1
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
3
|
Tauber M, Basso L, Martin J, Bostan L, Pinto MM, Thierry GR, Houmadi R, Serhan N, Loste A, Blériot C, Kamphuis JB, Grujic M, Kjellén L, Pejler G, Paul C, Dong X, Galli SJ, Reber LL, Ginhoux F, Bajenoff M, Gentek R, Gaudenzio N. Landscape of mast cell populations across organs in mice and humans. J Exp Med 2023; 220:e20230570. [PMID: 37462672 PMCID: PMC10354537 DOI: 10.1084/jem.20230570] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that exhibit homeostatic and neuron-associated functions. Here, we combined whole-tissue imaging and single-cell RNA sequencing datasets to generate a pan-organ analysis of MCs in mice and humans at steady state. In mice, we identify two mutually exclusive MC populations, MrgprB2+ connective tissue-type MCs and MrgprB2neg mucosal-type MCs, with specific transcriptomic core signatures. While MrgprB2+ MCs develop in utero independently of the bone marrow, MrgprB2neg MCs develop after birth and are renewed by bone marrow progenitors. In humans, we unbiasedly identify seven MC subsets (MC1-7) distributed across 12 organs with different transcriptomic core signatures. MC1 are preferentially enriched in the bladder, MC2 in the lungs, and MC4, MC6, and MC7 in the skin. Conversely, MC3 and MC5 are shared by most organs but not skin. This comprehensive analysis offers valuable insights into the natural diversity of MC subtypes in both mice and humans.
Collapse
Affiliation(s)
- Marie Tauber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Jeremy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Luciana Bostan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research and Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Guilhem R. Thierry
- Aix Marseille University, CNRS, INSERM, Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Alexia Loste
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Camille Blériot
- Institut Necker des Enfants Malades, CNRS UMR8253, Paris, France
| | - Jasper B.J. Kamphuis
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carle Paul
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
- Toulouse University and Centre Hospitalier Universitaire, Toulouse, France
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Center for Sensory Biology, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen J. Galli
- Departments of Pathology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Laurent L. Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Gentek
- Centre for Inflammation Research and Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| |
Collapse
|
4
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
5
|
Leru PM. Evaluation and Classification of Mast Cell Disorders: A Difficult to Manage Pathology in Clinical Practice. Cureus 2022; 14:e22177. [PMID: 35174041 PMCID: PMC8841127 DOI: 10.7759/cureus.22177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 01/28/2023] Open
Abstract
Mast cells are granulocytic immunomodulatory cells with an important role in physiologic and pathogenic processes due to their location at the junction between the internal and external environment and to their capacity to release a broad range of active mediators. Mast cells mediators have both pro-inflammatory and anti-inflammatory activities and are implicated in various and complex pathology. Mast cells disorders (MCDs) represent a heterogeneous pathology, with frequently difficult and challenging evaluation and diagnostic workup. MCDs can be primary, secondary to other diseases, or idiopathic. Increased research interest in this field was noted during the last decade and various classification criteria, as well as diagnostic and treatment recommendations, were proposed. The aim of this paper is to review the most recent published data on the classification and evaluation of mast cells disorders and to point out the main difficulties in diagnosing and managing these complex diseases in medical practice.
Collapse
Affiliation(s)
- Polliana Mihaela Leru
- Clinical Department 5, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU.,Internal Medicine, Colentina Clinical Hospital/Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| |
Collapse
|
6
|
Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi‐Eisenberg R, Nilsson G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy 2022; 77:83-99. [PMID: 33955017 DOI: 10.1111/all.14881] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Mast cells are (in)famous for their role in allergic diseases, but the physiological and pathophysiological roles of this ingenious cell are still not fully understood. Mast cells are important for homeostasis and surveillance of the human system, recognizing both endogenous and exogenous agents, which induce release of a variety of mediators acting on both immune and non-immune cells, including nerve cells, fibroblasts, endothelial cells, smooth muscle cells, and epithelial cells. During recent years, clinical and experimental studies on human mast cells, as well as experiments using animal models, have resulted in many discoveries that help decipher the function of mast cells in health and disease. In this review, we focus particularly on new insights into mast cell biology, with a focus on mast cell development, recruitment, heterogeneity, and reactivity. We also highlight the development in our understanding of mast cell-driven diseases and discuss the development of novel strategies to treat such conditions.
Collapse
Affiliation(s)
- Joakim S. Dahlin
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Marcus Maurer
- Department of Dermatology and Allergy Dermatological Allergology Allergie‐Centrum‐Charité Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of Health Berlin Germany
| | - Dean D. Metcalfe
- Mast Cell Biology Section Laboratory of Allergic Diseases NIAID, NIH Bethesda MD USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Uppsala Sweden
| | - Ronit Sagi‐Eisenberg
- Department of Cell and Developmental Biology Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Gunnar Nilsson
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
- Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
7
|
Lam HY, Tergaonkar V, Kumar AP, Ahn KS. Mast cells: Therapeutic targets for COVID-19 and beyond. IUBMB Life 2021; 73:1278-1292. [PMID: 34467628 PMCID: PMC8652840 DOI: 10.1002/iub.2552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Mast cells (MCs) are innate immune cells that widely distribute throughout all tissues and express a variety of cell surface receptors. Upon activation, MCs can rapidly release a diverse array of preformed mediators residing within their secretory granules and newly synthesize a broad spectrum of inflammatory and immunomodulatory mediators. These unique features of MCs enable them to act as sentinels in response to rapid changes within their microenvironment. There is increasing evidence now that MCs play prominent roles in other pathophysiological processes besides allergic inflammation. In this review, we highlight the recent findings on the emerging roles of MCs in the pathogenesis of coronavirus disease-2019 (COVID-19) and discuss the potential of MCs as novel therapeutic targets for COVID-19 and other non-allergic inflammatory diseases.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vinay Tergaonkar
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pathology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingaporeSingapore
| | - Kwang Seok Ahn
- Department of Science in Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
8
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
9
|
Zhang Z, Kurashima Y. Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation. Cells 2021; 10:cells10071615. [PMID: 34203383 PMCID: PMC8308013 DOI: 10.3390/cells10071615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- CU-UCSD Center for Mucosal Immunology, Department of Pathology/Medicine, Allergy and Vaccines, University of California, San Diego, CA 92093-0063, USA
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2848; Fax: +81-43-226-2183
| |
Collapse
|
10
|
Hamey FK, Lau WW, Kucinski I, Wang X, Diamanti E, Wilson NK, Göttgens B, Dahlin JS. Single-cell molecular profiling provides a high-resolution map of basophil and mast cell development. Allergy 2021; 76:1731-1742. [PMID: 33078414 PMCID: PMC8246912 DOI: 10.1111/all.14633] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Basophils and mast cells contribute to the development of allergic reactions. Whereas these mature effector cells are extensively studied, the differentiation trajectories from hematopoietic progenitors to basophils and mast cells are largely uncharted at the single-cell level. METHODS We performed multicolor flow cytometry, high-coverage single-cell RNA sequencing analyses, and cell fate assays to chart basophil and mast cell differentiation at single-cell resolution in mouse. RESULTS Analysis of flow cytometry data reconstructed a detailed map of basophil and mast cell differentiation, including a bifurcation of progenitors into two specific trajectories. Molecular profiling and pseudotime ordering of the single cells revealed gene expression changes during differentiation. Cell fate assays showed that multicolor flow cytometry and transcriptional profiling successfully predict the bipotent phenotype of a previously uncharacterized population of peritoneal basophil-mast cell progenitors. CONCLUSIONS A combination of molecular and functional profiling of bone marrow and peritoneal cells provided a detailed road map of basophil and mast cell development. An interactive web resource was created to enable the wider research community to explore the expression dynamics for any gene of interest.
Collapse
Affiliation(s)
- Fiona K. Hamey
- Department of HaematologyWellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Present address: JDRF/Wellcome Diabetes and Inflammation LaboratoryWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Winnie W.Y. Lau
- Department of HaematologyWellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Iwo Kucinski
- Department of HaematologyWellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Xiaonan Wang
- Department of HaematologyWellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Evangelia Diamanti
- Department of HaematologyWellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Nicola K. Wilson
- Department of HaematologyWellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Berthold Göttgens
- Department of HaematologyWellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Joakim S. Dahlin
- Department of HaematologyWellcome–Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of MedicineKarolinska Institutet and Karolinska University HospitalStockholmSweden
| |
Collapse
|
11
|
Natarajan S, Govender K, Shobo A, Baijnath S, Arvidsson PI, Govender T, Lin J, Maguire GE, Naicker T, Kruger HG. Potential of brain mast cells for therapeutic application in the immune response to bacterial and viral infections. Brain Res 2021; 1767:147524. [PMID: 34015358 DOI: 10.1016/j.brainres.2021.147524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
A wide range of microorganisms can infect the central nervous system (CNS). The immune response of the CNS provides limited protection against microbes penetrating the blood-brain barrier. This results in a neurological deficit and sometimes leads to high morbidity and mortality rates despite advanced therapies. For the last two decades, different studies have expanded our understanding of the molecular basis of human neuroinfectious diseases, especially concerning the contributions of mast cell interactions with other central nervous system compartments. Brain mast cells are multifunctional cells derived from the bone marrow and reside in the brain. Their proximity to blood vessels, their role as "first responders" their unique receptors systems and their ability to rapidly release pathogen responsive mediators enable them to exert a crucial defensive role in the host-defense system. This review describes key biological and physiological functions of mast cells, concerning their ability to recognize pathogens via various receptor systems, followed by a coordinated and selective mediator release upon specific interactions with pathogenic stimulating factors. The goal of this review is to direct attention to the possibilities for therapeutic applications of mast cells against bacterial and viral related infections. We also focus on opportunities for future research activating mast cells via adjuvants.
Collapse
Affiliation(s)
- Satheesh Natarajan
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Kamini Govender
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Adeola Shobo
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Per I Arvidsson
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa; Science for Life Laboratory, Drug Discovery and Development, Platform and Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Thavendran Govender
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Glenn Em Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa.
| |
Collapse
|
12
|
Varricchi G, Marone G, Kovanen PT. Cardiac Mast Cells: Underappreciated Immune Cells in Cardiovascular Homeostasis and Disease. Trends Immunol 2020; 41:734-746. [DOI: 10.1016/j.it.2020.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
|
13
|
Ren Y, Lyu Y, Mereness JA, Wang S, Pang J, Mariani TJ. Rare Pulmonary Connective Tissue Type Mast Cells Regulate Lung Endothelial Cell Angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1763-1773. [PMID: 32450152 PMCID: PMC9808505 DOI: 10.1016/j.ajpath.2020.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023]
Abstract
Within the human lung, mast cells typically reside adjacent to the conducting airway and assume a mucosal phenotype (MCT). In rare pathologic conditions, connective tissue phenotype mast cells (MCTCs) can be found in the lung parenchyma. MCTCs accumulate in the lungs of infants with severe bronchopulmonary dysplasia, a chronic lung disease associated with preterm birth, which is characterized by pulmonary vascular dysmorphia. The human mast cell line (LUVA) was used to model MCTCs or MCTs. The ability of MCTCs to affect vascular organization during fetal lung development was tested in mouse lung explant cultures. The effect of MCTCs on in vitro tube formation and barrier function was studied using primary fetal human pulmonary microvascular endothelial cells. The mechanistic role of MCTC proteases was tested using inhibitors. MCTCLUVA but not MCTLUVA was associated with vascular dysmorphia in lung explants. In vitro, the addition of MCTCLUVA potentiated fetal human pulmonary microvascular endothelial cell interactions, inhibited tube stability, and disrupted endothelial cell junctions. Protease inhibitors ameliorated the ability of MCTCLUVA to alter endothelial cell angiogenic activities in vitro and ex vivo. These data indicate that MCTCs may directly contribute to disrupted angiogenesis in bronchopulmonary dysplasia. A better understanding of factors that regulate mast cell subtype and their different effector functions is essential.
Collapse
Affiliation(s)
- Yue Ren
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, New York; Department of Biology, University of Rochester, Rochester, New York
| | - Yuyan Lyu
- Department of Pediatrics, University of Rochester, Rochester, New York
| | - Jared A Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, New York; Department of Biomedical Genetics, University of Rochester, Rochester, New York
| | - Shumin Wang
- Department of Pediatrics, University of Rochester, Rochester, New York; Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Jinjiang Pang
- Department of Pediatrics, University of Rochester, Rochester, New York; Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, New York; Department of Biomedical Genetics, University of Rochester, Rochester, New York.
| |
Collapse
|
14
|
Leru PM, Anton VF, Ureche C, Zurac S, Bratu O, Neagoe CD. Mast cell activation syndromes - evaluation of current diagnostic criteria and laboratory tools in clinical practice (Review). Exp Ther Med 2020; 20:2348-2351. [PMID: 32765713 DOI: 10.3892/etm.2020.8947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 01/15/2023] Open
Abstract
Mast cell activation syndromes (MCAS) represent a heterogeneous clinical entity caused by episodic and severe mast cell activation, including primary and secondary mast cell disorders (MCDs). The group of primary or clonal MCDs refers to systemic mastocytosis, other clonal MCAS and hereditary hypertryptasemia, while the secondary MCAS is characterized by normal mast cells (MCs) which are activated by external triggers, such as allergens or physical stimuli. Another category of MCAS is the idiopathic form, when no trigger or genetic mutation can be identified. Symptoms of mast cell activation are due to release of specific mediators and can be seen in many diseases, such as allergies, with localized or systemic clinical manifestations. Confirmation of MCAS is based on diagnostic criteria proposed by an international group of experts and the best available evidence in this field. It is generally accepted that the clinical picture of MCAS is non-specific and there are few available laboratory tools, making it difficult for clinicians to identify and confirm this entity. The diagnosis is established after exclusion of other possible clinical entities in most of the cases. Therefore, the actual diagnostic criteria of MCASs, some relevant clinical aspects and laboratory tools used in clinical practice were reviewed.
Collapse
Affiliation(s)
- Polliana Mihaela Leru
- Family Medicine Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Internal Medicine Clinic, 'Colentina' Clinical Hospital, 020125 Bucharest, Romania
| | - Vlad Florin Anton
- Internal Medicine Clinic, 'Colentina' Clinical Hospital, 020125 Bucharest, Romania
| | - Corina Ureche
- Internal Medicine Clinic, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureş, Romania
| | - Sabina Zurac
- Family Medicine Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Pathology, 'Colentina' Clinical Hospital, 020125 Bucharest, Romania
| | - Ovidiu Bratu
- Family Medicine Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Urology Clinic, Central Military Emergency University Hospital, 010825 Bucharest, Romania.,Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Carmen Daniela Neagoe
- Internal Medicine and Gastroenterology Clinic, Emergency County Hospital, 200642 Craiova, Romania.,Gastroenterology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| |
Collapse
|
15
|
Mast Cells: Fascinating but Still Elusive after 140 Years from Their Discovery. Int J Mol Sci 2020; 21:ijms21020464. [PMID: 31940755 PMCID: PMC7013937 DOI: 10.3390/ijms21020464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
|
16
|
Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci 2019; 20:E4397. [PMID: 31500217 PMCID: PMC6769913 DOI: 10.3390/ijms20184397] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological roles of mast cells are still not fully understood, over 140 years since their description by Paul Ehrlich in 1878. Initial studies have attempted to identify distinct "subpopulations" of mast cells based on a relatively small number of biochemical characteristics. More recently, "subtypes" of mast cells have been described based on the analysis of transcriptomes of anatomically distinct mouse mast cell populations. Although mast cells can potently alter homeostasis, in certain circumstances, these cells can also contribute to the restoration of homeostasis. Both solid and hematologic tumors are associated with the accumulation of peritumoral and/or intratumoral mast cells, suggesting that these cells can help to promote and/or limit tumorigenesis. We suggest that at least two major subsets of mast cells, MC1 (meaning anti-tumorigenic) and MC2 (meaning pro-tumorigenic), and/or different mast cell mediators derived from otherwise similar cells, could play distinct or even opposite roles in tumorigenesis. Mast cells are also strategically located in the human myocardium, in atherosclerotic plaques, in close proximity to nerves and in the aortic valve. Recent studies have revealed evidence that cardiac mast cells can participate both in physiological and pathological processes in the heart. It seems likely that different subsets of mast cells, like those of cardiac macrophages, can exert distinct, even opposite, effects in different pathophysiological processes in the heart. In this chapter, we have commented on possible future needs of the ongoing efforts to identify the diverse functions of mast cells in health and disease.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80138 Naples, Italy.
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5176, USA.
| |
Collapse
|