1
|
Zhang Q, Liao J, Liu Z, Song S, Tian L, Wang Y. The immune tolerance role of Bregs in inhibiting human inflammatory diseases, with a focus on diabetes mellitus. Front Immunol 2025; 16:1565158. [PMID: 40370441 PMCID: PMC12074967 DOI: 10.3389/fimmu.2025.1565158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Regulatory B cells (Bregs) are pivotal modulators of immune tolerance, suppressing inflammation through cytokine secretion and cellular interactions. Their role is particularly significant in inflammatory diseases such as type 1 and type 2 diabetes mellitus (T1DM and T2DM), where immune dysregulation contributes to disease progression. In T1DM, Bregs mitigate β-cell autoimmunity via IL-10 production and FOXP3-mediated pathways, but genetic mutations and dysfunctions in these mechanisms exacerbate autoimmunity. In T2DM, chronic inflammation and metabolic stress impair Breg numbers and function, further fueling insulin resistance. While Bregs play a central role in T1DM by directly preventing β-cell destruction, their role in T2DM is more supportive, modulating inflammation in metabolically stressed tissues. Emerging therapeutic strategies aim to enhance Breg function through IL-10 induction, ex vivo expansion, or targeting Breg-specific pathways using gene-editing and small molecules. Future research should explore Breg heterogeneity, novel markers, and personalized therapies to unlock their full potential. Understanding and leveraging the immune tolerance role of Bregs may offer transformative strategies to inhibit inflammatory diseases like diabetes mellitus.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zheng Liu
- Pathology Department, University of Texas, MD Anderson Cancer Center, Texas, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Limin Tian
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Liao J, Yang Y, Li J, Liu Z, Song S, Zeng Y, Wang Y. Regulatory B cells, the key regulator to induce immune tolerance in organ transplantation. Front Immunol 2025; 16:1561171. [PMID: 40264774 PMCID: PMC12011811 DOI: 10.3389/fimmu.2025.1561171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
In solid organ transplantation, especially renal transplantation, for the induction of immune tolerance, accumulating evidence has revealed that Regulatory B cells (Breg) play a crucial role in stimulating immune tolerance, alleviating immune responses, and improving graft survival. We describe the heterogeneous nature of Bregs, focusing on their defining surface markers and regulatory functions. Meanwhile, the major cytokine secretion function and the correlation between Breg and Treg or other immune checkpoints to balance the immune responses are addressed. Furthermore, we summarized the intrinsic and extrinsic pathways or costimulatory stimuli for the differentiation from naïve B cells. More importantly, we summarized the progression of the immune tolerance induction role of Breg in solid organ (kidney, liver, heart, lung, and islet) transplantation. This is an up-to-date review from the origin of Breg to the function of Breg in solid organ transplantation and how it induces immune tolerance in both murine models and human solid organ transplantation.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yixin Yang
- Department of Clinical Medicine, The First Clinical Medical College of Norman Bethune University of Medical Sciences, Jilin, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yu Zeng
- Department of Hyperbaric Oxygen, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
3
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Bradford HF, Mauri C. Diversity of regulatory B cells: Markers and functions. Eur J Immunol 2024; 54:e2350496. [PMID: 39086053 DOI: 10.1002/eji.202350496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Regulatory B cells (Bregs) are a functionally distinct B-cell subset involved in the maintenance of homeostasis and inhibition of inflammation. Studies, from the last two decades, have increased our understanding of cellular and molecular mechanisms involved in their generation, function, and to a certain extent phenotype. Current research endeavours to unravel the causes and consequences of Breg defects in disease, with increasing evidence highlighting the relevance of Bregs in promoting tumorigenic responses. Here we provide historical and emerging findings of the significance of Bregs in autoimmunity and transplantation, and how these insights have translated into the cancer field.
Collapse
Affiliation(s)
- Hannah F Bradford
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Claudia Mauri
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
5
|
Ding Q, Wu Y, Triglia ET, Gommerman JL, Subramanian A, Kuchroo VK, Rothstein DM. TIM-4 Identifies Effector B Cells Expressing a RORγt-Driven Proinflammatory Cytokine Module That Promotes Immune Responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.22.558524. [PMID: 37790513 PMCID: PMC10542535 DOI: 10.1101/2023.09.22.558524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
B cells can express pro-inflammatory cytokines that promote a wide variety of immune responses. Here we show that B cells expressing the phosphatidylserine receptor TIM-4, preferentially express IL-17A, as well as IL-22, IL-6, IL-1β, and GM-CSF - a collection of cytokines reminiscent of pathogenic Th17 cells. Expression of this proinflammatory module requires IL-23R signaling and selective expression of RORγt and IL-17A by TIM-4+ B cells. TIM-4+ B cell-derived-IL-17A not only enhances the severity of experimental autoimmune encephalomyelitis (EAE) and promotes allograft rejection, but also acts in an autocrine manner to prevent their conversion into IL-10-expressing B cells with regulatory function. Thus, IL-17A acts as an inflammatory mediator and also enforces the proinflammatory activity of TIM-4+ B cells. Thus, TIM-4 serves as a broad marker for RORγt+ effector B cells (Beff) and allows further study of the signals regulating Beff differentiation and effector molecule expression.
Collapse
Affiliation(s)
- Qing Ding
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufan Wu
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Elena Torlai Triglia
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Vijay K. Kuchroo
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
7
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Goldmann O, Nwofor OV, Chen Q, Medina E. Mechanisms underlying immunosuppression by regulatory cells. Front Immunol 2024; 15:1328193. [PMID: 38380317 PMCID: PMC10876998 DOI: 10.3389/fimmu.2024.1328193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Regulatory cells, such as regulatory T cells (Tregs), regulatory B cells (Bregs), and myeloid-derived suppressor cells (MDSCs), play a crucial role in preserving immune tolerance and controlling immune responses during infections to prevent excessive immune activation. However, pathogens have developed strategies to hijack these regulatory cells to decrease the overall effectiveness of the immune response and persist within the host. Consequently, therapeutic targeting of these immunosuppressive mechanisms during infection can reinvigorate the immune response and improve the infection outcome. The suppressive mechanisms of regulatory cells are not only numerous but also redundant, reflecting the complexity of the regulatory network in modulating the immune responses. The context of the immune response, such as the type of pathogen or tissue involved, further influences the regulatory mechanisms involved. Examples of these immunosuppressive mechanisms include the production of inhibitory cytokines such as interleukin 10 (IL-10) and transforming growth factor beta (TGF-β) that inhibit the production of pro-inflammatory cytokines and dampen the activation and proliferation of effector T cells. In addition, regulatory cells utilize inhibitory receptors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) to engage with their respective effector cells, thereby suppressing their function. An alternative approach involves the modulation of metabolic reprogramming in effector immune cells to limit their activation and proliferation. In this review, we provide an overview of the major mechanisms mediating the immunosuppressive effect of the different regulatory cell subsets in the context of infection.
Collapse
Affiliation(s)
| | | | | | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
Baran J, Kuryk Ł, Szczepińska T, Łaźniewski M, Garofalo M, Mazurkiewicz-Pisarek A, Mikiewicz D, Mazurkiewicz A, Trzaskowski M, Wieczorek M, Pancer K, Hallmann E, Brydak L, Plewczynski D, Ciach T, Mierzejewska J, Staniszewska M. In vitro immune evaluation of adenoviral vector-based platform for infectious diseases. BIOTECHNOLOGIA 2023; 104:403-419. [PMID: 38213479 PMCID: PMC10777723 DOI: 10.5114/bta.2023.132775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 01/13/2024] Open
Abstract
New prophylactic vaccine platforms are imperative to combat respiratory infections. The efficacy of T and B memory cell-mediated protection, generated through the adenoviral vector, was tested to assess the effectiveness of the new adenoviral-based platforms for infectious diseases. A combination of adenovirus AdV1 (adjuvant), armed with costimulatory ligands (ICOSL and CD40L), and rRBD (antigen: recombinant nonglycosylated spike protein rRBD) was used to promote the differentiation of T and B lymphocytes. Adenovirus AdV2 (adjuvant), without ligands, in combination with rRBD, served as a control. In vitro T-cell responses to the AdV1+rRBD combination revealed that CD8+ platform-specific T-cells increased (37.2 ± 0.7% vs. 23.1 ± 2.1%), and T-cells acted against SARS-CoV-2 via CD8+TEMRA (50.0 ± 1.3% vs. 36.0 ± 3.2%). Memory B cells were induced after treatment with either AdV1+rRBD (84.1 ± 0.8% vs. 82.3 ± 0.4%) or rRBD (94.6 ± 0.3% vs. 82.3 ± 0.4%). Class-switching from IgM and IgD to isotype IgG following induction with rRBD+Ab was observed. RNA-seq profiling identified gene expression patterns related to T helper cell differentiation that protect against pathogens. The analysis determined signaling pathways controlling the induction of protective immunity, including the MAPK cascade, adipocytokine, cAMP, TNF, and Toll-like receptor signaling pathway. The AdV1+rRBD formulation induced IL-6, IL-8, and TNF. RNA-seq of the VERO E6 cell line showed differences in the apoptosis gene expression stimulated with the platforms vs. mock. In conclusion, AdV1+rRBD effectively generates T and B memory cell-mediated protection, presenting promising results in producing CD8+ platform-specific T cells and isotype-switched IgG memory B cells. The platform induces protective immunity by controlling the Th1, Th2, and Th17 cell differentiation gene expression patterns. Further studies are required to confirm its effectiveness.
Collapse
Affiliation(s)
- Joanna Baran
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Łukasz Kuryk
- National Institute of Public Health, Warsaw, Poland
| | - Teresa Szczepińska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Michał Łaźniewski
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | | | | | - Diana Mikiewicz
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Alina Mazurkiewicz
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Maciej Trzaskowski
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | | | | | | | - Lidia Brydak
- National Institute of Public Health, Warsaw, Poland
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | | | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
10
|
Zonozi R, Walters LC, Shulkin A, Naranbhai V, Nithagon P, Sauvage G, Kaeske C, Cosgrove K, Nathan A, Tano-Menka R, Gayton AC, Getz MA, Senjobe F, Worrall D, Iafrate AJ, Fromson C, Montesi SB, Rao DA, Sparks JA, Wallace ZS, Farmer JR, Walker BD, Charles RC, Laliberte K, Niles JL, Gaiha GD. T cell responses to SARS-CoV-2 infection and vaccination are elevated in B cell deficiency and reduce risk of severe COVID-19. Sci Transl Med 2023; 15:eadh4529. [PMID: 38019932 DOI: 10.1126/scitranslmed.adh4529] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Individuals with primary and pharmacologic B cell deficiencies have high rates of severe disease and mortality from coronavirus disease 2019 (COVID-19), but the immune responses and clinical outcomes after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination have yet to be fully defined. Here, we evaluate the cellular immune responses after both SARS-CoV-2 infection and vaccination in patients receiving the anti-CD20 therapy rituximab (RTX) and those with low B cell counts due to common variable immune deficiency (CVID) disease. Assessment of effector and memory CD4+ and CD8+ T cell responses to SARS-CoV-2 revealed elevated reactivity and proliferative capacity after both infection and vaccination in B cell-deficient individuals, particularly within the CD8+ T cell compartment, in comparison with healthy controls. Evaluation of clinical outcomes demonstrates that vaccination of RTX-treated individuals was associated with about 4.8-fold reduced odds of moderate or severe COVID-19 in the absence of vaccine-induced antibodies. Analysis of T cell differentiation demonstrates that RTX administration increases the relative frequency of naïve CD8+ T cells, potentially by depletion of CD8+CD20dim T cells, which are primarily of an effector memory or terminal effector memory (TEMRA) phenotype. However, this also leads to a reduction in preexisting antiviral T cell immunity. Collectively, these data indicate that individuals with B cell deficiencies have enhanced T cell immunity after both SARS-CoV-2 infection and vaccination that potentially accounts for reduced hospitalization and severe disease from subsequent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Reza Zonozi
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lucy C Walters
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Aaron Shulkin
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vivek Naranbhai
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
- Monash University, Melbourne, VIC 3022, Australia
| | - Pravarut Nithagon
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gabriel Sauvage
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Clarety Kaeske
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Katherine Cosgrove
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anusha Nathan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Rhoda Tano-Menka
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alton C Gayton
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthew A Getz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Fernando Senjobe
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Daniel Worrall
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caroline Fromson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary S Wallace
- Division of Rheumatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jocelyn R Farmer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Allergy and Inflammation, Beth Israel Lahey Health, Boston, MA 02215, USA
| | - Bruce D Walker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Institute for Medical Engineering and Science and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Karen Laliberte
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John L Niles
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gaurav D Gaiha
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
11
|
Shahbaz S, Bozorgmehr N, Lu J, Osman M, Sligl W, Tyrrell DL, Elahi S. Analysis of SARS-CoV-2 isolates, namely the Wuhan strain, Delta variant, and Omicron variant, identifies differential immune profiles. Microbiol Spectr 2023; 11:e0125623. [PMID: 37676005 PMCID: PMC10581158 DOI: 10.1128/spectrum.01256-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
There is an urgent need to better understand the impact of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on immune response and disease dynamics to facilitate better intervention strategies. Here, we show that SARS-CoV-2 variants differentially affect host immune responses. The magnitude and quantity of cytokines and chemokines were comparable in those infected with the Wuhan strain and the Delta variant. However, individuals infected with the Omicron variant had significantly lower levels of these mediators. We also found an elevation of plasma galectins (Gal-3, Gal-8, and Gal-9) in infected individuals, in particular, in those with the original strain. Soluble galectins exert a proinflammatory role in COVID-19 pathogenesis. This was illustrated by their correlation with the plasma levels of sCD14, sCD163, enhanced TNF-α/IL-6 secretion, and increased SARS-CoV-2 infectivity in vitro. Moreover, we observed enhanced CD4+ and CD8+ T cell activation in Wuhan strain-infected individuals. Surprisingly, there was a more pronounced T cell activation in those infected with the Omicron in comparison to the Delta variant. In line with T cell activation status, we observed a more pronounced expansion of T cells expressing different co-inhibitory receptors in patients infected with the Wuhan strain, followed by the Omicron and Delta variants. Individuals infected with the Wuhan strain or the Omicron variant had a similar pattern of plasma soluble immune checkpoints. Our results imply that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant. Our results provide a novel insight into the differential impact of SARS-CoV-2 variants on host immunity. IMPORTANCE There is a need to better understand how different SARS-CoV-2 variants influence the immune system and disease dynamics to facilitate the development of better vaccines and therapies. We compared immune responses in 140 SARS-CoV-2-infected individuals with the Wuhan strain, the Delta variant, or the Omicron variant. All these patients were admitted to the intensive care unit and were SARS-CoV-2 vaccination naïve. We found that SARS-CoV-2 variants differentially affect the host immune response. This was done by measuring soluble biomarkers in their plasma and examining different immune cells. Overall, we found that the magnitude of cytokine storm in individuals infected with the Wuhan strain or the Delta variant was greater than in those infected with the Omicron variant. In light of enhanced cytokine release syndrome in individuals infected with the Wuhan strain or the Delta variant, we believe that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant.
Collapse
Affiliation(s)
- Shima Shahbaz
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Najmeh Bozorgmehr
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children Health Research Institute (WCHRI), University of Alberta, Edmonton, Alberta, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Alberta, Canada
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Basu S, Dorling A, Chong AS. A transitional B-cell cytokine biomarker for risk stratifying renal transplant patients with borderline rejection. Kidney Int 2023; 103:658-660. [PMID: 36948765 PMCID: PMC10755754 DOI: 10.1016/j.kint.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 03/22/2023]
Abstract
Borderline allograft rejection can promote acute rejection and graft loss in some, but not all, patients. In this issue, Cherukuri et al. use a novel test based on peripheral blood transitional T1 B cells producing interleukin-10 and tumor necrosis factor-α, which identifies patients at high risk for poor outcomes. The potential mechanisms by which transitional T1 B cells might modulate alloreactivity need exploration, but following appropriate validation, this biomarker could risk stratify patients in need of early intervention.
Collapse
Affiliation(s)
- Sumoyee Basu
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Xu T, Xie K, Wang C, Ivanovski S, Zhou Y. Immunomodulatory nanotherapeutic approaches for periodontal tissue regeneration. NANOSCALE 2023; 15:5992-6008. [PMID: 36896757 DOI: 10.1039/d2nr06149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodontitis is an infection-induced inflammatory disease characterized by progressive destruction of tooth supporting tissues, which, if left untreated, can result in tooth loss. The destruction of periodontal tissues is primarily caused by an imbalance between the host immune protection and immune destruction mechanisms. The ultimate goal of periodontal therapy is to eliminate inflammation and promote the repair and regeneration of both hard and soft tissues, so as to restore the physiological structure and function of periodontium. Advancement in nanotechnologies has enabled the development of nanomaterials with immunomodulatory properties for regenerative dentistry. This review discusses the immune mechanisms of the major effector cells in the innate and adaptive immune systems, the physicochemical and biological properties of nanomaterials, and the research advancements in immunomodulatory nanotherapeutic approaches for the management of periodontitis and the regeneration of periodontal tissues. The current challenges, and prospects for future applications of nanomaterials are then discussed so that researchers at the intersections of osteoimmunology, regenerative dentistry and materiobiology will continue to advance the development of nanomaterials for improved periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tian Xu
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Kunke Xie
- Clinical Laboratory, Bo'Ai Hospital of Zhongshan, 6 Chenggui Road, East District, Zhongshan 528403, Guangdong, China
| | - Cong Wang
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| |
Collapse
|
14
|
Ippolito A, Deshpande VS. The influence of entropic crowding in cell monolayers. Biophys J 2022; 121:4394-4404. [PMID: 36004781 PMCID: PMC9703008 DOI: 10.1016/j.bpj.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
Cell-cell interaction dictates cell morphology and organization, which play a crucial role in the micro-architecture of tissues that guides their biological and mechanical functioning. Here, we investigate the effect of cell density on the responses of cells seeded on flat substrates using a novel statistical thermodynamics framework. The framework recognizes the existence of nonthermal fluctuations in cellular response and thereby naturally captures entropic interactions between cells in monolayers. In line with observations, the model predicts that cell area and elongation decrease with increasing cell seeding density-both are a direct outcome of the fluctuating nature of the cellular response that gives rise to enhanced cell-cell interactions with increasing cell crowding. The modeling framework also predicts the increase in cell alignment with increasing cell density: this cellular ordering is also due to enhanced entropic interactions and is akin to nematic ordering in liquid crystals. Our simulations provide physical insights that suggest that entropic cell-cell interactions play a crucial role in governing the responses of cell monolayers.
Collapse
Affiliation(s)
- Alberto Ippolito
- Department of Engineering, Cambridge University, Cambridge CB2 1PZ, UK
| | | |
Collapse
|
15
|
Cherukuri A, Rothstein DM. Regulatory and transitional B cells: potential biomarkers and therapeutic targets in organ transplantation. Curr Opin Organ Transplant 2022; 27:385-391. [PMID: 35950881 PMCID: PMC9474638 DOI: 10.1097/mot.0000000000001010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Regulatory B cells (Bregs) play a prominent role in various disease settings. While progress has been hindered by the lack of a specific Breg marker, new findings highlight their role modulating the alloimmune response and promoting allograft survival. RECENT FINDINGS Herein, we focus on the recent advances in Breg biology and their role in transplantation. We review studies showing that T-cell immunoglobulin and mucin domain 1 (TIM-1) is an inclusive and functional Breg marker in mice that may have human relevance. We highlight the utility of the B cell interleukin-10/tumor necrosis factor-alpha (IL-10/TNFα) ratio in identifying underlying immunological reactivity and predicting clinical outcomes in kidney transplantation. This may identify patients requiring more immunosuppression and provide insight into potential therapeutic approaches that can modulate the Breg: B effector cell (Beff) balance. SUMMARY Emerging data support Bregs as potent modulators of immune responses in humans. Their ability to promote allograft survival must await development of approaches to expand Bregs in vitro/in vivo . The low IL-10/TNFα ratio reflecting decreased Breg/Beff balance, predicts acute rejection (AR) and poorer outcomes in renal transplantation. It remains to be determined whether this paradigm can be extended to other allografts and whether therapy aiming to correct the relative deficiency of Bregs will improve outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, PA, USA
| | - David M. Rothstein
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, PA, USA
| |
Collapse
|
16
|
Matsumura Y, Watanabe R, Fujimoto M. Suppressive mechanisms of regulatory B cells in mice and humans. Int Immunol 2022; 35:55-65. [PMID: 36153768 PMCID: PMC9918854 DOI: 10.1093/intimm/dxac048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
B cells include immune-suppressive fractions, called regulatory B cells (Bregs), which regulate inflammation primarily through an interleukin 10 (IL-10)-mediated inhibitory mechanism. Several B-cell fractions have been reported as IL-10-producing Bregs in murine disease models and human inflammatory responses including autoimmune diseases, infectious diseases, cancer and organ-transplant rejection. Although the suppressive functions of Bregs have been explored through the hallmark molecule IL-10, inhibitory cytokines and membrane-binding molecules other than IL-10 have also been demonstrated to contribute to Breg activities. Transcription factors and surface antigens that are characteristically expressed in Bregs are also being elucidated. Nevertheless, defining Bregs is still challenging because their active periods and differentiation stages vary among disease models. The identity of the diverse Breg fractions is also under debate. In the first place, since regulatory functions of Bregs are mostly evaluated by ex vivo stimulation, the actual in vivo phenotypes and functions may not be reflected by the ex vivo observations. In this article, we provide a historical overview of studies that established the characteristics of Bregs and review the various suppressive mechanisms that have been reported to be used by Bregs in murine and human disease conditions. We are only part-way through but the common phenotypes and functions of Bregs are still emerging.
Collapse
Affiliation(s)
- Yutaka Matsumura
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Rei Watanabe
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka, 565-0871, Japan,Department of Integrative Medicine for Allergic and Immunological Diseases, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, 565-0871, Japan
| | | |
Collapse
|
17
|
Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK, McNeel DG. Role of B cells as antigen presenting cells. Front Immunol 2022; 13:954936. [PMID: 36159874 PMCID: PMC9493130 DOI: 10.3389/fimmu.2022.954936] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 01/27/2023] Open
Abstract
B cells have been long studied for their role and function in the humoral immune system. Apart from generating antibodies and an antibody-mediated memory response against pathogens, B cells are also capable of generating cell-mediated immunity. It has been demonstrated by several groups that B cells can activate antigen-specific CD4 and CD8 T cells, and can have regulatory and cytotoxic effects. The function of B cells as professional antigen presenting cells (APCs) to activate T cells has been largely understudied. This, however, requires attention as several recent reports have demonstrated the importance of B cells within the tumor microenvironment, and B cells are increasingly being evaluated as cellular therapies. Antigen presentation through B cells can be through antigen-specific (B cell receptor (BCR) dependent) or antigen non-specific (BCR independent) mechanisms and can be modulated by a variety of intrinsic and external factors. This review will discuss the pathways and mechanisms by which B cells present antigens, and how B cells differ from other professional APCs.
Collapse
|
18
|
Kent SJ, Khoury DS, Reynaldi A, Juno JA, Wheatley AK, Stadler E, John Wherry E, Triccas J, Sasson SC, Cromer D, Davenport MP. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast? Nat Rev Immunol 2022; 22:387-397. [PMID: 35484322 PMCID: PMC9047577 DOI: 10.1038/s41577-022-00716-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
The rapid development of multiple vaccines providing strong protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a major achievement. There is now compelling evidence for the role of neutralizing antibodies in protective immunity. T cells may play a role in resolution of primary SARS-CoV-2 infection, and there is a widely expressed view that T cell-mediated immunity also plays an important role in vaccine-mediated protection. Here we discuss the role of vaccine-induced T cells in two distinct stages of infection: firstly, in protection from acquisition of symptomatic SARS-CoV-2 infection following exposure; secondly, if infection does occur, the potential for T cells to reduce the risk of developing severe COVID-19. We describe several lines of evidence that argue against a direct impact of vaccine-induced memory T cells in preventing symptomatic SARS-CoV-2 infection. However, the contribution of T cell immunity in reducing the severity of infection, particularly in infection with SARS-CoV-2 variants, remains to be determined. A detailed understanding of the role of T cells in COVID-19 is critical for next-generation vaccine design and development. Here we discuss the challenges in determining a causal relationship between vaccine-induced T cell immunity and protection from COVID-19 and propose an approach to gather the necessary evidence to clarify any role for vaccine-induced T cell memory in protection from severe COVID-19.
Collapse
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Melbourne Sexual Health Centre, Monash University, Melbourne, VIC, Australia.
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eva Stadler
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James Triccas
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sarah C Sasson
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Song Z, Yuan W, Zheng L, Wang X, Kuchroo VK, Mohib K, Rothstein DM. B Cell IL-4 Drives Th2 Responses In Vivo, Ameliorates Allograft Rejection, and Promotes Allergic Airway Disease. Front Immunol 2022; 13:762390. [PMID: 35359977 PMCID: PMC8963939 DOI: 10.3389/fimmu.2022.762390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
B cells can be polarized to express various cytokines. The roles of IFNγ and IL-10, expressed respectively by B effector 1 (Be1) and Bregs, have been established in pathogen clearance, tumor growth, autoimmunity and allograft rejection. However, the in vivo role of B cell IL-4, produced by Be2 cells, remains to be established. We developed B-IL-4/13 iKO mice carrying a tamoxifen-inducible B cell-specific deletion of IL-4 and IL-13. After alloimmunization, B-IL-4/13 iKO mice exhibited decreased IL-4+ Th2 cells and IL-10+ Bregs without impact on Th1, Tregs, or CD8 T cell responses. B-IL-4/13 iKO mice rejected islet allografts more rapidly, even when treated with tolerogenic anti-TIM-1 mAb. In ovalbumin-induced allergic airway disease (AAD), B-IL-4/13 iKO mice had reduced inflammatory cells in BAL, and preserved lung histology with markedly decreased infiltration by IL-4+ and IL-5+ CD4+ T cells. Hence, B cell IL-4 is a major driver of Th2 responses in vivo which promotes allograft survival, and conversely, worsens AAD.
Collapse
Affiliation(s)
- Zhixing Song
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,School of Medicine, Tsinghua University, Beijing, China
| | - Wenjia Yuan
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Kidney Transplantation and Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Rheumatology and Clinical Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xingan Wang
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: David M. Rothstein, ; orcid.org/0000-0002-9455-7971
| |
Collapse
|
20
|
Rüthrich MM, Giesen N, Mellinghoff SC, Rieger CT, von Lilienfeld-Toal M. Cellular Immune Response after Vaccination in Patients with Cancer-Review on Past and Present Experiences. Vaccines (Basel) 2022; 10:182. [PMID: 35214642 PMCID: PMC8875094 DOI: 10.3390/vaccines10020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Patients with cancer are at particular risk for infection but also have diminished vaccine responses, usually quantified by the level of specific antibodies. Nonetheless, vaccines are specifically recommended in this vulnerable patient group. Here, we discuss the cellular part of the vaccine response in patients with cancer. We summarize the experience with vaccines prior to and during the SARS-CoV-2 pandemic in different subgroups, and we discuss why, especially in patients with cancer, T cells may be the more reliable correlate of protection. Finally, we provide a brief outlook on options to improve the cellular response to vaccines.
Collapse
Affiliation(s)
- Maria Madeleine Rüthrich
- Department of Internal Medicine II, Hematology and Medical Oncology, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Nicola Giesen
- Department of Haematology and Oncology, Internal Medicine V, University Hospital Heidelberg, 69115 Heidelberg, Germany;
| | - Sibylle C. Mellinghoff
- Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, University of Cologne, 50923 Cologne, Germany;
| | - Christina T. Rieger
- Hemato-Oncology Germering & Interdisciplinary Tumorcenter, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Marie von Lilienfeld-Toal
- Department of Internal Medicine II, Hematology and Medical Oncology, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| |
Collapse
|
21
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
22
|
Fu Q, Lee KM, Huai G, Deng K, Agarwal D, Rickert CG, Feeney N, Matheson R, Yang H, LeGuern C, Deng S, Markmann JF. Properties of regulatory B cells regulating B cell targets. Am J Transplant 2021; 21:3847-3857. [PMID: 34327838 PMCID: PMC8639638 DOI: 10.1111/ajt.16772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 01/25/2023]
Abstract
Regulatory B cells (Bregs) have shown promise as anti-rejection therapy applied to organ transplantation. However, less is known about their effect on other B cell populations that are involved in chronic graft rejection. We recently uncovered that naïve B cells, stimulated by TLR ligand agonists, converted into B cells with regulatory properties (Bregs-TLR) that prevented allograft rejection. Here, we examine the granular phenotype and regulatory properties of Breg-TLR cells suppressing B cells. Cocultures of Bregs-TLR with LPS-activated B cells showed a dose-dependent suppression of targeted B cell proliferation. Adoptive transfers of Bregs-TLR induced a decline in antibody responses to antigenically disparate skin grafts. The role of Breg BCR specificity in regulation was assessed using B cell-deficient mice replenished with transgenic BCR (OB1) and TCR (OT-II) lymphocytes of matching antigenic specificity. Results indicated that proliferation of OB1 B cells, mediated through help from CD4+ OT-II cells, was suppressed by OB1 Bregs of similar specificity. Transcriptomic analyses indicated that Bregs-TLR suppression is associated with a block in targeted B cell differentiation controlled by PRDM1 (Blimp1). This work uncovered the regulatory properties of a new brand of Breg cells and provided mechanistic insights into potential applications of Breg therapy in transplantation.
Collapse
Affiliation(s)
- Qiang Fu
- Organ Transplantation Center, Sichuan Provincial People’s Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Kang Mi Lee
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Guoli Huai
- Organ Transplantation Center, Sichuan Provincial People’s Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Deng
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Divyansh Agarwal
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Charles G. Rickert
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Noel Feeney
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Rudy Matheson
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Hongji Yang
- Organ Transplantation Center, Sichuan Provincial People’s Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian LeGuern
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Shaoping Deng
- Organ Transplantation Center, Sichuan Provincial People’s Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Corresponding author: James F. Markmann , Shaoping Deng
| | - James F. Markmann
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA,Corresponding author: James F. Markmann , Shaoping Deng
| |
Collapse
|
23
|
Apostolidis SA, Kakara M, Painter MM, Goel RR, Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza DA, Kadri JC, Markowitz DM, E Markowitz C, Mexhitaj I, Jacobs D, Babb A, Betts MR, Prak ETL, Weiskopf D, Grifoni A, Lundgreen KA, Gouma S, Sette A, Bates P, Hensley SE, Greenplate AR, Wherry EJ, Li R, Bar-Or A. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat Med 2021; 27:1990-2001. [PMID: 34522051 PMCID: PMC8604727 DOI: 10.1038/s41591-021-01507-2] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.
Collapse
Grants
- U19AI082630 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 AR076951 NIAMS NIH HHS
- AI082630 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R21 AI142638 NIAID NIH HHS
- AI108545 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R01 AI152236 NIAID NIH HHS
- 75N9301900065 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- AI149680 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 CA009140 NCI NIH HHS
- R01 AI118694 NIAID NIH HHS
- U19 AI082630 NIAID NIH HHS
- AI152236 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- P30-AI0450080 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 AR076951-01 U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
- R01 AI105343 NIAID NIH HHS
- AI105343 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R01 AI155577 NIAID NIH HHS
- UM1 AI144288 NIAID NIH HHS
- U19 AI149680 NIAID NIH HHS
- AI155577 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- SI-2011-37160 National Multiple Sclerosis Society (National MS Society)
- UC4 DK112217 NIDDK NIH HHS
- P01 AI108545 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
- Penn | Perelman School of Medicine, University of Pennsylvania (Perelman School of Medicine at the University of Pennsylvania)
Collapse
Affiliation(s)
- Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mihir Kakara
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kerry Lenzi
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ayman Rezk
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristina R Patterson
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diego A Espinoza
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessy C Kadri
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel M Markowitz
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Clyde E Markowitz
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ina Mexhitaj
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dina Jacobs
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison Babb
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021; 12:706136. [PMID: 34394106 PMCID: PMC8362327 DOI: 10.3389/fimmu.2021.706136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
25
|
Cherukuri A, Salama AD, Mehta R, Mohib K, Zheng L, Magee C, Harber M, Stauss H, Baker RJ, Tevar A, Landsittel D, Lakkis FG, Hariharan S, Rothstein DM. Transitional B cell cytokines predict renal allograft outcomes. Sci Transl Med 2021; 13:13/582/eabe4929. [PMID: 33627487 DOI: 10.1126/scitranslmed.abe4929] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Early immunological biomarkers that predict rejection and chronic allograft loss are needed to inform preemptive therapy and improve long-term outcomes. Here, we prospectively examined the ratio of interleukin-10 (IL-10) to tumor necrosis factor-α (TNFα) produced by transitional-1 B cells (T1B) 3 months after transplantation as a predictive biomarker for clinical and subclinical renal allograft rejection and subsequent clinical course. In both Training (n = 162) and Internal Validation (n = 82) Sets, the T1B IL-10/TNFα ratio 3 months after transplantation predicted both clinical and subclinical rejection anytime in the first year. The biomarker also predicted subsequent late rejection with a lead time averaging 8 months. Among biomarker high-risk patients, 60% had early rejection, of which 48% recurred later in the first posttransplant year. Among high-risk patients without early rejection, 74% developed rejection later in the first year. In contrast, only 5% of low-risk patients had early and 5% late rejection. The biomarker also predicted rejection in an External Validation Set (n = 95) and in key patient subgroups, confirming generalizability. Biomarker high-risk patients exhibited progressively worse renal function and decreased 5-year graft survival compared to low-risk patients. Treatment of B cells with anti-TNFα in vitro augmented the IL-10/TNFα ratio, restored regulatory activity, and inhibited plasmablast differentiation. To conclude, the T1B IL-10/TNFα ratio was validated as a strong predictive biomarker of renal allograft outcomes and provides a rationale for preemptive therapeutic intervention with TNF blockade.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alan D Salama
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Rajil Mehta
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ciara Magee
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Mark Harber
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Hans Stauss
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London NW3 2QG, UK
| | - Richard J Baker
- Renal Unit, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Amit Tevar
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas Landsittel
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA. .,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Chong AS, Sage PT, Alegre ML. Regulation of Alloantibody Responses. Front Cell Dev Biol 2021; 9:706171. [PMID: 34307385 PMCID: PMC8297544 DOI: 10.3389/fcell.2021.706171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The control of alloimmunity is essential to the success of organ transplantation. Upon alloantigen encounter, naïve alloreactive T cells not only differentiate into effector cells that can reject the graft, but also into T follicular helper (Tfh) cells that promote the differentiation of alloreactive B cells that produce donor-specific antibodies (DSA). B cells can exacerbate the rejection process through antibody effector functions and/or B cell antigen-presenting functions. These responses can be limited by immune suppressive mechanisms mediated by T regulatory (Treg) cells, T follicular regulatory (Tfr) cells, B regulatory (Breg) cells and a newly described tolerance-induced B (TIB) cell population that has the ability to suppress de novo B cells in an antigen-specific manner. Transplantation tolerance following costimulation blockade has revealed mechanisms of tolerance that control alloreactive T cells through intrinsic and extrinsic mechanisms, but also inhibit alloreactive B cells. Thus, the control of both arms of adaptive immunity might result in more robust tolerance, one that may withstand more severe inflammatory challenges. Here, we review new findings on the control of B cells and alloantibody production in the context of transplant rejection and tolerance.
Collapse
Affiliation(s)
- Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
27
|
Kang S, Kang J, Shen H, Wu N. Advances in regulatory B cells in autoimmune thyroid diseases. Int Immunopharmacol 2021; 96:107770. [PMID: 34020391 DOI: 10.1016/j.intimp.2021.107770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Regulatory B cells (Bregs) are a subset of B cells that can downregulate the immune and inflammatory responses. The development of B cells in humans and mice is differs. The Positioning and targeted regulation of Bregs has a positive effect on autoimmune diseases. Autoimmune thyroid disease (AITD) is a common autoimmune disease. This review introduces the history and origins of Bregs. It summarizes the different phenotypes and functionalities of Breg cells related to AITD and analyzes the reasons for the differences in Breg expression frequencies in Graves disease (GD) and Hashimoto's Thyroiditis (HT). A number of functional defects of regulatory B cells may be the newly discovered cause of AITD. This paper sheds new light on the role and prospects of Bregs in the progression and treatment of AITD.
Collapse
Affiliation(s)
- Shaoyang Kang
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Junning Kang
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
28
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
29
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
31
|
Cherukuri A, Mohib K, Rothstein DM. Regulatory B cells: TIM-1, transplant tolerance, and rejection. Immunol Rev 2021; 299:31-44. [PMID: 33484008 PMCID: PMC7968891 DOI: 10.1111/imr.12933] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Regulatory B cells (Bregs) ameliorate autoimmune disease and prevent allograft rejection. Conversely, they hinder effective clearance of pathogens and malignancies. Breg activity is mainly attributed to IL-10 expression, but also utilizes additional regulatory mechanisms such as TGF-β, FasL, IL-35, and TIGIT. Although Bregs are present in various subsets defined by phenotypic markers (including canonical B cell subsets), our understanding of Bregs has been limited by the lack of a broadly inclusive and specific phenotypic or transcriptional marker. TIM-1, a broad marker for Bregs first identified in transplant models, plays a major role in Breg maintenance and induction. Here, we expand on the role of TIM-1+ Bregs in immune tolerance and propose TIM-1 as a unifying marker for Bregs that utilize various inhibitory mechanisms in addition to IL-10. Further, this review provides an in-depth assessment of our understanding of Bregs in transplantation as elucidated in murine models and clinical studies. These studies highlight the major contribution of Bregs in preventing allograft rejection, and their ability to serve as highly predictive biomarkers for clinical transplant outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Mohib K, Rothstein DM, Ding Q. Characterization and Activity of TIM-1 and IL-10-Reporter Expressing Regulatory B Cells. Methods Mol Biol 2021; 2270:179-202. [PMID: 33479899 DOI: 10.1007/978-1-0716-1237-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In addition to their role in humoral immunity, B cells can exhibit regulatory activity. Such B cells have been termed regulatory B cells (Bregs). Bregs have been shown to inhibit inflammatory immune responses in a variety of autoimmune, alloimmune, and infectious settings. Breg activity is frequently IL-10-dependent, although a number of other mechanisms have been identified. However, our understanding of Bregs has been hampered by their rarity, lack of a specific phenotypic marker, and poor insight into their induction and maintenance. A variety of B-cell subsets enriched for IL-10+ Bregs have been identified in multiple murine disease models that can adoptively transfer Breg activity. However, most of these B-cell subsets actually contain only a minority of all IL-10+ B cells. In contrast, TIM-1 identifies over 70% of IL-10-producing B cells, irrespective of other markers. Thus, TIM-1 can be considered a broad marker for IL-10-expressing Bregs. Moreover, TIM-1 signaling plays a direct role in both the maintenance and induction of Bregs under physiological conditions, in response to both TIM-1 ligation and to apoptotic cells. TIM-1 expression has also been reported on IL-10+ human B cells. Together, these findings suggest that TIM-1 may represent a novel therapeutic target for modulating the immune response and provide insight into the signals involved in the generation and induction of Bregs. Here, we provide the methods to analyze and purify the murine TIM-1+ B-cell subset for further in vitro and in vivo experiments. We also provide methods for in vitro analysis and in vivo tracking of Bregs using IL-10-reporter mice.
Collapse
Affiliation(s)
- Kanishka Mohib
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David M Rothstein
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ding
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Chong AS. Mechanisms of organ transplant injury mediated by B cells and antibodies: Implications for antibody-mediated rejection. Am J Transplant 2020; 20 Suppl 4:23-32. [PMID: 32538534 PMCID: PMC7482418 DOI: 10.1111/ajt.15844] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Recent adjustments to the histological diagnosis and the introduction of molecular classification are providing renewed support for the paradigm that antibody-mediated rejection (ABMR) is an important clinical problem for which there is an urgent need for better therapies. Acute ABMR is observed when the graft is exposed to rapid increases in high-titer donor-specific antibodies (DSA) that are most often generated as anamnestic responses in sensitized recipients or de novo responses in nonsensitized patients who are nonadherent. Chronic ABMR is associated with slower increases in DSA, which may be high or low titer and transient or persistent. These DSA elicit cycles of injury and repair that manifest as multilamination of the peritubular capillary basement membrane or arteriopathy manifesting as intimal fibrosis. Mitigating the problem of AMBR requires the anamnestic and de novo DSA responses to be prevented and established DSA responses to be reversed. To this end, a better understanding of the immunobiology of DSA production is necessary and also the development of assays capable of detecting early humoral immune responses.Recent advances in understanding the immunobiology of B cells and areas requiring further investigation that might lead to new therapies or better diagnosis are discussed in this review.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
34
|
Gu Y, Han X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int J Mol Sci 2020; 21:ijms21093329. [PMID: 32397173 PMCID: PMC7247565 DOI: 10.3390/ijms21093329] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022] Open
Abstract
Periodontitis is known to be initiated by periodontal microbiota derived from biofilm formation. The microbial dysbiotic changes in the biofilm trigger the host immune and inflammatory responses that can be both beneficial for the protection of the host from infection, and detrimental to the host, causing tissue destruction. During this process, recognition of Pathogen-Associated Molecular Patterns (PAMPs) by the host Pattern Recognition Receptors (PRRs) such as Toll-like receptors (TLRs) play an essential role in the host–microbe interaction and the subsequent innate as well as adaptive responses. If persistent, the adverse interaction triggered by the host immune response to the microorganisms associated with periodontal biofilms is a direct cause of periodontal inflammation and bone loss. A large number of T and B lymphocytes are infiltrated in the diseased gingival tissues, which can secrete inflammatory mediators and activate the osteolytic pathways, promoting periodontal inflammation and bone resorption. On the other hand, there is evidence showing that immune regulatory T and B cells are present in the diseased tissue and can be induced for the enhancement of their anti-inflammatory effects. Changes and distribution of the T/B lymphocytes phenotype seem to be a key determinant of the periodontal disease outcome, as the functional activities of these cells not only shape up the overall immune response pattern, but may directly regulate the osteoimmunological balance. Therefore, interventional strategies targeting TLR signaling and immune regulatory T/B cells may be a promising approach to rebalance the immune response and alleviate bone loss in periodontal disease. In this review, we will examine the etiological role of TLR signaling and immune cell osteoclastogenic activity in the pathogenesis of periodontitis. More importantly, the protective effects of immune regulatory lymphocytes, particularly the activation and functional role of IL-10 expressing regulatory B cells, will be discussed.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
35
|
Chong AS. B cells as antigen-presenting cells in transplantation rejection and tolerance. Cell Immunol 2020; 349:104061. [PMID: 32059816 DOI: 10.1016/j.cellimm.2020.104061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022]
Abstract
Transplantation of fully allogeneic organs into immunocompetent recipients invariably elicits T cell and B cell responses that lead to the production of donor-specific antibodies (DSA). When immunosuppression is inadequate donor-specific T cell and B cell responses escape, leading to T cell-mediated rejection (TCMR), antibody mediated (ABMR) rejection, or mixed rejection (MR) exhibiting features of both TCMR and ABMR. Current literature suggests that ABMR is a major cause of late graft loss, and that new therapies to curtail the donor-specific humoral response are necessary. The majority of research into B cell responses elicited by allogeneic allografts in both preclinical models and clinical studies, has focused on the function of B cells as antibody-secreting cells and the pathogenic effects of DSA as mediators of ABMR. However, it has long been recognized that the DSA response to allografts is T cell-dependent, and that B cells engage in cognate interactions with T cells that provide "help" and promote B cell differentiation into antibody-secreting cells (ASCs). This review focusses the function of B cells as antigen-presenting cells (APCs) to T cells in lymphoid organs, how they may be critical APCs to T cell in the allograft, and the functional consequences of these interactions.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States.
| |
Collapse
|