1
|
Jasim MH, Mukhlif BAM, Uthirapathy S, Zaidan NK, Ballal S, Singh A, Sharma GC, Devi A, Mohammed WM, Mekkey SM. NFĸB and its inhibitors in preeclampsia: mechanisms and potential interventions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04211-x. [PMID: 40299024 DOI: 10.1007/s00210-025-04211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Preeclampsia (PE), which affects between 2 and 15% of pregnancies, is one of the most often reported prenatal problems. It is defined as gestational hypertension beyond 20 weeks of pregnancy, along with widespread edema or proteinuria and specific types of organ damage. PE is characterized by increased levels and activation of nuclear factor kappa B (NF-κB) in the mother's blood and placental cells. This factor controls over 400 genes linked to inflammatory, apoptotic, angiogenesis, and cellular responses to hypoxia and oxidative stress. In the final stages of physiological pregnancy, NF-κB levels need to be lowered to favor maternal immunosuppressive events and continue gestation to prevent hypoxia and inflammation, which are advantageous for implantation. Pharmacotherapy is thought to be a potential treatment for PE by downregulating NF-κB activation. NF-κB activity has been discovered to be regulated by several medications used for both prevention and treatment of PE. However, in order to guarantee treatment safety and effectiveness, additional creativity is desperately required. This article provides an overview of the current understanding of the defined function of NF-κB in PE progression. According to their effect on the cellular control of NF-κB pathways, newly proposed compounds for preventing and treating PE have also been emphasized.
Collapse
Affiliation(s)
- Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq
| | - Bilal Abdul Majeed Mukhlif
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Noor Khalid Zaidan
- Department of Applied Chemistry, College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Wisam Mahmood Mohammed
- Department of Applied Chemistry, College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Shereen M Mekkey
- College of Pharmacy, Al-Mustaqbal University, 51001 Hilla, Babylon, Iraq
| |
Collapse
|
2
|
Takács L, Abuaish S, Kaňková Š, Hill M, Ullmann J, Včelák J, Monk C. Maternal negative affect in pregnancy predicts cytokine levels which in turn predict birth outcomes - A prospective longitudinal study in a low-risk population. J Affect Disord 2024; 366:345-353. [PMID: 39191312 DOI: 10.1016/j.jad.2024.08.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Stress and negative mood in pregnancy have been linked to less favorable birth outcomes, but the mechanisms underlying this effect remain largely unknown. We examined associations between emotions in pregnancy, pro- and anti-inflammatory cytokines (IFN-γ, IL-6, IL-8, IL-10, IL-12, IL-17, MCP-1, MIP-1β, TNF-α) and birth outcomes (gestational age at birth and birth weight) in a low-risk sample. METHODS At each trimester of pregnancy, participants (N = 74) completed the Positive and Negative Affect Schedule, Perceived Stress Scale, Edinburgh Postnatal Depression Scale, and State-Trait Anxiety Inventory. They provided blood samples in the third trimester. Multivariate regression with a reduction of dimensionality (orthogonal projection to latent structures) was used to assess associations between maternal emotions, cytokine levels, and birth outcomes. RESULTS We found significant positive associations between negative mood (depressive symptoms in the second and third trimesters and negative affect in the third trimester) and anti-inflammatory cytokine IL-10 levels, and negative associations between maternal distress in the second and third trimesters and pro-/anti-inflammatory cytokine ratios (IFN-γ/IL-10, TNF-α/IL-10 and IL-6/IL-10). Higher levels of pro-inflammatory cytokines IFN-γ, IL-12, IL-17, and TNF-α were associated with younger gestational age at birth and lower birth weight. LIMITATIONS We did not control for relevant factors such as social support, health-related behaviors, or cortisol levels. CONCLUSIONS Negative mood in mid- and late pregnancy may shift cytokine balance toward the anti-inflammatory cytokine dominance. Our results provide further evidence for the negative association between pro-inflammatory cytokines in late pregnancy and gestational age at birth/birth weight, which we observed even in a low-risk population.
Collapse
Affiliation(s)
- Lea Takács
- Department of Psychology, Faculty of Arts, Charles University, Prague, Czech Republic.
| | - Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Hill
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Jana Ullmann
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Včelák
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Catherine Monk
- Department of Obstetrics & Gynecology, and Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Uța C, Tîrziu A, Zimbru EL, Zimbru RI, Georgescu M, Haidar L, Panaitescu C. Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1896. [PMID: 39597081 PMCID: PMC11596804 DOI: 10.3390/medicina60111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Recurrent pregnancy loss (RPL) is a complex early pregnancy complication affecting 1-2% of couples and is often linked to immune dysfunction. Aberrations in T and B cell subpopulations, as well as natural killer (NK) cell activity, are particularly influential, with studies showing that abnormal NK cell activation and imbalances in T and B cell subtypes contribute to immune-mediated miscarriage risk. Successful pregnancy requires a tightly regulated balance between pro-inflammatory and anti-inflammatory immune responses. In the early stages, inflammation supports processes such as trophoblast invasion and spiral artery remodeling, but this must be tempered to prevent immune rejection of the fetus. In this review, we explore the underlying immune mechanisms of RPL, focusing on how dysregulated T, B, and NK cell function disrupts maternal tolerance. Specifically, we discuss the essential role of uterine NK cells in the early stages of vascular remodeling in the decidua and regulate the depth of invasion by extravillous trophoblasts. Furthermore, we focus on the delicate Treg dynamics that enable the maintenance of optimal immune homeostasis, where the balance, and not only the quantity of Tregs, is crucial for fostering maternal-fetal tolerance. Other T cell subpopulations, such as Th1, Th2, and Th17 cells, also contribute to immune imbalance, with Th1 and Th17 cells promoting inflammation and potentially harming fetal tolerance, while Th2 cells support immune tolerance. Finally, we show how changes in B cell subpopulations and their functions have been associated with adverse pregnancy outcomes. We further discuss current therapeutic strategies aimed at correcting these immune imbalances, including intravenous immunoglobulin (IVIg), glucocorticoids, and TNF-α inhibitors, examining their efficacy, challenges, and potential side effects. By highlighting both the therapeutic benefits and limitations of these interventions, we aim to offer a balanced perspective on clinical applications for women facing immune-related causes of RPL.
Collapse
Affiliation(s)
- Cristina Uța
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Alexandru Tîrziu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Marius Georgescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| |
Collapse
|
4
|
Petersen JF, Tiittanen V, Wittfooth S, Løkkegaard E, Friis-Hansen LJ. Exploring free pregnancy associated plasma protein a (fPAPP-A) as a biomarker in early pregnancy. Pract Lab Med 2024; 42:e00428. [PMID: 39411186 PMCID: PMC11474183 DOI: 10.1016/j.plabm.2024.e00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives In combined first trimester screening for Down syndrome, Pregnancy-Associated Plasma Protein A (PAPP-A) is pivotal. PAPP-A tests evaluate total PAPP-A, consisting of the biologically active free PAPP-A (fPAPP-A) and PAPP-A complexed with eosinophil major basic protein's proform (proMBP). While PAPP-A is well-researched, limited understanding persists regarding fPAPP-A's first trimester concentrations and diagnostic utility. Design and methods: PAPP-A and fPAPP-A levels were gauged in 602 serum samples at 2-week intervals (gestational weeks 4-14) from 159 women with delivery of a healthy neonate and 80 samples from 37 miscarriages. The final sample at the time of diagnosis from women who miscarried was included in analyses. Results During the first trimester, PAPP-A and fPAPP-A levels displayed significant and strong correlation (r = 0.94), with median values doubling weekly. Free PAPP-A constituted only 3.0 % of PAPP-A over gestational weeks. Low fPAPP-A linked to miscarriage (p < 0.001), maternal weight (p < 0.001), and smoking (p = 0.02). For miscarriage prediction fPAPP-A was equal to PAPP-A (area under the receiver operating characteristics curve 0.79 vs. 0.81, p = 0.44). Conclusions Investigating fPAPP-A presence and concentration directly in first trimester serum has not been done previously. This study report lower fPAPP-A values than anticipated from prior enzymatic studies of fPAPP-A. fPAPP-A was not superior to PAPP-A as a first trimester biomarker in this dataset.
Collapse
Affiliation(s)
- Jesper Friis Petersen
- Department of Obstetrics and Gynecology, North Zealand Hospital, Dyrehavevej 29, 3400, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Vilma Tiittanen
- Biotechnology Unit, Department of Life Technologies, 20014, University of Turku, Finland
| | - Saara Wittfooth
- Biotechnology Unit, Department of Life Technologies, 20014, University of Turku, Finland
| | - Ellen Løkkegaard
- Department of Obstetrics and Gynecology, North Zealand Hospital, Dyrehavevej 29, 3400, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Lennart Jan Friis-Hansen
- Department of Clinical Biochemistry, Bispebjerg Hospital University Hospital, Nielsine Nielsens Vej 2, 2400, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Ojwach D, Annels N, Sunshine S, Simpkin D, Duruanyanwu J, Webber T, Alinde B, Ikumi N, Zulu M, Madlala H, Myer L, Malaba T, Newell ML, Campagnolo P, Gordon S, Jaspan H, Gray CM, Estrada FM. Diminished placental Factor XIIIA1 expression associates with pre-conception antiretroviral treatment and preterm birth in pregnant people living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620906. [PMID: 39554009 PMCID: PMC11565750 DOI: 10.1101/2024.10.30.620906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We previously showed a link between maternal vascular malperfusion and pre-term birth (PTB) in pregnant people living with HIV (PPLH) initiating antiretroviral treatment (ART) before pregnancy, indicating poor placental vascularisation. After measuring antenatal plasma angiogenic factors to seek mechanistic insights, low levels of plasma Factor XIIIA1 (FXIIIA1) and vascular-endothelial-growth-factor (VEGF) was significantly associated with PTB at the time closest to delivery (median 34 weeks) in PPLH initiating ART before pregnancy. Knowing that FXIIIA1 is crucial for haemostasis, angiogenesis, implantation and pregnancy maintenance and that expression is found on placental macrophages (Hofbauer cells), we examined placentae at delivery from matching participants who either initiating ART before pregnancy or during gestation. Highest FXIIIA1 expression was on Hofbauer cells but was significantly lower in PTB regardless of HIV infection, but was significantly lower in PPLH in PTB from women who initiated ART before pregnancy. To test the hypothesis that antiretroviral drugs may disrupt vascularisation in the placenta, we used a human umbilical vein endothelial cell (HUVEC) matrigel angiogenesis assay. We identified that addition of pre-treated FXIIIA1-expressing MCSF- and IL-10-induced placenta-like macrophages with physiological concentrations of tenofovir, 3TC, and efavirenz resulted in significantly inhibited angiogenesis; akin to the inhibition observed with titratable concentrations of ZED1301, an inhibitor of FXIIIA1. Overall, an efavirenz-containing ART combination inhibits vasculogenesis without causing toxicity and likely does so through inhibition of a FXIIIA1-mediated-placental macrophage pathway.
Collapse
Affiliation(s)
- Doty Ojwach
- School of Biosciences and Medicine, University of Surrey, UK
- Division of Immunology, Stellenbosch University, South Africa
| | - Nicola Annels
- School of Biosciences and Medicine, University of Surrey, UK
| | - Sunny Sunshine
- School of Biosciences and Medicine, University of Surrey, UK
| | - Daniel Simpkin
- School of Biosciences and Medicine, University of Surrey, UK
| | | | - Tariq Webber
- Division of Immunology, Stellenbosch University, South Africa
| | - Berenice Alinde
- Division of Immunology, Stellenbosch University, South Africa
- Faculty of health sciences, University of Cape Town, Observatory, South Africa
| | - Nadia Ikumi
- Faculty of health sciences, University of Cape Town, Observatory, South Africa
| | - Michael Zulu
- Faculty of health sciences, University of Cape Town, Observatory, South Africa
| | - Hlengiwe Madlala
- Division of Epidemiology and Biostatistics, University of Cape Town, Observatory, South Africa
| | - Landon Myer
- Division of Epidemiology and Biostatistics, University of Cape Town, Observatory, South Africa
| | - Thoko Malaba
- Division of Epidemiology and Biostatistics, University of Cape Town, Observatory, South Africa
| | - Marie-Louise Newell
- Institute for Developmental Science, University of Southampton Faculty of Medicine, UK
| | | | - Siamon Gordon
- Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Heather Jaspan
- Seattle Children's Research Institute, Seattle, WA, USA
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Department of Pathology and Institute of Infectious disease and molecular medicine, University of Cape Town, Observatory, South Africa
| | - Clive M Gray
- School of Biosciences and Medicine, University of Surrey, UK
- Faculty of health sciences, University of Cape Town, Observatory, South Africa
| | | |
Collapse
|
6
|
Habelrih T, Augustin TL, Mauffette-Whyte F, Ferri B, Sawaya K, Côté F, Gallant M, Olson DM, Chemtob S. Inflammatory mechanisms of preterm labor and emerging anti-inflammatory interventions. Cytokine Growth Factor Rev 2024; 78:50-63. [PMID: 39048393 DOI: 10.1016/j.cytogfr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Preterm birth is a major public health concern, requiring a deeper understanding of its underlying inflammatory mechanisms and to develop effective therapeutic strategies. This review explores the complex interaction between inflammation and preterm labor, highlighting the pivotal role of the dysregulation of inflammation in triggering premature delivery. The immunological environment of pregnancy, characterized by a fragile balance of immune tolerance and resistance, is disrupted in preterm labor, leading to a pathological inflammatory response. Feto-maternal infections, among other pro-inflammatory stimuli, trigger the activation of toll-like receptors and the production of pro-inflammatory mediators, promoting uterine contractility and cervical ripening. Emerging anti-inflammatory therapeutics offer promising approaches for the prevention of preterm birth by targeting key inflammatory pathways. From TLR-4 antagonists to chemokine and interleukin receptor antagonists, these interventions aim to modulate the inflammatory environment and prevent adverse pregnancy outcomes. In conclusion, a comprehensive understanding of the inflammatory mechanisms leading to preterm labor is crucial for the development of targeted interventions in hope of reducing the incidence of preterm birth and improving neonatal health outcomes.
Collapse
Affiliation(s)
- Tiffany Habelrih
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Thalyssa-Lyn Augustin
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Félix Mauffette-Whyte
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Béatrice Ferri
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Kevin Sawaya
- Research Center, CHU Sainte-Justine, Montreal, QC, Canada; Programmes de cycles supérieurs en sciences biomédicales, Faculté de médecine, Université de Montréal, Montreal, QC, Canada
| | - France Côté
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Mathilde Gallant
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
7
|
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci 2024; 25:7788. [PMID: 39063030 PMCID: PMC11277414 DOI: 10.3390/ijms25147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pollution poses a significant threat to human health, with detrimental effects on various physiological systems, including the respiratory, cardiovascular, mental, and perinatal domains. While the impact of pollution on these systems has been extensively studied, the intricate relationship between chemical pollution and immunity remains a critical area of investigation. The focus of this study is to elucidate the relationship between chemical pollution and human immunity. To accomplish this task, this study presents a comprehensive review that encompasses in vitro, ex vivo, and in vivo studies, shedding light on the ways in which chemical pollution can modulate human immunity. Our aim is to unveil the complex mechanisms by which environmental contaminants compromise the delicate balance of the body's defense systems going beyond the well-established associations with defense systems and delving into the less-explored link between chemical exposure and various immune disorders, adding urgency to our understanding of the underlying mechanisms and their implications for public health.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Maria Lia Contrino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Massimo Contarino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| |
Collapse
|
8
|
Strbo N, Rodriguez S, Padula L, Fisher E, Lyons A, Rodriguez C, Rivas K, Ibrahim M, Paidas M, Attia G. Assessment of immune cells in the uterine fluid at the time of the embryo transfer. Am J Reprod Immunol 2024; 91:e13842. [PMID: 38650366 DOI: 10.1111/aji.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 04/28/2024] [Indexed: 04/25/2024] Open
Abstract
PROBLEM Although endometrial receptivity is a key factor in influencing implantation in both naturally conceived and assisted reproductive technology (ART) cycles, very little is known about the endometrium milieu around the time of implantation. Previous studies have demonstrated the presence of several cytokines in the endometrium that affect implantation. However, there is lacking data about the presence of immune cell subtypes within the endometrium and in the uterine cavity at the time of implantation. METHOD OF STUDY This study was approved by the Institutional Review Board (# 225589). The study was designed as a prospective observational cohort study between May 2021 and December 2022 at a single academic-based fertility center. All patients underwent at least one In Vitro Fertilization (IVF) cycle and have frozen embryos. Twenty-four participants were recruited for this study which was conducted during the frozen embryo transfer (FET) cycle regardless of the outcome of previous cycles. Two samples were acquired from each subject, denoted as lower and upper. A trial transfer catheter was introduced under ultrasound guidance into the lower uterine segment. Upon removal, the tip was rinsed in IMDM medium containing 10% FBS (lower uterus). A transfer catheter was then loaded with the embryo that was placed in the upper uterus under ultrasound guidance. The tip of the transfer catheter was rinsed in separate aliquot of the above media (upper uterus). After centrifugation, pelleted cells were stained for the following surface markers: CD45, CD3, CD19, CD4, CD8, gamma delta TCR, CD25, CD127, CD66b, CD14, CD16, CD56 and acquired on Sony SP6800 Spectral Analyzer. RESULTS Upon staining the pelleted cells, we were able to identify viable leukocytes from samples obtained from both, upper and lower uterus (0.125 × 106 cells ± SD 0.32), (0.123 × 106 cells ± SD 0.12), respectively. Among total viable cells, there was no significant difference in both percent and number of CD45+ cells between the upper and lower uterus (9.88% ± 6.98 SD, 13.67% ± 9.79 SD, p = .198) respectively. However, there was significantly higher expression of CD3+ (p = .006), CD19+ (p = .032) and CD14+ (p = .019) cells in samples collected from upper compared to lower uterus. Within all CD3+ cells, we found that gamma delta T cells (GDT) were the major population of T cells in both upper and lower uterus. In contrast, CD8+ T cells were significantly higher in the lower uterus when compared to the upper uterus (p = .009). There was no statistically significant difference in the expression of CD4+ T cells, T regulatory cells (CD4+CD25+CD127-), NK cells (CD56+), neutrophils (CD66b+) and FcγRIII+ cells (CD16+) between upper and lower uterus. CONCLUSIONS We believe the immune milieu at the time of embryo transfer will affect implantation. Understanding the composition of immune cells will guide further research in identifying optimal immune milieus that favor implantation. Comprehensive analysis of endometrium is expected to lead to new diagnostic and therapeutic approaches to improve IVF outcomes.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suset Rodriguez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eva Fisher
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Annabel Lyons
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carolina Rodriguez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katelyn Rivas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mohammed Ibrahim
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - George Attia
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Cai Z, Guo X, Zheng G, Xiang J, Liu L, Lin D, Deng X. TNF-α-positive patients with recurrent pregnancy loss: The etiology and management. Technol Health Care 2024; 32:4581-4591. [PMID: 39058470 PMCID: PMC11612946 DOI: 10.3233/thc-240757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Elevated levels of tumor necrosis factor-alpha (TNF-α) have been associated with adverse pregnancy outcomes, specifically recurrent pregnancy loss (RPL). These elevated levels may be associated with the presence of autoantibodies. Although TNF-α inhibitors have shown promise in improving pregnancy rates, further research is needed to comprehend their impact and mechanisms in RPL patients. OBJECTIVE This study aims to investigate the association between elevated TNF-α levels and autoantibodies in RPL patients, as well as evaluate the effect of TNF-α inhibition on pregnancy outcomes. METHODS A total of 249 RPL patients were included in this study. Serum levels of TNF-α, autoantibodies, and complement were measured and monitored. Among these patients, 138 tested positive for TNF-α, while 111 tested negative. The medical records of these patients were retrospectively evaluated. Additionally, 102 patients with elevated TNF-α levels were treated with TNF-α inhibitors, and their pregnancy outcomes were assessed. RESULTS TNF-α-positive RPL patients had higher levels of complement C1q, anti-cardiolipin (ACL)-IgA, ACL-IgM ,ACL-IgG, thyroglobulin antibody, and Anti-phosphatidylserine/prothrombin IgM antibody, as well as a higher positive rate of antinuclear antibodies compared to TNF-α-negative patients (23.19% vs. 12.6%, P< 0.05). Conversely, complement C3 were lower in TNF-α-positive patients (t test, P< 0.05). The use of TNF-α inhibitors led to a reduction in the early abortion rate (13.7% vs. 44.4%, P< 0.001) and an improvement in term delivery rate (52.0% vs. 27.8%, P= 0.012). Furthermore, patients who used TNF-α inhibitors before 5 weeks of pregnancy had a lower early abortion rate (7.7% vs. 24.3%, P= 0.033) and a higher term delivery rate (69.2% vs. 48.6%, P= 0.033). CONCLUSION TNF-α plays a role in the occurrence and development of RPL, and its expression is closely associated with autoantibodies and complements. TNF-α inhibitors increase the term delivery rate in TNF-α-positive RPL patients, and their use before 5 weeks of pregnancy may more beneficial.
Collapse
Affiliation(s)
- Zhuhua Cai
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueke Guo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Zheng
- Pediatric Department, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junmiao Xiang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingyun Liu
- Central Laboratory, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongmei Lin
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohui Deng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
10
|
Chen M, Zhao Y, Ji H, Li L, Liu H, Wang S, Zhang D, Yin J, Wang J, Zhang X. Chenodeoxycholic Acid Improves Embryo Implantation and Metabolic Health through Modulating Gut Microbiota-Host Metabolites Interaction during Early Pregnancy. Antioxidants (Basel) 2023; 13:8. [PMID: 38275628 PMCID: PMC10812749 DOI: 10.3390/antiox13010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Fetus loss in early pregnancy is of major concern to both humans and animals, and this issue is largely influenced by embryo implantation. Chenodeoxycholic acid (CDCA), a primary bile acid, contributes to metabolic improvements and protects against intrahepatic cholestasis of pregnancy. However, the effect of CDCA on embryo implantation during early pregnancy has not been investigated. The present study demonstrated that CDCA administration during early pregnancy improved embryo implantation in sows and rats, thereby improving the pregnancy outcomes of sows. CDCA significantly reduced inflammation, oxidative stress, and insulin resistance. The metabolomics analysis indicated significant differences in the fecal metabolome, especially regarding the level of secondary bile acids, between the control and CDCA-treated sows. CDCA also influenced the serum metabolite profiles in sows, and the serum L-Histidine level was significantly correlated with the abundance of 19 differential fecal metabolites. Importantly, L-Histidine administration improved embryo implantation and metabolic health in rats during early pregnancy. Moreover, CDCA administration during early pregnancy also led to long-term metabolic improvements in sows. Our data indicated that CDCA improved embryo implantation by alleviating inflammation and oxidative stress, improving insulin sensitivity, and modulating the interaction between the gut microbiota and host metabolites. Therefore, CDCA intervention is a potential therapeutic strategy regarding embryo loss during pregnancy.
Collapse
Affiliation(s)
- Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Ying Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
11
|
Hu Y, Zhang D, Zhang Q, Yin T, Jiang T, He S, Li M, Yue X, Luo G, Tao F, Cao Y, Ji D, Ji Y, Liang C. Serum Cu, Zn and IL-1β Levels May Predict Fetal Miscarriage Risk After IVF Cycles: A Nested Case-Control Study. Biol Trace Elem Res 2023; 201:5561-5574. [PMID: 36964416 DOI: 10.1007/s12011-023-03621-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
To explore the association between serum-related indicators (levels of inflammatory cytokines and essential trace elements) and miscarriage risk among infertile women undergoing assisted reproductive techniques (ART) on the 14th day after embryo transfer, and to develop and establish a multivariable algorithm model that might predict pregnancy outcome. According to a nested case-control study design, a total of 100 miscarriage cases and 100 live birth controls were included in this study, and women in both groups were infertile and have underwent in vitro fertilization (IVF). Pregnancy tests were performed and serum levels of five essential trace elements (vanadium (V), copper (Cu), zinc (Zn), selenium (Se) and molybdenum (Mo)) and five inflammatory cytokines (interleukin-1β (IL-1β), IL-6, IL-8, IL-10 and tumor necrosis factor-α (TNF-α)) of the participants were measured on the 14th day after embryo transfer. The serum levels of five inflammatory cytokines were determined by multiple magnetic bead enzyme immunity analyzer; and the serum concentrations of five elements were determined simultaneously by inductively coupled plasma‒mass spectrometry (ICP ‒ MS). The logistic regression was used to evaluate the relationship between these serum indices and miscarriage risk among women undergoing ART, and a predictive model of pregnancy outcome based on these indices was established. The levels of IL-10, IL-1β and TNF-α of infertile women in the live birth group were significantly higher than those in the miscarriage group (p = 0.009, p < 0.001, p = 0.006), and the levels of V, Cu, Zn and Se of infertile women in the live birth group were also significantly higher than those in the miscarriage group (all p < 0.001). Through logistic regression analyses, we found that serum levels of IL-1β, TNF-α, V, Cu, Zn and Se were significantly and negatively associated with miscarriage risk. Different combination prediction models were generated according to the results of logistic regression analyses, and the combination of IL-1β, Cu and Zn had the best prediction performance. The area under the curve (AUC) was 0.776, the sensitivity of the model was 60% and the specificity was 84%. In conclusion, the serum-related indicators of women undergoing ART on the 14th day after embryo transfer, including the inflammatory cytokines such as IL-1β and TNF-α and the essential trace metal elements such as V, Cu, Zn and Se, were negatively correlated with miscarriage risk. A multivariate algorithm model to predict pregnancy outcome among women undergoing ART was established, which showed that IL-1β, Cu and Zn might synergistically predict pregnancy outcome.
Collapse
Affiliation(s)
- Yuan Hu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongyang Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Tao Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mengzhu Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guiying Luo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yanli Ji
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Lozowchuk A, Carroll JE, Hobel C, Coussons-Read M, Dunkel Schetter C, Ross KM. Partner relationship quality and IL-6:IL-10 trajectories from pregnancy to a year after-birth. Brain Behav Immun 2023; 114:407-413. [PMID: 37704011 DOI: 10.1016/j.bbi.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Inflammatory activity during pregnancy and the postpartum period shifts systematically due to pregnancy progression, delivery, and postpartum recovery. Factors that deregulate inflammatory activity increase the risk for adverse pregnancy outcomes and slower postpartum recovery. The IL-6:IL-10 or TNF-α:IL-10 ratio is potentially one way to capture peripheral inflammatory regulation; higher values indicate that anti-inflammatory IL-10 is less effective at regulating pro-inflammatory TNF-α or IL-6, skewing towards maladaptive pro-inflammatory profiles. Associations between partner relationship quality and IL-6:IL-10 or TNF-α:IL-10 trajectories during pregnancy and the postpartum period have not been assessed. The purpose of this study was to test whether partner relationship quality (support, conflict) is associated with attenuated IL-6, IL-10, TNF-α, TNF-α:IL-10 or IL-6:IL-10 trajectories from the third trimester to the postpartum period. METHODS A sample of 162 women from the Healthy Babies Before Birth study reported on partner relationship quality (support and conflict) using the Social Support Effectiveness Questionnaire during the third trimester. Plasma samples were collected in the third trimester and at 1-, 6- and 12-months postpartum, and assayed for TNF-α, IL-6 and IL-10. Associations between both indicators of relationship quality (support and conflict) and TNF-α, IL-6, IL-10, IL-6:IL-10, TNF-α:IL-10 trajectories were tested using multi-level modelling, controlling for sociodemographic, pregnancy and health variables. RESULTS Partner support interacted with time to predict IL-6:IL-10 trajectories, linear: b = -0.176, SE = 0.067, p =.010, quadratic: b = 0.012, SE = 0.005, p =.009. Lower partner support was associated with steeper increases in IL-6:IL-10 from the third trimester to 6 months postpartum, followed by steeper decreases in IL-6:IL-10 from 6 months postpartum to a year after birth. Partner conflict was not associated with IL-6:IL-10 levels at study entry, b = 0.233, SE = 0.219, p =.290, or over time, p's > 0.782. Neither indicator of partner relationship quality was associated with TNF-α, IL-6, IL-10, or TNF-α:IL-10 trajectories, p's > 0.205. CONCLUSION Lower partner support may be associated with reduced moderation of IL-6 by IL-10 between pregnancy and a year postpartum, with possible consequences for maternal health and well-being.
Collapse
Affiliation(s)
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry & Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Calvin Hobel
- Cedar-Sinai Medical Center, Los Angeles, CA, United States
| | - Mary Coussons-Read
- Department of Psychology, University of Colorado-Colorado Springs, Colorado Springs, CO, United States
| | | | - Kharah M Ross
- Psychology Department, University of Calgary, Calgary, AB, Canada; Department of Psychology, Athabasca University, Athabasca, AB, Canada.
| |
Collapse
|
13
|
Valeff NJ, Ventimiglia MS, Diao L, Jensen F. Lupus and recurrent pregnancy loss: the role of female sex hormones and B cells. Front Endocrinol (Lausanne) 2023; 14:1233883. [PMID: 37859991 PMCID: PMC10584304 DOI: 10.3389/fendo.2023.1233883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Systemic lupus erythematosus is a debilitating autoimmune disease characterized by uncontrolled activation of adaptive immunity, particularly B cells, which predominantly affects women in a 9 to 1 ratio compared to men. This stark sex disparity strongly suggests a role for female sex hormones in the disease's onset and progression. Indeed, it is widely recognized that estradiol not only enhances the survival of autoreactive B cells but also stimulates the production of autoantibodies associated with systemic lupus erythematosus, such as anti-nuclear antibodies and anti-dsDNA antibodies. Clinical manifestations of systemic lupus erythematosus typically emerge after puberty and persist throughout reproductive life. Furthermore, symptoms often exacerbate during the premenstrual period and pregnancy, as increased levels of estradiol can contribute to disease flares. Despite being fertile, women with lupus face a heightened risk of pregnancy-related complications, including pregnancy loss and stillbirth, which significantly surpass the rates observed in the healthy population. Therefore, this review aims to summarize and discuss the existing literature on the influence of female sex hormones on B-cell activation in patients with systemic lupus erythematosus, with a particular emphasis on their impact on pregnancy loss.
Collapse
Affiliation(s)
- Natalin Jimena Valeff
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
| | - Maria Silvia Ventimiglia
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Federico Jensen
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
- Centro Integrativo de Biología Y Química Aplicada. Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
14
|
Likhachov V, Shimanska Y, Akimov O, Vashchenko V, Taranovska O, Zhabchenko I, Kaidashev I. Prophylaxis of decidual CD68 +/CD163 + macrophage disbalance in extracorporeal fertilized women. Heliyon 2023; 9:e21148. [PMID: 37916119 PMCID: PMC10616389 DOI: 10.1016/j.heliyon.2023.e21148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
The demographic crisis that prevailed in Ukraine in recent years, the state of war as a result of the aggression of the Russian Federation, reproductive losses among women of childbearing age are one of the most urgent problems in modern obstetrics and gynecology. One of the most effective methods of correcting impaired reproductive function is in vitro fertilization. The purpose of this work is to develop a pharmacological complex for the prevention of imbalance of CD68+/CD163+ decidual macrophages in vitro fertilized women. Materials and methods 105 pregnant women who were divided into 3 groups took part in the study. The first group included 20 women whose pregnancy occurred and is proceeding physiologically. The second group consisted of 85 women who became pregnant as a result of in vitro fertilization, including 37 pregnant women who refused prophylactic correction of the threat of premature birth, and 48 pregnant women who received prophylactic correction of the threat of premature birth: complex prescription of vitamin D3 2000 IU orally 2 times a day, micronized progesterone 200 mg 2 times a day and l-arginine aspartate 1000 mg 4 times a day, starting from 18 to 20 weeks of pregnancy. Results In women who refused prophylactic correction of the threat of premature birth, a local increase in the activity of inducible NO-synthase and concentration of tumor necrosis factor-α, and a decrease in the activity of arginase and in the level of interleukin-10 were observed in the cervical mucus. They have a lower expression of CD163+ on placental decidual macrophages and an increased expression of CD68+, which indicates a shift in the polarization of macrophages from an anti-inflammatory to a pro-inflammatory phenotype. The use of prophylactic treatment brings the studied parameters closer to the results of women in whom pregnancy occurred physiologically. Conclusions In women who became pregnant as a result of in vitro fertilization, at 28-30 weeks of pregnancy, changes specific for pro-inflammatory phenotype of decidual macrophages were observed. Complex administration of vitamin D3, micronized progesterone and l-arginine aspartate lead to restoration of anti-inflammatory phenotype of decidual macrophages.
Collapse
Affiliation(s)
- Volodymyr Likhachov
- Department of Obstetrics and Gynecology No2, Poltava State Medical University, Shevchenko 23, Poltava, ZIP code 36011, Ukraine
| | - Yanina Shimanska
- Department of Obstetrics and Gynecology No2, Poltava State Medical University, Shevchenko 23, Poltava, ZIP code 36011, Ukraine
| | - Oleh Akimov
- Department of Pathophysiology, Poltava State Medical University, Shevchenko 23, Poltava, ZIP code 36011, Ukraine
| | - Viktoriya Vashchenko
- Department of Obstetrics and Gynecology No2, Poltava State Medical University, Shevchenko 23, Poltava, ZIP code 36011, Ukraine
| | - Olena Taranovska
- Department of Obstetrics and Gynecology No2, Poltava State Medical University, Shevchenko 23, Poltava, ZIP code 36011, Ukraine
| | - Iryna Zhabchenko
- Department of Obstetrics and Gynecology No2, Poltava State Medical University, Shevchenko 23, Poltava, ZIP code 36011, Ukraine
| | - Igor Kaidashev
- Department of Internal Medicine No3 with Phthysiatry, Poltava State Medical University, Shevchenko 23, Poltava, ZIP code 36011, Ukraine
| |
Collapse
|
15
|
Piekarska K, Dratwa M, Radwan P, Radwan M, Bogunia-Kubik K, Nowak I. Pro- and anti-inflammatory cytokines and growth factors in patients undergoing in vitro fertilization procedure treated with prednisone. Front Immunol 2023; 14:1250488. [PMID: 37744353 PMCID: PMC10511889 DOI: 10.3389/fimmu.2023.1250488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Embryo implantation is a key moment in pregnancy. Abnormal production of pro- and anti-inflammatory cytokines, their receptors and other immune factors may result in embryo implantation failure and pregnancy loss. The aim of this study was to determine the profile of selected pro- and anti-inflammatory factors in the blood plasma of patients undergoing in vitro fertilization (IVF) and control women who achieved pregnancy after natural conception. The examined patients were administered steroid prednisone. We present results concern the plasma levels of IFN-ɣ, BDNF, LIF, VEGF-A, sTNFR1 and IL-10. We found that IVF patients receiving steroids differed significantly from patients who were not administered such treatment in terms of IFN-γ and IL-10 levels. Moreover, IVF patients differed in secretion of all tested factors with the fertile controls. Our results indicated that women who secrete at least 1409 pg/ml of sTNFR1 have a chance to become pregnant naturally and give birth to a child, while patients after IVF must achieve a concentration of 962.3 pg/ml sTNFR1 in blood plasma for successful pregnancy. In addition, IVF patients secreting VEGF-A above 43.28 pg/ml have a greater risk of miscarriage or a failed transfer in comparison to women secreting below this value. In conclusion, fertile women present a different profile of pro- and anti-inflammatory cytokines, and growth factors compared to patients with recurrent implantation failure (RIF).
Collapse
Affiliation(s)
- Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
- Faculty of Health Sciences, The Mazovian Academy in Plock, Płock, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
16
|
Kalyani T, Sangili A, Kotal H, Kaushik A, Chaudhury K, Jana SK. Ultra-sensitive label-free detection of haptoglobin using Au-rGO decorated electrochemical sensing platform: Towards endometriosis diagnostic application. BIOSENSORS AND BIOELECTRONICS: X 2023; 14:100353. [DOI: 10.1016/j.biosx.2023.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
17
|
Ku CW, Ong LS, Goh JP, Allen J, Low LW, Zhou J, Tan TC, Lee YH. Defects in protective cytokine profiles in spontaneous miscarriage in the first trimester. F&S SCIENCE 2023; 4:36-46. [PMID: 36096448 DOI: 10.1016/j.xfss.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To study differences in cytokine expression profiles between women with ongoing pregnancy and those experiencing spontaneous miscarriage, among women who presented with threatened miscarriage before week 16 of gestation. DESIGN Prospective cohort study. SETTING Academic hospital. PATIENT(S) In this prospective cohort study, 155 pregnant women, comprising normal pregnant women recruited from antenatal clinics (n = 97) and women with threatened miscarriage recruited from an emergency walk-in clinic (n = 58). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Sixty-five serum cytokines quantified using multiplex immunoassay correlated with miscarriage outcomes. RESULT(S) Among women presenting with threatened miscarriage, those who eventually miscarried had significantly lower levels of interleukin (IL)-2, IL-12p70, IL-17A, B-cell-activating factor, B lymphocyte chemoattractant, basic nerve growth factor, interferon-γ, tumor necrosis factor-related apoptosis-inducing ligand, thymic stromal lymphopoietin, and tumor necrosis factor-α and higher levels of vascular endothelial growth factor A, IL-21, and stromal cell-derived factor 1α than those with ongoing pregnancy. Comparisons between normal pregnancies and women with threatened miscarriage who eventually miscarried revealed significant differences across 7 cytokines: B-cell-activating factor; B lymphocyte chemoattractant; basic nerve growth factor; IL-17A; fractalkine/CX3CL1; vascular endothelial growth factor A; and CCL22. Vascular endothelial growth factor A exhibited a negative correlation with the progesterone level (r = -0.270). The cluster of significant cytokines alludes to T cell proliferation, B-cell proliferation, natural killer cell-mediated cytotoxicity, and apoptosis as important pathways that determine pregnancy outcomes. Bioinformatic analysis further revealed alteration of the suppressor of cytokine signaling proteins family of Janus kinase-signal transducer and activator of transcription signaling axis by cytokines as a plausible key molecular mechanism in spontaneous miscarriage. CONCLUSION(S) This study demonstrates that the regulated balance between the proinflammatory and anti-inflammatory pathways is crucial to maintaining pregnancy. A better understanding of the cytokines associated with immunomodulatory effects may lead to novel targets for the prediction and treatment of spontaneous miscarriage.
Collapse
Affiliation(s)
- Chee Wai Ku
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore; Duke-NUS Medical School, Singapore
| | | | - Jody Paige Goh
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, Singapore
| | | | - Louise Wenyi Low
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, Singapore; Obstetrics and Gynecology-Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Jieliang Zhou
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, Singapore; Obstetrics and Gynecology-Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Thiam Chye Tan
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, Singapore; Obstetrics and Gynecology-Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Yie Hou Lee
- Obstetrics and Gynecology-Academic Clinical Program, Duke-NUS Medical School, Singapore; Translational 'Omics and Biomarkers Group, KK Research Centre, KK Women's and Children's Hospital, Singapore.
| |
Collapse
|
18
|
Zeng S, Liang Y, Lai S, Bi S, Huang L, Li Y, Deng W, Xu P, Liu M, Xiong Z, Chen J, Tu Z, Chen D, Du L. TNFα/TNFR1 signal induces excessive senescence of decidua stromal cells in recurrent pregnancy loss. J Reprod Immunol 2023; 155:103776. [PMID: 36495656 DOI: 10.1016/j.jri.2022.103776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Defects in decidual response are associated with adverse pregnancy outcomes which includes recurrent pregnancy loss (RPL). It is reported that cellular senescence happens during decidualization and pro-senescent decidual response in the luteal phase endometrium is related to RPL. However, the underlying mechanisms of how excessive decidual senescence takes place in RPL decidua cells remain largely unexplored. The senescent phenotype of RPL decidua and tumor necrosis factor receptor 1(TNFR1) expression were analyzed by using our previously published single-cell sequencing dataset of decidua cells from 6 RPL and 5 matched normal decidua, which were further verified by PCR and WB in decidual tissues. Effects of TNFα on the decidual stromal cells (DSCs) senescence and underlying molecular pathways were analyzed using the in vitro decidualization model of human endometrial stromal cells (HESCs). We showed that decidual stroma cells from RPL patients exhibited transcriptomic features of cellular senescence by analysis of single-cell datasets. The TNFα level and TNFR1 expression were increased in RPL decidua tissues. Furthermore, in vitro cell model demonstrated that increased TNFα induced excessive senescence during decidualization and TNFR1/p53/p16 pathway mediates TNFα-induced stromal senescence. In addition, we also found that the expression of IGFBP1 was regulated by TNFα-TNFR1 interaction during decidualization. Taken together, the present findings suggest that the increased secretion of TNFα induced stromal cell excessive senescence in RPL decidua, which is mediated via TNFR1, and thus provide a possible therapeutic target for the treatment of RPL.
Collapse
Affiliation(s)
- Shanshan Zeng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Siying Lai
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yulian Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Pei Xu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhongtang Xiong
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| | - Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| |
Collapse
|
19
|
IL-10: A bridge between immune cells and metabolism during pregnancy. J Reprod Immunol 2022; 154:103750. [PMID: 36156316 DOI: 10.1016/j.jri.2022.103750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/06/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Energy metabolism plays a crucial role in the immune system. In addition to providing vital energy for cell growth, reproduction and other cell activities, the metabolism of nutrients such as glucose and lipids also have significant effects on cell function through metabolites, metabolic enzymes, and changing metabolic status. Interleukin-10 (IL-10), as a pleiotropic regulator, can be secreted by a diverse set of cells and can also participate in regulating the functions of various cells, thereby playing an essential role in the formation and maintenance of immune tolerance in pregnancy. Studies on the regulatory effects and mechanisms of IL-10 on immune cells are extensive; however, research from a metabolic perspective is relatively negligible. Here, we have discussed old and new data on the relationship between IL-10 and metabolism. The data show that alterations in cellular metabolism and specific metabolites regulate IL-10 production of immune cells. Moreover, IL-10 regulates immune cell phenotypes and functions by modulating oxidative phosphorylation and glycolysis. This review summarizes some earlier observations regarding IL-10 and its relationship with immune cells in pregnancy, and also presents recent research on the link between IL-10 and metabolism, highlighting the potential relationship between IL-10, immune cells, and energy metabolism during pregnancy.
Collapse
|
20
|
Zhao Y, Man GCW, Zhang R, Wong CK, Chen X, Chung JPW, Wang CC, Laird S, Zhang T, Li TC. A prospective study comparing the inflammation-related cytokine and chemokine profile from the day of blastocyst transfer to 7 weeks of gestation between pregnancies that did or did not result in a miscarriage. J Reprod Immunol 2022; 154:103755. [PMID: 36272272 DOI: 10.1016/j.jri.2022.103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
The dynamics of maternal immunomodulation is essential in early pregnancy. In our previous study, successful implantation is characterized by a transient increase of pro-inflammatory cytokines followed by a switch to an anti-inflammatory state in peripheral blood around 3-6 days after embryo transfer (ET). In this study, we aimed to extend the time points to compare the cytokine and chemokine profiles between women who did or did not subsequently miscarry. We utilized precisely timed serum samples on the day of ET and 3, 6, 9, 16, 23 and 30 days after ET in women undergoing single blastocyst transfer. Our analysis revealed a significant alteration in cytokine profile after day ET+ 9 between the two groups. Regarding pro-inflammatory cytokine profile, there was a significant increase in IL-17 on days ET+ 16, + 23, and + 30 (50.60 ± 9.97 vs 37.09 ± 3.25, 53.20 ± 8.13 vs 36.51 ± 3.34, 57.06 ± 8.83 vs 33.04 ± 3.11 pg/mL), TNF-α on days ET+ 23 and + 30 (73.90 ± 12.42 vs 50.73 ± 3.55, 74.16 ± 12.46 vs 46.59 ± 3.21 pg/mL), IFN-γ on day ET+ 30 (69.52 ± 13.19 vs 42.28 ± 7.76 pg/mL) in women who miscarried compared to women who had a live birth. In contrast, the concentrations of anti-inflammatory cytokines IL-10 on days ET+ 23 and + 30 (26.23 ± 2.11 vs 38.30 ± 4.64, 23.77 ± 2.06 vs 39.16 ± 4.99 pg/mL) and TGF-β1 on day ET+ 30 (20.30 ± 1.25 vs 23.81 ± 0.88 ng/mL) were significantly decreased in women who miscarried compared to women who had a live birth. While for the chemokine profile, there was no significant alteration observed between the two groups across all the time points. These findings suggest that a sustained anti-inflammatory milieu is concomitant with the maintenance of early pregnancy, while the remarkable pro-inflammatory shift as early as day ET+ 16 in women who subsequently miscarried was observed before the diagnosis of miscarriage.
Collapse
Affiliation(s)
- Yiwei Zhao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Gene Chi Wai Man
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Ruizhe Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Xiaoyan Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China; Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China
| | - Jacqueline Pui-Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Chi-Chiu Wang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China; Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China; School of Biomedical Sciences, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China; Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Susan Laird
- Department of Biosciences and Chemistry, Sheffield Hallam University, UK
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China.
| | - Tin-Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China; Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, the Hong Kong Special Administrative Region of China.
| |
Collapse
|
21
|
Busse M, Zenclussen AC. IL-10 Producing B Cells Protect against LPS-Induced Murine Preterm Birth by Promoting PD1- and ICOS-Expressing T Cells. Cells 2022; 11:cells11172690. [PMID: 36078100 PMCID: PMC9454497 DOI: 10.3390/cells11172690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
B cells and in particular IL-10-secreting B cells emerge as important players in immune balance during pregnancy. We have recently revealed that CD19-deficient (CD19−/−), B cell-specific IL-10-deficient (BIL-10−/−) and B cell-deficient µMT pregnant mice are highly susceptible to LPS-induced preterm birth (PTB). We aimed to analyze the ability of IL-10-secreting cells to protect from PTB and the underlying mechanisms. Wild type (WT), CD19−/−, BIL-10−/− and µMT mice were treated with LPS at gd16 and the cellular immune response was investigated 24 h later. LPS-treated BIL-10−/− dams showed a more pronounced PTB phenotype compared to WT, CD19−/− and µMT females, and increased inflammatory and reduced anti-inflammatory mediator concentrations in the peritoneal cavity and serum. CD19−/−, BIL-10−/− and µMT mice displayed altered immune cell population frequencies in the blood and uterus with lower numbers of IL-10-secreting B cells and T cells. BIL-10−/− mothers presented decreased frequencies of uterine CD4+CD25+Foxp3+ Treg cells. Co-stimulatory molecules are critical for feto-maternal tolerance and IL-10 secretion. We found dysregulated PD-1 expression in peripheral blood and ICOS expression in the uterus of CD19−/−, BIL-10−/− and µMT dams. Our data show that B cell-specific IL-10-signaling is essential for a balanced maternal immune response to an inflammatory stimulant that cannot be hampered without IL-10-secreting B cells.
Collapse
Affiliation(s)
- Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Saxonian Incubator for Translation Research, Leipzig University, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-2351265
| |
Collapse
|
22
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon-stimulated genes signaling during pregnancy. Immunol Rev 2022; 308:9-24. [PMID: 35306673 PMCID: PMC9189063 DOI: 10.1111/imr.13077] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Abstract
Pregnancy is a unique condition where the maternal immune system is continuously adapting in response to the stages of fetal development and signals from the environment. The placenta is a key mediator of the fetal/maternal interaction by providing signals that regulate the function of the maternal immune system as well as provides protective mechanisms to prevent the exposure of the fetus to dangerous signals. Bacterial and/or viral infection during pregnancy induce a unique immunological response by the placenta, and type I interferon is one of the crucial signaling pathways in the trophoblast cells. Basal expression of type I interferon-β and downstream ISGs harbors physiological functions to maintain the homeostasis of pregnancy, more importantly, provides the placenta with the adequate awareness to respond to infections. The disruption of type I interferon signaling in the placenta will lead to pregnancy complications and can compromise fetal development. In this review, we focus the important role of placenta-derived type I interferon and its downstream ISGs in the regulation of maternal immune homeostasis and protection against viral infection. These studies are helping us to better understand placental immunological functions and provide a new perspective for developing better approaches to protect mother and fetus during infections.
Collapse
Affiliation(s)
- Jiahui Ding
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anthony Maxwell
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
23
|
Cariaco Y, Almeida MPO, Araujo ECB, Briceño MPP, Durán-Rodriguez AT, Franco RR, Espindola FS, Silva NM. Inhibition of Heme Oxygenase-1 by Zinc Protoporphyrin IX Improves Adverse Pregnancy Outcomes in Malaria During Early Gestation. Front Immunol 2022; 13:879158. [PMID: 35619717 PMCID: PMC9127164 DOI: 10.3389/fimmu.2022.879158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The enzyme heme oxygenase-1 (HO-1) has cytoprotective effects by catalyzing the degradation of heme to produce carbon monoxide, iron and biliverdin. Furthermore, HO-1 activity has been associated with successful pregnancy. On the other hand, in the context of certain inflammatory conditions, HO-1 can induce iron overload and cell death. To investigate the role of HO-1 in gestational malaria, pregnant BALB/c mice were infected with Plasmodium berghei ANKA in early, mid and late gestation. We found that malaria affected the pregnancy outcome in the three periods evaluated. However, only poor pregnancy outcomes in early pregnancy were related to HO-1 upregulation, iron overload, lipid peroxidation and necrosis of the decidua, which were prevented by HO-1 inhibition. In conclusion, HO-1 expression must be finely tuned in gestational malaria to avoid the deleterious effect of increased enzyme activity.
Collapse
Affiliation(s)
- Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ester Cristina Borges Araujo
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | - Rodrigo Rodrigues Franco
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Foued Salmen Espindola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
24
|
Valeff NJ, Ventimiglia MS, Dibo M, Markert UR, Jensen F. Splenic B1 B Cells Acquire a Proliferative and Anti-Inflamatory Profile During Pregnancy in Mice. Front Immunol 2022; 13:873493. [PMID: 35572585 PMCID: PMC9095819 DOI: 10.3389/fimmu.2022.873493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
B cells are a heterogeneous cell population with differential ontogeny, anatomical location, and functions. B1 B cells are a distinct subpopulation characterized by their unique capacity of self-renewal, the production of large quantities of IL-10, and the ability to secrete protective, anti-inflammatory natural antibodies (NAbs), presumably upon down-regulation of CD1d expression. Although natural antibodies are thought to be protective, due to their polyreactivity, their participation in certain autoimmune diseases has been suggested. In the context of pregnancy, the role of B1 B cells has been discussed controversially. While in human pregnancies B1 B cells and natural/polyreactive antibodies they produce are involved in the development of preeclampsia, in mice they promote healthy gestation and fetal protection. In this work, we aimed to functionally characterize the splenic B1 B cell population during pregnancy in mice. Functional enrichment analysis using only up-regulated transcripts from a transcriptomic profile performed on total splenic B cells from pregnant compared to non-pregnant mice showed augmented cell cycle and DNA replication pathways. Proliferation studies by flow cytometry showed augmented Ki-67 proliferation marker expression and percentages of B1 B cells. Furthermore, B1 B cells produced higher levels of IL-10 and lower levels of TNF-α leading to an increased IL-10/TNF-α ratio and showing an immunoregulatory phenotype. Finally, we observed lower expression of CD1d on B1 B cells, suggesting a higher capacity to produce NAbs in the context of pregnancy. In summary, our results showed not only an expanded and proliferative splenic B1 B cell population during pregnancy but also the acquisition of immunomodulatory capacities suggesting its critical role in the intricate process of pregnancy tolerance.
Collapse
Affiliation(s)
- Natalin J Valeff
- Laboratorio de Inmunología de la Reproducción, CEFYBO-UBA-CONICET, Buenos Aires, Argentina
| | - María S Ventimiglia
- Laboratorio de Inmunología de la Reproducción, CEFYBO-UBA-CONICET, Buenos Aires, Argentina
| | - Marcos Dibo
- Laboratorio de Inmunología de la Reproducción, CEFYBO-UBA-CONICET, Buenos Aires, Argentina
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - Federico Jensen
- Laboratorio de Inmunología de la Reproducción, CEFYBO-UBA-CONICET, Buenos Aires, Argentina.,Centro Integrativo de Biología Y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
25
|
Zhang T, Zhao Y, Cheung WC, Gan YH, Huang L, Li M, Leung KT, Chung PW, Wang CC, Laird S, Chen X, Li TC. Serial changes in two immune checkpoint receptors and ligands, Tim-3/Gal-9 and PD-1/PD-L1 in peripheral blood prior to miscarriage: Comparison with pregnancies resulting in a live birth. Am J Reprod Immunol 2022; 87:e13524. [PMID: 35130363 DOI: 10.1111/aji.13524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/31/2022] Open
Abstract
PROBLEM Immune checkpoints Tim-3/Gal-9 and PD-1/PL-1 are involved in the maintenance of maternal-fetal immune tolerance systematically and locally. This study aimed to compare the serial changes of Tim-3/Gal-9, and PD-1/PL-1 in peripheral blood over a 4-week period after blastocyst transfer, between women who had a live birth and those who miscarried. METHODS OF STUDY Serial blood samples were obtained on the day of ET, and 9, 16, 23, and 30 days after ET for the measurement of Tim-3 and PD-1 expressions on various lymphocytes by flow cytometry. Concentrations of serum Gal-9 and PD-L1 were measured by ELISA. RESULTS In pregnancies that resulted in a live birth, a significant and sustained increase in the proportion of Tim-3+ pNK cells was observed from the 9th to 30th days after ET, whilst the concentration of serum PD-L1 was significantly increased on the 23rd and 30th days after ET when compared to the day of ET. In pregnancies that later miscarried, none of the parameters were significantly changed across all the time points examined. When comparing the results between the two groups, the proportion of Tim-3+ CD56dim NK cells in the women who had a live birth was significantly higher than that in women who miscarried from the 9th to 30th day after ET. CONCLUSION A significant and sustained increase in the proportion of Tim-3+ pNK cells was observed in pregnancies resulting in a live birth but not in pregnancies resulting in a miscarriage, suggesting the changes may be associated with successful pregnancy outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiwei Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Ching Cheung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Huang Gan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Piu Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Susan Laird
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, UK
| | - Xiaoyan Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Menon R. Fetal inflammatory response at the fetomaternal interface: A requirement for labor at term and preterm. Immunol Rev 2022; 308:149-167. [PMID: 35285967 DOI: 10.1111/imr.13075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
Human parturition at term and preterm is an inflammatory process synchronously executed by both fetomaternal tissues to transition them from a quiescent state t an active state of labor to ensure delivery. The initiators of the inflammatory signaling mechanism can be both maternal and fetal. The placental (fetal)-maternal immune and endocrine mediated homeostatic imbalances and inflammation are well reported. However, the fetal inflammatory response (FIR) theories initiated by the fetal membranes (amniochorion) at the choriodecidual interface are not well established. Although immune cell migration, activation, and production of proparturition cytokines to the fetal membranes are reported, cellular level events that can generate a unique set of inflammation are not well discussed. This review discusses derangements to fetal membrane cells (physiologically and pathologically at term and preterm, respectively) in response to both endogenous and exogenous factors to generate inflammatory signals. In addition, the mechanisms of inflammatory signal propagation (fetal signaling of parturition) and how these signals cause immune imbalances at the choriodecidual interface are discussed. In addition to maternal inflammation, this review projects FIR as an additional mediator of inflammatory overload required to promote parturition.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
27
|
You Y, Stelzl P, Joseph DN, Aldo PB, Maxwell AJ, Dekel N, Liao A, Whirledge S, Mor G. TNF-α Regulated Endometrial Stroma Secretome Promotes Trophoblast Invasion. Front Immunol 2021; 12:737401. [PMID: 34790194 PMCID: PMC8591203 DOI: 10.3389/fimmu.2021.737401] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023] Open
Abstract
Successful implantation requires the coordinated migration and invasion of trophoblast cells from out of the blastocyst and into the endometrium. This process relies on signals produced by cells in the maternal endometrium. However, the relative contribution of stroma cells remains unclear. The study of human implantation has major technical limitations, therefore the need of in vitro models to elucidate the molecular mechanisms. Using a recently described 3D in vitro models we evaluated the interaction between trophoblasts and human endometrial stroma cells (hESC), we assessed the process of trophoblast migration and invasion in the presence of stroma derived factors. We demonstrate that hESC promotes trophoblast invasion through the generation of an inflammatory environment modulated by TNF-α. We also show the role of stromal derived IL-17 as a promoter of trophoblast migration through the induction of essential genes that confer invasive capacity to cells of the trophectoderm. In conclusion, we describe the characterization of a cellular inflammatory network that may be important for blastocyst implantation. Our findings provide a new insight into the complexity of the implantation process and reveal the importance of inflammation for embryo implantation.
Collapse
Affiliation(s)
- Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patrick Stelzl
- Department for Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital Linz, Johannes Kepler University Linz, Linz, Austria
| | - Dana N Joseph
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Paulomi B Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Anthony J Maxwell
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nava Dekel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
28
|
Fisher AL, Sangkhae V, Balušíková K, Palaskas NJ, Ganz T, Nemeth E. Iron-dependent apoptosis causes embryotoxicity in inflamed and obese pregnancy. Nat Commun 2021; 12:4026. [PMID: 34188052 PMCID: PMC8242011 DOI: 10.1038/s41467-021-24333-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
Iron is essential for a healthy pregnancy, and iron supplementation is nearly universally recommended, regardless of maternal iron status. A signal of potential harm is the U-shaped association between maternal ferritin, a marker of iron stores, and risk of adverse pregnancy outcomes. However, ferritin is also induced by inflammation and may overestimate iron stores during inflammation or infection. In this study, we use mouse models to determine whether maternal iron loading, inflammation, or their interaction cause poor pregnancy outcomes. Only maternal exposure to both iron excess and inflammation, but not either condition alone, causes embryo malformations and demise. Maternal iron excess potentiates embryo injury during both LPS-induced acute inflammation and obesity-induced chronic mild inflammation. The adverse interaction depends on TNFα signaling, causes apoptosis of placental and embryo endothelium, and is prevented by anti-TNFα or antioxidant treatment. Our findings raise important questions about the safety of indiscriminate iron supplementation during pregnancy.
Collapse
Affiliation(s)
- Allison L Fisher
- Molecular, Cellular & Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Veena Sangkhae
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kamila Balušíková
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicolaos J Palaskas
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tomas Ganz
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeta Nemeth
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Trombetta A, Comar M, Tommasini A, Canton M, Campisciano G, Zanotta N, Cason C, Maso G, Risso FM. SARS-CoV-2 Infection and Inflammatory Response in a Twin Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3075. [PMID: 33802696 PMCID: PMC8002573 DOI: 10.3390/ijerph18063075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022]
Abstract
There is growing literature about the SARS-CoV-2 pathogenetic effects exerted during pregnancy and whether vertical transmission or premature birth is possible. It is not well known whether changes in the immune system of pregnant women may lead to a marked susceptibility to infectious processes and the risk of adverse maternal and neonatal complications such as preterm birth, spontaneous abortion, hospitalization in an intensive care unit, transmission to the fetus or newborns, and fetal mortality are poorly understood. Along with this ongoing debate, it is not well defined whether, during pregnancy, the role of host susceptibility in producing a specific inflammatory response to SARS-CoV-2 may represent distinctive markers of risk of vertical transmission. Furthermore, SARS-CoV-2 impact on the vaginal microbiome has not yet been described, despite mounting evidence on its possible effect on the gastrointestinal microbiome and its influence on infectious diseases and preterm labor. This report describes the impact of SARS-CoV-2 on a twin pregnancy diagnosed with infection at the third trimester of gestation including tissue infections, inflammatory response, antibody production, cytokine concentration, and vaginal microbiome composition. We identified a pattern of cytokines including IL1-Ra, IL-9 G-CSF, IL-12, and IL-8 differently expressed, already associated with previously infected patients. We detected a similar concentration of almost all the cytokines tested in both twins, suggesting that the SARS-CoV-2-induced cytokine storm is not substantially impaired during the placental passage. The analysis of the vaginal microbiome did not show relevant signs of dysbiosis, similar to other healthy pregnant women and twin healthy pregnancies. The aim of this report was to analyze the immunological response against SARS-CoV-2 infection and virus tissue tropism in a twin pregnancy.
Collapse
Affiliation(s)
- Andrea Trombetta
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Piazzale Europa, 1, 34127 Trieste, Italy; (A.T.); (M.C.); (M.C.); (C.C.)
| | - Manola Comar
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Piazzale Europa, 1, 34127 Trieste, Italy; (A.T.); (M.C.); (M.C.); (C.C.)
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, via Dell’istria 65/1, 34124 Trieste, Italy; (G.C.); (N.Z.); (G.M.); (F.M.R.)
| | - Alberto Tommasini
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Piazzale Europa, 1, 34127 Trieste, Italy; (A.T.); (M.C.); (M.C.); (C.C.)
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, via Dell’istria 65/1, 34124 Trieste, Italy; (G.C.); (N.Z.); (G.M.); (F.M.R.)
| | - Melania Canton
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Piazzale Europa, 1, 34127 Trieste, Italy; (A.T.); (M.C.); (M.C.); (C.C.)
| | - Giuseppina Campisciano
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, via Dell’istria 65/1, 34124 Trieste, Italy; (G.C.); (N.Z.); (G.M.); (F.M.R.)
| | - Nunzia Zanotta
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, via Dell’istria 65/1, 34124 Trieste, Italy; (G.C.); (N.Z.); (G.M.); (F.M.R.)
| | - Carolina Cason
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Piazzale Europa, 1, 34127 Trieste, Italy; (A.T.); (M.C.); (M.C.); (C.C.)
| | - Gianpaolo Maso
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, via Dell’istria 65/1, 34124 Trieste, Italy; (G.C.); (N.Z.); (G.M.); (F.M.R.)
| | - Francesco Maria Risso
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, via Dell’istria 65/1, 34124 Trieste, Italy; (G.C.); (N.Z.); (G.M.); (F.M.R.)
| |
Collapse
|
30
|
Cassidy-Bushrow AE, Burmeister C, Birbeck J, Chen Y, Lamerato L, Lemke LD, Li J, Mor G, O'Leary BF, Peters RM, Reiners JJ, Sperone FG, Westrick J, Wiewiora E, Straughen JK. Ambient BTEX exposure and mid-pregnancy inflammatory biomarkers in pregnant African American women. J Reprod Immunol 2021; 145:103305. [PMID: 33725526 DOI: 10.1016/j.jri.2021.103305] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
Air pollution is associated with preterm birth (PTB), potentially via inflammation. We recently showed the mixture benzene, toluene, ethylbenzene, and xylene (BTEX) is associated with PTB. We examined if ambient BTEX exposure is associated with mid-pregnancy inflammation in a sample of 140 African-American women residing in Detroit, Michigan. The Geospatial Determinants of Health Outcomes Consortium study collected outdoor air pollution measurements in Detroit; these data were coupled with Michigan Air Sampling Network measurements to develop monthly BTEX concentration estimates at a spatial density of 300 m2. First trimester and mid-pregnancy BTEX exposure estimates were assigned to maternal address. Mid-pregnancy (mean 21.3 ± 3.7 weeks gestation) inflammatory biomarkers (high-sensitivity C-reactive protein, interleukin [IL]-6, IL-10, IL-1β, and tumor necrosis factor-α) were measured with enzyme immunoassays. After covariate adjustment, for every 1-unit increase in first trimester BTEX, there was an expected mean increase in log-transformed IL-1β of 0.05 ± 0.02 units (P = 0.014) and an expected mean increase in log-transformed tumor necrosis factor-α of 0.07 ± 0.02 units (P = 0.006). Similarly, for every 1-unit increase in mid-pregnancy BTEX, there was a mean increase in log IL-1β of 0.06 ± 0.03 units (P = 0.027). There was no association of either first trimester or mid-pregnancy BTEX with high-sensitivity C-reactive protein, IL-10, or IL-6 (all P > 0.05). Ambient BTEX exposure is associated with inflammation in mid-pregnancy in African-American women. Future studies examining if inflammation mediates associations between BTEX exposure and PTB are needed.
Collapse
Affiliation(s)
- Andrea E Cassidy-Bushrow
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA; Center for Urban Responses to Environmental Stressors, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA.
| | - Charlotte Burmeister
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Johnna Birbeck
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Lois Lamerato
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Lawrence D Lemke
- Department of Earth and Atmospheric Sciences, Central Michigan University, Brooks Hall 314, Mount Pleasant, MI, 48859, USA
| | - Jia Li
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Brendan F O'Leary
- Department of Civil and Environmental Engineering, Wayne State University, 2100 Engineering Building, Detroit, MI, 48202, USA
| | - Rosalind M Peters
- College of Nursing, Wayne State University, 5557 Cass Avenue, Detroit, MI, 48202, USA
| | - John J Reiners
- Center for Urban Responses to Environmental Stressors, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - F Gianluca Sperone
- Department of Environmental Science and Geology, Wayne State University, 4841 Cass Avenue, Detroit, MI, 48201, USA
| | - Judy Westrick
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Evan Wiewiora
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Jennifer K Straughen
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA; Center for Urban Responses to Environmental Stressors, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| |
Collapse
|
31
|
Chavan AR, Griffith OW, Stadtmauer DJ, Maziarz J, Pavlicev M, Fishman R, Koren L, Romero R, Wagner GP. Evolution of Embryo Implantation Was Enabled by the Origin of Decidual Stromal Cells in Eutherian Mammals. Mol Biol Evol 2021; 38:1060-1074. [PMID: 33185661 PMCID: PMC7947829 DOI: 10.1093/molbev/msaa274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.
Collapse
Affiliation(s)
- Arun R Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Oliver W Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Ruth Fishman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
32
|
Acuña F, Barbeito CG, Portiansky EL, Miglino MA, Flamini MA. Prenatal development in Lagostomus maximus (Rodentia, Chinchillidae): A unique case among eutherian mammals of physiological embryonic death. J Morphol 2021; 282:720-732. [PMID: 33638264 DOI: 10.1002/jmor.21341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Embryonic death followed by resorption is a conserved process in mammals. Among the polyovular species, Lagostomus maximus (plains viscacha) constitutes a model of early and physiological embryonic death, since out of a total of 10-12 implants, 8-10 are resorbed during early/intermediate gestation, surviving are only the most caudal implantations of each uterine horn. This regular reproductive event is unique to this species, but many characteristics of the implantations during the early gestation of L. maximus, when embryonic death processes begin are unknown. The aim of the present work was to analyze the implantation sites of this species using morphological, morphometric, histochemical, lectinhistochemical, and immunohistochemical techniques to infer the possible causes of this event. Macroscopically, the length and width of the implantation sites significantly increased in a craniocaudal direction. Histochemically, the implantation sites did not differ in the expression of glycoconjugates and glycosidic residues. Furthermore, no variations were observed in cell renewal, hormone receptor expression, and decidualization. Both the glandular and vascular areas of the implantation sites significantly increased in the craniocaudal axis. Some necrotic cells and an inflammatory response with a predominance of lymphocytes and fibrin were observed in the cranial and middle but not in the caudal implantation sites. We conclude that signs of embryonic death and resorption are already observed in the early gestation of L. maximus. Our results reaffirm the hypothesis that postulates the key potential role of uterine glands and blood vessels in the gestation of the species, with emphasis on embryonic death. This pattern of embryonic death in L. maximus makes this species an unconventional mammalian model, which adds to the peculiarities of polyovulation (200-800 oocytes/estrus) and hemochorial placentation.
Collapse
Affiliation(s)
- Francisco Acuña
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (LHYEDEYC, FCV-UNLP), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT - La Plata, Buenos Aires, Argentina
| | - Claudio G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (LHYEDEYC, FCV-UNLP), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT - La Plata, Buenos Aires, Argentina
| | - Enrique L Portiansky
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT - La Plata, Buenos Aires, Argentina.,Laboratorio de Análisis de Imágenes, Cátedra de Patología General, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (LAI, FCV-UNLP), Buenos Aires, Argentina
| | - María A Miglino
- Departamento de Cirugía, Facultad de Medicina Veterinaria y Zootecnia, Universidad de San Pablo, San Pablo, Brazil
| | - Mirta A Flamini
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (LHYEDEYC, FCV-UNLP), Buenos Aires, Argentina
| |
Collapse
|
33
|
Zhao Y, Zhang T, Guo X, Wong CK, Chen X, Chan YL, Wang CC, Laird S, Li TC. Successful implantation is associated with a transient increase in serum pro-inflammatory cytokine profile followed by a switch to anti-inflammatory cytokine profile prior to confirmation of pregnancy. Fertil Steril 2020; 115:1044-1053. [PMID: 33272613 DOI: 10.1016/j.fertnstert.2020.10.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To compare the changing peripheral levels of inflammation-related cytokine profile during a 9-day period after blastocyst transfer between women who did and did not conceive. DESIGN Prospective, observational, and longitudinal study. SETTING University-affiliated hospital. PATIENT(S) Forty-seven women with infertility who were undergoing single day-5 blastocyst transfer were recruited. INTERVENTION(S) This prospective observational and longitudinal study on 47 women with infertility was performed in an in vitro fertilization unit from December 2018 to August 2019. The amounts of a range of cytokines was measured on serial blood samples obtained during a 9-day period after blastocyst transfer. MAIN OUTCOME MEASURE(S) Serial blood samples were obtained on the day of embryo transfer, and 3, 6, and 9 days afterward for measurement of serum interferon gamma (IFN-γ), tumor necrosis factor alpha, interleukin (IL)-2, IL-4, IL-10, IL-12, IL-13, IL-17, IL-18, and IL-22 using cytometric bead arrays; transforming growth factor beta 1 (TGF-β1) was measured using commercial enzyme-linked immunosorbent assay kits. RESULT(S) The cytokine profile was similar between the women who conceived and those who did not on the day of blastocyst transfer. In women who conceived, IFN-γ and IL-17 (pro-inflammatory cytokines) exhibited a transient and significant increase on day 3 after blastocyst transfer, which decreased to the baseline levels by day 6. Meanwhile, IL-10 (anti-inflammatory cytokine) was increased significantly on days 6 and 9, and TGF-β1 (anti-inflammatory cytokine) was increased significantly on day 9 after blastocyst transfer. In women who did not conceive, there was a more pronounced increase in IFN-γ and IL-17 (pro-inflammatory cytokines) on day 3, which was sustained on days 6 and 9 without a switch to an anti-inflammatory cytokine profile. CONCLUSION(S) Among women who conceived after blastocyst embryo transfer, there was a transient and modest increase in serum pro-inflammatory cytokine profile (IFN-γ and IL-17) 3 days after blastocyst transfer, which was followed by a switch to anti-inflammatory cytokine profile (increase IL-10 and TGF-β1) by 6 days after blastocyst transfer and the latter increase was sustained 9 days after blastocyst transfer, when pregnancy was confirmed.
Collapse
Affiliation(s)
- Yiwei Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
| | - Xi Guo
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Chun Kwok Wong
- Department of Chemical Pathology, the Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoyan Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, People's Republic of China
| | - Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Chi Chiu Wang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Susan Laird
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
34
|
Simpson S, Kaislasuo J, Peng G, Aldo P, Paidas M, Guller S, Mor G, Pal L. Peri-implantation cytokine profile differs between singleton and twin IVF pregnancies. Am J Reprod Immunol 2020; 85:e13348. [PMID: 32946159 DOI: 10.1111/aji.13348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023] Open
Abstract
PROBLEM It is unknown whether maternal cytokine production differs between twin and singleton gestations in the implantation phase. A difference in maternal serum cytokine concentrations in twins would imply a dose-response to the invading embryos, as opposed to a general immune reaction. METHOD OF STUDY A prospective longitudinal cohort of women aged 18-45 at an academic fertility center undergoing in vitro fertilization and embryo transfer (IVF-ET) underwent routine collection of serial serum samples starting 9 days after ET and then approximately every 48 hours thereafter. Cryopreserved aliquots of these samples were assayed for interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and C-X-C motif chemokine ligand 10 (CXCL10) using the SimplePlex immunoassay platform. Pregnancies were followed until delivery. Serial measures of serum concentrations of IL-10, CXCL10, and TNF-α in singleton or di-di twin pregnancies from 9 to 15 days after IVF-ET were compared. RESULTS Maternal serum levels of CXCL10 are significantly lower in women with di-di twin pregnancies in early implantation compared to those with singleton gestation (day 9-11, P = .02). Serum levels of TNF-α and IL-10 were comparable at all studied time points (P > .05). CONCLUSION Maternal serum levels of CXCL10 are significantly lower in the earliest implantation phase in di-di twins compared to singleton conceptions. Given the known anti-angiogenic role of CXCL10, we hypothesize that lower CXCL10 levels in twin implantations allow an environment that is conducive for the greater vascularization required for the establishment of dual placentation in di-di twins.
Collapse
Affiliation(s)
- Samantha Simpson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Janina Kaislasuo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Paulomi Aldo
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Michael Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, MI, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Abbas AM, Ahmed L, Salem AS, Elsamman SH, Refai A, Fathy SK, Ahmed OA, Shalotut AS, AbdelWahab RA. COVID-19 and hydatidiform mole. Am J Reprod Immunol 2020; 84:e13310. [PMID: 32698238 PMCID: PMC7404502 DOI: 10.1111/aji.13310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
The emergence of coronavirus disease 2019 (COVID‐19) as a pandemic threatens the entire world resulting in severe consequences for people's health. Pregnant patients with COVID‐19 had immune dysregulation that could result in abnormal pregnancy outcomes such as hydatidiform mole (HM), recurrent pregnancy loss, and early‐onset preeclampsia. In this article, we tried to summarize the possible association between COVID‐19 and the HM's development by reviewing the role of NOD‐Like Receptor (NLR) Family Pyrin Domain Containing 7 (NLRP7), cytokines, zinc, and leukocytes in the pathogenesis of HM.
Collapse
Affiliation(s)
- Ahmed M Abbas
- Department of Obstetrics & Gynecology, Faculty of Medicine, Assiut University, Assiut, Egypt.,COvid-19 Research of Assiut UNiversity Association (CORAUNA) group, Assiut, Egypt
| | - Lobna Ahmed
- COvid-19 Research of Assiut UNiversity Association (CORAUNA) group, Assiut, Egypt.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amera S Salem
- COvid-19 Research of Assiut UNiversity Association (CORAUNA) group, Assiut, Egypt.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shimaa H Elsamman
- COvid-19 Research of Assiut UNiversity Association (CORAUNA) group, Assiut, Egypt.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaima Refai
- COvid-19 Research of Assiut UNiversity Association (CORAUNA) group, Assiut, Egypt.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa K Fathy
- COvid-19 Research of Assiut UNiversity Association (CORAUNA) group, Assiut, Egypt.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omar A Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa S Shalotut
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Radwa A AbdelWahab
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
36
|
Zhang YH, Aldo P, You Y, Ding J, Kaislasuo J, Petersen JF, Lokkegaard E, Peng G, Paidas MJ, Simpson S, Pal L, Guller S, Liu H, Liao AH, Mor G. Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function. J Leukoc Biol 2020; 108:983-998. [PMID: 32386458 DOI: 10.1002/jlb.1a0420-012rr] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Decidual macrophages are in close contact with trophoblast cells during placenta development, and an appropriate crosstalk between these cellular compartments is crucial for the establishment and maintenance of a healthy pregnancy. During different phases of gestation, macrophages undergo dynamic changes to adjust to the different stages of fetal development. Trophoblast-secreted factors are considered the main modulators responsible for macrophage differentiation and function. However, the phenotype of these macrophages induced by trophoblast-secreted factors and the factors responsible for their polarization has not been elucidated. In this study, we characterized the phenotype and function of human trophoblast-induced macrophages. Using in vitro models, we found that human trophoblast-educated macrophages were CD14+ CD206+ CD86- and presented an unusual transcriptional profile in response to TLR4/LPS activation characterized by the expression of type I IFN-β expression. IFN-β further enhances the constitutive production of soluble programmed cell death ligand 1 (PD-L1) from trophoblast cells. PD-1 blockage inhibited trophoblast-induced macrophage differentiation. Soluble PD-L1 (sPD-L1) was detected in the blood of pregnant women and increased throughout the gestation. Collectively, our data suggest the existence of a regulatory circuit at the maternal fetal interface wherein IFN-β promotes sPD-L1 expression/secretion by trophoblast cells, which can then initiate a PD-L1/PD-1-mediated macrophage polarization toward an M2 phenotype, consequently decreasing inflammation. Macrophages then maintain the expression of sPD-L1 by the trophoblasts through IFN-β production induced through TLR4 ligation.
Collapse
Affiliation(s)
- Yong-Hong Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Janina Kaislasuo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Jesper F Petersen
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Ellen Lokkegaard
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samantha Simpson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ai Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
37
|
Martinez CA, Rubér M, Rodriguez-Martinez H, Alvarez-Rodriguez M. Pig Pregnancies after Transfer of Allogeneic Embryos Show a Dysregulated Endometrial/Placental Cytokine Balance: A Novel Clue for Embryo Death? Biomolecules 2020; 10:E554. [PMID: 32260537 PMCID: PMC7226322 DOI: 10.3390/biom10040554] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Pig embryo transfer (ET) is burdened by high embryo mortality, with cytokines playing a significant role in recruitment of immune cells during embryo attachment and placentation. We hereby tested if their levels in endometrium and placenta from sows carrying hemi-allogeneic (artificially inseminated sows; C+ positive control) or allogeneic embryos (sows subjected to ET; ET) during peri-implantation (D18) or post-implantation (D24) are suitable mirrors of embryo rejection or tolerance after ET. Non-pregnant sows (C-) were used as negative controls. A set of cytokines was assayed in the tissues through multiplexed microsphere-based flow cytometry (Luminex xMAP, Millipore. USA). Fewer (58.7%. p < 0.003) conceptuses were recovered at D24 after ET compared to C+ (80.9%); with more than 20% of the ET conceptuses being developmentally delayed. Cytokine levels shifted during implantation. Anti-inflammatory IL-10 levels were significantly (p < 0.05) lower in ET sows compared to C+ at D24 of pregnancy. The C+ controls (carrying hemi-allogeneic embryos) consistently showed higher levels of pro-inflammatory TNF-α, IFN-γ, and IL-2 cytokines at D18 and IL-1α at D24, compared to the ET group. This clear dysregulation of pro- and anti-inflammatory cytokine levels in sows subjected to ET could be associated with an impaired maternal immune tolerance, explaining the high embryonic mortality of ET programs.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Clinical & Experimental Medicine (IKE), BHK/O&G Linköping University, SE-58185 Linköping, Sweden; (M.R.); (H.R.-M.); (M.A.-R.)
| | | | | | | |
Collapse
|
38
|
Silasi M, You Y, Simpson S, Kaislasuo J, Pal L, Guller S, Peng G, Ramhorst R, Grasso E, Etemad S, Durosier S, Aldo P, Mor G. Human Chorionic Gonadotropin modulates CXCL10 Expression through Histone Methylation in human decidua. Sci Rep 2020; 10:5785. [PMID: 32238853 PMCID: PMC7113245 DOI: 10.1038/s41598-020-62593-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
The process of implantation, trophoblast invasion and placentation demand continuous adaptation and modifications between the trophoblast (embryonic) and the decidua (maternal). Within the decidua, the maternal immune system undergoes continued changes, as the pregnancy progress, in terms of the cell population, phenotype and production of immune factors, cytokines and chemokines. Human chorionic gonadotropin (hCG) is one of the earliest hormones produced by the blastocyst and has potent immune modulatory effects, especially in relation to T cells. We hypothesized that trophoblast-derived hCG modulates the immune population present at the maternal fetal interface by modifying the cytokine profile produced by the stromal/decidual cells. Using in vitro models from decidual samples we demonstrate that hCG inhibits CXCL10 expression by inducing H3K27me3 histone methylation, which binds to Region 4 of the CXCL10 promoter, thereby suppressing its expression. hCG-induced histone methylation is mediated through EZH2, a functional member of the PRC2 complex. Regulation of CXCL10 expression has a major impact on the capacity of endometrial stromal cells to recruit CD8 cells. We demonstrate the existence of a cross talk between the placenta (hCG) and the decidua (CXCL10) in the control of immune cell recruitment. Alterations in this immune regulatory function, such as during infection, will have detrimental effects on the success of the pregnancy.
Collapse
Affiliation(s)
- Michelle Silasi
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Yuan You
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, MI, USA
| | - Samantha Simpson
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Janina Kaislasuo
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
- Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Lubna Pal
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Seth Guller
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Rosanna Ramhorst
- Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina
| | - Esteban Grasso
- Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina
| | - Shervin Etemad
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Sandy Durosier
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Paulomi Aldo
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Gil Mor
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
39
|
The Role of NFκB in Healthy and Preeclamptic Placenta: Trophoblasts in the Spotlight. Int J Mol Sci 2020; 21:ijms21051775. [PMID: 32150832 PMCID: PMC7084575 DOI: 10.3390/ijms21051775] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023] Open
Abstract
The NFκB protein family regulates numerous pathways within the cell-including inflammation, hypoxia, angiogenesis and oxidative stress-all of which are implicated in placental development. The placenta is a critical organ that develops during pregnancy that primarily functions to supply and transport the nutrients required for fetal growth and development. Abnormal placental development can be observed in numerous disorders during pregnancy, including fetal growth restriction, miscarriage, and preeclampsia (PE). NFκB is highly expressed in the placentas of women with PE, however its contributions to the syndrome are not fully understood. In this review we discuss the molecular actions and related pathways of NFκB in the placenta and highlight areas of research that need attention.
Collapse
|