1
|
Correia-Silva RD, Corrêa MP, de Castro ME, Almeida JS, D'Ávila SCGP, Oliani SM, Greco KV, Gil CD. Regulatory role of annexin A1 in NLRP3 inflammasome activation in atopic dermatitis: insights from keratinocytes in human and murine studies. J Mol Med (Berl) 2025; 103:435-451. [PMID: 40100418 DOI: 10.1007/s00109-025-02529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Despite the well-documented regulatory role of annexin A1 (ANXA1) in numerous stages of the inflammatory response, its involvement in regulating the NLRP3 inflammasome in the context of allergic responses has not been extensively investigated to date. This study evaluated the expression patterns of the ANXA1 and NLRP3 proteins in human skin samples obtained from patients with atopic dermatitis (AD) and in mice with ovalbumin (OVA)-induced experimental AD. Furthermore, the in vitro effect of the ANXA1 mimetic peptide Ac2-26 on IL-4-stimulated human keratinocytes was evaluated. IL-4-stimulated keratinocytes were treated with Ac2-26 (a mimetic peptide of ANXA1) in two different concentrations: 5 and 25 ng/mL. Additionally, some cells were treated with the pan-formyl peptide receptor antagonist Boc2 at a concentration of 10 µM, administered 15 min before Ac2-26. The NLRP3 protein demonstrated intense immunoreactivity in both murine and human AD skin samples, with NLRP3 and ANXA1 exhibiting particularly high coexpression in keratinocytes. A significant increase in ANXA1 and NLRP3 transcripts was observed in AD skins (GSE16161 study). ANXA1 transcript levels were elevated in the AD epidermis relative to the non-lesional epidermis, while NLRP3 transcript levels were reduced in the AD epidermis (GSE120721 study). The Ac2-26 treatment reduced the proliferation rate of IL-4-stimulated keratinocytes, an effect abolished by Boc2 and IL-1β and ROS production. In conclusion, our findings indicate that ANXA1 plays a role in regulating NLRP3 activation in keratinocytes, contributing to the pathogenesis of AD. KEY MESSAGES: ANXA1 and NLRP3 levels are upregulated and exhibit coexpression in murine and human AD skins. ANXA1-FPR axis regulates the proliferation of human keratinocytes under IL-4 stimulation. ANXA1-derived peptide Ac2-26 regulates oxidative stress and NLRP3 activation in human keratinocytes.
Collapse
Affiliation(s)
- Rebeca D Correia-Silva
- Departamento de Morfologia E Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres - 3º andar, São Paulo, SP, 04023-900, Brazil
| | - Mab P Corrêa
- Departamento de Morfologia E Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres - 3º andar, São Paulo, SP, 04023-900, Brazil
| | - Maria Eduarda de Castro
- Departamento de Morfologia E Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres - 3º andar, São Paulo, SP, 04023-900, Brazil
| | - Joaquim S Almeida
- Departamento de Patologia, EPM-UNIFESP, São Paulo, SP, 04023-900, Brazil
| | - Solange C G P D'Ávila
- Departamento de Patologia E Medicina Forense, Faculdade de Medicina de São José Do Rio Preto (FAMERP), São José Do Rio Preto, SP, 15090-000, Brazil
| | - Sonia M Oliani
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Letras E Ciências Exatas, São José Do Rio Preto, SP, 15054-000, Brazil
- Centro de Pesquisa Avançada Em Medicina (CEPAM), União das Faculdades Dos Grandes Lagos (Unilago), São José Do Rio Preto, São Paulo, 15030-070, Brazil
| | - Karin V Greco
- Division of Surgery and Interventional Science, University College London (UCL), London, WC1E 6BT, UK
| | - Cristiane D Gil
- Departamento de Morfologia E Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres - 3º andar, São Paulo, SP, 04023-900, Brazil.
| |
Collapse
|
2
|
Huang ST, Chen ZM, Peng Z, Wang Y, Yang F, Tang Y, Li Z, Wan L. NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice. Front Immunol 2025; 15:1450887. [PMID: 39867900 PMCID: PMC11758165 DOI: 10.3389/fimmu.2024.1450887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Background The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear. Methods Widetype (WT) and Nlrp3 deletion (Nlrp3-/- )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch. Quantitative real-time PCR, western blotting, immunohistochemistry staining, immunofluorescence staining and enzyme-linked immunosorbent assay (ELISA) was used to examine the expression of NLRP3 inflammasome, type 2 immunity and receptors in dorsal root ganglion (DRG) neurons related with chronic itch. Flow cytometry was performed to quantify the frequency of type 2 immune cells. Results This study revealed that the NLRP3 inflammasome was activated in the skin of DNFB-induced chronic itch mice. Surprisingly, the absence of Nlrp3 exacerbated itch behavior. In Nlrp3-/- mice, IL-18 expression was downregulated, whereas markers of type 2 immunity, such as IL-4 and thymic stromal lymphopoietin (TSLP), were significantly upregulated in the skin. Furthermore, TRPA1 and its colocalization with the IL-4 receptor were increased in the DRG. Inhibition of TRPA1 or administration of recombinant IL-18 significantly reduced DNFB-induced itch behavior in Nlrp3-/- mice. Recombinant IL-18 also decreased the expression of TRPA1, IL-4, and TSLP. Discussion These findings suggested that the absence of Nlrp3 aggravated DNFB-induced chronic itch by exacerbating type 2 immunity in the skin and enhancing the IL-4/TSLP-TRPA1 axis, potentially driven by reduced IL-18 levels.
Collapse
Affiliation(s)
- Si-Ting Huang
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zuo-Ming Chen
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhe Peng
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu Wang
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Tang
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Wan
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Stem Cell Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
El Gendy A, Abo Ali FH, Baioumy SA, Taha SI, El-Bassiouny M, Abdel Latif OM. NOD-like receptor family pyrin domain containing 3 (rs10754558) gene polymorphism in chronic spontaneous urticaria: A pilot case-control study. Immunobiology 2025; 230:152868. [PMID: 39818117 DOI: 10.1016/j.imbio.2025.152868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Chronic spontaneous urticaria (CSU) is a persistent skin condition with no known cause or trigger. The unpredictability of CSU attacks lowers patients' quality of life. NOD-like receptor pyrin domain containing 3 (NLRP3) gene dysregulation can result in numerous immunological and inflammatory diseases. OBJECTIVE This case-control study aimed to determine the association between the NLRP3 inflammasome (rs10754558) single nucleotide polymorphism (SNP) and the occurrence, severity and etiology of CSU. METHODS Each study group included 62 participants; all were subjected to CSU severity evaluation by the urticaria activity score (UAS), autologous serum skin testing (ASST) and NLRP3 (rs10754558) genotyping. RESULTS The NLRP3 (rs10754558) CG genotype was the most predominant in both study groups, followed by the CC genotype (41.9 %) in the CSU group and the GG genotype (25.8 %) in the control group. Most of the CSU group (66.1 %) had the C allele, compared to most controls (53.2 %) with the G allele. The frequency of NLRP3 (rs10754558) genotypes and alleles did not differ significantly according to the severity of CSU by UAS (P > 0.05). The prevalence of the CC genotype was significantly higher among the ASST-positive CSU patients. The C allele elevated the likelihood of positive ASST in CSU patients by 21 times, suggesting the autoimmune theory of CSU. None of the ASST-positive patients had the GG genotype. CONCLUSION The NLRP3 inflammasome (rs10754558) C allele may be associated with CSU risk but not severity by UAS. It may also be associated with ASST positivity which suggests a connection between the C-allele and the autoimmune notion of CSU.
Collapse
Affiliation(s)
- Aya El Gendy
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Fawzia Hassan Abo Ali
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shereen A Baioumy
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mahy El-Bassiouny
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Osama M Abdel Latif
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Xu S, Wang D, Tan L, Lu J. The role of NLRP3 inflammasome in type 2 inflammation related diseases. Autoimmunity 2024; 57:2310269. [PMID: 38332696 DOI: 10.1080/08916934.2024.2310269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Type 2 inflammation related diseases, such as atopic dermatitis, asthma, and allergic rhinitis, are diverse and affect multiple systems in the human body. It is common for individuals to have multiple co-existing type 2 inflammation related diseases, which can impose a significant financial and living burden on patients. However, the exact pathogenesis of these diseases is still unclear. The NLRP3 inflammasome is a protein complex composed of the NLRP3 protein, ASC, and Caspase-1, and is activated through various mechanisms, including the NF-κB pathway, ion channels, and lysosomal damage. The NLRP3 inflammasome plays a role in the immune response to pathogens and cellular damage. Recent studies have indicated a strong correlation between the abnormal activation of NLRP3 inflammasome and the onset of type 2 inflammation. Additionally, it has been demonstrated that suppressing NLRP3 expression effectively diminishes the inflammatory response, highlighting its promising therapeutic applications. Therefore, this article reviews the role of NLRP3 inflammasome in the development and therapy of multiple type 2 inflammation related diseases.
Collapse
Affiliation(s)
- Shenming Xu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Dan Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Lina Tan
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
5
|
Oh JM, Yoon H, Joo JY, Im WT, Chun S. Therapeutic potential of ginseng leaf extract in inhibiting mast cell-mediated allergic inflammation and atopic dermatitis-like skin inflammation in DNCB-treated mice. Front Pharmacol 2024; 15:1403285. [PMID: 38841363 PMCID: PMC11150533 DOI: 10.3389/fphar.2024.1403285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Ginseng leaves are known to contain high concentrations of bioactive compounds, such as ginsenosides, and have potential as a treatment for various conditions, including fungal infections, cancer, obesity, oxidative stress, and age-related diseases. This study assessed the impact of ginseng leaf extract (GLE) on mast cell-mediated allergic inflammation and atopic dermatitis (AD) in DNCB-treated mice. GLE reduced skin thickness and lymph node nodules and suppressed the expression and secretion of histamine and pro-inflammatory cytokines. It also significantly lowered the production of inflammatory response mediators including ROS, leukotriene C4 (LTC4), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). GLE inhibited the phosphorylation of MAPKs (ERK, P38, JNK) and the activation of NF-κB, which are both linked to inflammatory cytokine expression. We demonstrated that GLE's inhibitory effect on mast cell-mediated allergic inflammation is due to the blockade of the NF-κB and inflammasome pathways. Our findings suggest that GLE can be an effective therapeutic agent for mast-cell mediated and allergic inflammatory conditions.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - HyunHo Yoon
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Wan-Taek Im
- Department of Biological Sciences, Hankyong National University, Anseong, Gyeonggi-do, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
6
|
Wei M, Yang H, Shao Z, Wan H, Wang Y, Chen W. Effect of Chloroquine on Type 2 Inflammatory Response in MC903-Induced Atopic Dermatitis Mice. Clin Cosmet Investig Dermatol 2024; 17:1093-1105. [PMID: 38765196 PMCID: PMC11102162 DOI: 10.2147/ccid.s440308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/31/2024] [Indexed: 05/21/2024]
Abstract
Introduction Atopic dermatitis (AD) is a chronic, non-infectious inflammatory dermatosis. Chloroquine (CQ) has long been proven to possess anti-inflammatory properties. Objective This paper aims to investigate the impact of CQ on type 2 inflammatory response in MC903-induced AD mice. Methods An AD mouse model was established via MC903 induction. After CQ treatment, AD mice were intraperitoneally injected with polyinosinic: polycyclic acid [poly (I:C)] or Nigericin. Dermatitis severity was scored, and the thickness of the left ear was measured. The pathological changes in mouse skin tissues were observed by H&E staining. The number of mast cells was counted via TB staining. The content of peripheral blood T-helper 2 (Th2) cells and levels of immunoglobulin E (IgE), thymic stromal-derived lymphopoietin (TSLP), interleukin (IL)-4, IL-13, interferon (IFN)-γ, IL-1β, and IL-18 were assessed by flow cytometry and ELISA. The levels of toll-like receptor 3 (TLR3), NLRP3, ASC, and cleaved caspase-1 proteins in skin tissues were determined by Western blot. Results CQ treatment abated dermatitis severity and left ear thickness in AD mice, alleviated skin damage, reduced mast cell number, diminished IgE, TSLP, IL-4, and IL-13 levels, and peripheral blood Th2 cell content, with no significant changes in IFN-γ level. CQ alleviated type 2 inflammatory response in AD mice by inhibiting the activation of TLR3. CQ suppressed NLRP3 inflammasome activation. Activating TLR3/NLRP3 annulled CQ-mediated alleviation on type 2 inflammatory response in AD mice. Conclusion CQ alleviated type 2 inflammatory response in AD mice by inhibiting TLR3 activation and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mingjing Wei
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Huixue Yang
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Zhengchao Shao
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Haoyue Wan
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Yiheng Wang
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Wenqi Chen
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| |
Collapse
|
7
|
Ivarsson J, Ferrara F, Vallese A, Guiotto A, Colella S, Pecorelli A, Valacchi G. Comparison of Pollutant Effects on Cutaneous Inflammasomes Activation. Int J Mol Sci 2023; 24:16674. [PMID: 38068996 PMCID: PMC10706824 DOI: 10.3390/ijms242316674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of the cutaneous inflammatory status in response to air pollutants and ultraviolet (UV) light exposure. In this study, human skin explants were exposed to the best-recognized air pollutants, such as microplastics (MP), cigarette smoke (CS), diesel engine exhaust (DEE), ozone (O3), and UV, for 1 or 4 days, to explore how each pollutant can differently modulate markers of cutaneous oxinflammation. Exposure to environmental pollutants caused an altered oxidative stress response, accompanied by increased DNA damage and signs of premature skin aging. The effect of specific pollutants being able to exert different inflammasomes pathways (NLRP1, NLRP3, NLRP6, and NLRC4) was also investigated in terms of scaffold formation and cell pyroptosis. Among all environmental pollutants, O3, MP, and UV represented the main pollutants affecting cutaneous redox homeostasis; of note, the NLRP1 and NLRP6 inflammasomes were the main ones modulated by these outdoor stressors, suggesting their role as possible molecular targets in preventing skin disorders and the inflammaging events associated with environmental pollutant exposure.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA;
| | - Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Vallese
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Guiotto
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, 53100 Siena, Italy;
| | - Alessandra Pecorelli
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea
| |
Collapse
|
8
|
Lu Y, Sun Y, Peng Y, Zhao X, Wang D, Zhang T, Qian F, Wang J. Inhibition of gasdermin D (GSDMD) as a promising therapeutic approach for atopic dermatitis. Int Immunopharmacol 2023; 124:110958. [PMID: 37741129 DOI: 10.1016/j.intimp.2023.110958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by pruritus, erythema, and skin barrier dysfunction. Gasdermin D (GSDMD) is the key executioner of an inflammatory cell death mechanism known as pyroptosis. However, the role of GSDMD in the pathogenesis of AD remains unclear. Through the analysis of publicly available Gene Expression Omnibus (GEO) datasets, we observed an upregulation of Gsdmd mRNA in the skin tissue of AD patients. Moreover, we delved into the impact of GSDMD deletion and inhibition on AD-like skin lesions using a mouse model induced by the topical application of oxazolone (Oxa). We found that mice lacking GSDMD exhibited relieved AD signs and symptoms in terms of reduced skin thickness, scarring and scratching behavior compared to wild-type mice after induction of AD-like skin lesions. This was associated with decreased infiltration of inflammatory cells, reduced epidermal thickness, and decreased serum levels of IgE and IL-4. Western blot analysis further revealed decreased GSDMD cleavage in the skin of GSDMD knockout mice, and reduced expression of IL-1β and IL-18. Inhibition of GSDMD using the pharmacological agent disulfiram or the herbal compound matrine significantly attenuated the symptoms of AD-like skin lesions in wild-type mice, GSDMD cleavage and pro-inflammatory cytokines were reduced as well. Our results suggest that GSDMD-mediated pyroptosis plays a critical role in the development of AD-like skin lesions, and targeting GSDMD may be a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yiteng Lu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China; Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Sun
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Peng
- Department of Dermatology, Jiading District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danjie Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tongtong Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Qian
- Department of Pharmacy, Jiading District Hospital of Traditional Chinese Medicine, Shanghai, China.
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Shahi A, Afzali S, Amirzargar A, Mohaghegh P, Salehi S, Mansoori Y. Potential roles of inflammasomes in the pathophysiology of Psoriasis: A comprehensive review. Mol Immunol 2023; 161:44-60. [PMID: 37481828 DOI: 10.1016/j.molimm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Psoriasis is an inflammatory skin disease whose pathophysiology is attributed to both innate and adaptive immune cells and molecules. Despite the crucial roles of the immune system in psoriasis, it cannot be categorized as an autoimmune disease because of the lack of main signs of autoimmunity, such as specific antibodies, well-defined antigens, and autoimmune genetic risk factors. The presence of some cellular and molecular properties, such as the presence of neutrophils in skin lesions and the activation of the innate immune system, attributes psoriasis to a group of diseases called autoinflammatory disorders. Autoinflammatory diseases refer to a group of inherited disorders whose main manifestations are recurrent fever, a high level of acute-phase reactant, and a tendency for inflammation of the skin, joints, and other organs like the nervous system. In most autoinflammatory disorders, it has been seen that complexes of the high-molecular-weight protein named inflammasomes have significant roles. The inflammasome complex usually is formed and activated in the stimulated immune cell cytoplasm, and its activation consequently leads to inflammatory events such as producing of active caspase-1, mature interleukin-1β (IL-1β), and IL-18 and can cause an inflammatory programmed cell death called pyroptosis. Since the identification of inflammasomes, it has been shown that there are close links between them and hereditary and acquired autoinflammatory diseases like psoriasis. In this review, we aim to focus on well-defined inflammasome and their role in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
10
|
Vaher H, Kingo K, Kolberg P, Pook M, Raam L, Laanesoo A, Remm A, Tenson T, Alasoo K, Mrowietz U, Weidinger S, Kingo K, Rebane A. Skin Colonization with S. aureus Can Lead to Increased NLRP1 Inflammasome Activation in Patients with Atopic Dermatitis. J Invest Dermatol 2023; 143:1268-1278.e8. [PMID: 36736455 DOI: 10.1016/j.jid.2023.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
The role of NLRP1 inflammasome activation and subsequent production of IL-1 family cytokines in the development of atopic dermatitis (AD) is not clearly understood. Staphylococcus aureus is known to be associated with increased mRNA levels of IL1 family cytokines in the skin and more severe AD. In this study, the altered expression of IL-1 family cytokines and inflammasome-related genes was confirmed, and a positive relationship between mRNA levels of inflammasome sensor NLRP1 and IL1B or IL18 was determined. Enhanced expression of the NLRP1 and PYCARD proteins and increased caspase-1 activity were detected in the skin of patients with AD. The genetic association of IL18R1 and IL18RAP with AD was confirmed, and the involvement of various immune cell types was predicted using published GWAS and expression quantitative trait loci datasets. In keratinocytes, the inoculation with S. aureus led to the increased secretion of IL-1β and IL-18, whereas small interfering RNA silencing of NLRP1 inhibited the production of these cytokines. Our results suggest that skin colonization with S. aureus may cause the activation of the NLRP1 inflammasome in keratinocytes, which leads to the secretion of IL-1β and IL-18 and thereby may contribute to the pathogenesis of AD, particularly in the presence of genetic variations in the IL-18 pathway.
Collapse
Affiliation(s)
- Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristiina Kingo
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Peep Kolberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia; Department of Dermatology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Anet Laanesoo
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anu Remm
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Ulrich Mrowietz
- Department of Dermatology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia; Department of Dermatology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
11
|
Ghaderpour A, Jeong JY, Kim YH, Zou Y, Park KS, Hong EJ, Koh YJ, Seong SY. Taurodeoxycholate, a GPCR19 agonist, ameliorates atopic dermatitis in Balb/c mice. Eur J Immunol 2023; 53:e2250048. [PMID: 36815313 DOI: 10.1002/eji.202250048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Keratinocytes are pivotal cells in the pathogenesis of atopic dermatitis (AD) as much as Th2 cells. In this sense, regulation of pro-inflammatory features of keratinocytes might be useful for AD patients. P2X7R-mediated activation of NLRP3 inflammasome (N3I) in keratinocytes and myeloid cells plays crucial roles in AD. Nonetheless, inhibition of P2X7R has not been feasible because of polymorphisms and ubiquitous expression of P2X7R. Here, we report that GPCR19 colocalizes with P2X7R, and a GPCR19 agonist (taurodeoxycholate [TDCA]) inhibits the activation of P2X7R. Noncistronically, TDCA inhibits NF-kB activation via the adenylate cyclase-PKA pathway and BzATP-mediated Ca++ mobilization. Cistronically, TDCA suppresses the expression of P2X7R and N3I components in keratinocytes. NLRP3 oligomerization and the production of mature IL-1β and IL-18 was suppressed by TDCA treatment in keratinocytes. Topical TDCA treatment ameliorates proinflammatory features of AD in mice induced by DNCB, MC903, or oxazolone. Taken together, a GPCR19 agonist such as TDCA might inhibit P2X7R-mediated N3I activation of keratinocytes, which is crucial for the pathogenesis of AD.
Collapse
Affiliation(s)
- Aziz Ghaderpour
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
| | | | - Youn-Hee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yunyun Zou
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
| | - Kyung-Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
| | | | | | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Kim SY, Sapkota A, Bae YJ, Choi SH, Bae HJ, Kim HJ, Cho YE, Choi YY, An JY, Cho SY, Hong SH, Choi JW, Park SJ. The Anti-Atopic Dermatitis Effects of Mentha arvensis Essential Oil Are Involved in the Inhibition of the NLRP3 Inflammasome in DNCB-Challenged Atopic Dermatitis BALB/c Mice. Int J Mol Sci 2023; 24:ijms24097720. [PMID: 37175425 PMCID: PMC10177797 DOI: 10.3390/ijms24097720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The NLRP3 inflammasome is upregulated by various agents, such as nuclear factor-kappa B (NF-κB), lipopolysaccharide (LPS), and adenosine triphosphate (ATP). The NLRP3 inflammasome facilitations the maturation of interleukin (IL)-1β, a proinflammatory cytokine that is critically involved in the pathogenesis of atopic dermatitis (AD). Although the NLRP3 inflammasome clearly exacerbates AD symptoms such as erythema and pruritus, drugs for AD patients targeting the NLRP3 inflammasome are still lacking. Based on the previous findings that Mentha arvensis essential oil (MAEO) possesses strong anti-inflammatory and anti-AD properties through its inhibition of the ERK/NF-κB signaling pathway, we postulated that MAEO might be capable of modulating the NLRP3 inflammasome in AD. The aim of this research was to investigate whether MAEO affects the inhibition of NLRP3 inflammasome activation in murine bone marrow-derived macrophages (BMDMs) stimulated with LPS + ATP in vitro and in a murine model displaying AD-like symptoms induced by 2,4-dinitrochlorobenzene (DNCB) in vivo. We found that MAEO inhibited the expression of NLRP3 and caspase-1, leading to the suppression of NLRP3 inflammasome activation and IL-1β production in BMDMs stimulated with LPS + ATP. In addition, MAEO exhibited efficacy in ameliorating AD symptoms in a murine model induced by DNCB, as indicated by the reduction in dermatitis score, ear thickness, transepidermal water loss (TEWL), epidermal thickness, and immunoglobulin E (IgE) levels. Furthermore, MAEO attenuated the recruitment of NLRP3-expressing macrophages and NLRP3 inflammasome activation in murine dorsal skin lesions induced by DNCB. Overall, we provide evidence for the anti-AD effects of MAEO via inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Young Joo Bae
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun Hee Hong
- School of Applied Science in Natural Resources & Environment, Hankyong National University, Anseong 17579, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
13
|
Nousbeck J, McAleer MA, Irvine AD. Peripheral Blood Gene Expression Profile of Infants with Atopic Dermatitis. JID INNOVATIONS 2023; 3:100165. [PMID: 36699197 PMCID: PMC9868882 DOI: 10.1016/j.xjidi.2022.100165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
To enhance the understanding of molecular mechanisms and mine previously unidentified biomarkers of pediatric atopic dermatitis, PBMC gene expression profiles were generated by RNA sequencing in infants with atopic dermatitis and age-matched controls. A total of 178 significantly differentially expressed genes (DEGs) (115 upregulations and 63 downregulations) were seen, compared with those in healthy controls. The DEGs identified included IL1β, TNF, TREM1, IL18R1, and IL18RAP. DEGs were validated by real-time RT- qPCR in a larger number of samples from PBMCs of infants with atopic dermatitis aged <12 months. Using the DAVID (Database for Annotation, Visualization and Integrated Discovery) database, functional and pathway enrichment analyses of DEGs were performed. Gene ontology enrichment analysis showed that DEGs were associated with immune responses, inflammatory responses, regulation of immune responses, and platelet activation. Pathway analysis indicated that DEGs were enriched in cytokine‒cytokine receptor interaction, immunoregulatory interactions between lymphoid and nonlymphoid cells, hematopoietic cell lineage, phosphoinositide 3-kinase‒protein kinase B signaling pathway, NK cell‒mediated cytotoxicity, and platelet activation. Furthermore, the protein‒protein interaction network was predicted using the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database and visualized with Cytoscape software. Finally, on the basis of the protein‒protein interaction network, 18 hub genes were selected, and two significant modules were obtained. In conclusion, this study sheds light on the molecular mechanisms of pediatric atopic dermatitis and may provide diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Janna Nousbeck
- National Children's Research Centre, Dublin, Ireland.,Clinical Medicine, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Maeve A McAleer
- National Children's Research Centre, Dublin, Ireland.,Department of Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Alan D Irvine
- National Children's Research Centre, Dublin, Ireland.,Clinical Medicine, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland.,Department of Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
14
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Trimarchi M, Lauritano D, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Calvisi V, Conti P. Mast Cell Cytokines in Acute and Chronic Gingival Tissue Inflammation: Role of IL-33 and IL-37. Int J Mol Sci 2022; 23:13242. [PMID: 36362030 PMCID: PMC9654575 DOI: 10.3390/ijms232113242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory-immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue.
Collapse
Affiliation(s)
- Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy;
| | - Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy;
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece;
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece;
| | - Vittorio Calvisi
- Orthopaedics Department, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 65100 Pescara, Italy
| |
Collapse
|
16
|
Ferrara F, Cordone V, Pecorelli A, Benedusi M, Pambianchi E, Guiotto A, Vallese A, Cervellati F, Valacchi G. Ubiquitination as a key regulatory mechanism for O 3-induced cutaneous redox inflammasome activation. Redox Biol 2022; 56:102440. [PMID: 36027676 PMCID: PMC9425076 DOI: 10.1016/j.redox.2022.102440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/26/2022] Open
Abstract
NLRP1 is one of the major inflammasomes modulating the cutaneous inflammatory responses and therefore linked to a variety of cutaneous conditions. Although NLRP1 has been the first inflammasome to be discovered, only in the past years a significant progress was achieved in understanding the molecular mechanism and the stimuli behind its activation. In the past decades a crescent number of studies have highlighted the role of air pollutants as Particulate Matter (PM), Cigarette Smoke (CS) and Ozone (O3) as trigger stimuli for inflammasomes activation, especially via Reactive Oxygen Species (ROS) mediators. However, whether NLRP1 can be modulated by air pollutants via oxidative stress and the mechanism behind its activation is still poorly understood. Here we report for the first time that O3, one of the most toxic pollutants, activates the NLRP1 inflammasome in human keratinocytes via oxidative stress mediators as hydrogen peroxide (H2O2) and 4-hydroxy-nonenal (4HNE). Our data suggest that NLRP1 represents a target protein for 4HNE adduction that possibly leads to its proteasomal degradation and activation via the possible involvement of E3 ubiquitin ligase UBR2. Of note, Catalase (Cat) treatment prevented inflammasome assemble and inflammatory cytokines release as well as NLRP1 ubiquitination in human keratinocytes upon O3 exposure. The present work is a mechanistic study that follows our previous work where we have showed the ability of O3 to induce cutaneous inflammasome activation in humans exposed to this pollutant. In conclusion, our results suggest that O3 triggers the cutaneous NLRP1 inflammasome activation by ubiquitination and redox mechanism.
Collapse
Affiliation(s)
- Francesca Ferrara
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Dept. of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA
| | - Mascia Benedusi
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA.
| | - Anna Guiotto
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA
| | - Andrea Vallese
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA; Dept. of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
18
|
Timms K, Guo H, Arkwright P, Pennock J. Keratinocyte EGF signaling dominates in Atopic Dermatitis lesions: a comparative RNAseq analysis. Exp Dermatol 2022; 31:1373-1384. [PMID: 35538596 PMCID: PMC9545602 DOI: 10.1111/exd.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022]
Abstract
Atopic dermatitis (AD) remains a highly heterogenous disorder with a multifactorial aetiology. Whilst keratinocytes are known to play a fundamental role in AD, their contribution to the overall immune landscape in moderate‐to‐severe AD is still poorly understood. In order to design new therapeutics, further investigation is needed into common disease pathways at the molecular level. We used publicly available whole‐tissue RNAseq data (4 studies) and single‐cell RNAseq keratinocyte data to identify genes/pathways that are involved in keratinocyte responses in AD and after dupilumab treatment. Transcripts present in both keratinocytes (single‐cell) and whole‐tissue, referred to as the keratinocyte‐enriched lesional skin (KELS) genes, were analysed using functional/pathway analysis. Following statistical testing, 2049 genes (16.8%) were differentially expressed in KELS. Enrichment analyses predicted increases in not only type‐1/type‐2 immune signalling and chemoattraction, but also in EGF‐dominated growth factor signalling. We identified complex crosstalk between keratinocytes and immune cells involving a dominant EGF family signature which converges on keratinocytes with potential immunomodulatory and chemotaxis‐promoting consequences. Although keratinocytes express the IL4R, we observed no change in EGF signalling in KELS after three‐month treatment with dupilumab, indicating that this pathway is not modulated by dupilumab immunotherapy. EGF family signalling is significantly dysregulated in AD lesions but is not associated with keratinocyte proliferation. EGF signalling pathways in AD require further study.
Collapse
Affiliation(s)
- Kate Timms
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Hui Guo
- Center for Biostatistics, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Peter Arkwright
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| | - Joanne Pennock
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Alsabbagh M, Ismaeel A. The role of cytokines in atopic dermatitis: a breakthrough in immunopathogenesis and treatment. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2022. [DOI: 10.15570/actaapa.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Mentha arvensis Essential Oil Exerts Anti-Inflammatory in LPS-Stimulated Inflammatory Responses via Inhibition of ERK/NF-κB Signaling Pathway and Anti-Atopic Dermatitis-like Effects in 2,4-Dinitrochlorobezene-Induced BALB/c Mice. Antioxidants (Basel) 2021; 10:antiox10121941. [PMID: 34943044 PMCID: PMC8750489 DOI: 10.3390/antiox10121941] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
The mechanism of atopic dermatitis (AD) is modulated by the release of cytokines and chemokines through the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) signaling pathway. Topical steroids are used to treat AD, but some people need safer anti-inflammatory drugs to avoid side effects. Mentha arvensis has been used as a herbal plant with medicinal properties, but its anti-inflammatory effects have not been elucidated in an AD model. In this study, we investigated the anti-inflammatory effects of M. arvensis essential oil (MAEO) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and HaCaT cells (human epidermal keratinocyte). Additionally, we examined the ameliorating effects of the MAEO in a dinitrochlorobenzene (DNCB)-induced murine model of AD. We found, in both RAW 264.7 cells and HaCaT cells, MAEO inhibited LPS-stimulated inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 and proinflammatory cytokines, including IL-1β and IL-6, due to the suppression of COX-2 and iNOS expression. In LPS-stimulated macrophages, we also observed that MAEO inhibited the phosphorylation of ERK and P65. Furthermore, MAEO treatment attenuated AD symptoms, including the dermatitis score, ear thickness, epidermal thickness and infiltration of mast cells, in a DNCB-induced animal model of AD. Overall, our findings suggest that MAEO exerts anti-inflammatory and anti-atopic dermatitis effects via inhibition of the ERK/NF-κB signaling pathway.
Collapse
|
21
|
Abstract
SUMMARY Exposure to air pollutants has been now associated with detrimental effects on a variety of organs, including the heart, lungs, GI tract, and brain. However, recently it has become clear that pollutant exposure can also promote the development/exacerbation of a variety of skin conditions, including premature aging, psoriasis, acne, and atopic dermatitis. Although the molecular mechanisms by which pollutant exposure results in these cutaneous pathological manifestations, it has been noticed that an inflammatory status is a common denominator of all those skin conditions. For this reason, recently, the activation of a cytosolic multiprotein complex involved in inflammatory responses (the inflammasome) that could promote the maturation of proinflammatory cytokines interleukin-1β and interleukin-18 has been hypothesized to play a key role in pollution-induced skin damage. In this review, we summarize and propose the cutaneous inflammasome as a novel target of pollutant exposure and the eventual usage of inflammasome inhibitor as new technologies to counteract pollution-induced skin damage. Possibly, the ability to inhibit the inflammasome activation could prevent cutaneous inflammaging and ameliorate the health and appearance of the skin.
Collapse
|
22
|
Nod-Like Receptors in Host Defence and Disease at the Epidermal Barrier. Int J Mol Sci 2021; 22:ijms22094677. [PMID: 33925158 PMCID: PMC8124564 DOI: 10.3390/ijms22094677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The nucleotide-binding domain and leucine-rich-repeat-containing family (NLRs) (sometimes called the NOD-like receptors, though the family contains few bona fide receptors) are a superfamily of multidomain-containing proteins that detect cellular stress and microbial infection. They constitute a critical arm of the innate immune response, though their functions are not restricted to pathogen recognition and members engage in controlling inflammasome activation, antigen-presentation, transcriptional regulation, cell death and also embryogenesis. NLRs are found from basal metazoans to plants, to zebrafish, mice and humans though functions of individual members can vary from species to species. NLRs also display highly wide-ranging tissue expression. Here, we discuss the importance of NLRs to the immune response at the epidermal barrier and summarise the known role of individual family members in the pathogenesis of skin disease.
Collapse
|
23
|
Wang Y, Chen S, Yang PL, Chen JJ, Kong WJ, Wang YJ. AIM2 inflammasome activation may mediate high mobility group box 1 release in murine allergic rhinitis. Braz J Otorhinolaryngol 2021; 88:925-931. [PMID: 33707120 PMCID: PMC9615526 DOI: 10.1016/j.bjorl.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction High mobility group box 1 protein participates in the pathogenesis of allergic rhinitis. Activation of the inflammasome can mediate the release of high mobility group box 1. The role of the absent in melanoma 2 inflammasome in allergic rhinitis remains unclear. Objective This study aimed to investigate the function of absent in melanoma 2 inflammasome in murine allergic rhinitis and the interaction between high mobility group box 1 and the absent in melanoma 2 inflammasome. Methods A murine allergic rhinitis model was established using twenty Balb/c mice. Expression of the components of the absent in melanoma 2 inflammasome: absent in melanoma 2, apoptosis-associated speck-like protein containing a CARD (Asc), caspase-1 p20, and additional nod-like receptor family pyrin domain containing 3 (Nlrp3) were detected by western blotting during allergic rhinitis. Alterations of absent in melanoma 2, caspase-1, and high mobility group box 1 after ovalbumin challenge were demonstrated by immunohistochemistry. TdT-mediated dUTP Nick end labeling, TUNEL assay, and cleavage of caspase-3 and PARP-1 were used for the observation of pyroptosis. Results Eosinophilia and goblet cell infiltration were observed in the nasal mucosa of mice in the allergic rhinitis group. Absent in melanoma 2, Asc, and caspase-1 p20 increased after ovalbumin exposure while Nlrp3 did not. High mobility group box 1 was released in the nasal mucosa of allergic rhinitis mice. TUNEL-positive cells increased in the epithelium and laminae propria, whereas cleavage of caspase-3 and PARP-1 was not observed. Conclusions The absent in melanoma 2 inflammasome was activated and pyroptosis may occur in the nasal mucosa after ovalbumin treatment. These may contribute to the translocation of high mobility group box 1 and the development of allergic rhinitis.
Collapse
Affiliation(s)
- Yan Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Shan Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Ping-Li Yang
- Shihezi University School of Medicine, The First Affiliated Hospital, Department of Otorhinolaryngology, Shihezi, China
| | - Jian-Jun Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Wei-Jia Kong
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| | - Yan-Jun Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| |
Collapse
|
24
|
Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharm Res 2021; 44:16-35. [PMID: 33534121 PMCID: PMC7884371 DOI: 10.1007/s12272-021-01307-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) derived from invading pathogens and damaged tissues, respectively. Upon activation, the inflammasome forms a complex containing a receptor protein, an adaptor, and an effector to induce the autocleavage and activation of procaspase-1 ultimately culminating in the maturation and secretion of IL-1β and IL-18 and pyroptosis. Inflammasome activation plays an important role in host immune responses to pathogen infections and tissue repair in response to cellular damage. The NLRP3 inflammasome is a well-characterized pattern recognition receptor and is well known for its critical role in the regulation of immunity and the development and progression of various inflammatory diseases. In this review, we summarize recent efforts to develop therapeutic applications targeting the NLRP3 inflammasome to cure and prevent chronic inflammatory diseases. This review extensively discusses NLRP3 inflammasome-related diseases and current development of small molecule inhibitors providing beneficial information on the design of therapeutic strategies for NLRP3 inflammasome-related diseases. Additionally, small molecule inhibitors are classified depending on direct or indirect targeting mechanism to describe the current status of the development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Jin Kyung Seok
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
25
|
Tsang MSM, Hou T, Chan BCL, Wong CK. Immunological Roles of NLR in Allergic Diseases and Its Underlying Mechanisms. Int J Mol Sci 2021; 22:1507. [PMID: 33546184 PMCID: PMC7913164 DOI: 10.3390/ijms22041507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Our understanding on the immunological roles of pathogen recognition in innate immunity has vastly increased over the past 20 years. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) are cytosolic pattern recognition receptors (PRR) that are responsible for sensing microbial motifs and endogenous damage signals in mammalian cytosol for immune surveillance and host defense. The accumulating discoveries on these NLR sensors in allergic diseases suggest that the pathogenesis of allergic diseases may not be confined to the adaptive immune response. Therapy targeting NLR in murine models also shields light on its potential in the treatment of allergies in man. In this review, we herein summarize the recent understanding of the role of NLR sensors and their molecular mechanisms involved in allergic inflammation, including atopic dermatitis and allergic asthma.
Collapse
Affiliation(s)
- Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
| | - Ben Chung-Lap Chan
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Dong X, He Y, Ye F, Zhao Y, Cheng J, Xiao J, Yu W, Zhao J, Sai Y, Dan G, Chen M, Zou Z. Vitamin D3 ameliorates nitrogen mustard-induced cutaneous inflammation by inactivating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Clin Transl Med 2021; 11:e312. [PMID: 33634989 PMCID: PMC7882108 DOI: 10.1002/ctm2.312] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nitrogen mustard (NM) causes severe skin injury with an obvious inflammatory response, which is lack of effective and targeted therapies. Vitamin D3 (VD3) has excellent anti-inflammatory properties and is considered as a potential candidate for the treatment of NM-induced dermal toxicity; however, the underlying mechanisms are currently unclear. Cyclooxygenase-2 (COX2; a widely used marker of skin inflammation) plays a key role in NM-induced cutaneous inflammation. Herein, we initially confirmed that NM markedly promoted COX2 expression in vitro and in vivo. NM also increased NOD-like receptor family pyrin domain containing 3 (NLRP3) expression, caspase-1 activity, and interleukin-1β (IL-1β) release. Notably, treatment with a caspase-1 inhibitor (zYVAD-fmk), NLRP3 inhibitor (MCC950), and NLRP3 or caspase-1 siRNA attenuated NM-induced NLRP3 inflammasome activation, with subsequent suppression of COX2 expression and IL-1β release in keratinocytes. Meanwhile, NM increased mitochondrial reactive oxygen species (mtROS) and decreased manganese superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) activities. Mito-TEMPO (a mtROS scavenger) ameliorated NM-caused NLRP3 inflammasome activation in keratinocytes. Moreover, VD3 improved SIRT3 and SOD2 activities, decreased mtROS contents, inactivated the NLRP3 inflammasome, and attenuated cutaneous inflammation induced by NM in vitro and in vivo. The beneficial activity of VD3 against NM-triggered cutaneous inflammation was enhanced by the inhibitors of IL-1, mtROS, NLRP3, caspase-1, and NLRP3 or caspase-1 siRNAs, which was abolished in SIRT3 inhibitor or SIRT3 siRNA-treated keratinocytes and skins from SIRT3-/- mice. In conclusion, VD3 ameliorated NM-induced cutaneous inflammation by inactivating the NLRP3 inflammasome, which was partially mediated through the SIRT3-SOD2-mtROS signaling pathway.
Collapse
Affiliation(s)
- Xunhu Dong
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Ying He
- Department of UltrasoundXinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Feng Ye
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jin Cheng
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingsong Xiao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jiqing Zhao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Pathology and Southwest Cancer Centre, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
27
|
Serrya MS, El-Sheakh AR, Makled MN. Evaluation of the therapeutic effects of mycophenolate mofetil targeting Nrf-2 and NLRP3 inflammasome in acetic acid induced ulcerative colitis in rats. Life Sci 2021; 271:119154. [PMID: 33539910 DOI: 10.1016/j.lfs.2021.119154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease that increases the risk of colorectal cancer. UC is highly associated with the disturbance of the immune system leading to oxidative stress and chronic inflammation of intestine. Therefore, the current study was conducted to investigate the potential anti-oxidant and anti-inflammatory effects of MMF against acetic acid-induced UC that might be associated with the regulation of Nrf-2 and NLRP3 inflammasome signaling. UC was induced in Sprague-Dawley rats by intracolonic instillation of acetic acid. Forty-eight hours post UC induction, MMF (50 mg/kg/day, orally) was given for 8 consecutive days. Then, colon tissues and blood samples were collected. Results showed that MMF significantly attenuated the acetic acid-induced functional, biochemical, and inflammatory injuries in colon. MMF significantly decreased oxidative stress as indicated by the decreased malondialdehyde concentration and the increased total antioxidant capacity, glutathione, catalase, and superoxide dismutase concentrations in colon tissues. MMF also significantly increased Nrf-2 and decreased NLRP3 inflammasome expressions. Moreover, MMF decreased expression of interferon-gamma and increased expression of interferon-alpha. MMF also significantly decreased expression of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. These results suggest that MMF has antioxidant and anti-inflammatory effects against acetic acid-induced UC through the upregulation of Nrf-2, and INF-α expression in addition to the suppression of NLRP3 inflammasome and subsequent release of IL1β, IL-18 and INF-γ.
Collapse
Affiliation(s)
- Marwa S Serrya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
28
|
Missiakas D, Winstel V. Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Front Immunol 2021; 11:621733. [PMID: 33552085 PMCID: PMC7859115 DOI: 10.3389/fimmu.2020.621733] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, University of Chicago, Lemont, IL, United States
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Park HR, Oh JH, Lee YJ, Park SH, Lee YW, Lee S, Kang H, Kim JE. Inflammasome-mediated Inflammation by Malassezia in human keratinocytes: A comparative analysis with different strains. Mycoses 2020; 64:292-299. [PMID: 33206994 DOI: 10.1111/myc.13214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2023]
Abstract
Malassezia species are associated with several common dermatologic conditions including pityriasis versicolor, seborrhoeic dermatitis, folliculitis, and atopic dermatitis and dandruff. However, its causal role remains to be established. We intended to explore the role of inflammasome activation in human keratinocytes in response to three different Malassezia species. We compared the different activation patterns of inflammasomes and the expression of pro-inflammatory cytokines and antimicrobial peptides by three different Malassezia species-M. restricta, M. globosa and M. sympodialis-in human keratinocytes. We found that different Malassezia species, especially M. restricta and M. globosa could induce nucleotide-binding oligomerisation domain, leucine-rich repeat and pyrin-domain-containing protein (NLRP)3-apoptosis-associated speck-like protein containing CARD (ASC) inflammasome activation and subsequent interleukin (IL)-1β secretion in human keratinocytes. Malassezia species variably induced thymic stromal lymphopoietin, β-defensin 2, and LL-37. IL-8 mRNA and IL-22 protein significantly increased in the M. sympodialis-treated group, and Chemokine C-C motif ligand (CCL)17 and CCL22 mRNA were increased in response to M. globosa- and M. restricta- treated keratinocytes, respectively. Our data show that various species of Malassezia promote variable inflammatory responses in keratinocytes by activating NLRP3 inflammasomes, pro-inflammatory cytokines and chemokines, and antimicrobial peptides.
Collapse
Affiliation(s)
- Hye Ree Park
- Department of Dermatology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jee Hye Oh
- Department of Dermatology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yu Jin Lee
- Department of Dermatology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Song Hee Park
- Department of Dermatology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yang Won Lee
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea.,Research Institute of Medical Science, Konkuk University, Seoul, Korea
| | - Seongju Lee
- Department of Anatomy and Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, South Korea
| | - Hoon Kang
- Department of Dermatology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Kim
- Department of Dermatology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
30
|
Bhatt T, Bhosale A, Bajantri B, Mathapathi MS, Rizvi A, Scita G, Majumdar A, Jamora C. Sustained Secretion of the Antimicrobial Peptide S100A7 Is Dependent on the Downregulation of Caspase-8. Cell Rep 2020; 29:2546-2555.e4. [PMID: 31775025 DOI: 10.1016/j.celrep.2019.10.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 08/02/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are the body's natural innate immune defense against a spectrum of pathogens and can also modulate cell proliferation, chemotaxis, angiogenesis, wound healing, and immune cell activity. Harnessing these diverse functions for prophylactic use is contingent upon understanding the regulatory mechanisms governing their unconventional secretion from cells. Analysis of the secretion of S100A7 (Psoriasin), an abundant AMP stored in differentiated keratinocytes of the skin, has revealed an unexpected biphasic secretory response to bacterial exposure. The core components regulating S100A7 secretion are NFκB/p38MAPK, caspase-1, and interleukin (IL)-1α. The initial activation of this core machinery is mediated by Toll-like receptor signaling, whereas the chronic response is mediated by Caspase-8 downregulation. Interestingly, there is a concomitant downregulation of Caspase-8 in inflammatory skin diseases wherein S100A7 is constitutively released. These results highlight the potential of targeting these components to control the release of AMPs from the skin in both homeostatic and disease conditions.
Collapse
Affiliation(s)
- Tanay Bhatt
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India; National Centre for Biological Sciences (TIFR), Bangalore, Karnataka 560065, India
| | - Aishwarya Bhosale
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Bhavya Bajantri
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | | | - Abrar Rizvi
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-oncology, School of Medicine, University of Milan, 20122 Milan, Italy
| | - Giorgio Scita
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-oncology, School of Medicine, University of Milan, 20122 Milan, Italy
| | | | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| |
Collapse
|
31
|
Tang L, Zhou F. Inflammasomes in Common Immune-Related Skin Diseases. Front Immunol 2020; 11:882. [PMID: 32528469 PMCID: PMC7247819 DOI: 10.3389/fimmu.2020.00882] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
The inflammasome is an important protein complex that cleaves the proinflammatory cytokines pro-IL-1β and pro-IL-18 into their active forms. Owing to its critical role in eliciting innate immune responses, IL-1β has been suggested to contribute to various skin diseases, including psoriasis, vitiligo, systemic lupus erythematosus (SLE), and atopic dermatitis (AD). Recently, several types of activators and inhibitors of different inflammasomes, as well as inflammasome-related genes and genetic susceptibility loci, have been identified in these immune-related common skin diseases. In particular, inflammasome activators and inhibitors presented highly cell-type-specific activity, suggesting that the inflammasome might perform different functions in different cell types. Moreover, most of these findings were based on experimental disease models, and the clinical features of the models partly resemble the typical symptoms of the diseases. In this review, from the perspective of activators and inhibitors, we collected evidence from the widely-studied inflammasomes, NLRP3, AIM2, and NLRP1, in psoriasis, vitiligo, SLE, and AD. Importantly, some small-molecule inhibitors hold therapeutic promise for the treatment of these diseases.
Collapse
Affiliation(s)
- Lili Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
32
|
Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int J Mol Sci 2020; 21:ijms21082867. [PMID: 32326002 PMCID: PMC7215310 DOI: 10.3390/ijms21082867] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis (AD) is a common and relapsing skin disease that is characterized by skin barrier dysfunction, inflammation, and chronic pruritus. While AD was previously thought to occur primarily in children, increasing evidence suggests that AD is more common in adults than previously assumed. Accumulating evidence from experimental, genetic, and clinical studies indicates that AD expression is a precondition for the later development of other atopic diseases, such as asthma, food allergies, and allergic rhinitis. Although the exact mechanisms of the disease pathogenesis remain unclear, it is evident that both cutaneous barrier dysfunction and immune dysregulation are critical etiologies of AD pathology. This review explores recent findings on AD and the possible underlying mechanisms involved in its pathogenesis, which is characterized by dysregulation of immunological and skin barrier integrity and function, supporting the idea that AD is a systemic disease. These findings provide further insights for therapeutic developments aiming to repair the skin barrier and decrease inflammation.
Collapse
Affiliation(s)
- Gabsik Yang
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonbuk 55338, Korea;
| | - Jin Kyung Seok
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Han Chang Kang
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Yong-Yeon Cho
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Hye Suk Lee
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Joo Young Lee
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
- Correspondence: ; Tel.: +82-2-2164-4095
| |
Collapse
|
33
|
Wei Y, Zhang J, Wu X, Sun W, Wei F, Liu W, Lu T, Ji W, Li H, Wen W. Activated pyrin domain containing 3 (NLRP3) inflammasome in neutrophilic chronic rhinosinusitis with nasal polyps (CRSwNP). J Allergy Clin Immunol 2020; 145:1002-1005.e16. [PMID: 31981626 DOI: 10.1016/j.jaci.2020.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Wei
- Department of Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Department Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Jia Zhang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Xingmei Wu
- Department of Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Department Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Wei Sun
- Department of Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Department Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Fanqin Wei
- Department of Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Department Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Wendong Liu
- Department of Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Department Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Tong Lu
- Department of Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Department Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Weidong Ji
- Translational Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| | - Weiping Wen
- Department of Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China; Department Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
34
|
Molecular clustering of genes related to the atopic syndrome: Towards a more tailored approach and personalized medicine? Clin Transl Allergy 2019; 9:34. [PMID: 31333817 PMCID: PMC6617681 DOI: 10.1186/s13601-019-0273-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 01/22/2023] Open
Abstract
Background The atopic syndrome consists of heterogeneous manifestations, in which multiple associated genetic loci have recently been identified. It is hypothesized that immune dysregulation plays a role in the pathogenesis. In primary immunodeficiency diseases (PIDs), which are often monogenic immunodysregulation disorders, the atopic syndrome is a frequently occurring comorbidity. Based on the genetic defects in PIDs, novel gene/pathway-targeted therapies have been evaluated, which could be relevant in the atopic syndrome as well. Therefore, we aimed to define subclasses within the atopic syndrome based on the expression profiles of immune cell lineages of healthy mice. Methods Overlap between known atopy-related genes as described in the Human Gene Mutation Database and disease-causing genes of monogenic PIDs was evaluated. Clusters of atopy-related genes were based on the overlap in their co-expressed genes using the gene expression profiles of immune cell lineages of healthy mice from the Immunological Genome Project. We analyzed pathways involved in the atopic syndrome using Ingenuity Pathway Analysis. Results Twenty-two (5.3%) genes were overlapping between the atopy-related genes (n = 160) and PID-related genes (n = 278). We identified seven distinct clusters of atopy-related genes. Functional pathway analysis of all atopy-related genes showed relevance of T helper cell-mediated pathways. Conclusions This study shows a model to define clusters within the atopic syndrome based on gene expression profiles of immune cell lineages. Our results support the hypothesis that both genetic mechanisms and immune dysregulation play a role in the pathogenesis. It also opens up the possibility for novel therapeutic targets and a more tailored approach towards personalized medicine. Electronic supplementary material The online version of this article (10.1186/s13601-019-0273-8) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Seiti Yamada Yoshikawa F, Feitosa de Lima J, Notomi Sato M, Álefe Leuzzi Ramos Y, Aoki V, Leao Orfali R. Exploring the Role of Staphylococcus Aureus Toxins in Atopic Dermatitis. Toxins (Basel) 2019; 11:E321. [PMID: 31195639 PMCID: PMC6628437 DOI: 10.3390/toxins11060321] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense pruritus and xerosis. AD pathogenesis is multifactorial, involving genetic, environmental, and immunological factors, including the participation of Staphylococcus aureus. This bacterium colonizes up to 30-100% of AD skin and its virulence factors are responsible for its pathogenicity and antimicrobial survival. This is a concise review of S. aureus superantigen-activated signaling pathways, highlighting their involvement in AD pathogenesis, with an emphasis on skin barrier disruption, innate and adaptive immunity dysfunction, and microbiome alterations. A better understanding of the combined mechanisms of AD pathogenesis may enhance the development of future targeted therapies for this complex disease.
Collapse
Affiliation(s)
- Fabio Seiti Yamada Yoshikawa
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Josenilson Feitosa de Lima
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Yasmin Álefe Leuzzi Ramos
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Valeria Aoki
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Raquel Leao Orfali
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| |
Collapse
|
36
|
Frank MG, Fonken LK, Dolzani SD, Annis JL, Siebler PH, Schmidt D, Watkins LR, Maier SF, Lowry CA. Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: Attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain Behav Immun 2018; 73:352-363. [PMID: 29807129 PMCID: PMC6129419 DOI: 10.1016/j.bbi.2018.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Exposure to stressors induces anxiety- and depressive-like behaviors, which are mediated, in part, by neuroinflammatory processes. Recent findings demonstrate that treatment with the immunoregulatory and anti-inflammatory bacterium, Mycobacterium vaccae (M. vaccae), attenuates stress-induced exaggeration of peripheral inflammation and stress-induced anxiety-like behavioral responses. However, the effects of M. vaccae on neuroimmune processes have largely been unexplored. In the present study, we examined the effect of M. vaccae NCTC11659 on neuroimmune regulation, stress-induced neuroinflammatory processes and anxiety-like behavior. Adult male rats were immunized 3× with a heat-killed preparation of M. vaccae (0.1 mg, s.c.) or vehicle. M. vaccae induced an anti-inflammatory immunophenotype in hippocampus (increased interleukin (Il)4, Cd200r1, and Mrc1 mRNA expression) and increased IL4 protein 8 d after the last immunization. Central administration of recombinant IL4 recapitulated the effects of M. vaccae on Cd200r1 and Mrc1 mRNA expression. M. vaccae reduced basal levels of genes (Nlrp3 and Nfkbia) involved in microglial priming; thus, we explored the effects of M. vaccae on stress-induced hippocampal microglial priming and HMGB1, which mediates priming. We found that M. vaccae blocked stress-induced decreases in Cd200r1, increases in the alarmin HMGB1, and priming of the microglial response to immune challenge. Furthermore, M. vaccae prevented stress-induced increases in anxiety-like behavior. The present findings suggest that M. vaccae enhances immunomodulation in the CNS and mitigates the neuroinflammatory and behavioral effects of stress, which may underpin its capacity to impart a stress resilient phenotype.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Samuel D Dolzani
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jessica L Annis
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Philip H Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Dominic Schmidt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver Veterans Affairs Medical Center (VAMC), Denver, CO 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA
| |
Collapse
|
37
|
Liu Q, Mazhar M, Miller LS. Immune and Inflammatory Reponses to Staphylococcus aureus Skin Infections. CURRENT DERMATOLOGY REPORTS 2018; 7:338-349. [PMID: 30989002 DOI: 10.1007/s13671-018-0235-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of Review There have been recent advances in our understanding of cutaneous immune responses to the important human skin pathogen, Staphylococcus aureus (S. aureus). This review will highlight these insights into innate and adaptive immune mechanisms in host defense and cutaneous inflammation in response to S. aureus skin infections. Recent Findings Antimicrobial peptides, pattern recognition receptors and inflammasome activation function in innate immunity as well as T cells and their effector cytokines play a key role in adaptive immunity against S. aureus skin infections. In addition, certain mechanisms by which S. aureus contributes to aberrant cutaneous inflammation, such as in flares of the inflammatory skin disease atopic dermatitis have also been identified. Summary These cutaneous immune mechanisms could provide new targets for future vaccines and immune-based therapies to combat skin infections and cutaneous inflammation caused by S. aureus.
Collapse
Affiliation(s)
- Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Momina Mazhar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
38
|
Substance P and IL-33 administered together stimulate a marked secretion of IL-1β from human mast cells, inhibited by methoxyluteolin. Proc Natl Acad Sci U S A 2018; 115:E9381-E9390. [PMID: 30232261 DOI: 10.1073/pnas.1810133115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mast cells are critical for allergic and inflammatory responses in which the peptide substance P (SP) and the cytokine IL-33 are involved. SP (0.01-1 μM) administered together with IL-33 (30 ng/mL) to human cultured LAD2 mast cells stimulates a marked increase (P < 0.0001) in secretion of the proinflammatory cytokine IL-1β. Preincubation of LAD2 (30 min) with the SP receptor (NK-1) antagonists L-733,060 (10 μM) or CP-96345 (10 µM) inhibits (P < 0.001) secretion of IL-1β stimulated by either SP (1 μM) or SP together with IL-33 (30 ng/mL). Surprisingly, secretion of IL-1β stimulated by IL-33 is inhibited (P < 0.001) by each NK-1 antagonist. Preincubation with an antibody against the IL-33 receptor ST2 inhibits (P < 0.0001) secretion of IL-1β stimulated either by IL-33 or together with SP. The combination of SP (1 μM) with IL-33 (30 ng/mL) increases IL-1β gene expression by 90-fold in LAD2 cells and by 200-fold in primary cultured mast cells from human umbilical cord blood. The combination of SP and IL-33 increases intracellular levels of IL-1β in LAD2 by 100-fold and gene expression of IL-1β and procaspase-1 by fivefold and pro-IL-1β by twofold. Active caspase-1 is present even in unstimulated cells and is detected extracellularly. Preincubation of LAD2 cells with the natural flavonoid methoxyluteolin (1-100 mM) inhibits (P < 0.0001) secretion and gene expression of IL-1β, procaspase-1, and pro-IL-1β. Mast cell secretion of IL-1β in response to SP and IL-33 reveals targets for the development of antiinflammatory therapies.
Collapse
|
39
|
Interleukin 1-β, interleukin-1 receptor antagonist and vitamin D levels in children with atopic dermatitis. Cent Eur J Immunol 2018; 43:180-185. [PMID: 30135631 PMCID: PMC6102616 DOI: 10.5114/ceji.2018.77388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/16/2017] [Indexed: 11/28/2022] Open
Abstract
Introduction Among the broad spectrum of cytokines, interleukin 1-β (IL-1β) has been implicated in induction and subsequent aggravation of skin lesions in atopic dermatitis (AD). A considerable body of evidence suggests that vitamin D status also influences the risk and/or severity of AD. Material and methods Fifty-seven children suffering from mild to severe AD were enrolled in the study. The control group consisted of 33 matched healthy children. In all the children serum concentrations of IL-1β/IL-1F2 and the interleukin-1 receptor antagonist IL-Ra/1F3 were measured. Serum 25(OH)D concentration was obtained for 49 patients with AD and all healthy children. Results In children with AD 59.2% of children had insufficiency, 24.5% had deficiency and 16.3% had a sufficient serum 25(OH)D level. In the control group 26.5%, 52.9% and 20% of participants had insufficiency/deficiency/sufficiency of 25(OH)D, respectively. The severity of AD was positively correlated with total IgE level, percentage and absolute count of eosinophils and IL-1Ra. IL-1β correlated with IL-1Ra. Conclusions In children with AD the serum vitamin D level was lower than in healthy children. The correlation between severity of AD and IL-1Ra may prove that inflammasome-dependent IL-1β is involved in immunopathogenesis of the disease. Further studies are needed on a larger population of children to confirm the role of this cytokine in development of AD.
Collapse
|
40
|
Serra-Baldrich E, de Frutos J, Jáuregui I, Armario-Hita J, Silvestre J, Herraez L, Martín-Santiago A, Valero A, Sastre J. Changing perspectives in atopic dermatitis. Allergol Immunopathol (Madr) 2018; 46:397-412. [PMID: 29031890 DOI: 10.1016/j.aller.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 07/29/2017] [Indexed: 01/25/2023]
Abstract
Atopic dermatitis (AD) is a multifaceted disease that involves a complex interplay between the skin and the immune system. The course of the disease depends strongly on the genetic background of the patient and on yet poorly-defined environmental factors. Changes in lifestyle could be behind the dramatic rise in the prevalence of AD across continents; including hygienic conditions, food, social habits, skin microbiome or exposure to a number of allergens. Although AD typically develops in childhood and disappears after a few years, in a relatively large number of patients it continues into adulthood. Adult AD can also appear de novo but it is often underdiagnosed and its treatment can be challenging. New, highly effective drugs are being developed to manage moderate and severe forms of the disease in adults. In this review, we highlight the most recent developments in diagnostic tools, current insights into the mechanistic basis of this disease, and therapeutic innovations.
Collapse
|
41
|
Kwon HI, Jeong NH, Jun SH, Son JH, Kim S, Jeon H, Kang SC, Kim SH, Lee JC. Thymol attenuates the worsening of atopic dermatitis induced by Staphylococcus aureus membrane vesicles. Int Immunopharmacol 2018; 59:301-309. [PMID: 29679854 DOI: 10.1016/j.intimp.2018.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/30/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus membrane vesicles (MVs) aggravate atopic dermatitis (AD) through the delivery of bacterial effector molecules to host cells and the stimulation of inflammatory responses. This study investigated the inhibitory effect of thymol, a phenolic monoterpene found in essential oils derived from plants, on the worsening of AD induced by S. aureus MVs both in vitro and in vivo. The sub-minimal inhibitory concentrations of thymol disrupted S. aureus MVs. Intact S. aureus MVs induced the expression of pro-inflammatory cytokine (interleukin (IL)-1β, IL-6, and tumor necrosis factor-α) and chemokine (IL-8 and monocyte chemoattractant protein-1) genes in cultured keratinocytes, whereas thymol-treated S. aureus MVs did not stimulate the expression of these genes. Topical application of thymol-treated S. aureus MVs or treatment with thymol after intact S. aureus MVs to AD-like skin lesions diminished the pathology of AD. This included decreases in epidermal/dermal thickness and infiltration of eosinophils/mast cells, and inhibited expression of pro-inflammatory cytokine and chemokine genes in mouse AD model. Moreover, thymol significantly suppressed the Th1, Th2, and Th17-mediated inflammatory responses in AD-like skin lesions induced by S. aureus MVs, and reduced the serum levels of immunoglobulin (Ig) G2a, mite-specific IgE, and total IgE. In summary, thymol disrupts S. aureus MVs and suppresses inflammatory responses in AD-like skin lesions aggravated by S. aureus MVs. Our results suggest that thymol is a possible candidate for the management of AD aggravation induced by S. aureus colonization or infection in the lesions.
Collapse
Affiliation(s)
- Hyo Il Kwon
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Na Hee Jeong
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University Daegu, Republic of Korea
| | - So Hyun Jun
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joo Hee Son
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyejin Jeon
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyungbuk, Republic of Korea
| | - Sang Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University Daegu, Republic of Korea.
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
42
|
Thürmann L, Grützmann K, Klös M, Bieg M, Winter M, Polte T, Bauer T, Schick M, Bewerunge-Hudler M, Röder S, Bauer M, Wissenbach DK, Sack U, Weichenhan D, Mücke O, Plass C, Borte M, von Bergen M, Lehmann I, Eils R, Trump S. Early-onset childhood atopic dermatitis is related to NLRP2 repression. J Allergy Clin Immunol 2017; 141:1482-1485.e16. [PMID: 29233739 DOI: 10.1016/j.jaci.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Loreen Thürmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Konrad Grützmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany; Center for Molecular Tumor Diagnostics at the National Center for Tumor Diseases, partner site Dresden, Dresden, Germany
| | - Matthias Klös
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Matthias Bieg
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Winter
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Tobias Polte
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Tobias Bauer
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schick
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Bewerunge-Hudler
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Dirk K Wissenbach
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany; Institute of Forensic Medicine, University Hospital Jena, Jena, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, University Hospital Leipzig, Leipzig, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Mücke
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Borte
- Municipal Hospital "St. Georg" Children's Hospital, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany; Department of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Irina Lehmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany.
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pharmacy and Molecular Biotechnology, and Bioquant Center, University of Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Saskia Trump
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany.
| |
Collapse
|
43
|
|
44
|
Hepburn L, Hijnen D, Sellman B, Mustelin T, Sleeman M, May R, Strickland I. The complex biology and contribution of Staphylococcus aureus
in atopic dermatitis, current and future therapies. Br J Dermatol 2017; 177:63-71. [DOI: 10.1111/bjd.15139] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
- L. Hepburn
- MedImmune; Milstein Building; Granta Park; Cambridge CB21 6GH U.K
| | - D.J. Hijnen
- University Medical Center Utrecht; Department of Dermatology; Utrecht the Netherlands
| | | | | | - M.A. Sleeman
- MedImmune; Milstein Building; Granta Park; Cambridge CB21 6GH U.K
| | - R.D. May
- MedImmune; Milstein Building; Granta Park; Cambridge CB21 6GH U.K
| | - I. Strickland
- MedImmune; Milstein Building; Granta Park; Cambridge CB21 6GH U.K
| |
Collapse
|
45
|
Abstract
Inflammasomes are intracellular multiprotein complexes that comprise part of the
innate immune response. Since their definition, inflammasome disorders have been
linked to an increasing number of diseases. Autoinflammatory diseases refer to
disorders in which local factors lead to the activation of innate immune cells,
causing tissue damage when in the absence of autoantigens and autoantibodies.
Skin symptoms include the main features of monogenic inflammasomopathies, such
as Cryopyrin-Associated Periodic Syndromes (CAPS), Familial Mediterranean Fever
(FMF), Schnitzler Syndrome, Hyper-IgD Syndrome (HIDS), PAPA Syndrome, and
Deficiency of IL-1 Receptor Antagonist (DIRA). Concepts from other pathologies
have also been reviewed in recent years, such as psoriasis, after the
recognition of a combined contribution of innate and adaptive immunity in its
pathogenesis. Inflammasomes are also involved in the response to various
infections, malignancies, such as melanoma, autoimmune diseases, including
vitiligo and lupus erythematosus, atopic and contact dermatitis, acne,
hidradenitis suppurativa, among others. Inhibition of the inflammasome pathway
may be a target for future therapies, as already occurs in the handling of CAPS,
through the introduction of IL-1 inhibitors. This study presents a literature
review focusing on the participation of inflammasomes in skin diseases.
Collapse
Affiliation(s)
| | - Cyro Festa
- Universidade de São Paulo (USP) - São Paulo (SP), Brazil
| |
Collapse
|
46
|
Antigen delivery to dendritic cells shapes human CD4+ and CD8+ T cell memory responses to Staphylococcus aureus. PLoS Pathog 2017; 13:e1006387. [PMID: 28542586 PMCID: PMC5444865 DOI: 10.1371/journal.ppat.1006387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Intracellular persistence of Staphylococcus aureus favors bacterial spread and chronic infections. Here, we provide evidence for the existence of human CD4+ and CD8+ T cell memory against staphylococcal antigens. Notably, the latter could provide a missing link in our understanding of immune control of intracellular S. aureus. The analyses showed that pulsing of monocyte-derived dendritic cells (MoDC) with native staphylococcal protein antigens induced release of Th2-associated cytokines and mediators linked to T regulatory cell development (G-CSF, IL-2 and IL-10) from both CD4+ and CD8+ T cells, thus revealing a state of tolerance predominantly arising from preformed memory T cells. Furthermore, G-CSF was identified as a suppressor of CD8+ T cell-derived IFNγ secretion, thus confirming a tolerogenic role of this cytokine in the regulation of T cell responses to S. aureus. Nevertheless, delivery of in vitro transcribed mRNA-encoded staphylococcal antigens triggered Th1-biased responses, e.g. IFNγ and TNF release from both naïve and memory T cells. Collectively, our data highlight the potential of mRNA-adjuvanted antigen presentation to enable inflammatory responses, thus overriding the existing Th2/Treg-biased memory T cell response to native S. aureus antigens. Staphylococcus aureus is deemed one of the most important nosocomial pathogens but, to date, there are no safe and protective vaccines. In this study we investigate the nature of the preformed T cell response to S. aureus antigens in healthy donors. Our data reveal that CD4+ and—so far not described—CD8+ T cell memory responses against native staphylococcal antigens exist but are skewed towards minimizing inflammation and promoting tolerance. The T cell response to staphylococcal antigens is characterized by the secretion of typical Th2 cytokines such as IL-5 and IL-13 and mediators associated with formation of T regulatory cells. Most importantly, G-CSF suppresses IFNγ release from pre-existent memory T cells. However, our data reveal that the use of mRNA-encoded antigens to trigger S. aureus-specific T cell responses bears the potential to override the tolerogenic bias. It favors TNF- and IFNγ-releasing T cells and may, thus, represent an innovative tool in prophylactic and therapeutic vaccine development.
Collapse
|
47
|
Zaniboni MC, Samorano LP, Orfali RL, Aoki V. Skin barrier in atopic dermatitis: beyond filaggrin. An Bras Dermatol 2017; 91:472-8. [PMID: 27579743 PMCID: PMC4999106 DOI: 10.1590/abd1806-4841.20164412] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/05/2015] [Indexed: 12/27/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease with a complex
pathogenesis, where changes in skin barrier and imbalance of the immune system
are relevant factors. The skin forms a mechanic and immune barrier, regulating
water loss from the internal to the external environment, and protecting the
individual from external aggressions, such as microorganisms, ultraviolet
radiation and physical trauma. Main components of the skin barrier are located
in the outer layers of the epidermis (such as filaggrin), the proteins that form
the tight junction (TJ) and components of the innate immune system. Recent data
involving skin barrier reveal new information regarding its structure and its
role in the mechanic-immunological defense; atopic dermatitis (AD) is an example
of a disease related to dysfunctions associated with this complex.
Collapse
Affiliation(s)
| | | | | | - Valéria Aoki
- Universidade de São Paulo (USP) - São Paulo (SP), Brazil
| |
Collapse
|
48
|
Park KD, Pak SC, Park KK. The Pathogenetic Effect of Natural and Bacterial Toxins on Atopic Dermatitis. Toxins (Basel) 2016; 9:3. [PMID: 28025545 PMCID: PMC5299398 DOI: 10.3390/toxins9010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is a common allergic skin disease that is associated with chronic, recurrent eczematous and pruritic lesions at the flexural folds caused by interacting factors related to environmental and immune system changes. AD results in dry skin, and immunoglobulin E-mediated allergic reactions to foods and environmental allergens. While steroids and anti-histamines temporarily relieve the symptoms of AD, the possibility of side effects from pharmacological interventions remains. Despite intensive research, the underlying mechanisms for AD have not been clarified. A study of Staphylococcus aureus (S. aureus) established the role of its toxins in the pathogenesis of AD. Approximately 90% of patients with AD experience S. aureus colonization and up to 50%-60% of the colonizing S. aureus is toxin-producing. Any damage to the protective skin barrier allows for the entry of invading allergens and pathogens that further drive the pathogenesis of AD. Some natural toxins (or their components) that have therapeutic effects on AD have been studied. In addition, recent studies on inflammasomes as one component of the innate immune system have been carried out. Additionally, studies on the close relationship between the activation of inflammasomes and toxins in AD have been reported. This review highlights the literature that discusses the pathogenesis of AD, the role of toxins in AD, and the positive and negative effects of toxins on AD. Lastly, suggestions are made regarding the role of inflammasomes in AD.
Collapse
Affiliation(s)
- Kyung-Duck Park
- Department of Dermatology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Sok Cheon Pak
- School of Biomedical Sciences, Charles Sturt University, Panorama Avenue, Bathurst NSW 2795, Australia.
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| |
Collapse
|
49
|
Itani S, Watanabe T, Nadatani Y, Sugimura N, Shimada S, Takeda S, Otani K, Hosomi S, Nagami Y, Tanaka F, Kamata N, Yamagami H, Tanigawa T, Shiba M, Tominaga K, Fujiwara Y, Arakawa T. NLRP3 inflammasome has a protective effect against oxazolone-induced colitis: a possible role in ulcerative colitis. Sci Rep 2016; 6:39075. [PMID: 27966619 PMCID: PMC5155456 DOI: 10.1038/srep39075] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023] Open
Abstract
The inflammasomes induce maturation of pro-interleukin-1β (IL-1β) and pro-IL-18. We investigated roles of the NLRP3 inflammasome in the pathogenesis of ulcerative colitis (UC). After induction of oxazolone-induced colitis, a mouse UC model, colonic tissues were assayed for inflammatory mediators. Histological studies were performed on inflamed colonic tissue from mice and UC patients. Histological severity of murine colitis peaked on day 1, accompanied by an increase in the expression of Th2 cytokines including IL-4 and IL-13. Oxazolone treatment stimulated maturation of pro-caspase-1 and pro-IL-1β, while it reduced IL-18 expression. Either exogenous IL-1β or IL-18 ameliorated the colitis with or without reduction in Th2 cytokine expression, respectively. Induction of colitis decreased MUC2 expression, which was reversed by administration of IL-18, but not IL-1β. Compared to wild-type mice, NLRP3−/− mice exhibited higher sensitivity to oxazolone treatment with enhancement of Th2 cytokine expression and reduction of mature IL-1β and IL-18 production; this phenotype was rescued by exogenous IL-1β or IL-18. Immunofluorescent studies revealed positive correlation of NLRP3 expression with disease severity in UC patients, and localization of the inflammasome-associated molecules in macrophages. The NLRP3 inflammasome-derived IL-1β and IL-18 may play a protective role against UC through different mechanisms.
Collapse
Affiliation(s)
- Shigehiro Itani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan.,SAMURAI International GI Research Center, Osaka, Japan
| | - Yuji Nadatani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Naoki Sugimura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sunao Shimada
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shogo Takeda
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuaki Nagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Yamagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tetsuya Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan.,SAMURAI International GI Research Center, Osaka, Japan
| | - Masatsugu Shiba
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazunari Tominaga
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan.,SAMURAI International GI Research Center, Osaka, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan.,SAMURAI International GI Research Center, Osaka, Japan
| | - Tetsuo Arakawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
50
|
Jun SH, Lee JH, Kim SI, Choi CW, Park TI, Jung HR, Cho JW, Kim SH, Lee JC. Staphylococcus aureus-derived membrane vesicles exacerbate skin inflammation in atopic dermatitis. Clin Exp Allergy 2016; 47:85-96. [DOI: 10.1111/cea.12851] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
Affiliation(s)
- S. H. Jun
- Department of Microbiology; Kyungpook National University School of Medicine; Daegu Korea
| | - J. H. Lee
- Department of Microbiology; Kyungpook National University School of Medicine; Daegu Korea
| | - S. I. Kim
- Division of Life Science; Korea Basic Science Institute; Daejeon Korea
| | - C. W. Choi
- Division of Life Science; Korea Basic Science Institute; Daejeon Korea
| | - T. I. Park
- Department of Pathology; Kyungpook National University School of Medicine; Daegu Korea
| | - H. R. Jung
- Department of Pathology; Keimyung University College of Medicine; Daegu Korea
| | - J. W. Cho
- Department of Dermatology; Keimyung University College of Medicine; Daegu Korea
| | - S. H. Kim
- Department of Pharmacology; Kyungpook National University School of Medicine; Daegu Korea
| | - J. C. Lee
- Department of Microbiology; Kyungpook National University School of Medicine; Daegu Korea
| |
Collapse
|