1
|
Jiang W, Sang R, Zhang C, Yin R, Ouyang Z, Wei Y. Application of small interfering RNA technology in cytochrome P450 gene modulation. Drug Metab Dispos 2025; 53:100040. [PMID: 40010050 DOI: 10.1016/j.dmd.2025.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/28/2025] Open
Abstract
Cytochrome P450 plays key roles in the biotransformation of endogenous and exogenous chemicals including drugs and environmental pollutants. The inhibition and downregulation of P450s can have therapeutic effects, and/or modulate drug metabolism. P450s are largely inhibited by small molecules; however, this strategy is often hampered by intrinsic toxicity and drug-drug interactions. Furthermore, it is challenging for small molecules to exhibit high selectivity and inhibitory efficiencies. Recently, small interfering RNA (siRNA) technology has demonstrated the potential for P450 modulation. Examples of recent applications of siRNAs in P450 gene modulation, in vitro and in vivo, are highlighted in this review. The necessity of siRNA techniques and their advantages as P450 modulators are discussed, along with a review of current obstacles and a perspective on future advancements. SIGNIFICANCE STATEMENT: This article reviews studies on the application of small interfering RNA technology to cytochrome P450 gene modulation. The necessity of siRNA methods and the benefits of their use as P450 modulators have been suggested by comparison with small-molecule drugs. Additionally, the challenges that presently limit the broader implementation of this topic are examined, and a perspective for future developments is proposed.
Collapse
Affiliation(s)
- Wenzhao Jiang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ruoyao Sang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Afrose D, Johansen MD, Nikolic V, Karadzov Orlic N, Mikovic Z, Stefanovic M, Cakic Z, Hansbro PM, McClements L. Evaluating oxidative stress targeting treatments in in vitro models of placental stress relevant to preeclampsia. Front Cell Dev Biol 2025; 13:1539496. [PMID: 40109359 PMCID: PMC11920713 DOI: 10.3389/fcell.2025.1539496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/20/2025] [Indexed: 03/22/2025] Open
Abstract
Background Preeclampsia is a complex pregnancy disorder characterized by the new onset of hypertension and organ dysfunction, often leading to significant maternal and fetal morbidity and mortality. Placental dysfunction is a hallmark feature of preeclampsia, which is often caused by inappropriate trophoblast cell function in association with oxidative stress, inflammation and/or pathological hypoxia. This study explores the role of oxidative stress in trophoblast cell-based models mimicking the preeclamptic placenta and evaluates potential therapeutic strategies targeting these mechanisms. Methods Uric acid (UA) and malondialdehyde (MDA) concentrations were measured in human plasma from women with preeclampsia (n = 24) or normotensive controls (n = 14) using colorimetric assays. Custom-made first trimester trophoblast cell line, ACH-3P, was exposed to various preeclampsia-like stimuli including hypoxia mimetic (dimethyloxalylglycine or DMOG, 1 mM), inflammation (tumour necrosis factor or TNF-α, 10 ng/mL) or mitochondria dysfunction agent, (Rhodamine-6G or Rho-6G, 1 μg/mL), ± aspirin (0.5 mM), metformin (0.5 mM), AD-01 (100 nM) or resveratrol (15 µM), for 48 h. Following treatments, UA/MDA, proliferation (MTT), wound scratch and cytometric bead, assays, were performed. Results Overall, MDA plasma concentration was increased in the preeclampsia group compared to healthy controls (p < 0.001) whereas UA showed a trend towards an increase (p = 0.06); when adjusted for differences in gestational age at blood sampling, MDA remained (p < 0.001) whereas UA became (p = 0.03) significantly correlated with preeclampsia. Our 2D first trimester trophoblast cell-based in vitro model of placental stress as observed in preeclampsia, mimicked the increase in UA concentration following treatment with DMOG (p < 0.0001), TNF-α (p < 0.05) or Rho-6G (p < 0.001) whereas MDA cell concentration increased only in the presence of DMOG (p < 0.0001) or Rho-6G (p < 0.001). Metformin was able to abrogate DMOG- (p < 0.01), Rho-6G- (p < 0.0001) or TNF-α- (p < 0.01) induced increase in UA, or DMOG- (p < 0.0001) or TNF-α- (p < 0.05)induced increase in MDA. AD-01 abrogated UA or MDA increase in the presence of TNF-α (p < 0.001) or Rho-6G (p < 0.001)/DMOG (p < 0.0001), respectively. The preeclampsia-like stimuli also mimicked adverse impact on trophoblast cell proliferation, migration and inflammation, most of which were restored with either aspirin, metformin, resveratrol, or AD-01 (p < 0.05). Conclusion Our 2D in vitro models recapitulate the response of the first trimester trophoblast cells to preeclampsia-like stresses, modelling inappropriate placental development, and demonstrate therapeutic potential of repurposed treatments.
Collapse
Affiliation(s)
- Dinara Afrose
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Matt D Johansen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Valentina Nikolic
- Department of Pharmacology with Toxicology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Natasa Karadzov Orlic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Stefanovic
- Department of Gynaecology and Obstetrics, Clinical Centre Nis, Nis, Serbia
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Zoran Cakic
- Department of Gynaecology and Obstetrics, General Hospital of Leskovac, Leskovac, Serbia
| | - Philip M Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Chow RP, Zhao J, Li Y, Curtis TM, Lyons TJ, Yu JY. Modified lipoprotein-induced sFlt1 production in human placental trophoblasts is mediated by protein kinase C. Eur J Pharmacol 2025; 986:177138. [PMID: 39551338 PMCID: PMC11634635 DOI: 10.1016/j.ejphar.2024.177138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Preeclampsia is prevalent in women with diabetes, but the mechanism is unclear. We previously found that oxidized, glycated lipoproteins robustly upregulated soluble fms-like tyrosine kinase-1 (sFlt1), a key mediator of preeclampsia. Here, we determined the role of protein kinase C (PKC) and its subtypes in sFlt1 regulation in placental trophoblasts, and whether this mechanism might mediate the effect of modified lipoproteins. METHODS Cultured human HTR8/SVneo and BeWo trophoblasts were treated with the PKC activator phorbol-12-myristate-13-acetate (PMA) for 24h, ± PKC inhibitors GF109203X (general), Ro31-8220 (PKCα-selective), LY333531 (PKCβ-selective) and rottlerin (PKCδ-selective). The effect of 'heavily oxidized, glycated' low-density lipoproteins (HOG-LDL) vs. native LDL (N-LDL), ± high glucose (30 mM), was evaluated in HTR8/SVneo cells. sFlt1 secretion (ELISA), mRNA expression (RT-qPCR), and cellular PKC activity were measured. RESULTS PMA stimulated robust sFlt1 release and mRNA expression in both cell lines; these effects were inhibited by GF109203X, Ro31-8220 and LY333531 in a concentration-dependent manner. Rottlerin inhibited sFlt1 in BeWo, but modestly enhanced it in HTR8/SVneo cells. HOG-LDL enhanced PKC activity vs. N-LDL in HTR8/SVneo cells. Also, HOG-LDL, but not high glucose, significantly increased sFlt1 secretion and mRNA expression; this response was inhibited by GF109203X, Ro31-8220 and LY333531 at concentrations comparable to those that blocked PMA induction of sFlt1. CONCLUSION Modified lipoproteins upregulate sFlt1 in trophoblasts via a PKC-mediated mechanism, involving at least α and β isoforms. The data suggest potential therapeutic targets to reduce the risk of preeclampsia in women with diabetes.
Collapse
Affiliation(s)
- Rebecca P Chow
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Jiawu Zhao
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK; Epsom and St Helier University Hospitals NHS Trust, England, UK
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Timothy J Lyons
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK; Diabetes Free South Carolina, BlueCross BlueShield of South Carolina, Columbia, SC, USA
| | - Jeremy Y Yu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
4
|
Zgutka K, Tkacz M, Grabowska M, Mikołajek-Bedner W, Tarnowski M. Sirtuins and Their Implications in the Physiopathology of Gestational Diabetes Mellitus. Pharmaceuticals (Basel) 2025; 18:41. [PMID: 39861104 PMCID: PMC11768332 DOI: 10.3390/ph18010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for the mother and her child. An effective therapeutic that can reduce the incidence of GDM and improve long-term outcomes is a major research priority and is very important for public health. Unfortunately, despite numerous studies, the molecular mechanisms underlying GDM are not fully defined and require further study. Chronic low-grade inflammation, oxidative stress, and insulin resistance are central features of pregnancies complicated by GDM. There is evidence of the involvement of sirtuins, which are NAD+-dependent histone deacetylases, in energy metabolism and inflammation. Taking these facts into consideration, the role of sirtuins in the pathomechanism of GDM will be discussed.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Wioletta Mikołajek-Bedner
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| |
Collapse
|
5
|
Zgutka K, Tkacz M, Tomasiak P, Piotrowska K, Ustianowski P, Pawlik A, Tarnowski M. Gestational Diabetes Mellitus-Induced Inflammation in the Placenta via IL-1β and Toll-like Receptor Pathways. Int J Mol Sci 2024; 25:11409. [PMID: 39518962 PMCID: PMC11546908 DOI: 10.3390/ijms252111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Gestational diabetes mellitus is characterised by an insufficient insulin response to hyperglycaemia and the development of insulin resistance. This state has adverse effects on the health outcomes of the mother and child. Existing hyperglycaemia triggers a state of inflammation that involves several tissues, including the placenta. In this study, we analysed the putative pathomechanism of GDM, with special emphasis on the role of chronic, sterile, pro-inflammatory pathways. The expression and regulation of the elements of IL-1β and Toll-like receptor (TLR) pathways in GDM maternal blood plasma, healthy placental explants and a choriocarcinoma cell line (BeWo cell line) stimulated with pro-inflammatory factors was evaluated. Our results indicate elevated expression of the IL-1β and TLR pathways in GDM patients. After stimulation with IL-1β or LPS, the placental explants and BeWo cell line showed increased production of pro-inflammatory IL-6, TNFa and IL-1β together with increased expression of the elements of the signalling pathways. The application of selected inhibitors of NF-ĸB, MAPK and recombinant interleukin 1 receptor antagonist (IL1RA) proved the key involvement of the IL-1β pathway and TLRs in the pathogenesis of GDM. Our results show the possible existence of loops of autocrine stimulation and a possible inflammatory pathomechanism in placentas affected by GDM.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Przemysław Ustianowski
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 70-210 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| |
Collapse
|
6
|
McElwain CJ, Musumeci A, Manna S, McCarthy FP, McCarthy CM. L-ergothioneine reduces mitochondrial-driven NLRP3 activation in gestational diabetes mellitus. J Reprod Immunol 2024; 161:104171. [PMID: 38029485 DOI: 10.1016/j.jri.2023.104171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Maternal hyperglycaemia has a significant impact on placental metabolism and mitochondrial function. The NLRP3 inflammasome is responsive to endogenous signals of mitochondrial dysfunction. We tested our hypothesis that mitochondrial dysfunction orchestrates activation of the NLRP3 inflammasome and contributes to inflammation in gestational diabetes mellitus (GDM). METHODS Fasting blood, omental and placental tissue were collected on the day of caesarean section from nulliparous women with normal glucose tolerant (NGT) (n = 30) and GDM (n = 27) pregnancies. Cell-free mitochondrial DNA (cf-mtDNA) copy number was quantified by real-time PCR. M1-like (CD14+CD86+CD206-) and M2-like (CD14+CD86+CD206+) macrophage populations were characterized by flow cytometry. Immunoblotting for protein expression of NLRP3, ASC and caspase-1 was performed in maternal BMI and age-matched tissue samples. IL-1β and IL-18 were measured by multiplex ELISA. Placental explants from GDM participants were cultured for 24 h with 1 mM L-ergothioneine (antioxidant) and 1 µM MCC950 (NLRP3 inhibitor). RESULTS Cf-mtDNA copy numbers were significantly higher in GDM compared to NGT participants (p = 0.002). Placental populations of CD14+ (p = 0.02) and CD14+CD86+CD206- (p = 0.03) macrophages produced significantly increased levels of mitochondrial superoxide in GDM compared to NGT participants. Placental production of IL-18 (p = 0.04) was significantly increased in GDM. This increase in placental IL-18 was attenuated by treatment with 1 µM MCC950 (p = 0.0005), and 1 mM L-ergothioneine (p = 0.007). CONCLUSION Placental inflammation is significantly increased in women with GDM. Furthermore, this increase may be initiated by elevated production of mitochondrial superoxide by macrophage subpopulations and orchestrated by the NLRP3 inflammasome. The mitochondrial antioxidant, L-ergothioneine, ameliorates NLRP3-induced placental inflammation in GDM, identifying a potential therapeutic role.
Collapse
Affiliation(s)
- Colm J McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Fergus P McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Gayatri V, Krishna Prasad M, Mohandas S, Nagarajan S, Kumaran K, Ramkumar KM. Crosstalk between inflammasomes, inflammation, and Nrf2: Implications for gestational diabetes mellitus pathogenesis and therapeutics. Eur J Pharmacol 2024; 963:176241. [PMID: 38043778 DOI: 10.1016/j.ejphar.2023.176241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The role of inflammasomes in gestational diabetes mellitus (GDM) has emerged as a critical area of research in recent years. Inflammasomes, key components of the innate immune system, are now recognized for their involvement in the pathogenesis of GDM. Activation of inflammasomes in response to various triggers during pregnancy can produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), contributing to systemic inflammation and insulin resistance. This dysregulation not only impacts maternal health but also poses significant risks to fetal development and long-term health outcomes. Understanding the intricate interplay between inflammasomes and GDM holds promise for developing novel therapeutic strategies and interventions to mitigate the adverse effects of this condition on both mothers and their offspring. Researchers have elucidated that targeting inflammasomes using anti-inflammatory drugs and compounds can effectively reduce inflammation in GDM. Furthermore, the addition of nuclear factor erythroid 2-related factor 2 (Nrf2) to this complex mechanism opens novel avenues for therapeutics. The antioxidant properties of Nrf2 may potentially suppress inflammasome activation in GDM. This comprehensive review investigates the intricate relationship between inflammasomes and GDM, emphasizing the pivotal role of inflammation in its pathogenesis. It also sheds light on potential therapeutic strategies targeting inflammasome activation and explores the role of Nrf2 in mitigating inflammation in GDM.
Collapse
Affiliation(s)
- Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sanjushree Nagarajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Ullah A, Zhao J, Singla RK, Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front Cell Dev Biol 2023; 11:1272536. [PMID: 37928902 PMCID: PMC10620730 DOI: 10.3389/fcell.2023.1272536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Diabetes-related pathophysiological alterations and various female reproductive difficulties were common in pregnant women with gestational diabetes mellitus (GDM), who had 21.1 million live births. Preeclampsia (PE), which increases maternal and fetal morbidity and mortality, affects approximately 3%-5% of pregnancies worldwide. Nevertheless, it is unclear what triggers PE and GDM to develop. Therefore, the development of novel moderator therapy approaches is a crucial advancement. Chemokines regulate physiological defenses and maternal-fetal interaction during healthy and disturbed pregnancies. Chemokines regulate immunity, stem cell trafficking, anti-angiogenesis, and cell attraction. CXC chemokines are usually inflammatory and contribute to numerous reproductive disorders. Fractalkine (CX3CL1) may be membrane-bound or soluble. CX3CL1 aids cell survival during homeostasis and inflammation. Evidence reveals that CXC and CX3CL1 chemokines and their receptors have been the focus of therapeutic discoveries for clinical intervention due to their considerable participation in numerous biological processes. This review aims to give an overview of the functions of CXC and CX3CL1 chemokines and their receptors in the pathophysiology of PE and GDM. Finally, we examined stimulus specificity for CXC and CX3CL1 chemokine expression and synthesis in PE and GDM and preclinical and clinical trials of CXC-based PE and GDM therapies.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Chen Y, Miao C, Zhao Y, Yang L, Wang R, Shen D, Ren N, Zhang Q. Inflammasomes in human reproductive diseases. Mol Hum Reprod 2023; 29:gaad035. [PMID: 37788097 DOI: 10.1093/molehr/gaad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Collapse
Affiliation(s)
- Yun Chen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Ren
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Guadagnin AR, Fehlberg LK, Thomas B, Sugimoto Y, Shinzato I, Cardoso FC. Feeding rumen-protected lysine prepartum alters placental metabolism at a transcriptional level. J Dairy Sci 2023; 106:6567-6576. [PMID: 37532623 DOI: 10.3168/jds.2022-22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/24/2023] [Indexed: 08/04/2023]
Abstract
Rumen-protected Lys (RPL) fed to Holstein cows prepartum resulted in a greater intake and improved health of their calves during the first 6 wk of life. However, whether increased supply of Lys in late gestation can influence placental tissue and, if so, which pathways are affected remain to be investigated. Therefore, we hypothesize that feeding RPL during late gestation could modulate placental metabolism, allowing for improved passage of nutrients to the fetus and thus influencing the offspring development. Therefore, we aimed to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America) prepartum (0.54% DM of TMR) on mRNA gene expression profiles of placental samples of Holstein cows. Seventy multiparous Holstein cows were randomly assigned to 1 of 2 dietary treatments, consisting of TMR top-dressed with RPL (PRE-L) or without (control, CON), fed from 27 ± 5 d prepartum until calving. After natural delivery (6.87 ± 3.32 h), placentas were rinsed with physiological saline (0.9% sodium chloride solution) to clean any dirtiness from the environment and weighed. Then, 3 placentomes were collected, one from each placental region (cranial, central, and caudal), combined and flash-frozen in liquid nitrogen to evaluate the expression of transcripts and proteins related to protein metabolism and inflammation. Placental weights did not differ from cows in PRE-L (15.5 ± 4.03 kg) and cows in CON (14.5 ± 4.03 kg). Feeding RPL prepartum downregulated the expression of NOS3 (nitric oxide synthase 3), involved in vasodilation processes, and SOD1, which encodes the enzyme superoxide dismutase, involved in oxidative stress processes. Additionally, feeding RPL prepartum upregulated the expression of transcripts involved in energy metabolism (SLC2A3, glucose transporter 3; and PCK1, phosphoenolpyruvate carboxykinase 1), placental metabolism and cell proliferation (FGF2, fibroblast growth factor 2; FGF2R, fibroblast growth factor 2 receptor; and PGF, placental growth factor), Met metabolism (MAT2A, methionine adenosyltransferase 2-α), and tended to upregulate IGF2R (insulin-like growth factor 2 receptor). Placental FGF2 and LRP1 (low-density lipoprotein receptor-related protein 1) protein abundance were greater for cows that received RPL prepartum than cows in CON. In conclusion, feeding RPL to prepartum dairy cows altered uteroplacental expression of genes and proteins involved in cell proliferation, and in metabolism and transport of glucose. Such changes are illustrated by increased expression of SLC2A3 and PCK1 and increased protein abundance of FGF2 and LRP1 in uteroplacental tissue of cows consuming RPL.
Collapse
Affiliation(s)
- A R Guadagnin
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | - L K Fehlberg
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | - B Thomas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | | | | | - F C Cardoso
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801.
| |
Collapse
|
11
|
Piotrowska K, Zgutka K, Tkacz M, Tarnowski M. Physical Activity as a Modern Intervention in the Fight against Obesity-Related Inflammation in Type 2 Diabetes Mellitus and Gestational Diabetes. Antioxidants (Basel) 2023; 12:1488. [PMID: 37627482 PMCID: PMC10451679 DOI: 10.3390/antiox12081488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetes is one of the greatest healthcare problems; it requires an appropriate approach to the patient, especially when it concerns pregnant women. Gestational diabetes mellitus (GDM) is a common metabolic condition in pregnancy that shares many features with type 2 diabetes mellitus (T2DM). T2DM and GDM induce oxidative stress, which activates cellular stress signalling. In addition, the risk of diabetes during pregnancy can lead to various complications for the mother and foetus. It has been shown that physical activity is an important tool to not only treat the negative effects of diabetes but also to prevent its progression or even reverse the changes already made by limiting the inflammatory process. Physical activity has a huge impact on the immune status of an individual. Various studies have shown that regular training sessions cause changes in circulating immune cell levels, cytokine activation, production and secretion and changes in microRNA, all of which have a positive effect on the well-being of the diabetic patient, mother and foetus.
Collapse
Affiliation(s)
- Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 54, 70-210 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
12
|
Qin Y, Bily D, Aguirre M, Zhang K, Xie L. Understanding PPARγ and Its Agonists on Trophoblast Differentiation and Invasion: Potential Therapeutic Targets for Gestational Diabetes Mellitus and Preeclampsia. Nutrients 2023; 15:2459. [PMID: 37299422 PMCID: PMC10255128 DOI: 10.3390/nu15112459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The increasing incidence of pregnancy complications, particularly gestational diabetes mellitus (GDM) and preeclampsia (PE), is a cause for concern, as they can result in serious health consequences for both mothers and infants. The pathogenesis of these complications is still not fully understood, although it is known that the pathologic placenta plays a crucial role. Studies have shown that PPARγ, a transcription factor involved in glucose and lipid metabolism, may have a critical role in the etiology of these complications. While PPARγ agonists are FDA-approved drugs for Type 2 Diabetes Mellitus, their safety during pregnancy is not yet established. Nevertheless, there is growing evidence for the therapeutic potential of PPARγ in the treatment of PE using mouse models and in cell cultures. This review aims to summarize the current understanding of the mechanism of PPARγ in placental pathophysiology and to explore the possibility of using PPARγ ligands as a treatment option for pregnancy complications. Overall, this topic is of great significance for improving maternal and fetal health outcomes and warrants further investigation.
Collapse
Affiliation(s)
- Yushu Qin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (Y.Q.); (D.B.); (M.A.); (K.Z.)
| | - Donalyn Bily
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (Y.Q.); (D.B.); (M.A.); (K.Z.)
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Makayla Aguirre
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (Y.Q.); (D.B.); (M.A.); (K.Z.)
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (Y.Q.); (D.B.); (M.A.); (K.Z.)
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (Y.Q.); (D.B.); (M.A.); (K.Z.)
| |
Collapse
|
13
|
Hua S, Wang S, Cai J, Wu L, Cao Y. Myeloid-derived suppressor cells: Are they involved in gestational diabetes mellitus? Am J Reprod Immunol 2023:e13711. [PMID: 37157925 DOI: 10.1111/aji.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is currently the most common metabolic complication during pregnancy, with an increasing prevalence worldwide. Maternal immune dysregulation might be partly responsible for the pathophysiology of GDM. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells, emerging as a new immune regulator with potent immunosuppressive capacity. Although the fate and function of these cells were primarily described in pathological conditions such as cancer and infection, accumulating evidences have spotlighted their beneficial roles in homeostasis and physiological conditions. Recently, several studies have explored the roles of MDSCs in the diabetic microenvironment. However, the fate and function of these cells in GDM are still unknown. The current review summarized the existing knowledges about MDSCs and their potential roles in diabetes during pregnancy in an attempt to highlight our current understanding of GDM-related immune dysregulation and identify areas where further study is required.
Collapse
Affiliation(s)
- Siyu Hua
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shanshan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyang Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lamei Wu
- Department of Perinatal Healthcare, Huai'an District Maternity and Child Health Hospital, Huai'an, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
High Glucose Promotes Inflammation and Weakens Placental Defenses against E. coli and S. agalactiae Infection: Protective Role of Insulin and Metformin. Int J Mol Sci 2023; 24:ijms24065243. [PMID: 36982317 PMCID: PMC10048930 DOI: 10.3390/ijms24065243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Placentas from gestational diabetes mellitus (GDM) patients undergo significant metabolic and immunologic adaptations due to hyperglycemia, which results in an exacerbated synthesis of proinflammatory cytokines and an increased risk for infections. Insulin or metformin are clinically indicated for the treatment of GDM; however, there is limited information about the immunomodulatory activity of these drugs in the human placenta, especially in the context of maternal infections. Our objective was to study the role of insulin and metformin in the placental inflammatory response and innate defense against common etiopathological agents of pregnancy bacterial infections, such as E. coli and S. agalactiae, in a hyperglycemic environment. Term placental explants were cultivated with glucose (10 and 50 mM), insulin (50–500 nM) or metformin (125–500 µM) for 48 h, and then they were challenged with live bacteria (1 × 105 CFU/mL). We evaluated the inflammatory cytokine secretion, beta defensins production, bacterial count and bacterial tissue invasiveness after 4–8 h of infection. Our results showed that a GDM-associated hyperglycemic environment induced an inflammatory response and a decreased beta defensins synthesis unable to restrain bacterial infection. Notably, both insulin and metformin exerted anti-inflammatory effects under hyperglycemic infectious and non-infectious scenarios. Moreover, both drugs fortified placental barrier defenses, resulting in reduced E. coli counts, as well as decreased S. agalactiae and E. coli invasiveness of placental villous trees. Remarkably, the double challenge of high glucose and infection provoked a pathogen-specific attenuated placental inflammatory response in the hyperglycemic condition, mainly denoted by reduced TNF-α and IL-6 secretion after S. agalactiae infection and by IL-1β after E. coli infection. Altogether, these results suggest that metabolically uncontrolled GDM mothers develop diverse immune placental alterations, which may help to explain their increased vulnerability to bacterial pathogens.
Collapse
|
15
|
Delker E, Ramos GA, Bandoli G, LaCoursiere DY, Ferran K, Gallo LC, Oren E, Gahagan S, Allison M. Associations Between Preconception Glycemia and Preterm Birth: The Potential Role of Health Care Access and Utilization. J Womens Health (Larchmt) 2023; 32:274-282. [PMID: 36796052 PMCID: PMC9993162 DOI: 10.1089/jwh.2022.0256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Background: Preconception diabetes is strongly associated with adverse birth outcomes. Less is known about the effects of elevated glycemia at levels below clinical cutoffs for diabetes. In this study, we estimated associations between preconception diabetes, prediabetes, and hemoglobin A1c (HbA1c) on the risk of preterm birth, and evaluated whether associations were modified by access to or utilization of health care services. Materials and Methods: We used data from Add Health, a US prospective cohort study with five study waves to date. At Wave IV (ages 24-32), glucose and HbA1c were measured. At Wave V (ages 32-42), women with a live birth reported whether the baby was born preterm. The analytic sample size was 1989. Results: The prevalence of preterm birth was 13%. Before pregnancy, 6.9% of women had diabetes, 23.7% had prediabetes, and 69.4% were normoglycemic. Compared to the normoglycemic group, women with diabetes had 2.1 (confidence interval [95% CI]: 1.5-2.9) times the risk of preterm birth, while women with prediabetes had 1.3 (95% CI: 1.0, 1.7) times the risk of preterm birth. There was a nonlinear relationship between HbA1c and preterm birth such that risk of preterm birth emerged after HbA1c = 5.7%, a standard cutoff for prediabetes. The excess risks of preterm birth associated with elevated HbA1c were four to five times larger among women who reported unstable health care coverage and among women who used the emergency room as usual source of care. Conclusion: Our findings replicate prior research showing strong associations between preconception diabetes and preterm birth, adding that prediabetes is also associated with higher risk. Policies and interventions to enhance access and utilization of health care among women before pregnancy should be examined.
Collapse
Affiliation(s)
- Erin Delker
- Department of Public Health, San Diego State University, Joint Doctoral Program in Public Health, San Diego, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Gladys A. Ramos
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California, USA
| | - Gretchen Bandoli
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - D. Yvette LaCoursiere
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California, USA
| | - Karen Ferran
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Linda C. Gallo
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Eyal Oren
- Division of Preventive Medicine, University of California San Diego, La Jolla, California, USA
| | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Matthew Allison
- Division of Preventive Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Löb S, Knabl J, Vattai A, Schmoeckel E, Kuhn C, Mittelberger J, Wöckel A, Mahner S, Jeschke U. Obesity in pregnancy is associated with macrophage influx and an upregulated GRO-alpha and IL-6 expression in the decidua. J Reprod Immunol 2023; 156:103800. [PMID: 36640674 DOI: 10.1016/j.jri.2023.103800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
About one third of all reproductive-aged women are affected by obesity. Maternal obesity is linked to an adverse outcome for both mother and child. The expression of the pro-inflammatory IL-6 and GRO-alpha as well as the infiltration of macrophages in the placenta of obese, non-diabetic pregnancies was examined by immunohistochemistry in comparison to the placenta of normal weight women. In obese pregnancies the influx of macrophages was significantly increased (p = 0.012). The protein expression of IL-6 and GRO-alpha was significantly elevated (p = 0.036 and p < 0.001, respectively) in the decidua of adipose females.
Collapse
Affiliation(s)
- Sanja Löb
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080 Würzburg, Germany
| | - Julia Knabl
- Department of Obstetrics, Klinik Hallerwiese, Sankt-Johannis-Mühlgasse 19, 90419 Nürnberg, Germany; Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Marchioninistr. 27, 81377 Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Johanna Mittelberger
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080 Würzburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany.
| |
Collapse
|
17
|
Tu W, Qin M, Li Y, Wu W, Tong X. Metformin regulates autophagy via LGMN to inhibit choriocarcinoma. Gene X 2023; 853:147090. [PMID: 36464174 DOI: 10.1016/j.gene.2022.147090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Choriocarcinoma has the problem of chemotherapy insensitivity and recurrence. Metformin may be a promising candidate to restrict choriocarcinoma progress because of its indirect and direct beneficial role on inhabitations of cancer cells without severe adverse side effects. In this study, metformin pressed the proliferation and invasion of choriocarcinoma JAR cells in vitro and the growth of the JAR subcutaneous xenografts in vivo. The high throughput sequencing and bioinformatics technology identified the low expression of legumain (LGMN) in lysosomal pathway caused by metformin, which was upregulated in human choriocarcinoma tissues compared with the early pregnancy tissues. As elevating metformin concentration and treatment time, the mRNA and protein expression of LGMN both depressed in two choriocarcinoma cell lines (JAR and JEG-3). LGMN was involved in metformin-mediated inhibition of cell proliferation and invasion. Furthermore, metformin induced autophagy via inhibiting LGMN through AKT/mTOR/LC3II signaling pathway of choriocarcinoma. Autophagy inhibitor could depress metformin-induced autophagy and improve cell proliferation and invasion ability dropped by metformin, while autophagy inducer could partially reverse the change of cell proliferation and invasion modulated by combination of metformin and LGMN overexpression. These results indicated that metformin inhibited cell proliferation and invasion ability by inducing autophagy in a LGMN-dependent manner so as to play a role in the treatment of choriocarcinoma.
Collapse
Affiliation(s)
- Weiyan Tu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Menglu Qin
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Li
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weimin Wu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaowen Tong
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Zhu A, Qi S, Li W, Chen D, Zheng X, Xu J, Feng Y. Hyperglycemia-induced endothelial exosomes trigger trophoblast dysregulation and abnormal placentation through PUM2-mediated repression of SOX2. Hum Exp Toxicol 2023; 42:9603271221149656. [PMID: 36607285 DOI: 10.1177/09603271221149656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hyperglycemia is closely related to adverse pregnancy outcomes including pre-eclampsia (PE), a life-threatening complication with a substantial morbidity and mortality. However, the pathogenesis of abnormal placentation in gestational diabetes mellitus (GDM)-associated PE remains elusive. METHOD Here we isolated exosomes from the human umbilical vein endothelial cells (HUVECs) treated with normal level of glucose (NG) and high levels of glucose (HG). The exosomes were added to HTR-8a/SVneo cells, a trophoblast cell line. High-throughput RNA-sequencing was performed to analyzed the changed RNAs in the exosomes and exosome-treated HTR-8a/SVneo cells. HTR-8a/SVneo cell phenotypes were evaluated from the aspects of cell proliferation, cell invasion and DNA damage. RESULTS After treatment with HG, the changed RNAs in exosomes was enriched in RNA stabilization and oxidative stress. The altered RNAs in the HTR-8a/SVneo cells treated with exosomes from HG-induced HUVECs were enriched in pathways related to cell adhesion, migration, DNA damage response and angiogenesis. The HG-induced exosomes impaired the proliferation and invasion of HTR-8a cells and caused the DNA damage. HG up-regulated PUM2 in the exosomes and exosome-treated HTR-8a/SVneo cells. PUM2 interacted with SOX2 mRNA, resulting in the mRNA degradation. Overexpression of SOX2 prevented the damage to HTR-8a/SVneo cells caused by the exosomes from HG-induced HUVECs. CONCLUSIONS We demonstrate that high glucose-induced endothelial exosomes mediate abnormal phenotypes of trophoblasts through PUM2-mediated repression of SOX2. Our results reveal a novel regulatory mechanism of hyperglycemia in development of abnormal placentation and provide potential targets for preventing adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Aibing Zhu
- Department of Anesthesiology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Suwan Qi
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Wenjuan Li
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Dashu Chen
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Xiaomin Zheng
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Jianjuan Xu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Yaling Feng
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| |
Collapse
|
19
|
Zhu Y, Liu X, Xu Y, Lin Y. Hyperglycemia disturbs trophoblast functions and subsequently leads to failure of uterine spiral artery remodeling. Front Endocrinol (Lausanne) 2023; 14:1060253. [PMID: 37091848 PMCID: PMC10113679 DOI: 10.3389/fendo.2023.1060253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Uterine spiral artery remodeling is necessary for fetal growth and development as well as pregnancy outcomes. During remodeling, trophoblasts invade the arteries, replace the endothelium and disrupt the vascular smooth muscle, and are strictly regulated by the local microenvironment. Elevated glucose levels at the fetal-maternal interface are associated with disorganized placental villi and poor placental blood flow. Hyperglycemia disturbs trophoblast proliferation and invasion via inhibiting the epithelial-mesenchymal transition, altering the protein expression of related proteases (MMP9, MMP2, and uPA) and angiogenic factors (VEGF, PIGF). Besides, hyperglycemia influences the cellular crosstalk between immune cells, trophoblast, and vascular cells, leading to the failure of spiral artery remodeling. This review provides insight into molecular mechanisms and signaling pathways of hyperglycemia that influence trophoblast functions and uterine spiral artery remodeling.
Collapse
Affiliation(s)
- Yueyue Zhu
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yi Lin,
| |
Collapse
|
20
|
Ionescu RF, Enache RM, Cretoiu SM, Gaspar BS. Gut Microbiome Changes in Gestational Diabetes. Int J Mol Sci 2022; 23:12839. [PMID: 36361626 PMCID: PMC9654708 DOI: 10.3390/ijms232112839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
Gestational diabetes mellitus (GDM), one of the most common endocrine pathologies during pregnancy, is defined as any degree of glucose intolerance with onset or first discovery in the perinatal period. Physiological changes that occur in pregnant women can lead to inflammation, which promotes insulin resistance. In the general context of worldwide increasing obesity in young females of reproductive age, GDM follows the same ascending trend. Changes in the intestinal microbiome play a decisive role in obesity and the development of insulin resistance and chronic inflammation, especially in patients with type 2 diabetes mellitus (T2D). To date, various studies have also associated intestinal dysbiosis with metabolic changes in women with GDM. Although host metabolism in women with GDM has not been fully elucidated, it is of particular importance to analyze the available data and to discuss the actual knowledge regarding microbiome changes with potential impact on the health of pregnant women and newborns. We analyzed peer-reviewed journal articles available in online databases in order to summarize the most recent findings regarding how variations in diet and metabolic status of GDM patients can contribute to alteration of the gut microbiome, in the same way that changes of the gut microbiota can lead to GDM. The most frequently observed alteration in the microbiome of patients with GDM was either an increase of the Firmicutes phylum, respectively, or a decrease of the Bacteroidetes and Actinobacteria phyla. Gut dysbiosis was still present postpartum and can impact the development of the newborn, as shown in several studies. In the evolution of GDM, probiotic supplementation and regular physical activity have the strongest evidence of proper blood glucose control, favoring fetal development and a healthy outcome for the postpartum period. The current review aims to summarize and discuss the most recent findings regarding the correlation between GDM and dysbiosis, and current and future methods for prevention and treatment (lifestyle changes, pre- and probiotics administration). To conclude, by highlighting the role of the gut microbiota, one can change perspectives about the development and progression of GDM and open up new avenues for the development of innovative therapeutic targets in this disease.
Collapse
Affiliation(s)
- Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
21
|
Michikawa T, Morokuma S, Yamazaki S, Yoshino A, Sugata S, Takami A, Nakahara K, Saito S, Hoshi J, Kato K, Nitta H, Nishiwaki Y. Maternal Exposure to Fine Particulate Matter and Its Chemical Components Increasing the Occurrence of Gestational Diabetes Mellitus in Pregnant Japanese Women. JMA J 2022; 5:480-490. [PMID: 36407079 PMCID: PMC9646294 DOI: 10.31662/jmaj.2022-0141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 04/21/2025] Open
Abstract
INTRODUCTION PM2.5 exposure is a suspected risk factor for diabetes. It is hypothesized that maternal PM2.5 exposure contributes to the development of gestational diabetes mellitus (GDM). The association between PM2.5 exposure and GDM is controversial and limited evidence is available for the exposure to PM2.5 chemical components. We investigated the association between maternal exposure to total PM2.5 mass and its components, particularly over the first trimester (early placentation period), and GDM. METHODS Data were obtained from the Japan Perinatal Registry Network database, which includes all live births and stillbirths after 22 weeks of gestation at 39 cooperating hospitals in 23 Tokyo wards (2013-2015). At one fixed monitoring site, we performed daily filter sampling of fine particles and measured daily concentrations of carbon and ion components. The average concentrations of total PM2.5 and its components over the 3 months before pregnancy and the first (0-13 gestational weeks) and second (14-27 gestational weeks) trimesters were calculated and assigned to each woman. We estimated the odds ratios (ORs) of GDM in a multilevel logistic regression model. RESULTS Among 82,773 women (mean age at delivery = 33.7 years) who delivered singleton births, 3,953 (4.8%) had GDM. In the multiexposure period model, an association between total PM2.5 exposure and GDM was observed for exposure over the first trimester (OR per interquartile range (IQR = 3.63 μg/m3) increase = 1.09; 95% confidence interval (CI) = 1.02-1.16), but not for the 3 months before pregnancy or the second trimester. For PM2.5 components, only organic carbon exposure over the first trimester was positively associated with GDM (OR per IQR (0.51 μg/m3) increase = 1.10; 1.00-1.21). CONCLUSIONS This is the first evidence that exposure to total PM2.5 and one of its components, organic carbon, over the first trimester increases GDM occurrence in Japan.
Collapse
Affiliation(s)
- Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| | - Seiichi Morokuma
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Yamazaki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Ibaraki, Japan
| | - Ayako Yoshino
- Regional Environment Conservation Division, National Institute for Environmental Studies, Ibaraki, Japan
| | - Seiji Sugata
- Regional Environment Conservation Division, National Institute for Environmental Studies, Ibaraki, Japan
| | - Akinori Takami
- Regional Environment Conservation Division, National Institute for Environmental Studies, Ibaraki, Japan
| | - Kazushige Nakahara
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, Tokyo, Japan
| | - Junya Hoshi
- Tokyo Metropolitan Research Institute for Environmental Protection, Tokyo, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nitta
- Health and Environmental Risk Division, National Institute for Environmental Studies, Ibaraki, Japan
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
22
|
Devvanshi H, Kachhwaha R, Manhswita A, Bhatnagar S, Kshetrapal P. Immunological Changes in Pregnancy and Prospects of Therapeutic Pla-Xosomes in Adverse Pregnancy Outcomes. Front Pharmacol 2022; 13:895254. [PMID: 35517798 PMCID: PMC9065684 DOI: 10.3389/fphar.2022.895254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stringent balance of the immune system is a key regulatory factor in defining successful implantation, fetal development, and timely parturition. Interference in these primary regulatory mechanisms, either at adolescence or prenatal state led to adverse pregnancy outcomes. Fertility restoration with the help of injectable gonadotrophins/progesterone, ovulation-inducing drugs, immunomodulatory drugs (corticosteroids), and reproductive surgeries provides inadequate responses, which manifest its own side effects. The development of a potential diagnostic biomarker and an effectual treatment for adverse pregnancy outcomes is a prerequisite to maternal and child health. Parent cell originated bi-layered-intraluminal nano-vesicles (30-150 nm) also known as exosomes are detected in all types of bodily fluids like blood, saliva, breast milk, urine, etc. Exosomes being the most biological residual structures with the least cytotoxicity are loaded with cargo in the form of RNAs (miRNAs), proteins (cytokines), hormones (estrogen, progesterone, etc.), cDNAs, and metabolites making them chief molecules of cell-cell communication. Their keen involvement in the regulation of biological processes has portrayed them as the power shots of cues to understand the disease's pathophysiology and progression. Recent studies have demonstrated the role of immunexosomes (immunomodulating exosomes) in maintaining unwavering immune homeostasis between the mother and developing fetus for a healthy pregnancy. Moreover, the concentration and size of the exosomes are extensively studied in adverse pregnancies like preeclampsia, gestational diabetes mellitus (GDM), and preterm premature rupture of membrane (pPROMs) as an early diagnostic marker, thus giving in-depth information about their pathophysiology. Exosomes have also been engineered physically as well as genetically to enhance their encapsulation efficiency and specificity in therapy for cancer and adverse pregnancies. Successful bench to bedside discoveries and interventions in cancer has motivated developmental biologists to investigate the role of immunexosomes and their active components. Our review summarizes the pre-clinical studies for the use of these power-shots as therapeutic agents. We envisage that these studies will pave the path for the use of immunexosomes in clinical settings for reproductive problems that arise due to immune perturbance in homeostasis either at adolescence or prenatal state.
Collapse
Affiliation(s)
- Himadri Devvanshi
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Rohit Kachhwaha
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Anima Manhswita
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Shinjini Bhatnagar
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
23
|
Kapustin RV, Kopteeva EV, Alekseenkova EN, Korenevsky AV, Smirnov IV, Arzhanova ON. Prediction of preeclampsia based on maternal serum endoglin level in women with pregestational diabetes mellitus. Hypertens Pregnancy 2022; 41:173-180. [PMID: 35475412 DOI: 10.1080/10641955.2022.2068574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE To evaluate the level of soluble endoglin (sEng) in pregnant women with pregestational diabetes mellitus (DM) and to assess its predictive value for preeclampsia development. METHODS Ninety pregnant women were enrolled in the study forming five comparison groups: type 1 DM (not planned, n = 20; planned, n = 20), type 2 DM (diet, n = 15; insulin therapy, n = 20), and the control group (n = 15). The primary outcome was clinically confirmed preeclampsia. Maternal serum concentrations of sEng were measured at 11+0-13+6 and 30+0-33+6 weeks. RESULTS sEng level was elevated in all patients with pregestational DM compared to the control group. Its plasma concentration increased with gestational age and in case of preeclampsia development. In patients with type 1 DM, serum sEng level did not depend on the presence of preeclampsia. This is evidence of severe metabolic disorder and endothelial dysfunction in these patients. The addition of sEng level to logistic models considering established risk factors (body mass index + age + HbA1c level) in the first and third trimesters significantly improved their performance for preeclampsia prediction. CONCLUSIONS Eng level may become an important marker for early prediction of preeclampsia in women with pregestational DM.
Collapse
Affiliation(s)
- Roman V Kapustin
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, Department of Obstetrics, Division of Maternal-Fetal Medicine, St. Petersburg, Russia; 3 Mendeleevskaya Line, St. Petersburg Russia.,St. Petersburg State University, Faculty of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, St. Petersburg, Russia
| | - Ekaterina V Kopteeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, Department of Obstetrics, Division of Maternal-Fetal Medicine, St. Petersburg, Russia; 3 Mendeleevskaya Line, St. Petersburg Russia
| | - Elena N Alekseenkova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, Department of Obstetrics, Division of Maternal-Fetal Medicine, St. Petersburg, Russia; 3 Mendeleevskaya Line, St. Petersburg Russia
| | - Andrey V Korenevsky
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, Department of Obstetrics, Division of Maternal-Fetal Medicine, St. Petersburg, Russia; 3 Mendeleevskaya Line, St. Petersburg Russia
| | - Ilya V Smirnov
- Department of Immunology and Microbiology, University of Gothenburg, Gothenburg, Sweden
| | - Olga N Arzhanova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, Department of Obstetrics, Division of Maternal-Fetal Medicine, St. Petersburg, Russia; 3 Mendeleevskaya Line, St. Petersburg Russia.,St. Petersburg State University, Faculty of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, St. Petersburg, Russia
| |
Collapse
|
24
|
Yang Y, Wu N. Gestational Diabetes Mellitus and Preeclampsia: Correlation and Influencing Factors. Front Cardiovasc Med 2022; 9:831297. [PMID: 35252402 PMCID: PMC8889031 DOI: 10.3389/fcvm.2022.831297] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) and preeclampsia (PE) are common pregnancy complications with similar risk factors and pathophysiological changes. Evidence from previous studies suggests that the incidence of PE is significantly increased in women with GDM, but whether GDM is independently related to the occurrence of PE has remained controversial. GDM complicated by PE further increases perinatal adverse events with greater impact on the future maternal and offspring health. Identify factors associated with PE in women with GDM women, specifically those that are controllable, is important for improving pregnancy outcomes. This paper provides the findings of a review on the correlation between GDM and PE, factors associated with PE in women with GDM, possible mechanisms, and predictive markers. Most studies concluded that GDM is independently associated with PE in singleton pregnancy, and optimizing the treatment and management of GDM can reduce the incidence of PE, which is very helpful to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Miller AS, Hidalgo TN, Abrahams VM. Human fetal membrane IL-1β production in response to bacterial components is mediated by uric-acid induced NLRP3 inflammasome activation. J Reprod Immunol 2022; 149:103457. [PMID: 34875574 PMCID: PMC8792319 DOI: 10.1016/j.jri.2021.103457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Inflammatory interleukin-1β (IL-1β) is an important mediator of preterm birth. IL-1β secretion is mediated by the inflammasome that processes pro-IL-1β into its active form. However the mechanisms involved at the level of the fetal membrane (FM) are not fully understood. This study sought to determine the FM compartment involved in IL-1β production in response to bacterial components and to evaluate the mechanism of inflammasome activation. Since IL-18 is also mediated by the inflammasome and IL-8 is a chemoattractant that contributes to neutrophil recruitment in chorioamnionitis, we also evaluated the production of these factors. A human explant system was used to evaluate the response of the chorion, amnion, and intact FMs to the bacterial components lipopolysaccharide (LPS), peptidoglycan (PGN), or muramyl dipeptide (MDP). The chorion was the major source of IL-1β and IL-8 production in response to LPS, PGN, and MDP. LPS, PGN, and MDP induced FM IL-1β and IL-18 secretion in a non-pyroptotic manner through activation of the NLRP3 inflammasome with contributions from ATP release through Pannexin-1, and ROS signaling. Since LPS, PGN, and MDP are not known to activate NLRP3 directly, the role of uric acid as a potential mediator was assessed. FMs produced elevated uric acid in response to LPS, PGN and MDP. FM IL-1β secretion was inhibited by allopurinol, which blocks uric acid production, for LPS and PGN, and to a lesser degree, MDP. These findings shed light on the mechanisms by which fetal membrane inflammation and subsequent preterm birth may arise.
Collapse
Affiliation(s)
- Alex S. Miller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Tiffany N. Hidalgo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Vikki M. Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT,Corresponding Author: Vikki M. Abrahams PhD. Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 305C, New Haven, CT 06510, USA. ; Phone: 203-785-2175
| |
Collapse
|
26
|
Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF- κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1806344. [PMID: 34804360 PMCID: PMC8601820 DOI: 10.1155/2021/1806344] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated pyroptosis is a crucial event in the preeclamptic pathogenesis, tightly linked with the uteroplacental TLR4/NF-κB signaling. Trophoblastic glycometabolism reprogramming has now been noticed in the preeclampsia pathogenesis, plausibly modulated by the TLR4/NF-κB signaling as well. Intriguingly, cellular pyroptosis and metabolic phenotypes may be inextricably linked and interacted. Metformin (MET), a widely accepted NF-κB signaling inhibitor, may have therapeutic potential in preeclampsia while the underlying mechanisms remain unclear. Herein, we investigated the role of MET on trophoblastic pyroptosis and its relevant metabolism reprogramming. The safety of pharmacologic MET concentration to trophoblasts was verified at first, which had no adverse effects on trophoblastic viability. Pharmacological MET concentration suppressed NLRP3 inflammasome-induced pyroptosis partly through inhibiting the TLR4/NF-κB signaling in preeclamptic trophoblast models induced via low-dose lipopolysaccharide. Besides, MET corrected the glycometabolic reprogramming and oxidative stress partly via suppressing the TLR4/NF-κB signaling and blocking transcription factor NF-κB1 binding on the promoter PFKFB3, a potent glycolytic accelerator. Furthermore, PFKFB3 can also enhance the NF-κB signaling, reduce NLRP3 ubiquitination, and aggravate pyroptosis. However, MET suppressed pyroptosis partly via inhibiting PFKFB3 as well. These results provided that the TLR4/NF-κB/PFKFB3 pathway may be a novel link between metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis in trophoblasts. Further, MET alleviates the NLRP3 inflammasome-induced pyroptosis, which partly relies on the regulation of TLR4/NF-κB/PFKFB3-dependent glycometabolism reprogramming and redox disorders. Hence, our results provide novel insights into the pathogenesis of preeclampsia and propose MET as a potential therapy.
Collapse
|
27
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
28
|
Poniedziałek-Czajkowska E, Mierzyński R, Dłuski D, Leszczyńska-Gorzelak B. Prevention of Hypertensive Disorders of Pregnancy-Is There a Place for Metformin? J Clin Med 2021; 10:jcm10132805. [PMID: 34202343 PMCID: PMC8268471 DOI: 10.3390/jcm10132805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility of prophylaxis of hypertensive disorders of pregnancy (HDPs) such as preeclampsia (PE) and pregnancy-induced hypertension is of interest due to the unpredictable course of these diseases and the risks they carry for both mother and fetus. It has been proven that their development is associated with the presence of the placenta, and the processes that initiate it begin at the time of the abnormal invasion of the trophoblast in early pregnancy. The ideal HDP prophylaxis should alleviate the influence of risk factors and, at the same time, promote physiological trophoblast invasion and maintain the physiologic endothelium function without any harm to both mother and fetus. So far, aspirin is the only effective and recommended pharmacological agent for the prevention of HDPs in high-risk groups. Metformin is a hypoglycemic drug with a proven protective effect on the cardiovascular system. Respecting the anti-inflammatory properties of metformin and its favorable impact on the endothelium, it seems to be an interesting option for HDP prophylaxis. The results of previous studies on such use of metformin are ambiguous, although they indicate that in a certain group of pregnant women, it might be effective in preventing hypertensive complications. The aim of this study is to present the possibility of metformin in the prevention of hypertensive disorders of pregnancy with respect to its impact on the pathogenic elements of development
Collapse
|
29
|
Sultan S. Aberrant expression of proatherogenic cytokines and growth factors in human umbilical vein endothelial cells from newborns of type 2 diabetic women. SAGE Open Med 2021; 9:20503121211026832. [PMID: 34211712 PMCID: PMC8216400 DOI: 10.1177/20503121211026832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives: This study reports the levels of cytokines, chemokines, and growth factors previously identified as taking part in the pathology of atherosclerosis in human umbilical vein endothelial cells derived from mothers with type 2 diabetes and compares them with those in human umbilical vein endothelial cells derived from healthy mothers under normal glucose conditions. Methods: Cytokine analysis measures of human umbilical vein endothelial cell lysates were obtained using a multiple analyte profiling (xMAP) assay based on magnetic bead-based technology, using the MAGPIX instrument. The correlation between cytokines, chemokines, and growth factors was examined statistically in human umbilical vein endothelial cells derived from mothers with type 2 diabetes. Results: This study showed that the expression of proinflammatory cytokine interleukin-1 alpha was significantly greater in human umbilical vein endothelial cells derived from mothers with type 2 diabetes than those derived from healthy mothers. The protein level of granulocyte colony-stimulating factor was higher in human umbilical vein endothelial cells derived from mothers with type 2 diabetes than those derived from healthy mothers. A significant positive correlation was demonstrated between the protein expression of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in human umbilical vein endothelial cells derived from mothers with type 2 diabetes. Conclusion: Diabetes evokes a persistent inflammatory phenotype in human umbilical vein endothelial cells, as indicated by the enhanced production of cytokines and growth factors under normal glucose conditions.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Interaction between Metformin, Folate and Vitamin B 12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. Int J Mol Sci 2021; 22:ijms22115759. [PMID: 34071182 PMCID: PMC8198407 DOI: 10.3390/ijms22115759] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin is the first-line treatment for many people with type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM) to maintain glycaemic control. Recent evidence suggests metformin can cross the placenta during pregnancy, thereby exposing the fetus to high concentrations of metformin and potentially restricting placental and fetal growth. Offspring exposed to metformin during gestation are at increased risk of being born small for gestational age (SGA) and show signs of ‘catch up’ growth and obesity during childhood which increases their risk of future cardiometabolic diseases. The mechanisms by which metformin impacts on the fetal growth and long-term health of the offspring remain to be established. Metformin is associated with maternal vitamin B12 deficiency and antifolate like activity. Vitamin B12 and folate balance is vital for one carbon metabolism, which is essential for DNA methylation and purine/pyrimidine synthesis of nucleic acids. Folate:vitamin B12 imbalance induced by metformin may lead to genomic instability and aberrant gene expression, thus promoting fetal programming. Mitochondrial aerobic respiration may also be affected, thereby inhibiting placental and fetal growth, and suppressing mammalian target of rapamycin (mTOR) activity for cellular nutrient transport. Vitamin supplementation, before or during metformin treatment in pregnancy, could be a promising strategy to improve maternal vitamin B12 and folate levels and reduce the incidence of SGA births and childhood obesity. Heterogeneous diagnostic and screening criteria for GDM and the transient nature of nutrient biomarkers have led to inconsistencies in clinical study designs to investigate the effects of metformin on folate:vitamin B12 balance and child development. As rates of diabetes in pregnancy continue to escalate, more women are likely to be prescribed metformin; thus, it is of paramount importance to improve our understanding of metformin’s transgenerational effects to develop prophylactic strategies for the prevention of adverse fetal outcomes.
Collapse
|
31
|
McElwain CJ, McCarthy FP, McCarthy CM. Gestational Diabetes Mellitus and Maternal Immune Dysregulation: What We Know So Far. Int J Mol Sci 2021; 22:4261. [PMID: 33923959 PMCID: PMC8073796 DOI: 10.3390/ijms22084261] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is an obstetric complication that affects approximately 5-10% of all pregnancies worldwide. GDM is defined as any degree of glucose intolerance with onset or first recognition during pregnancy, and is characterized by exaggerated insulin resistance, a condition which is already pronounced in healthy pregnancies. Maternal hyperglycaemia ensues, instigating a 'glucose stress' response and concurrent systemic inflammation. Previous findings have proposed that both placental and visceral adipose tissue play a part in instigating and mediating this low-grade inflammatory response which involves altered infiltration, differentiation and activation of maternal innate and adaptive immune cells. The resulting maternal immune dysregulation is responsible for exacerbation of the condition and a further reduction in maternal insulin sensitivity. GDM pathology results in maternal and foetal adverse outcomes such as increased susceptibility to diabetes mellitus development and foetal neurological conditions. A clearer understanding of how these pathways originate and evolve will improve therapeutic targeting. In this review, we will explore the existing findings describing maternal immunological adaption in GDM in an attempt to highlight our current understanding of GDM-mediated immune dysregulation and identify areas where further research is required.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, T12 YE02 Cork, Ireland;
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| |
Collapse
|
32
|
Yoles I, Sheiner E, Wainstock T. First pregnancy risk factors and future gestational diabetes mellitus. Arch Gynecol Obstet 2021; 304:929-934. [PMID: 33811260 DOI: 10.1007/s00404-021-06024-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Gestational diabetes mellitus (GDM) affect about 17% of all pregnancies and is associated with significant short- and long-term health consequences for the mother and her offspring. Early diagnosis and prompt interventions may reduce these adverse outcomes. We aimed to identify first pregnancy characteristics as risk factors for GDM in subsequent pregnancy. MATERIALS AND METHODS A population-based nested case-control study was conducted in a large tertiary hospital. The study population included all women with two singleton consecutive pregnancies and deliveries, without GDM in the first pregnancy. Characteristics and complications of the first pregnancy were compared among cases and controls. A multivariable logistic regression model was used to study the association between pregnancy complications (in the first pregnancy) and GDM in the subsequent pregnancy, while adjusting for confounding variables. RESULTS A total of 38,750 women were included in the study, of them 1.9% (n = 728) had GDM in their second pregnancy. Mothers with GDM in their second pregnancy were more likely to have the following first pregnancy complications: hypertensive disorders, perinatal mortality, maternal obesity and fetal macrosomia. Results remained significant after adjustment for maternal age and inter-pregnancy interval. Having either one of the complications increased the risk for GDM by 2.33 (adjusted OR = 2.33; 95% CI 1.93-2.82) while a combination of two complications increased GDM risk by 5.38 (adjusted OR = 5.38; 95% CI 2.85-10.17). CONCLUSIONS First pregnancy without GDM complicated by hypertensive disorders, perinatal mortality, maternal obesity and fetal macrosomia was associated with an increased risk for GDM in the subsequent pregnancy. Women with these complications may benefit from early detection of GDM in their subsequent pregnancy.
Collapse
Affiliation(s)
- Israel Yoles
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Clalit Health Services, The Central District, 30 Hertzl St., Rishon Le Tzion, Israel.
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tamar Wainstock
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
33
|
Hu L, Huang B, Bai S, Tan J, Liu Y, Chen H, Liu Y, Zhu L, Zhang J, Chen H. SO 2 derivatives induce dysfunction in human trophoblasts via inhibiting ROS/IL-6/STAT3 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111872. [PMID: 33388592 DOI: 10.1016/j.ecoenv.2020.111872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epidemiological studies have revealed that sulfur dioxides (SO2) can increase the risk of pregnancy complications such as missed abortion in the first trimester, stillbirth, preterm birth, small for gestational age, gestational diabetes mellitus and preeclampsia, but the mechanisms underlying these findings remains unknown. What is known, however, is that trophoblasts, a type of fetal cell exerting vital immunologic functions to maintain a successful pregnancy, are usually involved in the pathogenic mechanism of pregnancy complications. OBJECTIVE To study the effect of SO2 derivatives (bisulfite and sulfite, 1:3 M/M) on the function of trophoblasts. METHODS Swan.71 trophoblast cells were treated with various concentrations of SO2 derivatives to determine the effect of SO2 derivatives on cellular viability by CKK8. Flow cytometry was performed to analyze the effect of SO2 derivatives on apoptosis, cell cycle and intracellular ROS. Wound healing assay and transwell assay were conducted to examine the migration and invasion of Swan.71 cells. Inflammation-related cytokines in the supernatant (IL-1β, IL-6, IL-8, IL-10 and TNF-α) were measured by IMMULITE®1000 Systems (SIEMENS). The expression level of NLRP3, Caspase1, MMP9, MMP2, STAT3, and p-STAT3 were evaluated by Western Blotting. RESULTS Exposure to SO2 derivatives significantly decreased cellular viability, arrested cell cycle at S/G2/M phase and induced cell apoptosis of Swan.71 trophoblasts. In addition, the migration and invasion of Swan.71 cell were significantly inhibited. SO2 derivatives also significantly increased IL-1β secretion while it is NLRP3/Caspase1 independent. IL-6 secretion was significant inhibited accompanied by decreased STAT3 phosphorylation and expression of MMP2 and MMP9. The intracellular ROS level was significantly suppressed by SO2 derivatives. CONCLUSION SO2 derivatives exert toxic effects on trophoblasts which results in: suppressing cellular viability and intracellular ROS level, interfering with cell proliferation through arresting cell cycle, inducing cell apoptosis, disturbing inflammation-related cytokines secretion and inhibiting motility. Decreased ROS/IL-6/STAT3 levels play a role in inhibited cell viability, cell cycle arrest, apoptosis and defective motility.
Collapse
Affiliation(s)
- Lihao Hu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingqian Huang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shiyu Bai
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianping Tan
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yukun Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hailie Chen
- Hematologic Lab of Pediatrics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Liu
- Hematologic Lab of Pediatrics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
34
|
Pereira MM, Torrado J, Sosa C, Zócalo Y, Bia D. Shedding light on the pathophysiology of preeclampsia-syndrome in the era of Cardio-Obstetrics: Role of inflammation and endothelial dysfunction. Curr Hypertens Rev 2021; 18:17-33. [DOI: 10.2174/1573402117666210218105951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
:
Preeclampsia (PE) is a worldwide pregnancy complication with serious maternal and neonatal consequences. Our understanding of PE pathophysiology has significantly evolved over the last decades by recognizing that endothelial dysfunction and systemic inflammation, with an associated angiogenic imbalance, are key pieces of this still incomplete puzzle. In the present era, where no single treatment to cure or treat this obstetric condition has been developed so far, PE prevention and early prediction poses the most useful clinical approach to reduce the PE burden. Although most PE episodes occur in healthy nulliparous women, the identification of specific clinical conditions that increase dramatically the risk of PE provides a critical opportunity to improve outcomes by acting on potential reversible factors, and also contribute to better understand this pathophysiologic enigma. In this review, we highlight major clinical contributors of PE and shed light about their potential link with endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- María M. Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Juan Torrado
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudio Sosa
- Department of Obstetrics and Gynecology “C”, Pereira-Rossell Hospital, School of Medicine, Republic University, Montevideo, Uruguay
| | - Yanina Zócalo
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| | - Daniel Bia
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| |
Collapse
|
35
|
Interleukin-1 beta is significantly upregulated in the decidua of spontaneous and recurrent miscarriage placentas. J Reprod Immunol 2021; 144:103283. [PMID: 33545613 DOI: 10.1016/j.jri.2021.103283] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Pregnancy is an extraordinarily complex immunological process. For successful pregnancy maintenance the maternal immune system must adapt to and tolerate the semi-allogenic fetus at the fetomaternal interface of the placenta. This balance is regulated by cytokines with a predominant T helper 2 (Th-2) system and a suppressed inflammatory T helper 1 (Th-1) response. This study investigates the role of the Th-1 pro-inflammatory cytokine Interleukin-1 beta (IL-1β) and its role in early pregnancy loss. PATIENTS AND METHODS In order to identify differences in IL- β levels a TaqMan® Human Cytokine Network Array, with placental tissue obtained from patients with healthy pregnancies (n = 15) and recurrent miscarriage (n = 15), was carried out. Protein expression of IL-1β in the decidua of healthy pregnancies (n = 15), spontaneous (n = 18) and recurrent miscarriages (n = 15), was investigated by immunohistochemistry. The identification of IL-1β expressing cells in the decidua was done with double-immunofluorescence. RESULTS Gene expression analysis identified a nearly 54-times higher expression of IL-1β in placental tissue of patients suffering from recurrent abortion. Immunohistochemistry confirmed a significant upregulation of IL-1β in the decidua of recurrent miscarriage specimens (p = 0.01) as well as in the decidua of women with spontaneous abortion (p = 0.001). Double-immunofluorescence identified decidual stoma cells as IL-1β expressing cells. CONCLUSION Significant upregulation of IL-1β may be associated with an imbalanced immune system and a procoagulant state that could be responsible for early pregnancy loss. These results provide new evidence of the complex interplay of IL-1β at the fetomaternal interface and its crucial role in miscarriage processes.
Collapse
|
36
|
Xie Y, Xiao L, Li S. Effects of Metformin on Reproductive, Endocrine, and Metabolic Characteristics of Female Offspring in a Rat Model of Letrozole-Induced Polycystic Ovarian Syndrome With Insulin Resistance. Front Endocrinol (Lausanne) 2021; 12:701590. [PMID: 34484117 PMCID: PMC8414830 DOI: 10.3389/fendo.2021.701590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/17/2021] [Indexed: 01/28/2023] Open
Abstract
The beneficial effects of metformin, especially its capacity to ameliorate insulin resistance (IR) in polycystic ovary syndrome (PCOS), explains why it is widely prescribed. However, its effect on the offspring of patients with PCOS remains uncertain. This study investigated the impact of metformin treatment on the first- and second-generation female offspring born to letrozole-induced PCOS-IR rats. Forty-five female Wistar rats were implanted with continuous-release letrozole pellets or placebo and treated with metformin or vehicle control. Rats exposed to letrozole showed PCOS-like reproductive, endocrine, and metabolic phenotypes in contrast to the controls. Metformin significantly decreased the risk of body weight gain and increased INSR expression in F1 female offspring in PCOS-IR rats, contributing to the improvement in obesity, hyperinsulinemia, and IR. Decreased FSHR expression and increased LHCGR expression were observed in F1 female rats of the PCOS-IR and PCOS-IR+Metformin groups, suggesting that FSHR and LHCGR dysfunction might promote the development of PCOS. Nevertheless, we found no significant differences in INSR, FSHR, and LHCGR expression or other PCOS phenotypes in F2 female offspring of PCOS-IR rats. These findings indicated widespread reproductive, endocrine, and metabolic changes in the PCOS-IR rat model, but the PCOS phenotypes could not be stably inherited by the next generations. Metformin might have contributed to the improvement in obesity, hyperinsulinemia, and IR in F1 female offspring. The results of this study could be used as a theoretical basis in support of using metformin in the treatment of PCOS-IR patients.
Collapse
Affiliation(s)
- Yidong Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shangwei Li
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- *Correspondence: Shangwei Li,
| |
Collapse
|
37
|
McLeese RH, Zhao J, Fu D, Yu JY, Brazil DP, Lyons TJ. Effects of modified lipoproteins on human trophoblast cells: a role in pre-eclampsia in pregnancies complicated by diabetes. BMJ Open Diabetes Res Care 2021; 9:9/1/e001696. [PMID: 33504507 PMCID: PMC7843297 DOI: 10.1136/bmjdrc-2020-001696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Pre-eclampsia (PE) is increased ~4-fold by maternal diabetes. Elevated plasma antiangiogenic factors, soluble fms-like tyrosine kinase (sFLT-1) and soluble endoglin (sENG), precede PE onset. We investigated whether diabetes-related stresses, modified lipoproteins and elevated glucose enhance trophoblast sFLT-1 and sENG release and/or alter placental barrier function and whether oxidized low-density lipoprotein (Ox-LDL) is in placental tissue. RESEARCH DESIGN AND METHODS HTR8/SVneo cells were exposed to 'heavily-oxidized, glycated' LDL (HOG-LDL) versus native LDL (N-LDL) (10-200 mg protein/L) for 24 hours ±pretreatment with glucose (30 mmol/L, 72 hours). Concentrations of sFLT-1 and sENG in supernatants (by ELISA) and expressions of sFLT-1-I13 and sFLT-1-E15A isoforms, endoglin (ENG) and matrix metalloproteinase-14 (MMP-14; by RT-PCR) were quantified. For barrier studies, JAR cells were cultured in Transwell plates (12-14 days), then exposed to LDL. Transepithelial electrical resistance (TEER) was measured after 6, 12 and 24 hours. In placental sections from women with and without type 1 diabetes, immunostaining of apolipoprotein B100 (ApoB, a marker of LDL), Ox-LDL and lipoxidation product 4-hydroxynonenal was performed. RESULTS HOG-LDL (50 mg/L) increased sFLT-1 (2.7-fold, p<0.01) and sENG (6.4-fold, p<0.001) in supernatants versus N-LDL. HOG-LDL increased expression of sFLT-1-I13 (twofold, p<0.05), sFLT-1-E15A (1.9-fold, p<0.05), ENG (1.6-fold, p<0.01) and MMP-14 (1.8-fold, p<0.05) versus N-LDL. High glucose did not by itself alter sFLT-1 or sENG concentrations, but potentiated effects of HOG-LDL on sFLT-1 by 1.5-fold (p<0.05) and on sENG by 1.8-fold (p<0.01). HOG-LDL (200 mg/L) induced trophoblast barrier impairment, decreasing TEER at 6 hours (p<0.01), 12 hours (p<0.01) and 24 hours (p<0.05) versus N-LDL. Immunostaining of term placental samples from women both with and without diabetes revealed presence of intravillous modified lipoproteins. CONCLUSION These findings may explain, in part, the high risk for PE in women with diabetes. The trophoblast culture model has potential for evaluating novel therapies targeting barrier dysfunction.
Collapse
Affiliation(s)
- Rebecca Helen McLeese
- Division of Endocrinology, Medical University of South Carolina, Charleston, South Carolina, USA
- Wellcome-Wolfson Institute For Experimental Medicine School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Jiawu Zhao
- Wellcome-Wolfson Institute For Experimental Medicine School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Dongxu Fu
- Wellcome-Wolfson Institute For Experimental Medicine School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Jeremy Y Yu
- Division of Endocrinology, Medical University of South Carolina, Charleston, South Carolina, USA
- Wellcome-Wolfson Institute For Experimental Medicine School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Derek P Brazil
- Wellcome-Wolfson Institute For Experimental Medicine School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Timothy J Lyons
- Division of Endocrinology, Medical University of South Carolina, Charleston, South Carolina, USA
- Wellcome-Wolfson Institute For Experimental Medicine School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
38
|
Zhang Y, Liu X, Yang L, Zou L. Current Researches, Rationale, Plausibility, and Evidence Gaps on Metformin for the Management of Hypertensive Disorders of Pregnancy. Front Pharmacol 2020; 11:596145. [PMID: 33381040 PMCID: PMC7768035 DOI: 10.3389/fphar.2020.596145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are a group of morbid pregnancy complications, with preeclampsia (PE) being the most common subclassification among them. PE affects 2%–8% of pregnancies globally and threatens maternal and fetal health seriously. However, the only effective treatment of PE to date is the timely termination of pregnancy, albeit with increased perinatal risks. Hence, more emerging therapies for PE management are in urgent need. Originally introduced as the first-line therapy for type 2 diabetes mellitus, metformin (MET) has now been found in clinical trials to significantly reduce the incidence of gestational hypertension and PE in pregnant women with PE-related risks, including but not limited to pregestational diabetes mellitus, gestational diabetes mellitus, polycystic ovary syndrome, or obesity. Additionally, existing clinical data have preliminarily ensured the safety of taking MET during human pregnancies. Relevant lab studies have indicated that the underlying mechanism includes angiogenesis promotion, endothelial protection, anti-inflammatory effects, and particularly protective effects on trophoblast cells against the risk factors, which are beneficial to placental development. Together with its global availability, easy administration, and low cost, MET is expected to be a promising option for the prevention and treatment of PE. Nevertheless, there are still some limitations in current studies, and the design of the relevant research scheme is supposed to be further improved in the future. Herein, we summarize the relevant clinical and experimental researches to discuss the rationale, safety, and feasibility of MET for the management of HDP. At the end of the article, gaps in current researches are proposed. Concretely, experimental MET concentration and PE models should be chosen cautiously. Besides, the clinical trial protocol should be further optimized to evaluate the reduction in the prevalence of PE as a primary endpoint. All of those evidence gaps may be of guiding significance to improve the design of relevant experiments and clinical trials in the future.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Peng HY, Li MQ, Li HP. MiR-137 Restricts the Viability and Migration of HTR-8/SVneo Cells by Downregulating FNDC5 in Gestational Diabetes Mellitus. Curr Mol Med 2020; 19:494-505. [PMID: 31109274 DOI: 10.2174/1566524019666190520100422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND An increasing number of studies have described the pathological changes of placenta tissues in gestational diabetes mellitus (GDM), although the underlying mechanisms involved in this process remain uncertain. The aim of the present study was to verify the possible role of microRNA-137 (miR)-137 and FNDC5 in regulating the biological function of trophoblasts in high glucose (HG) conditions during the GDM period. METHODS Expression levels of miR-137 and FNDC5 were measured in placenta specimens, the HG-treated trophoblast cell line HTR-8/SVneo and miR-137- overexpressing HTR-8/SVneo cells using reverse transcription quantitative-PCR or western blotting. The viability of HTR-8/SVneo cells was tested using a Cell Counting kit- 8 (CCK8) assay, with cell migration assessed using scratch and transwell assays. RESULTS It was observed that the expression levels of miR-137 were increased and the expression levels of FNDC5 were decreased in the placenta tissues of women with severe GDM and in HG-exposed HTR-8/SVneo cells. In addition, upregulating miR-137 in HTR-8/SVneo cells downregulated the expression levels of FNDC5. The viability and migration of HTR-8/SVneo cells were suppressed by increased miR-137 expression levels, and upregulating FNDC5 in miR-137-overexpressing HTR-8/SVneo cells resulted in the reversal of all these effects. CONCLUSIONS The data from the present study suggest that miR-137 suppresses the viability and migration of trophoblasts via downregulating FNDC5 in GDM, which may contribute to the pathology of placenta tissues and occurrence of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hai-Yan Peng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Hua-Ping Li
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
40
|
The associations of maternal polycystic ovary syndrome and hirsutism with behavioral problems in offspring. Fertil Steril 2020; 113:435-443. [PMID: 32106995 DOI: 10.1016/j.fertnstert.2019.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To study the associations between maternal polycystic ovary syndrome (PCOS) and hirsutism with offspring attention-deficit/hyperactivity disorder (ADHD), anxiety, conduct disorder, and behavioral problems. DESIGN Prospective birth cohort study. SETTING Not applicable. PATIENT(S) A total of 1,915 mother-child dyads. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Maternal report of offspring ADHD, anxiety, or conduct disorder diagnosis at 7 to 8 years; emotional symptoms, behavioral problems (including peer relationship, conduct, hyperactivity/inattention), and prosocial problems measured with the Strengths and Difficulties Questionnaire (SDQ) at 7 years. RESULT(S) Prevalence of PCOS and hirsutism were 12.0% and 3.9%; 84% of women with hirsutism had PCOS. After adjustment for sociodemographic covariates, prepregnancy body mass index, and parental history of affective disorders, children born to mothers with PCOS had higher risk of anxiety (adjusted risk ratio [aRR] 1.62; 95% confidence interval [CI], 1.02-2.57) and borderline emotional symptoms (aRR 1.66; 95% CI, 1.18-2.33) compared with children born to mothers without PCOS. The associations between maternal PCOS and offspring ADHD were positive but imprecise. Maternal hirsutism was related to a higher risk of children's ADHD (aRR 2.33; 95% CI, 1.28-4.24), conduct disorder (aRR 2.54; 95% CI 1.18-5.47), borderline emotional symptoms, peer relationship problems, and conduct problems (aRRs 2.61; 95% CI, 1.69-4.05; 1.92; 95% CI, 1.16-3.17; and 2.22; 95% CI, 1.30-3.79, respectively). CONCLUSION(S) Maternal PCOS was associated with offspring anxiety, and hirsutism was related to other offspring behavioral problems. These findings should be interpreted with caution as replication is needed in prospective cohort studies that assess PCOS and hirsutism diagnoses using medical records.
Collapse
|
41
|
The NLRP3 Inflammasome Role in the Pathogenesis of Pregnancy Induced Hypertension and Preeclampsia. Cells 2020; 9:cells9071642. [PMID: 32650532 PMCID: PMC7407205 DOI: 10.3390/cells9071642] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnancy-induced hypertension and preeclampsia are associated with significant maternal and fetal mortality. A better understanding of these diseases, delineation of molecular pathomechanism, and efficient treatment development are some of the most urgent tasks in obstetrics and gynecology. Recent findings indicate the crucial role of inflammation in the development of hypertension and preeclampsia. Although the mechanism is very complex and needs further explanation, it appears that high levels of cholesterol, urate, and glucose activates NLRP3 inflammasome, which produces IL-1β, IL-18, and gasdermin D. Production of these proinflammatory chemokines is the beginning of a local and general inflammation, which results in sympathetic outflow, angiotensin II production, proteinuria, hemolysis, liver damage, immunothrombosis, and coagulopathy. The NLRP3 inflammasome is a critical complex in the mediation of the inflammatory response, which makes it crucial for the development of pregnancy-induced hypertension and preeclampsia, as well as its complications, such as placental abruption and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Herein, the presented article delineates molecular mechanisms of these processes, indicating directions of future advance.
Collapse
|
42
|
Davidson AJF, Park AL, Berger H, Aoyama K, Harel Z, Cook JL, Ray JG. Risk of severe maternal morbidity or death in relation to elevated hemoglobin A1c preconception, and in early pregnancy: A population-based cohort study. PLoS Med 2020; 17:e1003104. [PMID: 32427997 PMCID: PMC7236974 DOI: 10.1371/journal.pmed.1003104] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The relation between prepregnancy average glucose concentration and a woman's risk of severe maternal morbidity (SMM) is unknown. The current study evaluated whether an elevated preconception hemoglobin A1c (A1c) is associated with SMM or maternal death among women with and without known prepregnancy diabetes mellitus (DM). METHODS AND FINDINGS A population-based cohort study was completed in Ontario, Canada, where there is universal healthcare. The main cohort included 31,225 women aged 16-50 years with a hospital live birth or stillbirth from 2007 to 2015, and who had an A1c measured within 90 days before conception, including 28,075 women (90%) without known prepregnancy DM. The main outcome was SMM or maternal mortality from 23 weeks' gestation up to 42 days postpartum. Relative risks (RRs) were generated using modified Poisson regression, adjusting for the main covariates of maternal age, multifetal pregnancy, world region of origin, and tobacco/drug dependence. The mean maternal age was 31.1 years. Overall, SMM or death arose among 682 births (2.2%). The RR of SMM or death was 1.16 (95% CI 1.14-1.19; p < 0.001) per 0.5% increase in A1c and 1.16 (95% CI 1.13-1.18; p < 0.001) after adjusting for the main covariates. The adjusted relative risk (aRR) was increased among those with (1.11, 95% CI 1.07-1.14; p < 0.001) and without (1.15, 95% CI 1.02-1.29; p < 0.001) known prepregnancy diabetes, and upon further adjusting for body mass index (BMI) (1.15, 95% CI 1.11-1.20; p < 0.001), or chronic hypertension and prepregnancy serum creatinine (1.11, 95% CI 1.04-1.18; p = 0.002). The aRR of SMM or death was 1.31 (95% CI 1.06-1.62; p = 0.01) in those with a preconception A1c of 5.8%-6.4%, and 2.84 (95% CI 2.31-3.49; p < 0.001) at an A1c > 6.4%, each relative to an A1c < 5.8%. Among those without previously recognized prepregnancy diabetes and whose A1c was >6.4%, the aRR of SMM or death was 3.25 (95% CI 1.76-6.00; p < 0.001). Study limitations include that selection bias may have incorporated less healthy women tested for A1c, and BMI was unknown for many women. CONCLUSIONS Our findings indicate that women with an elevated A1c preconception may be at higher risk of SMM or death in pregnancy or postpartum, including those without known prepregnancy DM.
Collapse
Affiliation(s)
| | - Alison L. Park
- University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | - Howard Berger
- University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Kazuyoshi Aoyama
- University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ziv Harel
- University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Jocelynn L. Cook
- Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, Ontario, Canada
- The Society of Obstetricians and Gynaecologists of Canada, Ottawa, Ontario, Canada
| | - Joel G. Ray
- University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Murthi P, Pinar AA, Dimitriadis E, Samuel CS. Inflammasomes-A Molecular Link for Altered Immunoregulation and Inflammation Mediated Vascular Dysfunction in Preeclampsia. Int J Mol Sci 2020; 21:ijms21041406. [PMID: 32093005 PMCID: PMC7073120 DOI: 10.3390/ijms21041406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific multisystem disorder and is associated with maladaptation of the maternal cardiovascular system and abnormal placentation. One of the important characteristics in the pathophysiology of PE is a dysfunction of the placenta. Placental insufficiency is associated with poor trophoblast uterine invasion and impaired transformation of the uterine spiral arterioles to high capacity and low impedance vessels and/or abnormalities in the development of chorionic villi. Significant progress in identifying potential molecular targets in the pathophysiology of PE is underway. The human placenta is immunologically functional with the trophoblast able to generate specific and diverse innate immune-like responses through their expression of multimeric self-assembling protein complexes, termed inflammasomes. However, the type of response is highly dependent upon the stimuli, the receptor(s) expressed and activated, the downstream signaling pathways involved, and the timing of gestation. Recent findings highlight that inflammasomes can act as a molecular link for several components at the syncytiotrophoblast surface and also in maternal blood thereby directly influencing each other. Thus, the inflammasome molecular platform can promote adverse inflammatory effects when chronically activated. This review highlights current knowledge in placental inflammasome expression and activity in PE-affected pregnancies, and consequently, vascular dysfunction in PE that must be addressed as an interdependent interactive process.
Collapse
Affiliation(s)
- Padma Murthi
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Victoria 3168, Australia; (A.A.P.); (C.S.S.)
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria 3168, Australia;
- Correspondence: ; Tel.: +61-03-99059917
| | - Anita A. Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Victoria 3168, Australia; (A.A.P.); (C.S.S.)
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria 3168, Australia;
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Victoria 3168, Australia; (A.A.P.); (C.S.S.)
| |
Collapse
|
44
|
In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:553-576. [PMID: 32504388 DOI: 10.1007/5584_2020_536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes in pregnancy is associated with an increased risk of poor outcomes, both for the mother and her offspring. Although clinical and epidemiological studies are invaluable to assess these outcomes and the effectiveness of potential treatments, there are certain ethical and practical limitations to what can be assessed in human studies.Thus, both in vivo and in vitro models can aid us in the understanding of the mechanisms behind these complications and, in the long run, towards their prevention and treatment. This review summarizes the existing animal and cell models used to mimic diabetes, with a specific focus on the intrauterine environment. Summary of this review.
Collapse
|
45
|
Shirasuna K, Karasawa T, Takahashi M. Role of the NLRP3 Inflammasome in Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:80. [PMID: 32161574 PMCID: PMC7053284 DOI: 10.3389/fendo.2020.00080] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Reproduction involves tightly regulated series of events and the immune system is involved in an array of reproductive processes. Disruption of well-controlled immune functions leads to infertility, placental inflammation, and numerous pregnancy complications, including preeclampsia (PE). Inflammasomes are involved in the process of pathogen clearance and sterile inflammation. They are large multi-protein complexes that are located in the cytosol and play key roles in the production of the pivotal inflammatory cytokines, interleukin (IL)-1β and IL-18, and pyroptosis. The nucleotide-binding oligomerization domain, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome is a key mediator of sterile inflammation induced by various types of damage-associated molecular patterns (DAMPs). Recent evidence indicates that the NLRP3 inflammasome is involved in pregnancy dysfunction, including PE. Many DAMPs (uric acid, palmitic acid, high-mobility group box 1, advanced glycation end products, extracellular vesicles, cell-free DNA, and free fatty acids) are increased and associated with pregnancy complications, especially PE. This review focuses on the role of the NLRP3 inflammasome in the pathophysiology of PE.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
- *Correspondence: Koumei Shirasuna
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
46
|
Gomez-Lopez N, Motomura K, Miller D, Garcia-Flores V, Galaz J, Romero R. Inflammasomes: Their Role in Normal and Complicated Pregnancies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2757-2769. [PMID: 31740550 PMCID: PMC6871659 DOI: 10.4049/jimmunol.1900901] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1β are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI 48201
- Detroit Medical Center, Detroit, MI 48201; and
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199
| |
Collapse
|
47
|
Sarina, Li DF, Feng ZQ, Du J, Zhao WH, Huang N, Jia JC, Wu ZY, Alamusi, Wang YY, Ji XL, Yu L. Mechanism of Placenta Damage in Gestational Diabetes Mellitus by Investigating TXNIP of Patient Samples and Gene Functional Research in Cell Line. Diabetes Ther 2019; 10:2265-2288. [PMID: 31654346 PMCID: PMC6848504 DOI: 10.1007/s13300-019-00713-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is a gestational complication that affects maternal and child health. The placenta provides the fetus with the necessary nutrition and oxygen and takes away the metabolic waste. Patients with GDM are diagnosed and treated merely on the basis of the blood glucose level; this approach does nothing to help evaluate the status of the placenta, which is worth noting in GDM. The purpose of this research was to clarify the relation between thioredoxin-interacting protein (TXNIP) and reactive oxygen species (ROS) in the placenta of patients with GDM, which has thus far remained unclear. METHODS The expression of TXNIP in the placentas of 10 patients with GDM and 10 healthy puerperae (control group) was investigated via immunofluorescence. The relation among TXNIP, ROS, and the function of mitochondria was explored in HTR-8/SVneo cells stimulated by high glucose (HG). RESULTS The results showed the expression of TXNIP in the placentas of patients with GDM was higher than that in the control group, and the expression of TXNIP in HTR-8/SVneo cells treated with HG was higher than that in the control group, causing the accumulation of ROS and changes of mitochondria, promoting apoptosis and inhibition of migration. CONCLUSIONS High expression of TXNIP caused by HG mediates the increasing ROS and the mitochondria dysfunction in GDM; this impairs the function of the placenta and is the basis for the prediction of perinatal outcome.
Collapse
Affiliation(s)
- Sarina
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Dong Fang Li
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zong Qi Feng
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jie Du
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Wen Hua Zhao
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Na Huang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jian Chao Jia
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zhou Ying Wu
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Alamusi
- Department of Ophthalmology, Inner Mongolia International Mongolian Hospital, Hohhot, 010000, China
| | - Yong Yun Wang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Xiao Li Ji
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Lan Yu
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China.
| |
Collapse
|
48
|
Davidson AJ, Park AL, Ray JG. Navigating severe maternal morbidity using big data: Green, yellow, and red flags for researchers. Obstet Med 2019; 12:105-106. [PMID: 31523265 DOI: 10.1177/1753495x19872880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | - Joel G Ray
- Departments of Medicine, and Obstetrics and Gynecology, St. Michael's Hospital, Toronto, ON, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Wu Z, Mao W, Yang Z, Lei D, Huang J, Fan C, Suqing W. Knockdown of CYP1B1 suppresses the behavior of the extravillous trophoblast cell line HTR-8/SVneo under hyperglycemic condition. J Matern Fetal Neonatal Med 2019; 34:500-511. [PMID: 31046505 DOI: 10.1080/14767058.2019.1610379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction: Trophoblast plays a vital role in the embryonic implantation and function of the placenta. Exposure to a hyperglycemic environment results in the abnormal function of trophoblasts during fetoplacental development, which leads to maternal complications and poor fetal outcomes. However, the precise mechanisms of placental pathology during hyperglycemia remain elusive. We investigated the role of CYP1B1 in the functional behavior of the extravillous trophoblast (EVT) cell line HTR-8/SVneo under hyperglycemic condition.Methods: We determined the expression of CYP1B1 via real-time polymerase chain reaction and Western blot. Specific CYP1B1 inhibitors and small interfering RNA were used to knockdown CYP1B1, whereas an agonist and an adenovirus were used to overexpress CYP1B1. The proliferation, migration, and invasion of the EVT cell line (i.e. HTR-8/SVneo) were assessed via colony formation, 5-ethynyl-2-deoxyuridine, wound healing, and transwell assay.Results: CYP1B1 is highly expressed in placentas from women with gestational diabetes mellitus. The blockage of CYP1B1 inhibits EVT activities induced by hyperglycemia in vitro, including proliferation, migration, and invasion, whereas the exogenous expression of CYP1B1 exhibits the opposite effects.Discussion: Our study may offer a new method for regulating EVT motility under hyperglycemic condition via CYP1B1.
Collapse
Affiliation(s)
- Zhaoye Wu
- Department of Nutrition and Food Hygiene, School of Health Sciences, Wuhan University, Wuhan, China
| | - Wenjing Mao
- Department of Nutrition and Food Hygiene, School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhuanhong Yang
- Department of Nutrition and Food Hygiene, School of Health Sciences, Wuhan University, Wuhan, China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jinfa Huang
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Wang Suqing
- Department of Nutrition and Food Hygiene, School of Health Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Academy for Preventive Medicine, Wuhan, China
| |
Collapse
|
50
|
Brien ME, Baker B, Duval C, Gaudreault V, Jones RL, Girard S. Alarmins at the maternal-fetal interface: involvement of inflammation in placental dysfunction and pregnancy complications 1. Can J Physiol Pharmacol 2018; 97:206-212. [PMID: 30485131 DOI: 10.1139/cjpp-2018-0363] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is known to be associated with placental dysfunction and pregnancy complications. Infections are well known to be a cause of inflammation but they are frequently undetectable in pregnancy complications. More recently, the focus has been extended to inflammation of noninfectious origin, namely caused by endogenous mediators known as "damage-associated molecular patterns (DAMPs)" or alarmins. In this manuscript, we review the mechanism by which inflammation, sterile or infectious, can alter the placenta and its function. We discuss some classical DAMPs, such as uric acid, high mobility group box 1 (HMGB1), cell-free fetal deoxyribonucleic acid (DNA) (cffDNA), S100 proteins, heat shock protein 70 (HSP70), and adenosine triphosphate (ATP) and their impact on the placenta. We focus on the main placental cells (i.e., trophoblast and Hofbauer cells) and describe the placental response to, and release of, DAMPs. We also covered the current state of knowledge about the role of DAMPs in pregnancy complications including preeclampsia, fetal growth restriction, preterm birth, and stillbirth and possible therapeutic strategies to preserve placental function.
Collapse
Affiliation(s)
- Marie-Eve Brien
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,b Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Bernadette Baker
- c Maternal and Fetal Health Research Centre, University of Manchester, Manchester, M13 9WL, United Kingdom.,d St. Mary's Hospital, Central Manchester University Hospital National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Cyntia Duval
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Virginie Gaudreault
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Rebecca L Jones
- c Maternal and Fetal Health Research Centre, University of Manchester, Manchester, M13 9WL, United Kingdom.,d St. Mary's Hospital, Central Manchester University Hospital National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Sylvie Girard
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,b Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|