sex hormones to driving elevated levels of alcohol drinking in female rodents, fewer studies have investigated how genetic influences may underlie sex differences in this behavior. Methods We used the Four Core Genotypes (FCG) mouse model to explore the contribution of sex chromosome complement (XX/XY) and gonad type [ovaries (Sry-)/testes (Sry+)] to ethanol (EtOH) consumption and quinine-resistant drinking across two voluntary self-administration tasks: limited access consumption in the home cage and an operant response task. Results For limited access drinking in the dark, XY/Sry + (vs. XX/Sry +) mice consumed more 15% EtOH across sessions while preference for 15% EtOH vs. water was higher in XY vs. XX mice regardless of gonad type. XY chromosomes promoted quinine-resistant drinking in mice with ovaries (Sry-) and the estrous cycle did not affect the results. In the operant response task, responding for EtOH was concentration dependent in all genotypes except XX/Sry + mice, which maintained consistent response levels across all concentrations (5-20%) of EtOH. When increasing concentrations of quinine (100-500 μM) were added to the solution, FCG mice were insensitive to quinine-punished EtOH responding, regardless of sex chromosome complement. Sry + mice were further found to be insensitive to quinine when presented in water. Importantly, these effects were not influenced by sensitivity to EtOH's sedative effect, as no differences were observed in the time to lose the righting reflex or the time to regain the righting reflex between genotypes. Additionally, no differences in EtOH concentration in the blood were observed between any of the genotypes once the righting reflex was regained. Discussion These results provide evidence that sex chromosome complement regulates EtOH consumption, preference, and aversion resistance and add to a growing body of literature suggesting that chromosomal sex may be an important contributor to alcohol drinking behaviors. Examination of sex-specific genetic differences may uncover promising new therapeutic targets for high-risk drinking.
Collapse
Affiliation(s)
- Elizabeth A. Sneddon
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Brianna M. Masters
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Kiara D. Ream
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Kaila A. Fennell
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Jenelle N. DeMedio
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Miranda M. Cash
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Brynn P. Hollingsworth
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Sai Pandrangi
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Chloe M. Thach
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Haifei Shi
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
- Department of Biology, Miami University, Oxford, OH, United States
| | - Anna K. Radke
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| |
Collapse
|
29
|
Rivera-Garcia MT, Rose RM, Wilson-Poe AR. High-CBD Cannabis Vapor Attenuates Opioid Reward and Partially Modulates Nociception in Female Rats. ADDICTION NEUROSCIENCE 2023; 5:100050. [PMID: 36937502 PMCID: PMC10019487 DOI: 10.1016/j.addicn.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic pain patients report analgesic effects when using cannabidiol (CBD), a phytocannabinoid found in whole-plant cannabis extract (WPE). Several studies suggest that cannabis-derived products may serve as an analgesic adjunct or alternative to opioids, and importantly, CBD may also attenuate the abuse potential of opioids. Vaping is a popular route of administration among people who use cannabis, however both the therapeutic and hazardous effects of vaping are poorly characterized. Despite the fact that chronic pain is more prevalent in women, the ability of inhaled high-CBD WPE to relieve pain and reduce opioid reward has not been studied in females. Here, we present a comprehensive analysis of high-CBD WPE vapor inhalation in female rats. We found that WPE was modestly efficacious in reversing neuropathy-induced cold allodynia in rats with spared nerve injury (SNI). Chronic exposure to WPE did not affect lung cytoarchitecture or estrous cycle, and it did not induce cognitive impairment, social withdrawal or anxiolytic effects. WPE inhalation prevented morphine-induced conditioned place preference and reinstatement. Similarly, WPE exposure reduced fentanyl self-administration in rats with and without neuropathic pain. We also found that WPE vapor lacks of reinforcing effects compared to the standard excipient used in most vapor administration research. Combined, these results suggest that although high-CBD vapor has modest analgesic effects, it has a robust safety profile, no abuse potential, and it significantly reduces opioid reward in females. Clinical studies examining high-CBD WPE as an adjunct treatment during opioid use disorder are highly warranted.
Collapse
Affiliation(s)
- Maria T Rivera-Garcia
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Rizelle Mae Rose
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Adrianne R Wilson-Poe
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
- Integrative Physiology and Neuroscience, Washington State University
- Corresponding author. Adrianne R Wilson-Poe, Ph.D., 1225 NE 2nd Ave, suite 249, Portland, OR 97232, USA. Tel. (503) 413-1754, (A.R. Wilson-Poe)
| |
Collapse
|
30
|
Illenberger JM, Flores-Ramirez FJ, Matzeu A, Mason BJ, Martin-Fardon R. Suvorexant, an FDA-approved dual orexin receptor antagonist, reduces oxycodone self-administration and conditioned reinstatement in male and female rats. Front Pharmacol 2023; 14:1127735. [PMID: 37180716 PMCID: PMC10172671 DOI: 10.3389/fphar.2023.1127735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: The Department of Health and Human Services reports that prescription pain reliever (e.g., oxycodone) misuse was initiated by 4,400 Americans each day in 2019. Amid the opioid crisis, effective strategies to prevent and treat prescription opioid use disorder (OUD) are pressing. In preclinical models, the orexin system is recruited by drugs of abuse, and blockade of orexin receptors (OX receptors) prevents drug-seeking behavior. The present study sought to determine whether repurposing suvorexant (SUV), a dual OX receptor antagonist marketed for the treatment of insomnia, can treat two features of prescription OUD: exaggerated consumption and relapse. Methods: Male and female Wistar rats were trained to self-administer oxycodone (0.15 mg/kg, i. v., 8 h/day) in the presence of a contextual/discriminative stimulus (SD) and the ability of SUV (0-20 mg/kg, p. o.) to decrease oxycodone self-administration was tested. After self-administration testing, the rats underwent extinction training, after which we tested the ability of SUV (0 and 20 mg/kg, p. o.) to prevent reinstatement of oxycodone seeking elicited by the SD. Results: The rats acquired oxycodone self-administration and intake was correlated with the signs of physical opioid withdrawal. Additionally, females self-administered approximately twice as much oxycodone as males. Although SUV had no overall effect on oxycodone self-administration, scrutiny of the 8-h time-course revealed that 20 mg/kg SUV decreased oxycodone self-administration during the first hour in males and females. The oxycodone SD elicited strong reinstatement of oxycodone-seeking behavior that was significantly more robust in females. Suvorexant blocked oxycodone seeking in males and reduced it in females. Conclusions: These results support the targeting of OX receptors for the treatment for prescription OUD and repurposing SUV as pharmacotherapy for OUD.
Collapse
|
31
|
Merlin S, Furlong TM. Habitual behaviour associated with exposure to high-calorie diet is prevented by an orexin-receptor-1 antagonist. ADDICTION NEUROSCIENCE 2022; 4:100036. [PMID: 37476304 PMCID: PMC10357952 DOI: 10.1016/j.addicn.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Habitual actions, which are associated with addictive behaviours, contribute to the loss of control of food seeking seen following exposure to calorie-dense foods in rats. Antagonism of orexin-receptor-1 (ORX-R1) has been shown to reduce a range of stimulus-driven feeding behaviours, but have yet to be implicated in the regulation of habitual actions. In the current study, male Long-Evans rats were given 'binge-like' access to high-calorie diet (HCD) or standard chow diet, and were subsequently trained to press a lever for food outcome. When lever responses were tested following outcome devaluation, chow-fed rats displayed goal-directed actions, whereas HCD-exposed rats displayed habitual actions. In study 1, it was shown that systemic administration of the ORX-R1 antagonist, SB-334867, prior to test restored goal-directed behaviour in HCD-exposed rats. In study 2, intra-nigral administration of SB-334867 similarly restored goal-directed behaviour, thereby implicating the substantia nigra as an important site for this effect. This study demonstrates that targeting ORX-R1 reduces habitual food seeking in male rats which may be important for understanding and treating compulsive feeding, obesity and binge eating disorder. This study also implicates the lateral hypothalamus, where ORX is produced, in mediating the expression of habits for the first time, and thus extends on the neurocircuits known to regulate habitual actions. Further investigation is required to determine whether the same effects are also seen in female rats, given that there are recognised sexual dimorphisms in feeding behaviour and a higher incidence of disordered eating in female than male populations.
Collapse
Affiliation(s)
- Sam Merlin
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Teri M. Furlong
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
32
|
Collier AD, Yasmin N, Chang GQ, Karatayev O, Khalizova N, Fam M, Abdulai AR, Yu B, Leibowitz SF. Embryonic ethanol exposure induces ectopic Hcrt and MCH neurons outside hypothalamus in rats and zebrafish: Role in ethanol-induced behavioural disturbances. Addict Biol 2022; 27:e13238. [PMID: 36301208 PMCID: PMC9625080 DOI: 10.1111/adb.13238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
Embryonic exposure to ethanol increases the risk for alcohol use disorder in humans and stimulates alcohol-related behaviours in different animal models. Evidence in rats and zebrafish suggests that this phenomenon induced by ethanol at low-moderate concentrations involves a stimulatory effect on neurogenesis and density of hypothalamic neurons expressing the peptides, hypocretin/orexin (Hcrt) and melanin-concentrating hormone (MCH), known to promote alcohol consumption. Building on our report in zebrafish showing that ethanol induces ectopic expression of Hcrt neurons outside the hypothalamus, we investigated here whether embryonic ethanol exposure also induces ectopic peptide neurons in rats similar to zebrafish and affects their morphological characteristics and if these ectopic neurons are functional and have a role in the ethanol-induced disturbances in behaviour. We demonstrate in rats that ethanol at a low-moderate dose, in addition to increasing Hcrt and MCH neurons in the lateral hypothalamus where they are normally concentrated, induces ectopic expression of these peptide neurons further anterior in the nucleus accumbens core and ventromedial caudate putamen where they have not been previously observed and causes morphological changes relative to normally located hypothalamic neurons. Similar to rats, embryonic ethanol exposure at a low-moderate dose in zebrafish induces ectopic Hcrt neurons anterior to the hypothalamus and alters their morphology. Notably, laser ablation of these ectopic Hcrt neurons blocks the behavioural effects induced by ethanol exposure, including increased anxiety and locomotor activity. These findings suggest that the ectopic peptide neurons are functional and contribute to the ethanol-induced behavioural disturbances related to the overconsumption of alcohol.
Collapse
Affiliation(s)
- Adam D. Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Abdul R. Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
33
|
Samson KR, Xu W, Kortagere S, España RA. Intermittent access to oxycodone decreases dopamine uptake in the nucleus accumbens core during abstinence. Addict Biol 2022; 27:e13241. [PMID: 36301217 PMCID: PMC10262085 DOI: 10.1111/adb.13241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
A major obstacle in treating opioid use disorder is the persistence of drug seeking or craving during periods of abstinence, which is believed to contribute to relapse. Dopamine transmission in the mesolimbic pathway is posited to contribute to opioid reinforcement, but the processes by which dopamine influences drug seeking have not been completely elucidated. To examine whether opioid seeking during abstinence is associated with alterations in dopamine transmission, female and male rats self-administered oxycodone under an intermittent access schedule of reinforcement. Following self-administration, rats underwent a forced abstinence period, and cue-induced seeking tests were conducted to assess oxycodone seeking. One day following the final seeking test, rats were sacrificed to perform ex vivo fast scan cyclic voltammetry and western blotting in the nucleus accumbens. Rats displayed reduced dopamine uptake rate on abstinence day 2 and abstinence day 15, compared to oxycodone-naïve rats. Further, on abstinence day 15, rats had reduced phosphorylation of the dopamine transporter. Additionally, local application of oxycodone to the nucleus accumbens reduced dopamine uptake in oxycodone-naïve rats and in rats during oxycodone abstinence, on abstinence day 2 and abstinence day 15. These observations suggest that abstinence from oxycodone results in dysfunctional dopamine transmission, which may contribute to sustained oxycodone seeking during abstinence.
Collapse
Affiliation(s)
- Kyle R. Samson
- Drexel University College of Medicine, Department of Neurobiology and Anatomy
| | - Wei Xu
- Drexel University College of Medicine, Department of Microbiology and Immunology
| | - Sandhya Kortagere
- Drexel University College of Medicine, Department of Microbiology and Immunology
| | - Rodrigo A. España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy
| |
Collapse
|
34
|
Giannotti G, Mottarlini F, Heinsbroek JA, Mandel MR, James MH, Peters J. Oxytocin and orexin systems bidirectionally regulate the ability of opioid cues to bias reward seeking. Transl Psychiatry 2022; 12:432. [PMID: 36195606 PMCID: PMC9532415 DOI: 10.1038/s41398-022-02161-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
As opioid-related fatalities continue to rise, the need for novel opioid use disorder (OUD) treatments could not be more urgent. Two separate hypothalamic neuropeptide systems have shown promise in preclinical OUD models. The oxytocin system, originating in the paraventricular nucleus (PVN), may protect against OUD severity. By contrast, the orexin system, originating in the lateral hypothalamus (LH), may exacerbate OUD severity. Thus, activating the oxytocin system or inhibiting the orexin system are potential therapeutic strategies. The specific role of these systems with regard to specific OUD outcomes, however, is not fully understood. Here, we probed the therapeutic efficacy of pharmacological interventions targeting the orexin or oxytocin system on two distinct metrics of OUD severity in rats-heroin choice (versus choice for natural reward, i.e., food) and cued reward seeking. Using a preclinical model that generates approximately equal choice between heroin and food reward, we examined the impact of exogenously administered oxytocin, an oxytocin receptor antagonist (L-368,899), and a dual orexin receptor antagonist (DORA-12) on opioid choice. Whereas these agents did not alter heroin choice when rewards (heroin and food) were available, oxytocin and DORA-12 each significantly reduced heroin seeking in the presence of competing reward cues when no rewards were available. In addition, the number of LH orexin neurons and PVN oxytocin neurons correlated with specific behavioral economic variables indicative of heroin versus food motivation. These data identify a novel bidirectional role of the oxytocin and orexin systems in the ability of opioid-related cues to bias reward seeking.
Collapse
Affiliation(s)
- Giuseppe Giannotti
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Francesca Mottarlini
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mitchel R Mandel
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
35
|
Lynch WJ, Bakhti-Suroosh A, Abel JM. Impact of high-access exercise prior to and during early adolescence on later vulnerability to opioid use and relapse in male rats. Transl Psychiatry 2022; 12:425. [PMID: 36192388 PMCID: PMC9529880 DOI: 10.1038/s41398-022-02180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Middle- and high-school athletes participating in certain team sports are at greater risk of opioid misuse and addiction than those who do not. While this risk is thought to be due to increased access to opioids, in this study we explored the possibility that the sensitizing effects of discontinued high-intensity exercise may also contribute. Specifically, using male rat models with fentanyl, we tested the hypothesis that high-access exercise (24 h/day access to a running wheel) during pre/early adolescence (two weeks, postnatal-day 24-37) would enhance vulnerability to opioid use and relapse during late adolescence/adulthood. Rats with a history of high-access exercise showed stronger fentanyl-associated lever discrimination during acquisition, greater motivation to obtain infusions of fentanyl following acquisition, and had an enhanced sensitivity to the reinstating effects of fentanyl-associated cues following extended (24 h/day), intermittent-access self-administration and protracted abstinence (14 days) compared to sedentary controls. In contrast, sedentary rats had greater overall responding (active- and inactive-lever) during acquisition and greater non-specific (inactive-lever) responding during extended-access self-administration. Molecular markers associated with opioid seeking/relapse were also differentially expressed in the nucleus accumbens core of rats with versus without a history of high-access exercise following relapse testing (e.g., Bdnf-IV and Drd2 expression). Together, these findings demonstrate that high-access exercise prior to and throughout early-adolescence enhances vulnerability to the reinforcing and cue-induced reinstating effects of opioids during later adolescence/adulthood. Thus, it is possible that the discontinuation of high intensity exercise contributes to the enhanced vulnerability observed in middle- and high-school athletes.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jean M Abel
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
36
|
O'Connor RM, Kenny PJ. Utility of 'substance use disorder' as a heuristic for understanding overeating and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110580. [PMID: 35636576 DOI: 10.1016/j.pnpbp.2022.110580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Rates of obesity and obesity-associated diseases have increased dramatically in countries with developed economies. Substance use disorders (SUDs) are characterized by the persistent use of the substance despite negative consequences. It has been hypothesized that overconsumption of palatable energy dense food can elicit SUD-like maladaptive behaviors that contribute to persistent caloric intake beyond homeostatic need even in the face of negative consequences. Palatable food and drugs of abuse act on many of the same motivation-related circuits in the brain, and can induce, at least superficially, similar molecular, cellular, and physiological adaptations on these circuits. As such, applying knowledge about the neurobiological mechanisms of SUDs may serve as useful heuristic to better understand the persistent overconsumption of palatable food that contributes to obesity. However, many important differences exist between the actions of drugs of abuse and palatable food in the brain. This warrants caution when attributing weight gain and obesity to the manifestation of a putative SUD-related behavioral disorder. Here, we describe similarities and differences between compulsive drug use in SUDs and overconsumption in obesity and consider the merit of the concept of "food addiction".
Collapse
Affiliation(s)
- Richard M O'Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
37
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
38
|
O’Connor SL, Aston-Jones G, James MH. Novelty preference does not predict trait cocaine behaviors in male rats. ADDICTION NEUROSCIENCE 2022; 2:100013. [PMID: 35425947 PMCID: PMC9004685 DOI: 10.1016/j.addicn.2022.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heightened novelty seeking is a risk factor for the initiation of drug use and development of substance use disorders. In rats, novelty seeking can be examined by assessing preference for a novel environment. Some evidence indicates that high novelty preferring (HNP) rats have higher drug intake compared to low novelty preferring (LNP) rats, although these data are mixed. Moreover, the extent to which the HNP phenotype can predict other initial drug behaviors, including economic demand for cocaine, has not been tested. Here, we screened a cohort (n=60) of male rats for novelty preference and several subsequent cocaine behaviors, including locomotor reactivity to a cocaine priming injection, acquisition of cocaine self-administration, as well as cocaine demand using a within-session behavioral economics procedure. Novelty preference did not correlate with cocaine behaviors, nor were there any differences between HNP and LNP rats identified using a median split strategy. Moreover, regression analyses indicated that novelty preference did not have predictive utility for any of the cocaine behaviors tested. Thus, the extent to which the novelty preference trait can predict initial cocaine-related behaviors in male rats may be limited. This is in contrast to the novel locomotor reactivity phenotype, which is strongly linked with initial cocaine intake, indicating that these traits are distinct and differentially predict cocaine behaviors in rats.
Collapse
Affiliation(s)
- Shayna L. O’Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, New Jersey, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, New Jersey, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey, USA
| | - Morgan H. James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, New Jersey, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey, USA
| |
Collapse
|
39
|
Han Y, Cao L, Yuan K, Shi J, Yan W, Lu L. Unique Pharmacology, Brain Dysfunction, and Therapeutic Advancements for Fentanyl Misuse and Abuse. Neurosci Bull 2022; 38:1365-1382. [PMID: 35570233 PMCID: PMC9107910 DOI: 10.1007/s12264-022-00872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Fentanyl is a fully synthetic opioid with analgesic and anesthetic properties. It has become a primary driver of the deadliest opioid crisis in the United States and elsewhere, consequently imposing devastating social, economic, and health burdens worldwide. However, the neural mechanisms that underlie the behavioral effects of fentanyl and its analogs are largely unknown, and approaches to prevent fentanyl abuse and fentanyl-related overdose deaths are scarce. This review presents the abuse potential and unique pharmacology of fentanyl and elucidates its potential mechanisms of action, including neural circuit dysfunction and neuroinflammation. We discuss recent progress in the development of pharmacological interventions, anti-fentanyl vaccines, anti-fentanyl/heroin conjugate vaccines, and monoclonal antibodies to attenuate fentanyl-seeking and prevent fentanyl-induced respiratory depression. However, translational studies and clinical trials are still lacking. Considering the present opioid crisis, the development of effective pharmacological and immunological strategies to prevent fentanyl abuse and overdose are urgently needed.
Collapse
|
40
|
Towers EB, Setaro B, Lynch WJ. Sex- and Dose-Dependent Differences in the Development of an Addiction-Like Phenotype Following Extended-Access Fentanyl Self-Administration. Front Pharmacol 2022; 13:841873. [PMID: 35370634 PMCID: PMC8968863 DOI: 10.3389/fphar.2022.841873] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Opioid use disorder (OUD) is a major epidemic in the United States, and fentanyl is a major culprit. The National Institute on Drug Abuse has highlighted an urgent need for research on the risks and outcomes of OUD with fentanyl; a better understanding of sex/gender differences is also critically needed given that the opioid epidemic has been particularly impactful on women. In response to this need, we developed a rat model of OUD with fentanyl and showed that sex impacts relapse vulnerability following extended-access self-administration under a low fentanyl dose. Here, our goal was to determine sex differences across a broad dose range, including high doses expected to maximize the expression of addiction-like features (e.g., vulnerability to relapse and physical dependence). Male and female rats were assigned to self-administer one of four fentanyl doses (0.25, 0.75, 1.5, and 3.0 µg/kg/infusion), and once they acquired, they were given extended (24-h/day), intermittent access (2, 5 min trials/h, fixed-ratio 1) to fentanyl for 10 days. Physical dependence (spontaneous weight loss) was assessed during early withdrawal, and relapse vulnerability was assessed on withdrawal day 15 using an extinction/cue-induced reinstatement procedure. Despite markedly higher intake in the high- versus low-dose groups, each group responded similarly during relapse testing (extinction and cue-induced reinstatement). However, number of infusions, or frequency of use, during extended access was predictive of later vulnerability to relapse, whereas total intake impacted physical dependence given that weight loss only occurred following the discontinuation of fentanyl self-administration at the three highest doses. Females self-administered more fentanyl each day and within each binge (active trial), and had longer lasting weight loss during withdrawal than males. Relapse vulnerability was also higher in females than males and highest in females tested during estrus. These findings indicate that sex is an important risk factor for patterns and levels of fentanyl intake, relapse, and physical dependence, and while fentanyl intake predicts physical dependence, frequency of use predicts relapse.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Ben Setaro
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Wendy J Lynch
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
41
|
Neurobiology of the Orexin System and Its Potential Role in the Regulation of Hedonic Tone. Brain Sci 2022; 12:brainsci12020150. [PMID: 35203914 PMCID: PMC8870430 DOI: 10.3390/brainsci12020150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Orexin peptides comprise two neuropeptides, orexin A and orexin B, that bind two G-protein coupled receptors (GPCRs), orexin receptor 1 (OXR1) and orexin receptor 2 (OXR2). Although cell bodies that produce orexin peptides are localized in a small area comprising the lateral hypothalamus and adjacent regions, orexin-containing fibres project throughout the neuraxis. Although orexins were initially described as peptides that regulate feeding behaviour, research has shown that orexins are involved in diverse functions that range from the modulation of autonomic functions to higher cognitive functions, including reward-seeking, behaviour, attention, cognition, and mood. Furthermore, disruption in orexin signalling has been shown in mood disorders that are associated with low hedonic tone or anhedonia, including depression, anxiety, attention deficit hyperactivity disorder, and addiction. Notably, projections of orexin neurons overlap circuits involved in the modulation of hedonic tone. Evidence shows that orexins may potentiate hedonic behaviours by increasing the feeling of pleasure or reward to various signalling, whereas dysregulation of orexin signalling may underlie low hedonic tone or anhedonia. Further, orexin appears to play a key role in regulating behaviours in motivationally charged situations, such as food-seeking during hunger, or drug-seeking during withdrawal. Therefore, it would be expected that dysregulation of orexin expression or signalling is associated with changes in hedonic tone. Further studies investigating this association are warranted.
Collapse
|
42
|
Matzeu A, Martin-Fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022; 15:787595. [PMID: 35126069 PMCID: PMC8811192 DOI: 10.3389/fnbeh.2021.787595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Orexins (also known as hypocretins) are neuropeptides that participate in the regulation of energy metabolism, homeostasis, sleep, feeding, stress responses, arousal, and reward. Particularly relevant to the scope of the present review is the involvement of the orexin system in brain mechanisms that regulate motivation, especially highly motivated behavior, arousal, and stress, making it an ideal target for studying addiction and discovering treatments. Drug abuse and misuse are thought to induce maladaptive changes in the orexin system, and these changes might promote and maintain uncontrolled drug intake and contribute to relapse. Dysfunctional changes in this neuropeptidergic system that are caused by drug use might also be responsible for alterations of feeding behavior and the sleep-wake cycle that are commonly disrupted in subjects with substance use disorder. Drug addiction has often been associated with an increase in activity of the orexin system, suggesting that orexin receptor antagonists may be a promising pharmacological treatment for substance use disorder. Substantial evidence has shown that single orexin receptor antagonists that are specific to either orexin receptor 1 or 2 can be beneficial against drug intake and relapse. Interest in the efficacy of dual orexin receptor antagonists, which were primarily developed to treat insomnia, has grown in the field of drug addiction. Treatments that target the orexin system may be a promising strategy to reduce drug intake, mitigate relapse vulnerability, and restore “normal” physiological functions, including feeding and sleep. The present review discusses preclinical and clinical evidence of the involvement of orexins in drug addiction and possible beneficial pharmacotherapeutic effects of orexin receptor antagonists to treat substance use disorder.
Collapse
|
43
|
Guo L, Hu A, Zhao X, Xiang X. Reduction of Orexin-A Is Associated With Anxiety and the Level of Depression of Male Methamphetamine Users During the Initial Withdrawal Period. Front Psychiatry 2022; 13:900135. [PMID: 35859609 PMCID: PMC9289462 DOI: 10.3389/fpsyt.2022.900135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Orexin has been linked to the regulation of reward and motivation in animals, but there have been few human studies to validate its regulatory effects. We aimed to determine how orexin-A levels changed during different stages of withdrawal, as well as the relationship between orexin-A levels and withdrawal symptoms in male METH users. METHODS This study included 76 METH users and 35 control participants. The METH users were divided into three groups: group 1 (abstinence within 1 week, n = 23), group 2 (abstinence between 1 week and 3 months, n = 38), and group 3 (abstinence over 3 months, n = 15). At baseline and 1 month of enrollment, the plasma orexin-A level was examined. To track the withdrawal symptoms, self-report questionnaires (anxiety, depression, craving, and sleep quality) were collected at two points. RESULTS The orexin-A levels of groups 1 (p < 0.001) and 2 (p < 0.001) were lower than that of the controls at baseline but not group 3. One month later, the orexin-A levels of group 2 (p < 0.05) significantly increased, while no significant changes in those of groups 1 and 3 were observed. Furthermore, the orexin-A levels of group 1 were positively linked with depression (p < 0.01) and anxiety (p < 0.01) at baseline. CONCLUSIONS The decrease in orexin-A levels was only transitory during the initial abstinence phase, and it was eventually restored near to normal with continued abstinence among the male METH users. Furthermore, a lower concentration of orexin-A may serve as a risk factor for negative emotions during METH withdrawal.
Collapse
Affiliation(s)
- Lei Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Aqian Hu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxi Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaojun Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
44
|
Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021; 15:752420. [PMID: 34858143 PMCID: PMC8631198 DOI: 10.3389/fncir.2021.752420] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Addiction is a complex disease that impacts millions of people around the world. Clinically, addiction is formalized as substance use disorder (SUD), with three primary symptom categories: exaggerated substance use, social or lifestyle impairment, and risky substance use. Considerable efforts have been made to model features of these criteria in non-human animal research subjects, for insight into the underlying neurobiological mechanisms. Here we review evidence from rodent models of SUD-inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are relevant to addictions and SUDs. This work suggests that striatal dopamine is essential for not only positive symptom features of SUDs, such as elevated intake and craving, but also for impairments in decision making that underlie compulsive behavior, reduced sociality, and risk taking. Understanding the functional heterogeneity of the dopamine system and related networks can offer insight into this complex symptomatology and may lead to more targeted treatments.
Collapse
Affiliation(s)
- Carli L. Poisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Liv Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
45
|
Collier AD, Yasmin N, Khalizova N, Campbell S, Onoichenco A, Fam M, Albeg AS, Leibowitz SF. Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Sci Rep 2021; 11:16078. [PMID: 34373563 PMCID: PMC8352948 DOI: 10.1038/s41598-021-95707-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the hypothalamus promote reward-related behaviors including alcohol consumption and are shown in rodents and zebrafish to be stimulated by embryonic exposure to ethanol (EtOH). We used here in zebrafish three-dimensional analyses of the entire population of Hcrt neurons to examine how embryonic EtOH exposure at low-moderate concentrations (0.1% or 0.5% v/v) alters these neurons in relation to behavior. We found that EtOH in the water for 2 h (22-24 h post fertilization) increases the number of Hcrt neurons on the left but not right side of the brain through a stimulation of cell proliferation, this is accompanied by a decrease in locomotor activity under novel conditions but not after habituation, and these effects are evident in both larvae and adults indicating they are long lasting. Our analyses in adults revealed sexually dimorphic effects, with females consuming more EtOH-gelatin and exhibiting more freezing behavior along with an asymmetric increase in Hcrt neurons and males exhibiting increased aggression with no change in Hcrt. These findings suggest that a long lasting, asymmetric increase in Hcrt neurons induced by EtOH results from an asymmetric increase in proliferation specific to Hcrt and contributes to behavioral changes in females.
Collapse
Affiliation(s)
- Adam D. Collier
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Nushrat Yasmin
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Nailya Khalizova
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Samantha Campbell
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Amanda Onoichenco
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Milisia Fam
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Avi S. Albeg
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah F. Leibowitz
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
46
|
Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. FRONTIERS OF NEUROLOGY AND NEUROSCIENCE 2021; 45:117-127. [PMID: 34052815 PMCID: PMC8324012 DOI: 10.1159/000514965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023]
Abstract
Significant sleep impairments often accompany substance use disorders (SUDs). Sleep disturbances in SUD patients are associated with poor clinical outcomes and treatment adherence, emphasizing the importance of normalizing sleep when treating SUDs. Orexins (hypocretins) are neuropeptides exclusively produced by neurons in the posterior hypothalamus that regulate various behavioral and physiological processes, including sleep-wakefulness and motivated drug taking. Given its dual role in sleep and addiction, the orexin system represents a promising therapeutic target for treating SUDs and their comorbid sleep deficits. Here, we review the literature on the role of the orexin system in sleep and drug addiction and discuss the therapeutic potential of orexin receptor antagonists for SUDs. We argue that orexin receptor antagonists may be effective therapeutics for treating addiction because they target orexin's regulation of sleep (top-down) and motivation (bottom-up) pathways.
Collapse
Affiliation(s)
- Jennifer E Fragale
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Morgan H James
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Jorge A Avila
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Andrea M Spaeth
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - R Nisha Aurora
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Langleben
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
47
|
Dopamine 'ups and downs' in addiction revisited. Trends Neurosci 2021; 44:516-526. [PMID: 33892963 DOI: 10.1016/j.tins.2021.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Repeated drug use can change dopamine (DA) function in ways that promote the development and persistence of addiction, but in what direction? By one view, drug use blunts DA neurotransmission, producing a hypodopaminergic state that fosters further drug use to overcome a DA deficiency. Another view is that drug use enhances DA neurotransmission, producing a sensitized, hyperdopaminergic reaction to drugs and drug cues. According to this second view, continued drug use is motivated by sensitization of drug 'wanting'. Here we discuss recent evidence supporting the latter view, both from preclinical studies using intermittent cocaine self-administration procedures that mimic human patterns of use and from related human neuroimaging studies. These studies have implications for the modeling of addiction in the laboratory and for treatment.
Collapse
|
48
|
O'Connor SL, Aston-Jones G, James MH. The sensation seeking trait confers a dormant susceptibility to addiction that is revealed by intermittent cocaine self-administration in rats. Neuropharmacology 2021; 195:108566. [PMID: 33862028 DOI: 10.1016/j.neuropharm.2021.108566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/19/2021] [Accepted: 04/09/2021] [Indexed: 01/14/2023]
Abstract
Heightened sensation seeking is associated with an increased risk of substance use disorder in clinical populations. In rats, sensation seeking is often examined by measuring locomotor reactivity to a novel environment. So-called high responders (HR) acquire self-administration of psychostimulants more quickly and consume higher amounts of drug compared to low responder (LR) rats, indicating that the HR trait might confer a stronger addiction propensity. However, studies of addiction-like behaviors in HR vs LR rats have typically utilized self-administration paradigms that do not dissociate individual differences in the hedonic/reinforcing and motivational properties of a drug. Moreover, little attention has been given to whether HR rats are more susceptible to drug-access conditions that promote a state-dependent addiction phenotype. We report that on a behavioral economics task, HR rats have higher preferred brain-cocaine levels compared to LR rats but do not differ with respect to their demand elasticity for cocaine. In contrast, when tested on an intermittent access schedule of cocaine self-administration, which has been shown to promote several addiction-related endophenotypes, HR rats exhibit greater escalation of intake and more drastic reductions in cocaine demand elasticity. Together, these data indicate that the HR trait does not confer higher extant addiction behavior, but rather that this phenotype is associated with a propensity for addiction that remains dormant until it is actuated by intermittent drug intake. These findings reveal a 'trait' (HR) by 'state' (intermittent drug intake) interaction that produces a strong addiction-like phenotype. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Shayna L O'Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
49
|
Bakhti-Suroosh A, Towers EB, Lynch WJ. A buprenorphine-validated rat model of opioid use disorder optimized to study sex differences in vulnerability to relapse. Psychopharmacology (Berl) 2021; 238:1029-1046. [PMID: 33404740 PMCID: PMC7786148 DOI: 10.1007/s00213-020-05750-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
RATIONALE Opioid use disorder (OUD) is a major epidemic in the USA. Despite evidence indicating that OUD may be particularly severe for women, preclinical models have yet to establish sex as a major factor in OUD. OBJECTIVES Here, we examined sex differences in vulnerability to relapse following intermittent access fentanyl self-administration and protracted abstinence and used buprenorphine, the FDA-approved treatment for OUD, to test the validity of our model. METHODS Following acquisition of fentanyl self-administration under one of two training conditions, male and female rats were given extended, 24-h/day access to fentanyl (0.25 μg/kg/infusion, 10 days) using an intermittent access procedure. Vulnerability to relapse was assessed using an extinction/cue-induced reinstatement procedure following 14 days of abstinence; buprenorphine (0 or 3 mg/kg/day) was administered throughout abstinence. RESULTS Levels of drug-seeking were high following extended-access fentanyl self-administration and abstinence; buprenorphine markedly decreased drug-seeking supporting the validity of our relapse model. Females self-administered more fentanyl and responded at higher levels during subsequent extinction testing. Buprenorphine was effective in both sexes and eliminated sex and estrous phase differences in drug-seeking. Interestingly, the inclusion of a time-out during training had a major impact on later fentanyl self-administration in females, but not males, indicating that the initial exposure conditions can persistently impact vulnerability in females. CONCLUSIONS These findings demonstrate the utility of this rat model for determining sex and hormonal influences on the development and treatment of OUD.
Collapse
Affiliation(s)
- Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, P.O. Box 801402, Charlottesville, VA, 22904, USA
| | - Eleanor Blair Towers
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, P.O. Box 801402, Charlottesville, VA, 22904, USA
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, P.O. Box 801402, Charlottesville, VA, 22904, USA.
| |
Collapse
|
50
|
Matzeu A, Martin-Fardon R. Cocaine-Seeking Behavior Induced by Orexin A Administration in the Posterior Paraventricular Nucleus of the Thalamus Is Not Long-Lasting: Neuroadaptation of the Orexin System During Cocaine Abstinence. Front Behav Neurosci 2021; 15:620868. [PMID: 33708078 PMCID: PMC7940839 DOI: 10.3389/fnbeh.2021.620868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/02/2021] [Indexed: 01/23/2023] Open
Abstract
Hypothalamic orexin (Orx) projections to the paraventricular nucleus of the thalamus (PVT) have received growing interest because of their role in drug-seeking behavior. Using an established model of cocaine dependence (i.e., long access [LgA] to cocaine), we previously showed that OrxA injections in the posterior PVT (pPVT) reinstated extinguished cocaine-seeking behavior in rats after an intermediate period of abstinence (2-3 weeks). Considering the long-lasting nature of drug-seeking behavior, the present study examined whether the priming effect of intra-pPVT OrxA administration was preserved after a period of protracted abstinence (4-5 weeks) in rats that self-administered cocaine under LgA conditions. Furthermore, to better understand whether a history of cocaine dependence affects the Orx system-particularly the hypothalamic Orx↔pPVT connection-the number of Orx-expressing cells in the lateral hypothalamus (LH), dorsomedial hypothalamus (DMH), and perifornical area (PFA) and number of orexin receptor 1 (OrxR1)- and OrxR2-expressing cells in the pPVT were quantified. Orexin A administration in the pPVT induced cocaine-seeking behavior after intermediate abstinence, as reported previously. At protracted abstinence, however, the priming effect of OrxA was absent. A higher number of cells that expressed Orx was observed in the LH/DMH/PFA at both intermediate and protracted abstinence. In the pPVT, the number of OrxR2-expressing cells was significantly higher only at intermediate abstinence, with no changes in the number of OrxR1-expressing cells. These data build on our previous findings that the hypothalamic Orx↔pPVT connection is strongly recruited shortly after cocaine abstinence and demonstrate that the priming effect of OrxA is not long lasting. Furthermore, these findings suggest that throughout abstinence, the Orx↔pPVT connection undergoes neuroadaptive changes, reflected by alterations of the number of OrxR2-expressing cells in the pPVT.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|