1
|
Bryant N, Muehling LM, Wavell K, Teague WG, Woodfolk JA. Rhinovirus as a driver of airway T cell dynamics in children with treatment-refractory recurrent wheeze. JCI Insight 2025; 10:e189480. [PMID: 40337866 DOI: 10.1172/jci.insight.189480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Severe asthma in children is notoriously difficult to treat, and its immunopathogenesis is complex. In particular, the contribution of T cells and relationships to antiviral immunity remain enigmatic. Here, we coupled deep phenotyping with machine learning methods to elucidate the dynamics of T cells in the lower airways of children with treatment-refractory recurrent wheeze, and examine rhinovirus (RV) as a driver. Our strategy revealed a T cell landscape dominated by type 1 and type 17 CD8+ signatures. Interrogation of phenotypic relationships coupled with trajectory mapping identified T cell migratory and differentiation pathways spanning the blood and airways that culminated in tissue residency, and involved transitions between type 1 and type 17 tissue-resident types. These dynamics were reflected in cytokine polyfunctionality. Use of machine learning tools to cross-compare T cell populations that were enriched in the airways of RV-positive children with those induced in the blood following experimental RV challenge precisely pinpointed RV-responsive signatures that contributed to T cell migratory and differentiation pathways. Despite their rarity, these signatures were also detected in the airways of RV-negative children. Together, our results underscore the aberrant nature of type 1 immunity in the airways of children with recurrent wheeze, and implicate an important viral trigger as a driver.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine
- Department of Microbiology, Immunology, and Cancer Biology, and
| | | | - Kristin Wavell
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - W Gerald Teague
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Judith A Woodfolk
- Department of Medicine
- Department of Microbiology, Immunology, and Cancer Biology, and
| |
Collapse
|
2
|
Kuklina EM. Mechanisms of Glucocorticoid Resistance in Nonclassical T Helper Populations Th17.1/Ex-Th17. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:188-199. [PMID: 40254398 DOI: 10.1134/s0006297924604222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 04/22/2025]
Abstract
The nonclassical population of Th1-polarized Th17 lymphocytes (Th17.1/ex-Th17) is currently in the focus of researchers' attention. These cells possess a unique proinflammatory potential and ability to penetrate blood-tissue barriers and play a key role in the pathogenesis of many inflammatory diseases, primarily autoimmune ones. Th1-polarized Th17 lymphocytes prevail in the autoimmune lesion foci and are considered to be a promising therapeutic target in these pathologies. At the same time, recent studies have shown another distinctive feature of Th1-polarized Th17 - their selective resistance to glucocorticoids. Since glucocorticoids are the first-line drugs for the treatment of the autoimmune disease exacerbation, understanding the causes of this phenomenon is crucial for predicting patients' response to therapy and improving the treatment effectiveness. This review analyzes the mechanisms of drug resistance of Th1-polarized Th17 cells, compares these mechanisms with those typical of nonpathogenic classical Th17 cells, and discusses the role of glucocorticoid resistance in the body's response to glucocorticoid therapy.
Collapse
Affiliation(s)
- Elena M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
3
|
Bryant N, Muehling LM, Wavell K, Teague WG, Woodfolk JA. Rhinovirus as a Driver of Airway T-Cell Dynamics in Children with Severe Asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623877. [PMID: 39605344 PMCID: PMC11601360 DOI: 10.1101/2024.11.15.623877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Severe asthma in children is notoriously difficult to treat, and its immunopathogenesis is complex. In particular, the contribution of T cells and relationships to anti-viral immunity, remain enigmatic. Here, we coupled deep phenotyping with machine learning methods to resolve the dynamics of T cells in the diseased lower airways, and examined rhinovirus (RV) as a driver. Our strategy revealed a T-cell landscape dominated by type 1 and type 17 CD8+ signatures. Interrogation of phenotypic relationships coupled with trajectory mapping identified T-cell migratory and differentiation pathways spanning the blood and airways that culminated in tissue residency, and included transitions between type 1 and type 17 tissue-resident types. These T-cell dynamics were reflected in cytokine polyfunctionality in situ . Use of machine learning to cross-compare T-cell populations that were enriched in the airways of RV-positive children with those induced in the blood after RV challenge in an experimental infection model, precisely pinpointed RV-responsive signatures that mapped to T-cell differentiation pathways. Despite their rarity, these signatures were detected in the airways of uninfected children. Together, our results underscore the aberrant nature of type 1 immunity in the airways of children with severe asthma, and implicate an important viral trigger as a driver.
Collapse
|
4
|
Ma J, Yan J, Liu M, Yan C, Tang X, Qiu H, Miao M, Han Y, Li L, Kang L, Xu N, Yu Z, Tan J, Zhu H, Jia X, Zhang Z, Wang M, Dai H, Yu L, Xue S, Wu D, Gong W. Safe and potent anti-CD19 CAR T-cells with shRNA-IL-6 gene silencing element in patients with refractory or relapsed B-cell acute lymphoblastic leukemia. Hemasphere 2024; 8:e70007. [PMID: 39380843 PMCID: PMC11456753 DOI: 10.1002/hem3.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Severe cytokine release syndrome (sCRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) have limited the widespread use of chimeric antigen receptor T (CAR T)-cell therapy. We designed a novel anti-CD19 CAR (ssCART-19) with a small hairpin RNA (shRNA) element to silence the interleukin-6 (IL-6) gene, hypothesizing it could reduce sCRS and ICANS by alleviating monocyte activation and proinflammatory cytokine release. In a post hoc analysis of two clinical trials, we compared ssCART-19 with common CAR T-cells (cCART-19) in relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL). Among 87 patients, 47 received ssCART-19 and 40 received cCART-19. Grade ≥3 CRS occurred in 14.89% (7/47) of the ssCART-19 group versus 37.5% (15/40) in the cCART-19 group (p = 0.036). ICANS occurred in 4.26% (2/47) of the ssCART-19 group (all grade 1) compared to 15% (2/40) of the cCART-19 group. Patients in the ssCART-19 group showed comparable rates of treatment response (calculated with rates of complete remission and incomplete hematological recovery) were 91.49% (43/47) for ssCART-19 and 85% (34/40) for cCART-19 (p = 0.999). With a median follow-up of 21.9 months, cumulative nonrelapse mortality was 10.4% for ssCART-19 and 13.6% for cCART-19 (p = 0.33). Median overall survival was 37.17 months for ssCART-19 and 32.93 months for cCART-19 (p = 0.40). Median progression-free survival was 24.17 months for ssCART-19 and 9.33 months for cCART-19 (p = 0.23). These data support the safety and efficacy of ssCART-19 for r/r B-ALL, suggesting its potential as a promising therapy.
Collapse
Affiliation(s)
- Jin‐Feng Ma
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of HematologyJining No. 1 People's HospitalJiningChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Jia‐Wei Yan
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Mei‐Jing Liu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Chun‐Long Yan
- Department of HematologyJining No. 1 People's HospitalJiningChina
| | - Xiao‐Wen Tang
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Hui‐Ying Qiu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Miao Miao
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Yue Han
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Li‐Min Li
- Department of HematologySouthern University of Science and Technology HospitalShenzhenChina
| | - Li‐Qing Kang
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Nan Xu
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Zhou Yu
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Jing‐Wen Tan
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Hong‐Jia Zhu
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Xu Jia
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Zhi‐Zhi Zhang
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Miao Wang
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Hai‐Ping Dai
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Lei Yu
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Sheng‐Li Xue
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - De‐Pei Wu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Wen‐Jie Gong
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| |
Collapse
|
5
|
Zhao Y, Yao Z, Xu S, Yao L, Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: Current concepts. JOURNAL OF INTENSIVE MEDICINE 2024; 4:417-432. [PMID: 39310055 PMCID: PMC11411438 DOI: 10.1016/j.jointm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS), a fatal critical disease, is induced by various insults. ARDS represents a major global public health burden, and the management of ARDS continues to challenge healthcare systems globally, especially during the pandemic of the coronavirus disease 2019 (COVID-19). There remains no confirmed specific pharmacotherapy for ARDS, despite advances in understanding its pathophysiology. Debate continues about the potential role of glucocorticoids (GCs) as a promising ARDS clinical therapy. Questions regarding GC agent, dose, and duration in patients with ARDS need to be answered, because of substantial variations in GC administration regimens across studies. ARDS heterogeneity likely affects the therapeutic actions of exogenous GCs. This review includes progress in determining the GC mechanisms of action and clinical applications in ARDS, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis. Front Immunol 2024; 15:1425847. [PMID: 39086480 PMCID: PMC11288813 DOI: 10.3389/fimmu.2024.1425847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-β levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.
Collapse
Affiliation(s)
- Jinge Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meijiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Höpner L, Proschmann U, Inojosa H, Ziemssen T, Akgün K. Corticosteroid-depending effects on peripheral immune cell subsets vary according to disease modifying strategies in multiple sclerosis. Front Immunol 2024; 15:1404316. [PMID: 38938576 PMCID: PMC11208457 DOI: 10.3389/fimmu.2024.1404316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background The primary treatment for acute relapses in multiple sclerosis (MS) is the intravenous administration of high-dose methylprednisolone (IVMP). However, the mechanisms through which corticosteroid treatment impacts acute neuroinflammation in people with MS (pwMS) remain not fully understood. In particular, the changes induced by glucocorticoids (GCs) on cells of the innate immune system and the differences between patients with distinct immunotherapies have received little attention to date. Methods We conducted immunophenotyping using flow cytometry on peripheral blood mononuclear cells of pwMS who received IVMP treatment during a relapse. We compared the impact of an IVMP treatment on a broad variety of immune cell subsets within three groups: twelve patients who were treatment-naïve to disease modifying therapies (wDMT) to ten patients on platform therapies (PT) and eighteen patients on fingolimod therapy (FTY). Results We observed pronounced interindividual short- and intermediate-term effects of IVMP on distinct immune cells subsets. In addition to the well-documented decrease in T-helper cells (Th cells), we detected significant alterations after the first IVMP infusion within the innate immune response among neutrophil, eosinophil and basophil granulocytes, monocytes and plasmacytoid dendritic cells (pDCs). When comparing patients wDMT to the PT and FTY cohorts, we found that IVMP had a similar impact on innate immune cells across all treatment groups. However, we did not observe a significant further decline in T lymphocyte counts during IVMP in patients with pre-existing lymphopenia under FTY treatment. Although T cell apoptosis is considered the main mechanism of action of GCs, patients with FTY still reported symptom improvement following IVMP treatment. Conclusion In addition to T cell suppression, our data suggests that further immunoregulatory mechanisms of GC, particularly on cells of the innate immune response, are of greater significance than previously understood. Due to the regulation of the adaptive immune cells by DMTs, the impact of GC on these cells varies depending on the underlying DMT. Additional studies involving larger cohorts and cerebrospinal fluid samples are necessary to gain a deeper understanding of the immune response to GC in pwMS with different DMTs during relapse to define and explain differences in clinical response profiles.
Collapse
Affiliation(s)
| | | | | | | | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
8
|
Petakh P, Oksenych V, Kamyshna I, Boisak I, Lyubomirskaya K, Kamyshnyi O. Exploring the complex interplay: gut microbiome, stress, and leptospirosis. Front Microbiol 2024; 15:1345684. [PMID: 38476949 PMCID: PMC10927737 DOI: 10.3389/fmicb.2024.1345684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Leptospirosis, a re-emerging zoonotic disease, remains a significant global health concern, especially amid floods and disasters such as the Kakhovka Dam destruction. As is known, the stress that occurs in the conditions of military conflicts among civilian and military personnel significantly affects susceptibility to infectious diseases and possibly even influences their course. This review aims to explore how the gut microbiome and stress mediators (such as catecholamines and corticosteroids) might impact the leptospirosis disease course. The review opens new horizons for research by elucidating the connections between the gut microbiome, stress, and leptospirosis.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Boisak
- Department of Childhood Diseases, Uzhhorod National University, Uzhhorod, Ukraine
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical and Pharmaceuticals University, Zaporizhzhia, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
9
|
Wu J, Dong L, Xiang J, Di G. Static electric field exposure decreases white blood cell count in peripheral blood through activating hypothalamic-pituitary-adrenal axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:305-315. [PMID: 36409881 DOI: 10.1080/09603123.2022.2148636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
With the development of ultra-high-voltage (UHV) direct-current (DC) transmission, the health risk from the static electric field (SEF) generated by UHV DC transmission lines has drawn public attention. To investigate the effect of SEF exposure on white blood cell (WBC) count, mice were exposed to 56.3 kV/m SEF. Results revealed that total WBC count and lymphocyte count significantly decreased and serum levels of corticotropin-releasing hormone, adrenocorticotropic hormone and corticosterone (CORT) significantly increased after the exposure of 7d and 14d. All indices above recovered after the exposure of 21d. Analysis showed that the exposure of 7d and 14d could activate hypothalamic-pituitary-adrenal (HPA) axis. The increased CORT could bind to the glucocorticoid receptor (GR) in lymphocytes, and then promote the migration and apoptosis of lymphocytes. After the exposure of 21d, the magnitude of HPA axis activation declined through CORT-mediated negative feedback and the regulation of stress-related neural circuitry, so WBC count recovered.
Collapse
Affiliation(s)
- Jiahong Wu
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Li Dong
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Junli Xiang
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guoqing Di
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
11
|
Khantakova JN, Mutovina A, Ayriyants KA, Bondar NP. Th17 Cells, Glucocorticoid Resistance, and Depression. Cells 2023; 12:2749. [PMID: 38067176 PMCID: PMC10706111 DOI: 10.3390/cells12232749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Depression is a severe mental disorder that disrupts mood and social behavior and is one of the most common neuropsychological symptoms of other somatic diseases. During the study of the disease, a number of theories were put forward (monoamine, inflammatory, vascular theories, etc.), but none of those theories fully explain the pathogenesis of the disease. Steroid resistance is a characteristic feature of depression and can affect not only brain cells but also immune cells. T-helper cells 17 type (Th17) are known for their resistance to the inhibitory effects of glucocorticoids. Unlike the inhibitory effect on other subpopulations of T-helper cells, glucocorticoids can enhance the differentiation of Th17 lymphocytes, their migration to the inflammation, and the production of IL-17A, IL-21, and IL-23 in GC-resistant disease. According to the latest data, in depression, especially the treatment-resistant type, the number of Th17 cells in the blood and the production of IL-17A is increased, which correlates with the severity of the disease. However, there is still a significant gap in knowledge regarding the exact mechanisms by which Th17 cells can influence neuroinflammation in depression. In this review, we discuss the mutual effect of glucocorticoid resistance and Th17 lymphocytes on the pathogenesis of depression.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Anastasia Mutovina
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| | - Kseniya A. Ayriyants
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| |
Collapse
|
12
|
Kutpruek S, Suksri K, Maneethorn P, Semprasert N, Yenchitsomanus PT, Kooptiwut S. Imatinib prevents dexamethasone-induced pancreatic β-cell apoptosis via decreased TRAIL and DR5. J Cell Biochem 2023; 124:1309-1323. [PMID: 37555250 DOI: 10.1002/jcb.30450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Prolonged administration of dexamethasone, a potent anti-inflammatory drug, can lead to steroid-induced diabetes. Imatinib, a medication commonly prescribed for chronic myeloid leukemia (CML), has been shown to improve diabetes in CML patients. Our recent study demonstrated that dexamethasone induces pancreatic β-cell apoptosis by upregulating the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5). We hypothesized that imatinib may protect against dexamethasone-induced pancreatic β-cell apoptosis by reducing the expression of TRAIL and DR5, thereby favorably modulating downstream effectors in apoptotic pathways. We test this hypothesis by assessing the effects of imatinib on dexamethasone-induced apoptosis in rat insulinoma cell line cells. As anticipated, dexamethasone treatment led to increased TRAIL and DR5 expression, as well as an elevation in superoxide production. Conversely, expression of the TRAIL decoy receptor (DcR1) was decreased. Moreover, key effectors in the extrinsic and intrinsic apoptosis pathways, such as B-cell lymphoma 2 (BCL-2) associated X (BAX), nuclear factor kappa B (NF-κb), P73, caspase 8, and caspase 9, were upregulated, while the antiapoptotic protein BCL-2 was downregulated. Interestingly and importantly, imatinib at a concentration of 10 µM reversed the effect of dexamethasone on TRAIL, DR5, DcR1, superoxide production, BAX, BCL-2, NF-κB, P73, caspase 3, caspase 8, and caspase 9. Similar effects of imatinib on dexamethasone-induced TRAIL and DR5 expression were also observed in isolated mouse islets. Taken together, our findings suggest that imatinib protects against dexamethasone-induced pancreatic β-cell apoptosis by reducing TRAIL and DR5 expression and modulating downstream effectors in the extrinsic and intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Suchanoot Kutpruek
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Suksri
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Petcharee Maneethorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Research Department, Division of Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Liang H, Zhao J, Tian T. Pharmacological Interventions for Glucocorticoid-Induced Osteoporosis: An Umbrella Review. Horm Metab Res 2023; 55:511-519. [PMID: 37336498 PMCID: PMC10425235 DOI: 10.1055/a-2112-1596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
There is still a lack of high-quality evidence-based studies on the efficacy of drug treatment for glucocorticoid-induced osteoporosis (GIOP). The purpose of this umbrella review is to comprehensively evaluate the existing evidence to determine the efficacy and safety of pharmacological interventions for GIOP. We searched PubMed, Embase, and the Cochrane Library for systematic reviews and/or meta-analyses (SRs) of randomized controlled trials (RCTs) aimed at evaluating drug therapy for GIOP. Both the methodological quality and the strength of recommendation of the endpoints included in the SRs were evaluated by using the AMSTAR-2 tool and GRADE system, respectively. Six SRs involving 7225 GIOP patients in 59 RCTs were included in this umbrella review. The results of the methodological quality evaluation showed that 2 high-quality, 2 low-quality and 2 critically low-quality SRs were included. The GRADE evaluation results showed that the quality of evidence and the strength of recommendation of 46 outcome indicators were evaluated in the umbrella review; there were 3 with high-level evidence, 20 with moderate-level evidence, 15 with low-level evidence, and 8 with very low-level evidence. Moderate- to high-level evidence suggests that teriparatide, bisphosphonates, and denosumab can improve the bone mineral density in patients with GIOP. The findings of this umbrella review can enable patients and clinical healthcare professionals to choose the best drug prescription.
Collapse
Affiliation(s)
- Haodong Liang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou,
China
| | - Jinlong Zhao
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou,
China
| | - Tianzhao Tian
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou,
China
| |
Collapse
|
14
|
Milara J, Morell A, Roger I, Montero P, Cortijo J. Mechanisms underlying corticosteroid resistance in patients with asthma: a review of current knowledge. Expert Rev Respir Med 2023; 17:701-715. [PMID: 37658478 DOI: 10.1080/17476348.2023.2255124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Corticosteroids are the most cost-effective anti-inflammatory drugs available for the treatment of asthma. Despite their effectiveness, several asthmatic patients have corticosteroid resistance or insensitivity and exhibit a poor response. Corticosteroid insensitivity implies a poor prognosis due to challenges in finding alternative therapeutic options for asthma. AREAS COVERED In this review, we describe asthma phenotypes and endotypes, as well as their differential responsiveness to corticosteroids. In addition, we describe the mechanism of action of corticosteroids underlying their regulation of the expression of glucocorticoid receptors (GRs) and their anti-inflammatory effects. Furthermore, we summarize the mechanistic evidence underlying corticosteroid-insensitive asthma, which is mainly related to changes in GR gene expression, structure, and post-transcriptional modifications. Finally, various pharmacological strategies designed to reverse corticosteroid insensitivity are discussed. EXPERT OPINION Corticosteroid insensitivity is influenced by the asthma phenotype, endotype, and severity, and serves as an indication for biological therapy. The molecular mechanisms underlying corticosteroid-insensitive asthma have been used to develop targeted therapeutic strategies. However, the lack of clinical trials prevents the clinical application of these treatments.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Anselm Morell
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
15
|
Smith S, Ascione R. Targeting neuro-immune systems to achieve cardiac tissue repair following myocardial infarction: A review of therapeutic approaches from in-vivo preclinical to clinical studies. Pharmacol Ther 2023; 245:108397. [PMID: 36996910 PMCID: PMC7616359 DOI: 10.1016/j.pharmthera.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Myocardial healing following myocardial infarction (MI) toward either functional tissue repair or excessive scarring/heart failure, may depend on a complex interplay between nervous and immune system responses, myocardial ischemia/reperfusion injury factors, as well as genetic and epidemiological factors. Hence, enhancing cardiac repair post MI may require a more patient-specific approach targeting this complex interplay and not just the heart, bearing in mind that the dysregulation or modulation of just one of these systems or some of their mechanisms may determine the outcome either toward functional repair or toward heart failure. In this review we have elected to focus on existing preclinical and clinical in-vivo studies aimed at testing novel therapeutic approaches targeting the nervous and immune systems to trigger myocardial healing toward functional tissue repair. To this end, we have only selected clinical and preclinical in-vivo studies reporting on novel treatments targeting neuro-immune systems to ultimately treat MI. Next, we have grouped and reported treatments under each neuro-immune system. Finally, for each treatment we have assessed and reported the results of each clinical/preclinical study and then discussed their results collectively. This structured approach has been followed for each treatment discussed. To keep this review focused, we have deliberately omitted to cover other important and related research areas such as myocardial ischemia/reperfusion injury, cell and gene therapies as well as any ex-vivo and in-vitro studies. The review indicates that some of the treatments targeting the neuro-immune/inflammatory systems appear to induce beneficial effects remotely on the healing heart post MI, warranting further validation. These remote effects on the heart also indicates the presence of an overarching synergic response occurring across the nervous and immune systems in response to acute MI, which appear to influence cardiac tissue repair in different ways depending on age and timing of treatment delivery following MI. The cumulative evidence arising from this review allows also to make informed considerations on safe as opposed to detrimental treatments, and within the safe treatments to ascertain those associated with conflicting or supporting preclinical data, and those warranting further validation.
Collapse
Affiliation(s)
- Sarah Smith
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Lin EC, Liao JB, Fang YH, Hong CH. The pathophysiology and current treatments for the subcutaneous panniculitis-like T cell lymphoma: An updated review. Asia Pac J Clin Oncol 2023; 19:27-34. [PMID: 35509196 DOI: 10.1111/ajco.13787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 01/20/2023]
Abstract
Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a rare cutaneous T cell lymphoma, which is indolent in nature but could claim life if not correctly diagnosed and promptly treated. SPTCL is usually presented clinically as painless subcutaneous and erythematous nodules over the trunk or extremities. Active clinical vigilance for these subcutaneous nodules or panniculitis-like lesions is warranted. A biopsy must be performed in order to make a correct diagnosis. Positron emission tomography scan is utilized for disease staging and treatment follow-up. Due to the rarity of this lymphoma, a standard treatment protocol is not established yet. However, most cases of SPTCL could be treated well under immunosuppressive or polychemotherapeutic drugs except in cases with hemophagocytic syndrome. Hematopoietic stem cell transplantation may be used in refractory or relapse cases. In this review, we presented a case of SPTCL with long-term complete remission. Meanwhile, since most clinical evidences and experiences of SPTCL are based mostly on case reports or small case series, and the understanding of the SPTCL pathophysiology is limited, we reviewed and updated the pathophysiology and treatments of SPTCL.
Collapse
Affiliation(s)
- En-Cheng Lin
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan (ROC)
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan (ROC)
| | - Yu-Han Fang
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan (ROC)
| | - Chien-Hui Hong
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan (ROC).,Department of Dermatology, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan (ROC)
| |
Collapse
|
17
|
Bauer M, Fink B, Anderegg U, Röder S, Zenclussen AC. IL17F Expression as an Early Sign of Oxidative Stress-Induced Cytotoxicity/Apoptosis. Genes (Basel) 2022; 13:genes13101739. [PMID: 36292624 PMCID: PMC9602038 DOI: 10.3390/genes13101739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Interleukin 17F (IL17F) has been found to be involved in various inflammatory pathologies and has recently become a target for therapeutic purposes. In contrast to IL17F secreted by immune cells, the focus of this study is to describe the triggers of IL17F release in non-immune cells with a particular focus on IL17F-induced fibrosis. IL17F induction was examined in human lung epithelial (BEAS-2B) and myeloid cell lines as well as in peripheral blood mononuclear cells after in vitro exposure to aqueous cigarette smoke extract (CSE), inorganic mercury, cadmium or the apoptosis inducer brefeldin A. Fibrosis was examined in vitro, evaluating the transition of human primary dermal fibroblasts to myofibroblasts. We observed that all stressors were able to induce IL17F gene expression regardless of cell type. Interestingly, its induction was associated with cytotoxic/apoptotic signs. Inhibiting oxidative stress by N-acetylcysteine abrogated CSE-induced cytotoxic and IL17F-inducing effects. The induction of IL17F was accompanied by IL17F protein expression. The transition of fibroblasts into myofibroblasts was not influenced by either recombinant IL17F or supernatants of CSE-exposed BEAS-2B. In addition to IL17F secretion by specialized or activated immune cells, we underscored the cell type-independent induction of IL17F by mechanisms of inhibitable oxidative stress-induced cytotoxicity. However, IL17F was not involved in dermal fibrosis under the conditions used in this study.
Collapse
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-235-1552
| | - Beate Fink
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, Leipzig University, 04103 Leipzig, Germany
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
18
|
Huang X, Ran H, Li Y, Ma Q, Ou C, Qiu L, Feng H, Liu W. Leflunomide combined with low-dose prednisone inhibits proinflammatory T cells responses in myasthenia gravis patients. Front Neurol 2022; 13:961628. [PMID: 36164461 PMCID: PMC9508276 DOI: 10.3389/fneur.2022.961628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
We previously found that leflunomide combined with low-dose prednisone rapidly improved the clinical symptoms of myasthenia gravis (MG), but we had not investigated the mechanism of this phenomenon. This study documents the effect of leflunomide combined with low-dose prednisone on pro-inflammatory T cells in MG patients. We compared 32 treated MG patients with 18 controls. We collected peripheral blood before treatment and 4, 8, and 12 weeks after treatment. We extracted peripheral blood mononuclear cells (PBMCs) and stimulated them with phorbol 12-myristate 13-acetate (PMA) + ionomycin and quantified IFN-γ, IL-4, IL-17, and IL-9 secretion through ELISA. We quantified T helper (Th) cells Th1 (CD3+CD4+IFN-γ+), Th2 (CD3+CD4+IL-4+), Th17 (CD3+CD4+IL-17A+) and Th9 (CD3+CD4+IL-9+) among PBMCs. The treatment significantly reduced IL-17 and IL-9 secretion in peripheral blood but did not affect IFN-γ levels. Significant decreases in IL-17 and IL-9 appeared at week 12, and the trend of change was similar to that of the MG composite score. Flow cytometry indicated that leflunomide combined with low-dose prednisone significantly reduced the frequency of Th1 and Th17 cells. These findings demonstrate the potential of this treatment as an alternative immunosuppressive therapy for MG.
Collapse
Affiliation(s)
- Xin Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Hao Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingkai Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Changyi Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Li Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Huiyu Feng
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- Weibin Liu
| |
Collapse
|
19
|
Li Y, Ding T, Chen J, Ji J, Wang W, Ding B, Ge W, Fan Y, Xu L. The protective capability of Hedyotis diffusa Willd on lupus nephritis by attenuating the IL-17 expression in MRL/lpr mice. Front Immunol 2022; 13:943827. [PMID: 35958622 PMCID: PMC9359319 DOI: 10.3389/fimmu.2022.943827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Lupus nephritis (LN), the most severe organ manifestation of systemic lupus erythematosus (SLE), is generally treated with glucocorticoids (GC) in clinical practice, leading to drug resistance and adverse effects in the long term. Fortunately, the combination of GC and traditional Chinese medical prescriptions can attenuate the adverse effects and improve therapeutic efficiency. Hedyotis diffusa Willd (HDW) is one of the most commonly used herbal compounds for LN treatment, which exhibits “heat-clearing” and “detoxification” effects. However, the underlying pharmacological mechanism remains unclear. The present study identified the chemical compounds in HDW extract with UPLC-Q-TOF-MS/MS. A total of 49 components were identified in the HDW extract, and the IL-17 signaling pathway was highly enriched by network pharmacological analysis. MRL/lpr model mice, reflecting the spontaneous development of LN, were used to evaluate the protective activity and investigate the underlying mechanism of the combination treatment. The white blood cell content (WBC), including lymphocytes and neutrophils, cytokines (IL-6, MCP-1, TNF-a), and various autoantibodies (ANA, ab-dsDNA, ab-snRNP/sm) in the blood of MRL/lpr mice were significantly improved by the intragastric administration of HDW. Additionally, the expression of STAT3, IL-17, Ly6G, and MPO in the kidney and neutrophil NETosis were ameliorated with HDW treatment. The pathological and morphological analysis suggested that HDW application could reduce urinary protein levels and inflammatory cell infiltration and inhibit glomerular interstitial cell proliferation. Hence, HDW might ameliorate lupus nephritis by inhibiting IL-6 secretion and STAT3-induced IL-17 expression. The active compounds in HDW were predictively selected with computational methods. The docking affinity of asiatic acid, neoandrographolide to IL-6, glycyrrhetinic acid, oleanolic acid, ursolic acid, and wilforlide A to STAT3 are extremely high. In conclusion, the IL-6 and STAT3/IL-17signaling pathways could be critical regulative targets of HDW on LN.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tao Ding
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinjun Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Ding
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weihong Ge
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Li Xu,
| |
Collapse
|
20
|
Lewis BW, Ford ML, Khan AQ, Walum J, Britt RD. Chronic Allergen Challenge Induces Corticosteroid Insensitivity With Persistent Airway Remodeling and Type 2 Inflammation. Front Pharmacol 2022; 13:855247. [PMID: 35479312 PMCID: PMC9035517 DOI: 10.3389/fphar.2022.855247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2-high severe asthma is described as a distinct endotype with Th2 inflammation, high eosinophil lung infiltration, impaired lung function, and reduced corticosteroid sensitivity. While the inflammatory milieu is similar to mild asthma, patients with type 2-high severe asthma likely have underlying mechanisms that sustain asthma pathophysiology despite corticosteroid treatments. Acute and chronic allergen models induce robust type 2 inflammatory responses, however differences in corticosteroid sensitivity remains poorly understood. In the present study, we sensitized and challenged mice with ovalbumin (OVA; acute model) or mixed allergens (MA; chronic model). Corticosteroid sensitivity was assessed by administering vehicle, 1, or 3 mg/kg fluticasone propionate (FP) and examining key asthmatic features such as airway inflammation, remodeling, hyperresponsiveness, and antioxidant capacity. Both acute and chronic allergen exposure exhibited enhanced AHR, immune cell infiltration, airway inflammation, and remodeling, but corticosteroids were unable to fully alleviate inflammation, AHR, and airway smooth muscle mass in MA-challenged mice. While there were no differences in antioxidant capacity, persistent IL-4+ Th2 cell population suggests the MA model induces type 2 inflammation that is insensitive to corticosteroids. Our data indicate that chronic allergen exposure is associated with more persistent type 2 immune responses and corticosteroid insensitivity. Understanding differences between acute and chronic allergen models could unlock underlying mechanisms related to type 2-high severe asthma.
Collapse
Affiliation(s)
- Brandon W. Lewis
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Maria L. Ford
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aiman Q. Khan
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Joshua Walum
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rodney D. Britt Jr,
| |
Collapse
|
21
|
Li Y, Chang LH, Huang WQ, Bao HW, Li X, Chen XH, Wu HT, Yao ZZ, Huang ZZ, Weinberg SE, Fang DY, Zhang YN, Zhang GH. IL-17A Mediates Pyroptosis via ERK Pathway and Contributes to Steroid Resistance in CRSwNP. J Allergy Clin Immunol 2022; 150:337-351. [DOI: 10.1016/j.jaci.2022.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
|
22
|
Genardi S, Morgun E, Wang CR. CD1-Restricted T Cells in Inflammatory Skin Diseases. J Invest Dermatol 2022; 142:768-773. [PMID: 34130802 PMCID: PMC8665943 DOI: 10.1016/j.jid.2021.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Autoimmunity results from the breaking of immune tolerance, leading to inflammation and pathology. Although well studied in the conventional T-cell field, the role of nonconventional T cells in autoimmunity is less understood. CD1-restricted T cells recognize lipid antigens rather than peptide antigens and have been implicated in various autoimmune skin conditions, including psoriasis and atopic dermatitis. In this review, we will discuss the self-lipids that CD1-restricted T cells recognize and how these T cells become aberrantly regulated in pathogenic skin conditions.
Collapse
Affiliation(s)
- Samantha Genardi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eva Morgun
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chyung-Ru Wang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
23
|
Song Q, Nasri U, Zeng D. Steroid-Refractory Gut Graft-Versus-Host Disease: What We Have Learned From Basic Immunology and Experimental Mouse Model. Front Immunol 2022; 13:844271. [PMID: 35251043 PMCID: PMC8894323 DOI: 10.3389/fimmu.2022.844271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal graft-versus-host disease (Gut-GVHD) is one of the major causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While systemic glucocorticoids (GCs) comprise the first-line treatment option, the response rate for GCs varies from 30% to 50%. The prognosis for patients with steroid-refractory acute Gut-GVHD (SR-Gut-aGVHD) remains dismal. The mechanisms underlying steroid resistance are unclear, and apart from ruxolitinib, there are no approved treatments for SR-Gut-aGVHD. In this review, we provide an overview of the current biological understanding of experimental SR-Gut-aGVHD pathogenesis, the advanced technology that can be applied to the human SR-Gut-aGVHD studies, and the potential novel therapeutic options for patients with SR-Gut-aGVHD.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Qingxiao Song,
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
24
|
Vanpouille C, Günaydın G, Jangard M, Clerici M, Margolis L, Broliden K, Introini A. The Progestin Medroxyprogesterone Acetate Affects HIV-1 Production in Human Lymphoid Tissue Explants in a Dose-Dependent and Glucocorticoid-like Fashion. Viruses 2021; 13:v13112303. [PMID: 34835109 PMCID: PMC8621851 DOI: 10.3390/v13112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The association between the use of the injectable contraceptive depot medroxyprogesterone acetate and HIV-1 susceptibility has been addressed mainly in respect to the changes occurring in the female genital mucosa and blood. However, one of the main sites of HIV-1 pathogenesis is lymphoid organs. To investigate the immunoregulatory effect of medroxyprogesterone acetate (MPA) at this site, human tonsillar tissue explants were infected ex vivo with either a CCR5 (BaL) or CXCR4 (LAI) HIV-1 variant and the release of p24gag and cytokines was measured in culture supernatant. The response to MPA was compared with that elicited by treatment with progesterone (P4) and dexamethasone (DEX), which selectively binds the glucocorticoid receptor, in donor-matched explant cultures. MPA treatment reduced the replication of both tested HIV-1 strains as well as the production of the mediators of inflammation IL-1β, IL-17A and CCL5, but not CCL20, in a similar way to DEX, whereas P4 had no effect on HIV-1 replication. The magnitude of both MPA and DEX-mediated responses was proportional to the length of exposure and/or administered dose. Blockage of the progesterone and glucocorticoid receptors with mifepristone abolished all observed changes in HIV-1 and cytokine production, and was associated with increased IL-22 levels in HIV-infected explants. Our data indicate that elevated doses of MPA may affect the immune responses in lymphoid tissue in a glucocorticoid-like fashion with an immediate impact on local HIV-1 replication.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (C.V.); (L.M.)
| | - Gökçe Günaydın
- Center for Molecular Medicine, Department of Medicine Solna, Division of Infectious Diseases, Karolinska University Hospital, Karolinska Institutet, 171 77 Solna, Sweden; (G.G.); (K.B.)
| | - Mattias Jangard
- Ear, Nose and Throat Unit, Research Laboratory, Sophiahemmet University, 114 86 Stockholm, Sweden;
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (C.V.); (L.M.)
| | - Kristina Broliden
- Center for Molecular Medicine, Department of Medicine Solna, Division of Infectious Diseases, Karolinska University Hospital, Karolinska Institutet, 171 77 Solna, Sweden; (G.G.); (K.B.)
| | - Andrea Introini
- Center for Molecular Medicine, Department of Medicine Solna, Division of Infectious Diseases, Karolinska University Hospital, Karolinska Institutet, 171 77 Solna, Sweden; (G.G.); (K.B.)
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy
- Correspondence: or
| |
Collapse
|
25
|
Xue Y, Zhou Y, Bao W, Fu Q, Hao H, Han L, Zhang X, Tian X, Zhang M. STAT3 and IL-6 Contribute to Corticosteroid Resistance in an OVA and Ozone-induced Asthma Model with Neutrophil Infiltration. Front Mol Biosci 2021; 8:717962. [PMID: 34760922 PMCID: PMC8573338 DOI: 10.3389/fmolb.2021.717962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to high levels of ozone contributes to insensitivity to glucocorticoids in asthma treatment, but the underlying mechanisms are not known. We built two asthma models: a "T2-high" asthma model was established by ovalbumin (OVA) sensitization/challenge and OVA sensitization/challenge combined with ozone exposure (OVA + ozone) was used to induce airway inflammation with increased numbers of neutrophils to simulate "T2-low" asthma. The expression of T-helper (Th)1/2/17-related cytokines was measured by cytokine antibody arrays. Bronchial provocation tests were carried out to evaluate the lung resistance of mice. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemical (IHC) analyses of alpha-smooth muscle actin were undertaken to observe morphology changes in lungs. The expression of glucocorticoid receptors (GRs) and phosphorylated-GR (p-GR) was measured by western blotting. Nr3c1 mRNA was quantified by RT-qPCR. Protein expression of proinflammatory cytokines, signal transducer and activator of transcription 3 (STAT3), suppressor of cytokine signaling 3 (SOCS3), and CXCL1 was measured through ELISAs, western blotting, or IHC analyses. Resected lung tissue from seven asthma patients and 10 healthy controls undergoing thoracotomy for pulmonary nodules was evaluated by IHC analyses and ELISAs. In both asthma models, mucus hypersecretion, as well as inflammation, hyperresponsiveness, and remodeling of the airways, was present compared with the control group, whereas the OVA + ozone group showed severe neutrophil infiltration. The expression of Th17-related cytokines (interleukin (IL)-6, IL-17A, IL-21), GR protein, and CXCL1 increased in the OVA + ozone group, whereas the expression of p-GR decreased. Dexamethasone (Dex) could not totally reverse the expression of p-GR and histone deacetylase-2 in the OVA + ozone group. STAT3 expression increased in the OVA + ozone group and could not be completely reversed by Dex, and nor could IL-6 expression. A positive correlation between IL-6 or IL-17A and STAT3 and negative correlation between SOCS3 and STAT3 were shown, suggesting that the IL-6/STAT3 pathway may be involved in OVA + ozone-induced corticosteroid-resistant airway inflammation. In clinical samples, IL-17A expression in lung tissue was positively correlated with percent STAT3-positive area and negatively correlated with SOCS3 expression. The IL-6/STAT3 pathway may contribute to corticosteroid insensitivity in OVA + ozone-induced neutrophilic airway inflammation through regulation of Th17 cells and could provide new targets for individual treatment of corticosteroid resistance in asthma.
Collapse
Affiliation(s)
- Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijuan Hao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Siomkajło M, Mizera Ł, Szymczak D, Kolačkov K, Grzegrzółka J, Bolanowski M, Daroszewski J. Effect of systemic steroid therapy in Graves' orbitopathy on regulatory T cells and Th17/Treg ratio. J Endocrinol Invest 2021; 44:2475-2484. [PMID: 33866536 DOI: 10.1007/s40618-021-01565-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Glucocorticoids are a mainstay treatment for Graves' orbitopathy, yet their exact mechanisms of action remain unclear. We aimed to determine whether the therapeutic effects of systemic steroid therapy in Graves' orbitopathy are mediated by changes in regulatory T lymphocytes (Tregs) and T helper 17 lymphocytes (Th17). METHODS We assessed Treg and Th17 levels in the peripheral blood of 32 patients with active, moderate-to-severe Graves' orbitopathy who received 12 weekly pulses of methylprednisolone, and determined their association with disease severity, disease activity, and treatment outcomes. The acute orbitopathy phase was confirmed based on clinical evaluation and magnetic resonance imaging, and assessed using the clinical activity score (CAS). The severity of the disease was classified according to ETA/EUGOGO guidelines, and quantified based on the total eye score. Treatment response was determined based on specific criteria (e.g., changes in CAS score, diplopia grade, visual acuity, etc.). Treg and Th17 cells were identified using flow cytometry. RESULTS Methylprednisolone treatment improved the activity of the disease and altered the Th17/Treg balance (i.e., the percentage of Tregs decreased while the number of Th17 cells remained unchanged). There was no association between the Treg/Th17 ratio and the activity and severity of the disease or the treatment response. CONCLUSIONS Therapeutic effects of steroid therapy in Graves' orbitopathy are not mediated by Treg and Th17 alterations in the peripheral blood. The decrease in peripheral Treg percentage is likely a consequence of the non-specific effects of steroids and does not impact clinical outcome.
Collapse
Affiliation(s)
- M Siomkajło
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland.
| | - Ł Mizera
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - D Szymczak
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - K Kolačkov
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - J Grzegrzółka
- Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | - M Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - J Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| |
Collapse
|
27
|
Bolshakov AP, Tret'yakova LV, Kvichansky AA, Gulyaeva NV. Glucocorticoids: Dr. Jekyll and Mr. Hyde of Hippocampal Neuroinflammation. BIOCHEMISTRY (MOSCOW) 2021; 86:156-167. [PMID: 33832414 DOI: 10.1134/s0006297921020048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucocorticoids (GCs) are an important component of adaptive response of an organism to stressogenic stimuli, a typical stress response being accompanied by elevation of GC levels in blood. Anti-inflammatory effects of GCs are widely used in clinical practice, while pro-inflammatory effects of GCs are believed to underlie neurodegeneration. This is particularly critical for the hippocampus, brain region controlling both cognitive function and emotions/affective behavior, and selectively vulnerable to neuroinflammation and neurodegeneration. The hippocampus is believed to be the main target of GCs since it has the highest density of GC receptors potentially underlying high sensitivity of hippocampal cells to severe stress. In this review, we analyzed the results of studies on pro- and anti-inflammatory effects of GCs in the hippocampus in different models of stress and stress-related pathologies. The available data form a sophisticated, though often quite phenomenological, picture of a modulatory role of GCs in hippocampal neuroinflammation. Understanding the dual nature of GC-mediated effects as well as causes and mechanisms of switching can provide us with effective approaches and tools to avert hippocampal neuroinflammatory events and as a result to prevent and treat brain diseases, both neurological and psychiatric. In the framework of a mechanistic view, we propose a new hypothesis describing how the anti-inflammatory effects of GCs may transform into the pro-inflammatory ones. According to it, long-term elevation of GC level or preliminary treatment with GC triggers accumulation of FKBP51 protein that suppresses activity of GC receptors and activates pro-inflammatory cascades, which, finally, leads to enhanced neuroinflammation.
Collapse
Affiliation(s)
- Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Liya V Tret'yakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Alexey A Kvichansky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia. .,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
28
|
Bier J, Steiger SM, Reichardt HM, Lühder F. Protection of Antigen-Primed Effector T Cells From Glucocorticoid-Induced Apoptosis in Cell Culture and in a Mouse Model of Multiple Sclerosis. Front Immunol 2021; 12:671258. [PMID: 34177911 PMCID: PMC8222504 DOI: 10.3389/fimmu.2021.671258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Induction of T cell apoptosis constitutes a major mechanism by which therapeutically administered glucocorticoids (GCs) suppress inflammation and associated clinical symptoms, for instance in multiple sclerosis (MS) patients suffering from an acute relapse. The sensitivity of T cells to GC action depends on their maturation and activation status, but the precise effect of antigen-priming in a pathological setting has not been explored. Here we used transgenic and congenic mouse models to compare GC-induced apoptosis between naïve and antigen-specific effector T cells from mice immunized with a myelin peptide. Antigen-primed effector T cells were protected from the pro-apoptotic activity of the synthetic GC dexamethasone in a dose-dependent manner, which resulted in their accumulation relative to naïve T cells in vitro and in vivo. Notably, the differential sensitivity of T cells to GC-induced apoptosis correlated with their expression level of the anti-apoptotic proteins Bcl-2 and Bcl-XL and a loss of the mitochondrial membrane potential. Moreover, accumulation of antigen-primed effector T cells following GC treatment in vitro resulted in an aggravated disease course in an adoptive transfer mouse model of MS in vivo, highlighting the clinical relevance of the observed phenomenon. Collectively, our data indicate that antigen-priming influences the T cells’ sensitivity to therapeutically applied GCs in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Jasmina Bier
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian M Steiger
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Goettingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
29
|
Ma JX, Xiao X, Zhou KF, Huang G, Ao B, Zhang Y, Gao WJ, Lei T, Yang L, Fan XC, Li WH. Herb pair of Ephedrae Herba-Armeniacae Semen Amarum alleviates airway injury in asthmatic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113745. [PMID: 33359859 DOI: 10.1016/j.jep.2020.113745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ephedrae Herba (EH, Ephedra sinica Stapf.) and Armeniacae Semen Amarum (ASA, Prunus armeniaca L. var. ansu Maxim.) have been used to treat asthma, cold, fever, and cough in China for thousands of years. AIM OF THE STUDY In this study, we aimed to investigate the optimal ratio of EH and ASA compatibility (EAC) to reduce airway injury in asthmatic rats and its possible mechanism. METHODS Rats were sensitized with a mixture of acetylcholine chloride and histamine bisphosphate 1 h before sensitization by intragastric administration of EAC or dexamethasone or saline for 7 days. Subsequently, the ultrastructure of rat airway epithelial tissue changes, apoptosis of the airway epithelial cells, and the expression of mRNA and protein of EGRF and Bcl-2 were detected. RESULTS Transmission electron microscope: EAC (groups C and E) had the most prominent effect on repairing airway epithelial cells' ultrastructural changes in asthmatic rats. TUNEL: dexamethasone and EAC (groups B、C、E and F) inhibited the apoptosis of airway epithelial cells in asthmatic rats (P < 0.05). In situ hybridization: EAC (group E) inhibited the overexpression of EGFR and Bcl-2 mRNA (P < 0.05).Western Blotting: EAC (groups A、B、C、E and F) inhibited the upregulation of airway epithelial EGFR and Bcl-2 protein expression (P < 0.01). CONCLUSIONS Our findings indicate that EAC can inhibit abnormal changes in airway epithelial structure and apoptosis of airway epithelial cells, thereby alleviating airway injury. In this study, the best combination of EH and ASA to alleviate airway epithelial injury in asthmatic rats was group E (EH: ASA = 8: 4.5).
Collapse
Affiliation(s)
- Jia-Xin Ma
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xiong Xiao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Kai-Fang Zhou
- School of Pharmacy, Sanquan Medical College, Xinxiang, Henan, 453003, China
| | - Gang Huang
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, 362010, China
| | - Bo Ao
- Department of Pharmacy, CITIC Huizhou Hospital, Huizhou, Guangdong, 516006, China
| | - Ying Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Wen-Jun Gao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ting Lei
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Li Yang
- Department of Pharmacy, The Ninth Hospital of Nanchang, Nanchang, Jiangxi, 330002, China
| | - Xue-Cheng Fan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Wen-Hong Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
30
|
Khedri M, Kooshki H, Taheri RA. Rapamycin attenuates gene expression of programmed cell death protein-ligand 1 and Foxp3 in the brain; a novel mechanism proposed for immunotherapy in the brain. Res Pharm Sci 2021; 16:165-172. [PMID: 34084203 PMCID: PMC8102928 DOI: 10.4103/1735-5362.310523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/04/2021] [Accepted: 02/28/2021] [Indexed: 11/14/2022] Open
Abstract
Background and purpose: Programmed cell death protein-1 (PD1) expresses on the cell surface of the activated lymphocytes and at least a subset of Foxp3+ regulatory T cells. The binding of PD1 to its ligands including PD-L1 and PD-L2 leads to deliver an inhibitory signal to the activated cells. Although PD1/PD-L signal deficiency can lead to failure in the self-tolerance and development of autoimmunity disorders, PD1 blockade with monoclonal antibodies is considered an effective strategy in cancer immunotherapy. Determining effective environmental factors such as stress conditions on the expression of PD1 and PD-L1 genes can provide an immunotherapeutic strategy to control PD1 signaling in the patients Mammalian target of rapamycin signaling is a stress-responsive pathway in the cells that can be blocked by rapamycin. In this study, the effects of rapamycin on the expression of immunoregulatory genes were investigated in the stress condition. Experimental approach: Daily administration of rapamycin (1.5 mg/kg per day) was used in the mouse model of restraint stress and the relative expression of PD1, PD-L1, and Foxp3 genes in the brain and spleen were evaluated using quantitative real-time polymerase chain reaction method. Findings/Results: With our observation, daily restraint stress ceased rapamycin to decrease the expression of Foxp3 in the brain significantly. These findings would be beneficial in developing tolerance to autoimmune diseases and finding immunopathology of stress in the CNS. In another observation, daily administration of rapamycin decreased the expression of PD-L1 in the brain cells of mice. In the spleen samples, significant alteration in genes of interest expression was not detected for all groups of the study. Conclusion and implications: Downregulation of the PD-L1 gene in the brain induced by rapamycin can be followed in future experiences for preventing immunosuppressive effects of PD/PD-L1 signal in the brain.
Collapse
Affiliation(s)
- Mostafa Khedri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran.,Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
31
|
Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease. Blood 2021; 136:429-440. [PMID: 32526035 DOI: 10.1182/blood.2019000953] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is 1 of the major life-threating complications after allogeneic cell transplantation. Although steroids remain first-line treatment, roughly one-half of patients will develop steroid-refractory GVHD (SR-GVHD), which portends an extremely poor prognosis. Many agents that have shown encouraging response rates in early phase 1/2 trials for prevention and treatment have been unsuccessful in demonstrating a survival advantage when applied in the setting of SR-GVHD. The discovery of novel treatments has been further complicated by the absence of clinically informative animal models that address what may reflect a distinct pathophysiology. Nonetheless, the combined knowledge of established bone marrow transplantation models and recent human trials in SR-GVHD patients are beginning to illuminate novel mechanisms for inhibiting T-cell signaling and promoting tissue tolerance that provide an increased understanding of the underlying biology of SR-GVHD. Here, we discuss recent findings of newly appreciated cellular and molecular mechanisms and provide novel translational opportunities for advancing the effectiveness of treatment in SR-GVHD.
Collapse
|
32
|
Intra-articular Injections of the Hip and Knee With Triamcinolone vs Ketorolac: A Randomized Controlled Trial. J Arthroplasty 2021; 36:416-422. [PMID: 32950343 DOI: 10.1016/j.arth.2020.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Clinicians commonly utilize intra-articular injections to treat symptomatic primary arthritis. Steroid injections are common yet have immune-modulating effects and can alter gene expression which may delay definitive arthroplasty and further damage cartilage. Nonsteroidal anti-inflammatory injections may offer a safer profile due to their differing mechanism of action; however, there is a relative dearth of information regarding their efficacy. This noninferiority study compares the effectiveness of triamcinolone vs ketorolac in treating symptoms of moderate to advanced primary osteoarthritis of the hip and knee. METHODS In total, 110 patients (52 hips and 58 knees) with moderate to severe radiographic primary osteoarthritis of the hip or knee were randomized in a double-blinded study to receive an ultrasound-guided intra-articular injection of ketorolac or triamcinolone. Patient-reported outcome measures were collected pre-injection and at 1 week, 1 month, and 3 months. RESULTS For hips and knees, intra-articular injections with either ketorolac or triamcinolone led to statistically significant improvements in patient-reported outcome measures. The treatment effect size was largest at 1 week and decreased over time. Primary analysis of variance comparisons revealed no significant differences between ketorolac and triamcinolone. For knee injections, post hoc secondary analysis suggests slight added durability in the triamcinolone group. Adverse effects were minimal with both interventions. CONCLUSION Intra-articular ketorolac injections provide comparable improvement to triamcinolone for primary hip and knee osteoarthritis. Ketorolac is an additional low-cost option for conservative management of primary osteoarthritis, and due to its differing mechanism of action, it may not propagate additional cartilage damage or preclude from early surgical intervention if unsuccessful. TRIAL REGISTRATION NUMBER NCT04441112.
Collapse
|
33
|
Gao Y, Zhou X, Zhou Y, Zhang W, Zhao L. Chrysene accelerates the proceeding of chronic obstructive pulmonary disease with the aggravation of inflammation and apoptosis in cigarette smoke exposed mice. Hum Exp Toxicol 2020; 40:1031-1044. [PMID: 33345606 DOI: 10.1177/0960327120979343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chrysene, one of the basic polycyclic aromatic hydrocarbons (PAHs), has been reported to make damages to human health and living environment. Chronic obstructive pulmonary disease (COPD) is a progressive disorder with high morbidity and mortality. To investigate the role of chrysene in the development of COPD, male C57BL/6 mice were exposed to the cigarette smoke (CS) followed with the administration of chrysene. Morphological analyses indicated that chrysene caused earlier and severer pathological changes in CS-exposed mice. Besides, CS-exposed mice with chrysene treatment showed obvious collagen deposition, elevated α-smooth muscle actin (α-SMA) expression and reduced E-cadherin abundance at earlier stage, which suggested the acceleration and aggravation of pulmonary fibrosis. Moreover, quantification of leukocytes and pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and lung tissues implied that chrysene significantly exacerbated the proceeding of inflammation in CS-exposed mice. Furthermore, significantly increased apoptotic rates, augmented expressions of apoptotic related proteins and highly expressed TRPV1 were determined in CS-exposed mice with chrysene treatment, which indicated the association between COPD pathogenesis and TRPV1 channel. In summary, our findings elucidate that chrysene accelerates the development of COPD in a murine model with new molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinjia Zhou
- Department of Otolaryngology Head and Neck Surgery, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Zhou
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
34
|
Taves MD, Ashwell JD. Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol 2020; 21:233-243. [PMID: 33149283 DOI: 10.1038/s41577-020-00464-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are small lipid hormones produced by the adrenals that maintain organismal homeostasis. Circadian and stress-induced changes in systemic GC levels regulate metabolism, cardiovascular and neural function, reproduction and immune activity. Our understanding of GC effects on immunity comes largely from administration of exogenous GCs to treat immune or inflammatory disorders. However, it is increasingly clear that endogenous GCs both promote and suppress T cell immunity. Examples include selecting an appropriate repertoire of T cell receptor (TCR) self-affinities in the thymus, regulating T cell trafficking between anatomical compartments, suppressing type 1 T helper (TH1) cell responses while permitting TH2 cell and, especially, IL-17-producing T helper cell responses, and promoting memory T cell differentiation and maintenance. Furthermore, in addition to functioning at a distance, extra-adrenal (local) production allows GCs to act as paracrine signals, specifically targeting activated T cells in various contexts in the thymus, mucosa and tumours. These pleiotropic effects on different T cell populations during development and immune responses provide a nuanced understanding of how GCs shape immunity.
Collapse
Affiliation(s)
- Matthew D Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Comparative efficacy of glucocorticoid receptor agonists on Th2 cell function and attenuation by progesterone. BMC Immunol 2020; 21:54. [PMID: 33076829 PMCID: PMC7574173 DOI: 10.1186/s12865-020-00383-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Corticosteroids (CS)s suppress cytokine production and induce apoptosis of inflammatory cells. Prednisone and dexamethasone are oral CSs prescribed for treating asthma exacerbations. While prednisone is more commonly prescribed, dexamethasone is long acting and a more potent glucocorticoid receptor (GR) agonist. It can be administered as a one or two dose regime, unlike the five to seven days required for prednisone, a feature that increases compliance. We compared the relative ability of these two oral CSs to suppress type 2 inflammation. Since progesterone has affinity for the GR and women are more likely to relapse following an asthma exacerbation, we assessed its influence on CS action. RESULTS Dexamethasone suppressed the level of IL-5 and IL-13 mRNA within Th2 cells with ~ 10-fold higher potency than prednisolone (the active form of prednisone). Dexamethasone induced a higher proportion of apoptotic and dying cells than prednisolone, at all concentrations examined. Addition of progesterone reduced the capacity of both CS to drive cell death, though dexamethasone maintained significantly more killing activity. Progesterone blunted dexamethasone-induction of FKBP5 mRNA, indicating that the mechanism of action was by interference of the CS:GR complex. CONCLUSIONS Dexamethasone is both more potent and effective than prednisolone in suppressing type 2 cytokine levels and mediating apoptosis. Progesterone attenuated these anti-inflammatory effects, indicating its potential influence on CS responses in vivo. Collectively, our data suggest that when oral CS is required, dexamethasone may be better able to control type 2 inflammation, eliminate Th2 cells and ultimately lead to improved long-term outcomes. Further research in asthmatics is needed.
Collapse
|
36
|
Hasenmajer V, Sbardella E, Sciarra F, Minnetti M, Isidori AM, Venneri MA. The Immune System in Cushing's Syndrome. Trends Endocrinol Metab 2020; 31:655-669. [PMID: 32387195 DOI: 10.1016/j.tem.2020.04.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
Cushing's syndrome (CS), or chronic hypercortisolism, induces a variety of alterations in the immune system, often leading to severe clinical complications such as sepsis and opportunistic infections. Prolonged exposure to high levels of glucocorticoids (GC), changes in the circadian rhythm, and the comorbidities associated therewith all combine to cause profound changes in the immune profile of affected patients. While traditionally associated with generalized immune suppression, such changes actually comprise a much more complex scenario, sharing traits with chronic inflammatory disorders. Persistently increased levels of interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα) and adipose tissue infiltration by immune cells lead to a chronic, nonresolving, inflammatory state. The combination of low-grade inflammation and selectively impaired immune response is thought to play a major role in the pathogenesis of clinical complications of CS, including diabetes, lipodystrophy, visceral adiposity, atherosclerosis, osteoporosis, and cognitive impairment. This dysregulation also explains rebound phenomena when CS is treated, involving new clinical complications sustained by an excessive immune response and autoimmunity. The aim of this review is to summarize the available evidence on the immune system in chronic hypercortisolism, while describing the main mechanisms of immune derangement and their role in the increased mortality and morbidity seen in this complex disease. A better understanding of immune system alterations in CS could help improve risk stratification, offer novel biomarkers, and provide the basis for more tailored therapies and post-remission follow-up.
Collapse
Affiliation(s)
- Valeria Hasenmajer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marianna Minnetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
37
|
Khedri M, Samei A, Fasihi-Ramandi M, Taheri RA. The immunopathobiology of T cells in stress condition: a review. Cell Stress Chaperones 2020; 25:743-752. [PMID: 32319022 PMCID: PMC7479667 DOI: 10.1007/s12192-020-01105-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Several factors impact the immune responses such as the chemical nature of antigens, the physiologic and metabolic condition of the responsive cells, the site of antigen recognition, and neuroendocrine and pharmacological received agents. Incompatibility of host immune responses to the entrapped antigens leads to an immune pathological manner instead of an immune protection which results in the disharmony of the immune effective factors. Besides the fact that stress is one of the most common effective factors in human life, it also contributed to the protection, suppression, and pathology of the immune system. In this review article, the direct and indirect effects of the stress on the function of T cells and the contributed mechanism of action will be discussed.
Collapse
Affiliation(s)
- Mostafa Khedri
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azam Samei
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Combined Extracts of Epimedii Folium and Ligustri Lucidi Fructus with Budesonide Attenuate Airway Remodeling in the Asthmatic Rats by Regulating Apoptosis and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2319409. [PMID: 32831860 PMCID: PMC7426755 DOI: 10.1155/2020/2319409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This study aimed to investigate the effects of the coadministration of budesonide (Bud) and the extracts of Epimedii Folium and Ligustri Lucidi Fructus (EEL) on regulating apoptosis and autophagy in asthmatic rats. Forty Sprague-Dawley rats were divided randomly into five groups (8 rats in each group): normal control (control), asthma model (asthma), Bud (1 mg Bud suspension in 50 ml sterile physiological saline for 30 min), EEL (100 mg/kg EEL), and group of coadministration of Bud and EEL (Bud&EEL, 100 mg/kg EEL plus Bud by nebulized inhalation for 30 min). Rats were sensitized and challenged with ovalbumin for 7 weeks and treated with corresponding drug for 4 weeks. We anesthetized all rats with 25% ethyl carbamate (4 ml/kg) and took lung tissues and BALF after final ovalbumin challenge to observe the lung histopathology and morphometry; apoptosis in BALF and lung tissue; protein expressions of Ki-67, α-SMA, cleaved Caspase-3, p-mTOR, and LC3; and protein and mRNA expressions of Bax, Bcl-2, Caspase-3, P53, mTOR, and Beclin-1. Results showed that Bud&EEL could alleviate airway remodeling, inhibit cell proliferation and autophagy in lung tissue, and promote apoptosis in BALF and lung tissue in ovalbumin-induced asthma rats through downregulating the protein expressions of α-SMA and Ki-67, the protein ratio of LC3-II/LC3-I and Bcl-2/Bax, and the protein and mRNA expressions of Bcl-2 and Beclin-1, while upregulating the protein expressions of cleaved Caspase-3 and p-mTOR, and the protein and mRNA expressions of Bax, Caspase-3, P53, and mTOR. Bud&EEL had better effects than single-use Bud on improving airway remodeling, promoting apoptosis, and regulating the expressions of autophagy- and apoptosis-related proteins. This study suggested that the effects of coadministration of EEL and Bud on regulating apoptosis and autophagy were better than those of single-use Bud treatment, and that might be the mechanism of attenuating airway remodeling, providing an alternative therapy for asthma.
Collapse
|
39
|
Wu D, Gu B, Qian Y, Sun Y, Chen Y, Mao ZD, Shi YJ, Zhang Q. Long non-coding RNA growth arrest specific-5: a potential biomarker for early diagnosis of severe asthma. J Thorac Dis 2020; 12:1960-1971. [PMID: 32642099 PMCID: PMC7330345 DOI: 10.21037/jtd-20-213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The diagnosis of severe asthma (SA) is difficult due to a necessary long-term treatment history currently, while there are few studies on biomarkers in the diagnosis of SA. Long non-coding RNA (lncRNA) growth arrest specific-5 (GAS5) has the potential of playing this role because its binding with glucocorticoid receptor (GR). The purpose of this article is to explore the possibility of lncRNA GAS5 acting as a biomarker for early diagnosis of severe asthma (SA). Methods Peripheral blood was obtained from healthy volunteers, patients with non-severe asthma (nSA) and SA, and peripheral blood mononuclear cells (PBMCs) were separated. Twenty-four female BALB/c mice (aged 6 weeks) were randomly and averagely divided into 3 groups, i.e., control group, asthma group and dexamethasone group. The mice were sensitized and challenged with ovalbumin (OVA) and lipopolysaccharide (LPS) to establish a murine model of steroid-insensitive asthma. Human bronchial epithelial cells (HBECs) were cultured, transfected with miR-9 mimics, JNK1 inhibitor and treated with interleukin (IL)-2 + IL-4 and dexamethasone. Western blot was used to detect glucocorticoid receptor phosphorylation at serine 226 (GRser226), and quantitative real-time PCR was used to detect GAS5 level. Results The level of GAS5 in PBMCs from nSA group elevated 20-fold higher after dexamethasone treatment in vitro, while it reduced 15-fold lower in SA group (P<0.001). The expression of GRser226 in PBMCs from SA group was significantly higher than that from control group and nSA group after dexamethasone treatment (P<0.001). In the lung tissue of mice, the GAS5 level of dexamethasone group was lower than that of asthma group (P<0.001) and control group (P<0.05). Both treatment with IL-2 + IL-4 and transfection of miR-9 mimics could increase the expression of GRser226 in HBECs (P<0.001). The GAS5 level in HBECs after IL-2 + IL-4 + Dexamethasone treatment was lower than that in HBECs only treated with IL-2 + IL-4 (P<0.001). Similarly, dexamethasone treatment also decreased the level of GAS5 in HBECs transfected with miR-9 mimics (P<0.05). Moreover, transfecting with JNK1 inhibitor could reverse the expression of GAS5 in HBECs transfected with miR-9 mimics and treated with dexamethasone. However, the level of GAS5 in HBECs interfered with IL-2 + IL-4 + Dexamethasone was not affected by JNK1 inhibitor. Conclusions The expression of GAS5 is different in PBMCs between nSA and SA, and is affected by glucocorticoids treatment, which is due to GRser226 phosphorylation. GAS5 can be used as a potential biomarker for diagnosis of severe asthma by comparing GAS5 level in PBMCs from patients before and after glucocorticoids treatment in vitro.
Collapse
Affiliation(s)
- Di Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Bin Gu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
40
|
Zhou S, Zou H, Chen G, Huang G. Synthesis and Biological Activities of Chemical Drugs for the Treatment of Rheumatoid Arthritis. Top Curr Chem (Cham) 2019; 377:28. [DOI: 10.1007/s41061-019-0252-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
|
41
|
Early induction of C/EBPβ expression as a potential marker of steroid responsive colitis. Sci Rep 2019; 9:13087. [PMID: 31511552 PMCID: PMC6739378 DOI: 10.1038/s41598-019-48251-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/26/2019] [Indexed: 01/27/2023] Open
Abstract
The precise mechanism of hydrocortisone immune regulation in the management of colitis is poorly understood. Whilst not without limitations, its ability to suppress pathology and rapidly improve patient clinical outcome is key. We were interested in identifying early markers of therapeutic responsiveness in order to identify patients’ refractory to therapy. Chronic Th1-driven colitis was induced in AKR/J mice using a parasite infection, Trichuris muris. 35 days post infection, mice were treated with low dose hydrocortisone (2 mg/kg/) i.p. on alternate days. Response to therapy was assessed at a systemic and tissue level day 45 post infection. Histopathology, gene and protein analysis was conducted to determine cytokine and transcriptional profiles. The colonic transcriptional profile in steroid treated mice showed significant upregulation of a small subset of T cell associated genes, in particular C/EBPβ, CD4, IL7R and STAT5a. Despite no change in either transcription or protein production in downstream cytokines IFN γ, TNFα IL-17 and IL-10, hydrocortisone treatment significantly reduced colonic pathology and restored colonic length to naïve levels. As expected, steroid treatment of chronic gut inflammation generated significant immunosuppressive effects characterized by histological improvement. Low dose hydrocortisone induced significant upregulation of a subset of genes associated with T cell maintenance and regulation, including C/EBPβ. These data suggest that enhanced expression of C/EBPβ may be one of a subset of early markers demonstrating an immune regulatory response to hydrocortisone therapy, potentially by stabilization of Treg function. These observations contribute to our understanding of the immune landscape after steroid therapy, providing a potential markers of therapeutic responders and those refractory to hydrocortisone treatment.
Collapse
|
42
|
Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front Immunol 2019; 10:1744. [PMID: 31396235 PMCID: PMC6667663 DOI: 10.3389/fimmu.2019.01744] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
43
|
Halkias J, Rackaityte E, Hillman SL, Aran D, Mendoza VF, Marshall LR, MacKenzie TC, Burt TD. CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells. J Clin Invest 2019; 129:3562-3577. [PMID: 31145102 DOI: 10.1172/jci125957] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown. METHODS We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls. RESULTS We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation. CONCLUSION Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.
Collapse
Affiliation(s)
| | - Elze Rackaityte
- Biomedical Sciences Program, UCSF, San Francisco, California, USA
| | - Sara L Hillman
- Maternal and Fetal Medicine Department, Institute for Women's Health, University College London, London, United Kingdom
| | - Dvir Aran
- Institute for Computational Health Sciences, UCSF, San Francisco, California, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Lucy R Marshall
- Division of Infection Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA.,Department of Surgery, UCSF, San Francisco, California, USA
| | - Trevor D Burt
- Division of Neonatology, Department of Pediatrics, and.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| |
Collapse
|
44
|
Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest 2019; 129:1493-1503. [PMID: 30855278 PMCID: PMC6436902 DOI: 10.1172/jci124611] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A rapidly developing paradigm for modern health care is a proactive and individualized response to patients' symptoms, combining precision diagnosis and personalized treatment. Precision medicine is becoming an overarching medical discipline that will require a better understanding of biomarkers, phenotypes, endotypes, genotypes, regiotypes, and theratypes of diseases. The 100-year-old personalized allergen-specific management of allergic diseases has particularly contributed to early awareness in precision medicine. Polyomics, big data, and systems biology have demonstrated a profound complexity and dynamic variability in allergic disease between individuals, as well as between regions. Escalating health care costs together with questionable efficacy of the current management of allergic diseases facilitated the emergence of the endotype-driven approach. We describe here a precision medicine approach that stratifies patients based on disease mechanisms to optimize management of allergic diseases.
Collapse
Affiliation(s)
- Ioana Agache
- Transylvania University, Faculty of Medicine, Brasov, Romania
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
45
|
Song Y, Yang H, Jiang K, Wang BM, Lin R. miR-181a regulates Th17 cells distribution via up-regulated BCL-2 in primary biliary cholangitis. Int Immunopharmacol 2018; 64:386-393. [DOI: 10.1016/j.intimp.2018.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
46
|
Dankers W, González-Leal C, Davelaar N, Asmawidjaja PS, Mus AMC, Hazes JMW, Colin EM, Lubberts E. 1,25(OH) 2D 3 and dexamethasone additively suppress synovial fibroblast activation by CCR6 + T helper memory cells and enhance the effect of tumor necrosis factor alpha blockade. Arthritis Res Ther 2018; 20:212. [PMID: 30236152 PMCID: PMC6148958 DOI: 10.1186/s13075-018-1706-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite recent improvements in the treatment of rheumatoid arthritis (RA), an insufficient treatment response and the development of treatment resistance in many patients illustrates the need for new therapeutic strategies. Chronic synovial inflammation could be suppressed by targeting RA synovial fibroblast (RASF) activation by, for example, interleukin (IL)-17A-producing CCR6+ T helper memory (memTh) cells. Here, we modulated this interaction by combining the active vitamin D metabolite 1,25(OH)2D3 with dexamethasone (DEX) and explored the potential therapeutic applications. METHODS CCR6+ memTh cells from peripheral blood mononuclear cells (PBMCs) of healthy donors or treatment-naive early RA patients were cultured alone or with RASF from established RA patients for 3 days and treated with or without 1,25(OH)2D3, DEX, or etanercept. Treatment effects were assessed using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. RESULTS 1,25(OH)2D3, and to lesser extent DEX, reduced production of the pro-inflammatory cytokines IL-17A, IL-22, and interferon (IFN)γ in CCR6+ memTh cells. Tumor necrosis factor (TNF)α was only inhibited by the combination of 1,25(OH)2D3 and DEX. In contrast, DEX was the strongest inhibitor of IL-6, IL-8, and tissue-destructive enzymes in RASF. As a result, 1,25(OH)2D3 and DEX additively inhibited inflammatory mediators in CCR6+ memTh-RASF cocultures. Interestingly, low doses of mainly DEX, but also 1,25(OH)2D3, combined with etanercept better suppressed synovial inflammation in this coculture model compared with etanercept alone. CONCLUSION This study suggests that 1,25(OH)2D3 and DEX additively inhibit synovial inflammation through targeting predominantly CCR6+ memTh cells and RASF, respectively. Furthermore, low doses of DEX and 1,25(OH)2D3 enhance the effect of TNFα blockade in inhibiting RASF activation, thus providing a basis to improve RA treatment.
Collapse
Affiliation(s)
- Wendy Dankers
- Department of Rheumatology, Erasmus MC, Rotterdam, the Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Claudia González-Leal
- Department of Rheumatology, Erasmus MC, Rotterdam, the Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Nadine Davelaar
- Department of Rheumatology, Erasmus MC, Rotterdam, the Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Patrick S. Asmawidjaja
- Department of Rheumatology, Erasmus MC, Rotterdam, the Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Adriana M. C. Mus
- Department of Rheumatology, Erasmus MC, Rotterdam, the Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Edgar M. Colin
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, Rotterdam, the Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
- Erasmus MC University Medical Center, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| |
Collapse
|
47
|
Seshadri S, Pope RL, Zenewicz LA. Glucocorticoids Inhibit Group 3 Innate Lymphocyte IL-22 Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1267-1274. [PMID: 29980608 PMCID: PMC6082413 DOI: 10.4049/jimmunol.1800484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/15/2018] [Indexed: 01/15/2023]
Abstract
Glucocorticoids (GCs) are commonly prescribed to patients with a variety of inflammatory disorders, including inflammatory bowel disease (IBD). GCs mediate their immunomodulatory effects through many different mechanisms and target multiple signaling pathways. The GC dexamethasone downmodulates innate and adaptive immune cell activation. IBD is the manifestation of a dysregulated immune response involving many different immune cells. Group 3 innate lymphocytes (ILC3s) have critical roles in mucosal inflammation. ILC3s secrete high levels of the cytokine IL-22, promoting epithelial proliferation, antimicrobial peptides, and mucins. In this study, we examined the effects of dexamethasone on IL-22 production by ILC3s. We found that dexamethasone suppressed IL-23-mediated IL-22 production in human and mouse ILC3s. This was mediated in part through dexamethasone modulation of the NF-κB pathway. Inhibition of NF-κB signaling with a small molecule inhibitor also downmodulated IL-23- and IL-1β-mediated IL-22 production in ILC3s. These findings implicate NF-κB as a regulator of IL-22 in ILC3s and likely have repercussions on GC treatment of IBD patients.
Collapse
Affiliation(s)
- Sudarshan Seshadri
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Rosemary L Pope
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Lauren A Zenewicz
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
48
|
Defining the role of glucocorticoids in inflammation. Clin Sci (Lond) 2018; 132:1529-1543. [DOI: 10.1042/cs20171505] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
An established body of knowledge and clinical practice has argued in favor of the use of glucocorticoids in various chronic inflammatory and autoimmune diseases. However, the very well-known adverse effects associated with their treatment hampers continuation of therapy with glucocorticoids. Analyses of the molecular mechanisms underlying the actions of glucocorticoids have led to the discovery of several mediators that add complexity and diversity to the puzzling world of these hormones and anti-inflammatory drugs. Such mediators hold great promise as alternative pharmacologic tools to be used as anti-inflammatory drugs with the same properties as glucocorticoids, but avoiding their metabolic side effects. This review summarizes findings about the molecular targets and mediators of glucocorticoid function.
Collapse
|
49
|
Yamaguchi T, Lee JH, Lim AR, Sim JS, Yu EJ, Oh TJ. Bioconversion of Corticosterone into Corticosterone-Glucoside by Glucosyltransferase. Molecules 2018; 23:molecules23071783. [PMID: 30029555 PMCID: PMC6100193 DOI: 10.3390/molecules23071783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
Glucosylation of the 21-hydroxyl group of glucocorticoid changes its solubility into hydrophilicity from hydrophobicity and, as with glucocorticoid glucuronides as a moving object in vivo, it is conceivable that it exhibits the same behavior. Therefore, glucosylation to the 21-hydroxyl group while maintaining the 11β-hydroxyl group is particularly important, and glucosylation of corticosterone was confirmed by high-resolution mass spectrometry and 1D (¹H and 13C) and 2D (COSY, ROESY, HSQC-DEPT and HMBC) NMR. Moreover, the difference in bioactivity between corticosterone and corticosterone 21-glucoside was investigated in vitro. Corticosterone 21-glucoside showed greater neuroprotective effects against H₂O₂-induced cell death and reactive oxygen species (ROS) compared with corticosterone. These results for the first time demonstrate that bioconversion of corticosterone through the region-selective glucosylation of a novel compound can present structural potential for developing new neuroprotective agents.
Collapse
Affiliation(s)
- Tokutaro Yamaguchi
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
- Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - Joo-Ho Lee
- Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - A-Rang Lim
- Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Korea.
| | - Joon-Soo Sim
- Genomics Division, National Institute of Agricultural Science, RDA, Jeonju 54874, Korea.
| | - Eun-Ji Yu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
- Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea.
| |
Collapse
|
50
|
Microbiota Composition and the Integration of Exogenous and Endogenous Signals in Reactive Nasal Inflammation. J Immunol Res 2018; 2018:2724951. [PMID: 29967798 PMCID: PMC6008798 DOI: 10.1155/2018/2724951] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of reactive nasal inflammatory conditions, for example, allergic rhinitis and chronic rhinosinusitis, is steadily increasing in parallel with significant environmental changes worldwide. Allergens and as yet undefined environmental agents may trigger these conditions via the involvement of host intrinsic factors, including the innate and adaptive immune system, the nasal epithelium, and the nasal nervous system. The critical role of the nasal microbiota in coordinating these components has emerged in recent studies documenting a significant association between microbial composition and the onset and progression of allergic or nonallergic inflammation. It is now clear that the local microbiota is a major player in the development of the mucosa-associated lymphoid tissue and in the regulation of such adaptive responses as IgA production and the function of effector and regulatory T cells. Microbial components also play a major role in the regulation of epithelial barrier functions, including mucus production and the control of paracellular transport across tight junctions. Bacterial components, including lipopolysaccharide, have also been shown to induce or amplify neuroinflammatory responses by engaging specific nociceptors. Finally, bacterial products may promote tissue remodeling processes, including nasal polyp formation, by interacting with formyl peptide receptors and inducing the expression of angiogenic factors and matrix-degrading enzymes.
Collapse
|