1
|
Kundu S, Kues WA, Rehbock C, Barcikowski S. Inorganic Metal Nanoparticles in Reproductive Biology: Applications, Toxicities and Future Prospects. Chempluschem 2025; 90:e202400554. [PMID: 39913862 DOI: 10.1002/cplu.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/31/2025] [Indexed: 04/26/2025]
Abstract
The development of inorganic metal and metal oxide nanoparticles (MNPs) has attracted significant attention in diverse biomedical and biotechnological fields including bio-detection, drug delivery, imaging, and theranostics. An emerging field in this context is the use of MNPs for applications in reproductive biology. In this article, we offer a rational review of the development of MNPs employed in the field of reproductive biology by focusing on their interactions with highly delicate and specialized germ cells like spermatozoa, oocytes, and developing embryos. By their unique physicochemical properties, MNPs are versatile and strong candidates for targeted imaging and delivery of various therapeutic molecules to the specific sites of the gametes and reproductive cells. Functionalized MNPs can serve as transfection vectors for the generation of transgenic animals by spermatozoon-supported gene transfer. In addition, MNPs have shown great promise in application fields such as semen collection, nano-purification, cryopreservation, and sex sorting of sperm in the livestock industry. Recently, the potential toxicity of MNPs on maturing oocytes has been investigated, as well as the use of MNPs to preserve fertility by improving cryopreservation and reducing oxidative stress in oocytes. The article further elaborates on the uptake, translocation mechanism, and biocompatibility issues of the MNPs to reproduction-relevant sites on cellular and molecular levels. Based on these promising achievements, the current challenges and prospects for the development of these functionalized MNPs for clinical research in conjunction with the reproductive system will be discussed.
Collapse
Affiliation(s)
- Sangita Kundu
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Biotechnology/Stem Cell Unit, 31535, Neustadt Rbge, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| |
Collapse
|
2
|
Khalil WA, El-Rais MS, Hegazy MM, Hassan MAE, El-Raghi AA, El-Moghazy MM. The Effect of Metallic Nanoparticles Supplementation in Semen Extender on Post-thaw Quality and Fertilizing Ability of Egyptian Buffalo (Bubalus bubalis) Spermatozoa. Biol Trace Elem Res 2025; 203:2636-2653. [PMID: 39256330 DOI: 10.1007/s12011-024-04348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
Nanomaterials offer several promising prospects in the field of farm animal reproduction, encompassing a broad range of applications such as transgenesis and the precise delivery of substances to sperm cells, antimicrobial, antioxidants properties as well as their potent role in improving cryopreservation methods. The aim of the present study is to explore the effect of supplementing the semen extender with 10 µg/mL nano gold (Au-NPs10), 10 µg/mL nano silver (Ag-NPs10), 1 µg/mL nano selenium (Se-NPs1), and 100 µg/mL nano zinc oxide (ZnO-NPs100) on sperm characteristics and kinematics parameters, acrosome integrity, oxidative biomarkers, morphological and apoptosis-like changes of frozen-thawed buffalo bull sperm, and, ultimately, their fertilizing capacity. The results revealed that all aforementioned nano materials significantly improved viability, progressive motility, membrane integrity, acrosome integrity, and kinematic parameters as well as apoptosis-like changes of post-thawed buffalo bull sperm compared to the control (p < 0.05). No discernible effects were observed on sperm ultrastructure morphology measures as a response to the addition of these metallic nanoparticles to the extender. The values of caspase 3 significantly decreased by 64.22, 45.99, 75.59, and 49.39% in Au-NPs10, Ag-NPs10, Se-NPs1, and ZnO-NPs100 treated groups, respectively, compared to the control. The addition of 100 µg ZnO-NPs to the extender significantly decreased the total count of bacteria, fungi, and yeast compared to the control (p < 0.05). The AuNPs10 and SeNPs1 treated groups showed lower content of malondialdehyde, hydrogen peroxide, and nitric oxide concentrations and higher values of total antioxidant capacity of post-thawed extended semen (p < 0.05). Pregnancy rates increased by 17.5, 20, and 30% in buffalo cows inseminated with sperm treated with ZnO-NPs100, Se-NPs1, and Au-NPs10, respectively, compared to the control group. The present results indicate that the freezing extender supplemented with metallic nanoparticles can be an effective strategy to enhance the cryotolerance and fertility potential of buffalo bull sperm.
Collapse
Affiliation(s)
- Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed S El-Rais
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt
| | - Mohamed M Hegazy
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, 12618, Giza, Egypt
| | - Mahmoud A E Hassan
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, 12618, Giza, Egypt
| | - Ali A El-Raghi
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt.
| | - Mostafa M El-Moghazy
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt
| |
Collapse
|
3
|
Garrappa G, Martínez-López C, Jiménez-Movilla M, García-Vázquez FA. In vitro exposure of porcine sperm to functionalized superparamagnetic nanoparticles. Reprod Domest Anim 2024; 59 Suppl 3:e14654. [PMID: 39396860 DOI: 10.1111/rda.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 10/15/2024]
Abstract
Nanotechnology and its applications have advanced significantly in recent decades, contributing to various fields, including reproduction. This study introduces a novel method to label porcine oocytes with nanoparticles (NPs) bound to oviductin (OVGP1, Ov) for use in Assisted Reproductive Technologies (ARTs). Despite promising developments, concerns about NP toxicity in gametes necessitate thorough investigation. This research aims to assess the impact of functionalized NPs (NPOv) on sperm functionality. Boar sperm were co-incubated with NPOv for 0, 0.5 and 1 h in two media: BTS (semen dilution and conservation) and TALP (sperm capacitation and in vitro fertilization-IVF). Sperm quality parameters (viability, motility and kinematics) showed no significant differences in TALP medium (p > .05). In BTS, although some kinetic parameters were altered, motility, progressive motility and viability remained unaffected (p > .05). Additionally, NPs presence on the zona pellucida (ZP) of oocytes did not affect sperm attachment (p > .05). In conclusion, in vitro exposure of boar sperm to OVGP1-functionalized NPs in IVF medium or attached to the ZP surface of matured oocytes does not impair sperm functionality, including their binding ability to the ZP.
Collapse
Affiliation(s)
- Gabriela Garrappa
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
- Instituto Nacional de Tecnología Agropecuaria (INTA), Rafaela, Santa Fe, Argentina
| | - Cristina Martínez-López
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - María Jiménez-Movilla
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
4
|
Pérez V, Crespo F, López AI, Cárdenas S, Bautista MJ, Hidalgo M, Dorado J, Ortiz I. Effect of silver nanoparticles on donkey sperm parameters and ultrastructure. Reprod Domest Anim 2024; 59 Suppl 3:e14662. [PMID: 39396858 DOI: 10.1111/rda.14662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 10/15/2024]
Abstract
The aim of this study was to determine the effect of silver nanoparticles (AgNPs) on donkey sperm parameters and ultrastructure. AgNPs were synthesized, purified and resuspended in the extender. Nine frozen-thawed donkey sperm samples were exposed to different concentrations of AgNPs (0, 1.25, 2.5, 5, 12.5, 25 and 50 μg/mL). Sperm parameters: total (TMOT, %) and progressive (PMOT, %) sperm motility, plasma (LIVE, %) and acrosomal membrane integrity (AIS, %), and sperm morphology (MORF, %) were evaluated immediately after AgNPs exposure (T0) and after 2 h of incubation (T2). The interaction beween AgNPs and spermatozoa was visualized by transmission electron microscopy (TEM). At T0, sperm motility and AIS were reduced (p < .05) when using concentrations ≥50 and ≥25 μg/mL, respectively. At T2, sperm motility and LIVE were significantly decreased (p < .05) in concentrations ≥25 and ≥50 μg/mL, respectively. TEM analysis revealed nanoparticle adhesion to the acrosomal region of the plasma membrane. In conclusion, AgNPs at concentrations ≥25 μg/mL impair motility, acrosome and plasma membrane integrity of donkey sperm, which may be mediated by adhesion to the acrosomal region of the sperm surface membrane.
Collapse
Affiliation(s)
- Verónica Pérez
- Centro Militar de Cría Caballar de Ávila, Cría Caballar de Las Fuerzas Armadas, Ávila, Spain
| | - Francisco Crespo
- Centro Militar de Cría Caballar de Ávila, Cría Caballar de Las Fuerzas Armadas, Ávila, Spain
| | - Angela I López
- Affordable and Sustainable Sample Preparation Research Group, Department of Analytical Chemistry, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, Cordoba, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation Research Group, Department of Analytical Chemistry, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, Cordoba, Spain
| | - María José Bautista
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, Cordoba, Spain
| | - Manuel Hidalgo
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
| | - Jesus Dorado
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
| | - Isabel Ortiz
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
| |
Collapse
|
5
|
Oliveira CCV, Ferrão L, Gallego V, Mieiro C, Oliveira IB, Carvalhais A, Pachedo M, Cabrita E. Exposure to silver and titanium dioxide nanoparticles at supra-environmental concentrations decreased sperm motility and affected spermatozoa subpopulations in gilthead seabream, Sparus aurata. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1959-1970. [PMID: 37436567 DOI: 10.1007/s10695-023-01218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Marine pollution by nanoparticles (NPs) can be reprotoxic for fish and disturb successful reproduction of wild populations. In gilthead seabream (Sparus aurata), a mild effect on sperm motility was observed after exposure to high concentrations of silver NPs. Considering the great heterogeneity traits within a sperm sample, it is possible that NPs affect spermatozoa accordingly, modulating subpopulation profile. Thus, this work aimed to analyse NP effects in sperm motility in general and considering spermatozoa population structure, using a subpopulation approach. Seabream sperm samples from mature males were exposed for 1 h to increasing concentrations of titanium dioxide (1, 10, 100, 1000 and 10,000 μg L-1) and silver (0.25, 25 and 250 μg L-1) NPs, including Ag NP and Ag+, dissolved in a non-activating medium (0.9 % NaCl). Concentrations chosen include realistic (10-100 and 0.25 μg L-1, respectively, for TiO2 and Ag) and supra-environmental values. The mean particle diameter was determined as 19.34 ± 6.72 and 21.50 ± 8.27 nm in the stock suspension, respectively, for titanium dioxide and silver. After the ex vivo exposure, sperm motility parameters were determined using computer-assisted sperm analysis, and sperm subpopulations were later identified using a two-step cluster analysis. Results revealed a significant reduction in total motility after exposure to the 2 highest concentrations of titanium dioxide NPs, while curvilinear and straight-line velocities were not altered. Exposure to silver NPs (Ag NP and Ag+) lowered significantly total and progressive motilities at all concentrations, while curvilinear and straight-line velocities were significantly lower only at the highest concentration. Sperm subpopulations were also affected by the exposure to both titanium dioxide and silver NPs. In both cases, the highest levels of NPs triggered a decrease in the percentage of fast sperm subpopulations (38.2% in TiO2 1000 μg L-1, 34.8.% in Ag NP 250 μg L-1, and 45.0% in Ag+ 250 μg L-1 vs 53.4% in the control), while an increase on slow sperm subpopulations. A reprotoxic effect was proven for both NPs, but only at supra-environmental concentrations.
Collapse
Affiliation(s)
| | - Leonor Ferrão
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Aquaculture and Biodiversity Group, Universitat Politècnica de València, 46022, València, Spain
| | - Victor Gallego
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Aquaculture and Biodiversity Group, Universitat Politècnica de València, 46022, València, Spain
| | - Cláudia Mieiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel B Oliveira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Carvalhais
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mário Pachedo
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
6
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
7
|
Abedin SN, Baruah A, Baruah KK, Bora A, Dutta DJ, Kadirvel G, Katiyar R, Doley S, Das S, Khargharia G, Sarkar B, Sinha S, Phookan A, Dewry RK, Kalita MK, Chakravarty H, Deori S. Zinc oxide and selenium nanoparticles can improve semen quality and heat shock protein expression in cryopreserved goat (Capra hircus) spermatozoa. J Trace Elem Med Biol 2023; 80:127296. [PMID: 37659125 DOI: 10.1016/j.jtemb.2023.127296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are strongly linked with oxidative stress (OS) generated during the process of sperm cryopreservation. Indeed, cellular damage from ROS has been implicated during sperm cryopreservation which causes deterioration in sperm quality and antioxidant nanoparticles (NPs) have been successful in preventing such damage. The interaction of NPs with sperm cells has been less frequently explored in farm animals. OBJECTIVE The present study explored the effect of NP supplementation on sperm ultrastructure, potential interaction with sperm membrane (plasma and acrosome membrane), heat shock protein (HSP) gene expression levels and sperm quality in cryopreserved buck semen. MATERIALS AND METHODS Thirty-two (32) ejaculates were collected from four (4) adult male bucks and then diluted in Tris- citric acid- fructose- egg yolk (TCFY) extender containing the Zinc-oxide (ZnO) and Selenium (Se) NP treatments (T0: Control; TZn: 0.1 mg/mL ZnO NPs and TSe: 1 µg/mL Se NPs) after initial evaluation. Diluted semen was packed in 0.25 mL French mini straws and then stored in liquid nitrogen (LN2). Sperm parameters, lipid peroxidation (LPO) profile, sperm head morphology ultrastructural classification under transmission electron microscope (TEM), potential interaction of NPs with sperm membrane and expression of HSP genes were evaluated in the different treatment groups. RESULTS We found a significant (p < 0.05) increase in the percentage of spermatozoa with intact plasma membrane, and intact acrosome in the ZnO (0.1 mg/mL) and Se (1 µg/mL) NP supplemented groups in comparison to the frozen control group. TEM assessment revealed no internalization of both ZnO and Se NPs into the sperm structure. Few occasional contacts of ZnO NPs with the sperm membrane and a few agglomerates of Se NPs around the area of damaged membranes were visualized. HSP70 and HSP90 mRNA levels were significantly (p < 0.001) higher in the NP supplemented groups in comparison to the control. HSP70 and HSP90 mRNA levels had a strong positive association with sperm motility and a weak to moderate association with other sperm parameters. CONCLUSIONS Current findings indicated that ZnO NPs are more potent than Se NPs in ameliorating peroxidative damages during sperm cryopreservation, increases semen quality parameters possibly by increasing the expression levels of HSP genes in buck semen. Furthermore, NP supplementation may have a potential role in preserving sperm head ultrastructure by acting as an antioxidant and reducing OS during various degrees of cellular insults, which needs to be further explored.
Collapse
Affiliation(s)
- Sayed Nabil Abedin
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Anubha Baruah
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Kishore Kumar Baruah
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Arundhati Bora
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Devo Jyoti Dutta
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Govindasamy Kadirvel
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Rahul Katiyar
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Sunil Doley
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Samir Das
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Gautam Khargharia
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Biplab Sarkar
- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sudip Sinha
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Arundhati Phookan
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Raju Kumar Dewry
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Manoj Kumar Kalita
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Himsikha Chakravarty
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Sourabh Deori
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India.
| |
Collapse
|
8
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
9
|
Nazari M, Shabani R, Ajdary M, Ashjari M, Shirazi R, Govahi A, Kermanian F, Mehdizadeh M. Effects of Au@Ag core-shell nanostructure with alginate coating on male reproductive system in mice. Toxicol Rep 2023; 10:104-116. [PMID: 36685271 PMCID: PMC9853145 DOI: 10.1016/j.toxrep.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.
Collapse
Key Words
- AA, Ascorbic acid
- AMPkinase, 5' adenosine monophosphate-activated protein kinase
- ANOVA, Analysis of variance
- Ag-NPs, silver nanoparticles
- AgNO3,, Silver nitrate
- Apoptosis
- Atg3, Autophagy related 3
- Autophagy
- BAX, Bcl-2-associated X protein
- BTB, Blood-testes barrier
- Bcl-2, B-cell lymphoma 2
- CSNs, Core-shell nanostructures
- CTAB, Cetyltrimethylammonium bromide
- DLS, Dynamic light scattering
- DW, Distilled water
- FTIR, Fourier transform infrared spectroscopy
- FYN kinase, Proto-oncogene tyrosine-protein kinase
- Fertilization
- H2SO4,, Sulphuric acid
- HAuCl4, Tetrachloroauric acid trihydrate
- HR-TEM, High-resolution transmission electron microscopy
- ICP-MS, Inductively coupled plasma mass spectrometry
- IL, Interleukins
- IU, International Unit
- IgE, Immunoglobulin E
- NIH, National Institutes of Health
- NMRI, Naval Medical Research Institute
- NMs, Nanomaterials
- NRs, Nano rods
- NaBH4,, Sodium borohydride
- NaOH, Sodium hydroxide
- Nanostructures
- OD, Optical density
- PBS, Phosphate-buffered saline
- PI, Propidium Iodide
- PMSG, Pregnant Mare Serum Gonadotropin
- PdI, Polydispersity index
- ROS, Reactive oxygen species
- SD, standard deviation
- SERS, Surface enhanced Raman scattering
- SNRs, Silver Nano rods
- SSCs, Spermatogonial stem cells
- Semen analysis
- TDT, Terminal deoxynucleotidyl transferase
- TGA, Thermal gravimetric Analysis
- TGF-β, Transforming growth factor
- TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling
- Testicular tissue
- cDNA, Complementary DNA
- ct, cycle threshold
- dUTP, Deoxyuridine triphosphate
- hCG, human chorionic gonadotropin
- q RT-PCR, Quantitative real time - polymerase chain reaction
- rpm, Rotations Per Minute
Collapse
Affiliation(s)
- Mahsa Nazari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Ashjari
- Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Kermanian
- Department of Anatomy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Yu K, Xiao K, Sun QQ, Liu RF, Huang LF, Zhang PF, Xu HY, Lu YQ, Fu Q. Comparative proteomic analysis of seminal plasma exosomes in buffalo with high and low sperm motility. BMC Genomics 2023; 24:8. [PMID: 36624393 PMCID: PMC9830767 DOI: 10.1186/s12864-022-09106-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Exosomes are nanosized membranous vesicles secreted by various types of cells, which facilitate intercellular communication by transporting bioactive compounds. Exosomes are abundant in biological fluids including semen, and their protein composition and the potential of seminal plasma exosomes (SPEs) as fertility biomarkers were elucidated in humans, however, little information is available regarding buffalo (Bubalus bubalis). Here, we examined protein correlation between spermatozoa, seminal plasma (SP), and SPEs, and we compared and analyzed protein differences between high-motility (H-motility) and low-motility (L-motility) SPEs in buffalo. RESULTS SPEs were concentrated and purified by ultracentrifugation combined with sucrose density gradient centrifugation, followed by verification using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. Protein composition in spermatozoa, SP and SPEs, and protein difference in H- and L-motility SPEs were identified by LC-MS/MS proteomic analysis and were functionally analyzed through comprehensive bioinformatics. Many SPEs proteins originated from spermatozoa and SP, and nearly one third were also present in spermatozoa and SP. A series of proteins associated with reproductive processes including sperm capacitation, spermatid differentiation, fertilization, sperm-egg recognition, membrane fusion, and acrosome reaction were integrated in a functional network. Comparative proteomic analyses showed 119 down-regulated and 41 up-regulated proteins in L-motility SPEs, compared with H-motility SPEs. Gene Ontology (GO) enrichment of differentially expressed proteins (DEPs) showed that most differential proteins were located in sperm and vesicles, with activities of hydrolase and metalloproteinase, and were involved in sperm-egg recognition, fertilization, single fertilization, and sperm-zona pellucida binding processes, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential proteins were mainly involved in the PPRP signaling pathway, calcium signaling pathway, and cAMP signaling pathway, among others. Furthermore, 6 proteins associated with reproduction were validated by parallel reaction monitoring analysis. CONCLUSION This study provides a comprehensive description of the seminal plasma exosome proteome and may be of use for further screening of biomarkers associated with male infertility.
Collapse
Affiliation(s)
- Kai Yu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Kai Xiao
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Qin-qiang Sun
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Run-feng Liu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Liang-feng Huang
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Peng-fei Zhang
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Hui-yan Xu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Yang-qing Lu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Qiang Fu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| |
Collapse
|
11
|
Yi YJ, Dhandole LK, Seo DW, Lee SM, Jang JS. Inactivation of mammalian spermatozoa on the exposure of TiO 2 nanorods deposited with noble metals. J Anal Sci Technol 2023; 14:7. [PMID: 36718385 PMCID: PMC9879248 DOI: 10.1186/s40543-022-00366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Titanium dioxide (TiO2) nanorods (NRs) are well-known semiconducting and catalytic material that has been widely applied, but their toxicities have also attracted recent interest. In this study, we investigated and compared the toxic effects of TiO2 NRs and TiO2 NRs loaded with Ag or Au NPs on boar spermatozoa. As a result, sperm incubated with Ag-TiO2 NRs showed lower motility than sperm incubated with controls (with or without TiO2 NRs) or Au-TiO2 NRs. In addition, sperm viability and acrosomal integrity were defective in the presence of Ag-TiO2 NRs, and the generation of intracellular reactive oxygen species (ROS) increased significantly when spermatozoa were incubated with 20 μg/ml Ag-TiO2 NRs. We discussed in depth the charge transfer mechanism between enzymatic NADPH and Ag-TiO2 NRs in the context of ROS generation in spermatozoa. The effects we observed reflected the fertilization competence of sperm incubated with Ag-TiO2 NRs; specifically sperm penetration and embryonic development rates by in vitro fertilization were reduced by Ag-TiO2 NRs. To summarize, our findings indicate that exposure to Ag-TiO2 NRs could affect male fertilization fecundity and caution that care be exercised when using these NRs.
Collapse
Affiliation(s)
- Young-Joo Yi
- grid.412871.90000 0000 8543 5345Department of Agricultural Education, College of Education, Sunchon National University, 255 Jungang-Ro, Suncheon, 57922 Republic of Korea
| | - Love Kumar Dhandole
- grid.411545.00000 0004 0470 4320Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, 79 Gobong-Ro, Iksan, 54596 Jeonbuk Republic of Korea
| | - Dong-Won Seo
- Department of Vaccine Development, Gyeongbuk Institute for Bio Industry, Andong, 36618 Republic of Korea
| | - Sang-Myeong Lee
- grid.254229.a0000 0000 9611 0917Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Jum Suk Jang
- grid.411545.00000 0004 0470 4320Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, 79 Gobong-Ro, Iksan, 54596 Jeonbuk Republic of Korea
| |
Collapse
|
12
|
Klein JP, Mery L, Boudard D, Ravel C, Cottier M, Bitounis D. Impact of Nanoparticles on Male Fertility: What Do We Really Know? A Systematic Review. Int J Mol Sci 2022; 24:576. [PMID: 36614018 PMCID: PMC9820737 DOI: 10.3390/ijms24010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.
Collapse
Affiliation(s)
- Jean-Philippe Klein
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Lionel Mery
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Delphine Boudard
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35000 Rennes, France
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Michèle Cottier
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Dimitrios Bitounis
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| |
Collapse
|
13
|
Bisla A, Honparkhe M, Srivastava N. A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia 2022; 54:e14589. [DOI: 10.1111/and.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amarjeet Bisla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Neeraj Srivastava
- Germ Plasm Centre, Division of Animal Reproduction ICAR‐Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
14
|
Extend the Survival of Human Sperm In Vitro in Non-Freezing Conditions: Damage Mechanisms, Preservation Technologies, and Clinical Applications. Cells 2022; 11:cells11182845. [PMID: 36139420 PMCID: PMC9496714 DOI: 10.3390/cells11182845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Preservation of human spermatozoa in vitro at normothermia or hypothermia maintaining their functions and fertility for several days plays a significant role in reproductive biology and medicine. However, it is well known that human spermatozoa left in vitro deteriorate over time irreversibly as the consequence of various stresses such as the change of osmolarity, energy deficiency, and oxidative damage, leading to substantial limitations including the need for semen examinations, fertility preservation, and assisted reproductive technology. These problems may be addressed with the aid of non-freezing storage techniques. The main and most effective preservation strategies are the partial or total replacement of seminal plasma with culture medium, named as extenders, and temperature-induced metabolic restriction. Semen extenders consist of buffers, osmolytes, and antioxidants, etc. to protect spermatozoa against the above-mentioned adverse factors. Extended preservation of human spermatozoa in vitro has a negative effect on sperm parameters, whereas its effect on ART outcomes remains inconsistent. The storage duration, temperature, and pre-treatment of semen should be determined according to the aims of preservation. Advanced techniques such as nanotechnology and omics have been introduced and show great potential in the lifespan extension of human sperm. It is certain that more patients will benefit from it in the near future. This review provided an overview of the current knowledge and prospects of prolonged non-freezing storage of human sperm in vitro.
Collapse
|
15
|
Choi HW, Jang H. Application of Nanoparticles and Melatonin for Cryopreservation of Gametes and Embryos. Curr Issues Mol Biol 2022; 44:4028-4044. [PMID: 36135188 PMCID: PMC9497981 DOI: 10.3390/cimb44090276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cryopreservation of gametes and embryos, a technique widely applied in human infertility clinics and to preserve desirable genetic traits of livestock, has been developed over 30 years as a component of the artificial insemination process. A number of researchers have conducted studies to reduce cell toxicity during cryopreservation using adjuvants leading to higher gamete and embryo survival rates. Melatonin and Nanoparticles are novel cryoprotectants and recent studies have investigated their properties such as regulating oxidative stresses, lipid peroxidation, and DNA fragmentation in order to protect gametes and embryos during vitrification. This review presented the current status of cryoprotectants and highlights the novel biomaterials such as melatonin and nanoparticles that may improve the survivability of gametes and embryos during this process.
Collapse
Affiliation(s)
- Hyun-Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Hoon Jang
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-3359
| |
Collapse
|
16
|
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711066. [PMID: 36078782 PMCID: PMC9518444 DOI: 10.3390/ijerph191711066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/17/2023]
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.
Collapse
Affiliation(s)
| | | | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Kulczycka
- Institute of Health Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81448-7182
| |
Collapse
|
17
|
Carvalhais A, Oliveira IB, Oliveira H, Oliveira CCV, Ferrão L, Cabrita E, Asturiano JF, Guilherme S, Pacheco M, Mieiro CL. Ex vivo exposure to titanium dioxide and silver nanoparticles mildly affect sperm of gilthead seabream (Sparus aurata) - A multiparameter spermiotoxicity approach. MARINE POLLUTION BULLETIN 2022; 177:113487. [PMID: 35245769 DOI: 10.1016/j.marpolbul.2022.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NP) are potentially reprotoxic, which may compromise the success of populations. However, the reprotoxicity of NP is still scarcely addressed in marine fish. Therefore, we evaluated the impacts of environmentally relevant and supra environmental concentrations of titanium dioxide (TiO2: 10 to 10,000 μg·L-1) and silver NP (Ag: 0.25 to 250 μg·L-1) on the sperm of gilthead seabream (Sparus aurata). We performed short-term direct exposures (ex vivo) and evaluated sperm motility, head morphometry, mitochondrial function, antioxidant responses and DNA integrity. No alteration in sperm motility (except for supra environmental Ag NP concentration), head morphometry, mitochondrial function, and DNA integrity occurred. However, depletion of all antioxidants occurred after exposure to TiO2 NP, whereas SOD decreased after exposure to Ag NP (lowest and intermediate concentration). Considering our results, the decrease in antioxidants did not indicate vulnerability towards oxidative stress. TiO2 NP and Ag NP induced low spermiotoxicity, without proven relevant ecological impacts.
Collapse
Affiliation(s)
- A Carvalhais
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - I B Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
| | - H Oliveira
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C C V Oliveira
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - L Ferrão
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - E Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - S Guilherme
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Pacheco
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C L Mieiro
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep 2021; 26:100991. [PMID: 33912692 PMCID: PMC8063742 DOI: 10.1016/j.bbrep.2021.100991] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Collapse
Affiliation(s)
- A. Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - C. Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - D. Cui
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
19
|
Júnior DM, Hausen MA, Asami J, Higa AM, Leite FL, Mambrini GP, Rossi AL, Komatsu D, Duek EADR. A New Dermal Substitute Containing Polyvinyl Alcohol with Silver Nanoparticles and Collagen with Hyaluronic Acid: In Vitro and In Vivo Approaches. Antibiotics (Basel) 2021; 10:antibiotics10060742. [PMID: 34205394 PMCID: PMC8235042 DOI: 10.3390/antibiotics10060742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The experimental use of poly (alcohol-vinyl) (PVA) as a skin curative is increasing widely. However, the use of this hydrogel is challenging due to its favorable properties for microbiota growth. The association with silver nanoparticles (AgNPs) as an antimicrobial agent turns the match for PVA as a dressing, as it focuses on creating a physical barrier to avoid wound dehydration. When associated with extracellular components, such as the collagen matrix, the device obtained can create the desired biological conditions to act as a skin substitute. This study aimed to analyze the anti-microbiological activity and the in vitro and in vivo responses of a bilaminar device of PVA containing AgNPs associated with a membrane of collagen-hyaluronic acid (col-HA). Additionally, mesenchymal stem cells were cultured in the device to evaluate in vitro responses and in vivo immunomodulatory and healing behavior. The device morphology revealed a porous pattern that favored water retention and in vitro cell adhesion. Controlled wounds in the dorsal back of rat skins revealed a striking skin remodeling with new epidermis fulfilling all previously injured areas after 14 and 28 days. No infections or significant inflammations were observed, despite increased angiogenesis, and no fibrosis-markers were identified as compared to controls. Although few antibacterial activities were obtained, the addition of AgNPs prevented fungal growth. All results demonstrated that the combination of the components used here as a dermal device, chosen according to previous miscellany studies of low/mid-cost biomaterials, can promote skin protection avoiding infections and dehydration, minimize the typical wound inflammatory responses, and favor the cellular healing responses, features that give rise to further clinical trials of the device here developed.
Collapse
Affiliation(s)
- Dario Mendes Júnior
- Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC/SP), São Paulo 18030-070, Brazil; (D.M.J.); (M.A.H.); (D.K.)
| | - Moema A. Hausen
- Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC/SP), São Paulo 18030-070, Brazil; (D.M.J.); (M.A.H.); (D.K.)
| | - Jéssica Asami
- Faculty of Mechanical Engineering, State University of Campinas (UNICAMP), São Paulo 13083-860, Brazil;
| | - Akemi M. Higa
- Instituto de Medicina Tropical, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil;
| | - Fabio L. Leite
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), São Paulo 18052-780, Brazil; (F.L.L.); (G.P.M.)
| | - Giovanni P. Mambrini
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), São Paulo 18052-780, Brazil; (F.L.L.); (G.P.M.)
| | - Andre L. Rossi
- Applied Physics Department, Brazilian Center of Physics Research (CBPF), Rio de Janeiro 22290-180, Brazil;
| | - Daniel Komatsu
- Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC/SP), São Paulo 18030-070, Brazil; (D.M.J.); (M.A.H.); (D.K.)
| | - Eliana A. de Rezende Duek
- Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC/SP), São Paulo 18030-070, Brazil; (D.M.J.); (M.A.H.); (D.K.)
- Faculty of Mechanical Engineering, State University of Campinas (UNICAMP), São Paulo 13083-860, Brazil;
- Correspondence:
| |
Collapse
|
20
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|
21
|
Yousef MS, Abdelhamid HN, Hidalgo M, Fathy R, Gómez-Gascón L, Dorado J. Antimicrobial activity of silver-carbon nanoparticles on the bacterial flora of bull semen. Theriogenology 2020; 161:219-227. [PMID: 33340755 DOI: 10.1016/j.theriogenology.2020.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
The spermicidal effects of silver nanoparticles (AgNPs) hinder its application in the field of artificial insemination. In this study, silver-carbon NPs (Ag@C NPs) was synthesized and applied as an alternative antibiotic agent for bull semen extender. Ag@C NPs were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption flame spectroscopy, transmission electron microscope (TEM), and high-resolution TEM (HR-TEM). Data analysis revealed the successful synthesis of Ag@C NPs with a particle size of 1-5 nm (average particle size of 2.5 nm) embedded into carbon. The antimicrobial activity of Ag@C NPs was tested against bacteriospermia of fresh semen collected from five fertile bulls (three ejaculates/bull). Escherichia coli (E. Coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) were isolated from fresh semen samples and identified by culture, staining, and conventional biochemical tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Ag@C NPs against bacteriospermia was determined at 5 and 37 °C. Ag@C NPs showed efficient antimicrobial activity (MIC: 3.125-12.5 μg/mL) against the tested strains and strong bactericidal effect on S. aureus, and P. aeruginosa (MBC: 3.125 μg/mL), with no detrimental effect (P ˃ 0.05) on the percentage of sperm motility (70.71 ± 4.82; 74.65 ± 4.46), plasma membrane integrity (68.39 ± 4.31; 72.38 ± 4.91), acrosome integrity (88.40 ± 13.21; 86.77 ± 14.23), and normal sperm morphology (86.85 ± 7.43; 87.82 ± 8.15) at concentrations of 15 and 30 μg/mL, respectively, after a cold storage of 48 h. However, Ag@C NPs showed a detrimental effect on sperm parameters in a dose dependent manner at concentrations ≥60 μg/mL. Ag@C NPs showed no adverse effect on the sperm's ultrastructure with limited sperm internalization at MIC. In conclusion, Ag@C NPs could be used as an alternative antibiotic agent for bull semen extender without a significant cytotoxic effect on the sperm during cold storage. However, further investigations for their effects on embryo production and female genitalia are still required.
Collapse
Affiliation(s)
- M S Yousef
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, 14071, Cordoba, Spain; Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Egypt.
| | - M Hidalgo
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, 14071, Cordoba, Spain
| | - R Fathy
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt
| | - L Gómez-Gascón
- Department of Animal Health, University of Cordoba, 14071, Cordoba, International Excellence Agrifood Campus, CeiA3, Spain
| | - J Dorado
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, 14071, Cordoba, Spain.
| |
Collapse
|
22
|
Saadeldin IM, Khalil WA, Alharbi MG, Lee SH. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals (Basel) 2020; 10:E2281. [PMID: 33287256 PMCID: PMC7761754 DOI: 10.3390/ani10122281] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023] Open
Abstract
Cryopreservation is an essential tool to preserve sperm cells for zootechnical management and artificial insemination purposes. Cryopreservation is associated with sperm damage via different levels of plasma membrane injury and oxidative stress. Nanoparticles are often used to defend against free radicals and oxidative stress generated through the entire process of cryopreservation. Recently, artificial or natural nanovesicles including liposomes and exosomes, respectively, have shown regenerative capabilities to repair damaged sperm during the freeze-thaw process. Exosomes possess a potential pleiotropic effect because they contain antioxidants, lipids, and other bioactive molecules regulating and repairing spermatozoa. In this review, we highlight the current strategies of using nanoparticles and nanovesicles (liposomes and exosomes) to combat the cryoinjuries associated with semen cryopreservation.
Collapse
Affiliation(s)
- Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Mona G. Alharbi
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Liu Y, Li X, Xiao S, Liu X, Chen X, Xia Q, Lei S, Li H, Zhong Z, Xiao K. The Effects of Gold Nanoparticles on Leydig Cells and Male Reproductive Function in Mice. Int J Nanomedicine 2020; 15:9499-9514. [PMID: 33281445 PMCID: PMC7709869 DOI: 10.2147/ijn.s276606] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023] Open
Abstract
Background Gold nanoparticles (AuNPs) have shown great promise in various biomedical applications, but their effects on male reproductive function remain to be ascertained. The aim of this study was to investigate the uptake, cytotoxicity and testosterone production inhibition of AuNPs in mouse Leydig cells, as well as their accumulation in the testes of male mice and their effects on male reproductive function. Results AuNPs (5 nm) were able to be internalized into the endosomes/lysosomes of TM3 Leydig cells, induce the formation of autophagosomes, increase the production of reactive oxygen species (ROS), and disrupt the cell cycle in S phase, resulting in concentration-dependent cytotoxicity and DNA damage. Interestingly, AuNPs significantly reduced testosterone production in TM3 cells by inhibiting the expression of 17α-hydroxylase, an important enzyme in androgen synthesis. After repeated intravenous injection, AuNPs gradually accumulated and retained in the testes of male BALB/c mice in a dose-dependent manner. One week after withdrawal, the level of plasma testosterone in the 0.5 mg/kg AuNPs group was significantly reduced compared to that in the PBS control group, accompanied by the decreased expression of 17α-hydroxylase in the testes. In addition, AuNPs treatment significantly increased the rate of epididymal sperm malformation, but without affecting fertility. Conclusion Our results suggest that AuNPs can accumulate in the testes and reduce testosterone production in Leydig cells by down-regulating the expression of 17α-hydroxylase, thus affecting the quality of epididymal sperm.
Collapse
Affiliation(s)
- Ying Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaojie Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuwen Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xinyi Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuanming Chen
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qiyue Xia
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihui Zhong
- Laboratory of Non-Human Primate Disease Model Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
24
|
Pérez-Duran F, Acosta-Torres LS, Serrano-Díaz PN, Toscano-Torres IA, Olivo-Zepeda IB, García-Caxin E, Nuñez-Anita RE. Toxicity and antimicrobial effect of silver nanoparticles in swine sperms. Syst Biol Reprod Med 2020; 66:281-289. [PMID: 32456478 DOI: 10.1080/19396368.2020.1754962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacterial contamination in swine semen affects the quality and longevity of sperm and consequently fertility is reduced. Antibiotics have been used to prevent bacterial growth, but the frequency of bacterial resistance to various antibiotics are increasing. Silver nanoparticles (AgNPs) of 10-20 nm in size have shown a biocide effect in bacteria and fungi microorganisms without toxicity to certain mammalian cells. The goal of this study was to analyze both, antimicrobial activity against Staphylococcus aureus and toxicity in swine sperms after 10-20 nm AgNPs treatment. S. aureus proliferation decreased when concentrations from 0.4 to 10 mM AgNPs were assayed. Also, sperm viability measured by mitochondrial metabolism after AgNPs treatment up to a concentration of 10 mM, was viable. In addition, viability determined by membrane integrity of sperms showed that AgNPs treatment up to a concentration of 10 mM was safe. Sperm morphology was evaluated by automated quantification of proximal and distal drops and whiptails. Data indicated that AgNPs treatment up to a concentration of 4 mM were harmless. Finally, sperm capacitation and acrosome reactions were determined by (chlortetracycline) CTC assay. Data showed that no changes in sperm capacitation were observed when sperms were treated with 2 mM of AgNPs, but data showed increased calcium mobilization when treated with 10 mM AgNPs, which suggested sperm capacitation. Finally, there were no significant changes encountered on sperm acrosome reaction for any of the treatments after AgNPs treatment. Taken together, these results show the potential of AgNPs as an alternative to conventional antimicrobial agents that are currently used in extenders to preserve semen required for storage. ABBREVIATIONS AgNPs: silver nanoparticles; AMK: amikacin; AMP: adenosine monophosphate; AR: acrosome reaction; C: capacitation; CF: cefallotin; CFU: colony-forming unit; CTC: chlortetracycline; CXM: cefuroxime; DMSO: dimethyl sulfoxide; NC: non-capacitation; NOM: Norma Oficial Mexicana; PBS: phosphate buffered saline; RLUs: relative light units; ROS: reactive oxygen species; SQS: Seminal Quality System.
Collapse
Affiliation(s)
- Francisco Pérez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| | - Laura Susana Acosta-Torres
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México , Guanajuato, México
| | | | - Irma Arcelia Toscano-Torres
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| | - Ingrid Brenda Olivo-Zepeda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| | - Edwin García-Caxin
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| |
Collapse
|
25
|
Gallo A, Boni R, Tosti E. Gamete quality in a multistressor environment. ENVIRONMENT INTERNATIONAL 2020; 138:105627. [PMID: 32151884 DOI: 10.1016/j.envint.2020.105627] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 05/25/2023]
Abstract
Over the past few decades, accumulated evidence confirms that the global environment conditions are changing rapidly. Urban industrialization, agriculture and globalization have generated water, air and soil pollution, giving rise to an environment with a growing number of stress factors, which has a serious impact on the fitness, reproduction and survival of living organisms. The issue raises considerable concern on biodiversity conservation, which is now at risk: it is estimated that a number of species will be extinct in the near future. Sexual reproduction is the process that allows the formation of a new individual and is underpinned by gamete quality defined as the ability of spermatozoa and oocytes to interact during fertilization leading to the creation and development of a normal embryo. This review aimed to provide the current state of knowledge regarding the impact of a broad spectrum of environmental stressors on diverse parameters used to estimate and evaluate gamete quality in humans and in canonical animal models used for experimental research. Effects of metals, biocides, herbicides, nanoparticles, plastics, temperature rise, ocean acidification, air pollution and lifestyle on the physiological parameters that underlie gamete fertilization competence are described supporting the concept that environmental stressors represent a serious hazard to gamete quality with reproductive disorders and living organism failure. Although clear evidence is still limited, gamete capacity to maintain and/or recover physiological conditions is recently demonstrated providing further clues about the plasticity of organisms and their tolerance to the pressures of pollution that may facilitate the reproduction and the persistence of species within the scenario of global change. Changes in the global environment must be urgently placed at the forefront of public attention, with a massive effort invested in further studies aimed towards implementing current knowledge and identifying new methodologies and markers to predict impairment of gamete quality.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy.
| |
Collapse
|
26
|
Abstract
Gold is ubiquitous in the human environment and most people are in contact with it through wearing jewelry, dental devices, implants or therapies for rheumatoid arthritis. Gold is not a nutrient but people are exposed to it as a food colorant and in food chains. The present review discusses the hazards faced in personal and domestic use of gold and the far greater risks presented through occupational exposure to the metal in mining and processing gold ores. In the last situation, regular manual contact or inhalation of toxic or carcinogenic materials like mercury or arsenic, respectively, presents far greater hazard and greatly complicates the evaluation of gold toxicity. The uses and risks presented by new technology and use of nanoparticulate gold in anti-cancer therapies and diagnostic medicine forms a major consideration in gold toxicity, where tissue uptake and distribution are determined largely by particle size and surface characteristics. Many human problems arise through the ability of metallic gold to induce allergic contact hypersensitivity. While gold in jewelry can evoke allergic reactions, other metals such as nickel, chromium and copper present in white gold or alloys exhibit more serious clinical problems. It is concluded that toxic risks associated with gold are low in relation to the vast range of potential routes of exposure to the metal in everyday life.
Collapse
Affiliation(s)
- Alan B G Lansdown
- Division of Investigative Sciences, Faculty of Medicine, Imperial College, London
| |
Collapse
|
27
|
Lucas CG, Chen PR, Seixas FK, Prather RS, Collares T. Applications of omics and nanotechnology to improve pig embryo production in vitro. Mol Reprod Dev 2019; 86:1531-1547. [PMID: 31478591 PMCID: PMC7183242 DOI: 10.1002/mrd.23260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
An appropriate environment to optimize porcine preimplantation embryo production in vitro is required as genetically modified pigs have become indispensable for biomedical research and agriculture. To provide suitable culture conditions, omics technologies have been applied to elucidate which metabolic substrates and pathways are involved during early developmental processes. Metabolomic profiling and transcriptional analysis comparing in vivo- and in vitro-derived embryos have demonstrated the important role of amino acids during preimplantation development. Transcriptional profiling studies have been helpful in assessing epigenetic reprogramming agents to allow for the correction of gene expression during the cloning process. Along with this, nanotechnology, which is a highly promising field, has allowed for the use of engineered nanoplatforms in reproductive biology. A growing number of studies have explored the use of nanoengineered materials for sorting, labeling, and targeting purposes; which demonstrates their potential to become one of the solutions for precise delivery of molecules into gametes and embryos. Considering the contributions of omics and the recent progress in nanoscience, in this review, we focused on their emerging applications for current in vitro pig embryo production systems to optimize the generation of genetically modified animals.
Collapse
Affiliation(s)
- Caroline G Lucas
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Paula R Chen
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Fabiana K Seixas
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Randall S Prather
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Tiago Collares
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Monteiro C, Daniel-da-Silva AL, Venâncio C, Soares SF, Soares AMVM, Trindade T, Lopes I. Effects of long-term exposure to colloidal gold nanorods on freshwater microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:70-79. [PMID: 31108270 DOI: 10.1016/j.scitotenv.2019.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
Gold nanorods have shown to pose adverse effects to biota. Whether these effects may be potentiated through prolonged exposure has been rarely studied. Therefore, this work aimed at evaluating the effects of long-term exposure to sublethal levels of cetyltrimethylammonium bromide (CTAB) coated gold nanorods (Au-NR) on two freshwater microalgae: Chlorella vulgaris and Raphidocelis subcapitata. These algae were exposed to several concentrations of Au-NR for 72 h and, afterwards, to the corresponding EC5,72h, for growth, during 16 days. The sensitivity of the two algae to Au-NR was assessed at days 0, 4, 8, 12 and 16 (D0, D4, D8, D12 and D16, respectively) after a 72-h exposure to several concentrations of Au-NR. At the end of the assays, effects on yield and population growth rate were evaluated. Raphidocelis subcapitata was slightly more sensitive to Au-NR than C. vulgaris: EC50,72h,D0 for yield were 48.1 (35.3-60.9) and 70.5 (52.4-88.6) μg/L Au-NR, respectively while for population growth rate were above the highest tested concentrations (53 and 90 μg/L, respectively). For R. subcapitata the long-term exposure to Au-NR increased its sensitivity to this type of nanostructures. For C. vulgaris, a decrease on the effects caused by Au-NR occurred over time, with no significant effects being observed for yield or population growth rate at D12 and D16. The capping agent CTAB caused reductions in yield above 30% (D0) for both algae at the concentration matching the one at the highest Au-NR tested concentration. When exposed to CTAB, the highest inhibition values were 69% (D4) and 21.3% (D8) for R. subcapitata, and 64% (D12) and 21% (D16) to C. vulgaris, for yield and population growth rate, respectively. These results suggested long-term exposures should be included in ecological risk assessments since short-term standard toxicity may either under- or overestimate the risk posed by Au-NR.
Collapse
Affiliation(s)
- Cátia Monteiro
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Cátia Venâncio
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sofia F Soares
- Department of Chemistry and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Mohammad I. Gold nanoparticle: An efficient carrier for MCP I of Carica papaya seeds extract as an innovative male contraceptive in albino rats. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology 2019; 126:121-127. [DOI: 10.1016/j.theriogenology.2018.12.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
|
31
|
Santonastaso M, Mottola F, Colacurci N, Iovine C, Pacifico S, Cammarota M, Cesaroni F, Rocco L. In vitro genotoxic effects of titanium dioxide nanoparticles (n-TiO 2 ) in human sperm cells. Mol Reprod Dev 2019; 86:1369-1377. [PMID: 30803093 DOI: 10.1002/mrd.23134] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/01/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 -NPs) are one of the most widely engineered nanoparticles used. The study has been focused on TiO 2 -NPs genotoxic effects on human spermatozoa in vitro. TiO 2 -NPs are able to cross the blood-testis barrier induced inflammation, cytotoxicity, and gene expression changes that lead to impairment of the male reproductive system. This study presents new data about DNA damage in human sperms exposed in vitro to two n-TiO 2 concentrations (1 µg/L and 10 µg/L) for different times and the putative role of reactive oxygen species (ROS) as mediators of n-TiO 2 genotoxicity. Primary n-TiO 2 characterization was performed by transmission electron microscopy. The dispersed state of the n-TiO 2 in media was spectrophotometrically determined at 0, 24, 48, and 72 hr from the initial exposure. The genotoxicity has been highlighted by different experimental approaches (comet assay, terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] test, DCF assay, random amplification of polymorphic DNA polymerase chain reaction [RAPD-PCR]). The comet assay showed a statistically significant loss of sperm DNA integrity after 30 min of exposure. Increased threshold of sperm DNA fragmentation was highlighted after 30 min of exposure by the TUNEL Test. Also, the RAPD-PCR analysis showed a variation in the polymorphic profiles of the sperm DNA exposed to n-TiO 2 . The evidence from the DCF assay showed a statistically significant increase in intracellular ROS linked to n-TiO 2 exposure. This research provides the evaluation of n-TiO 2 potential genotoxicity on human sperm that probably occurs through the production of intracellular ROS.
Collapse
Affiliation(s)
- Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Colacurci
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fulvio Cesaroni
- Medically Assisted Procreation Center, PMA Center of Cassinate, Cassino, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
32
|
Najafi A, Daghigh Kia H, Hamishehkar H, Moghaddam G, Alijani S. Effect of resveratrol-loaded nanostructured lipid carriers supplementation in cryopreservation medium on post-thawed sperm quality and fertility of roosters. Anim Reprod Sci 2019; 201:32-40. [DOI: 10.1016/j.anireprosci.2018.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/05/2023]
|
33
|
Berberian MV, Pocognoni CA, Mayorga LS. A TEM-traceable physiologically functional gold nanoprobe that permeates non-endocytic cells. Int J Nanomedicine 2018; 13:8075-8086. [PMID: 30568446 PMCID: PMC6276607 DOI: 10.2147/ijn.s168149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Nanoparticles’ intracellular fate requires proper internalization. Most cells make use of a battery of internalization pathways, but some are practically sealed, as they lack the biochemical machinery for cellular intake. Non-endocytic cells, such as mammals’ spermatozoa, challenge standard drug-delivery strategies. Purpose In this article, we present a gold nanoprobe that permeates the external and internal membranes of human sperm. Methods Our design makes use of a gold nanoparticle functionalized with a membrane-permeable cysteine-rich recombinant protein. The chimeric protein contains two units of physiologically active metallothioneins (MT) that also provide binding motifs to gold and a cell-penetrating-peptide sequence (CPP) that confers cell permeability to the nanoparticle. Results Transmission electron microscopy, indirect immunofluorescence, and functional assays show that the nanoprobe is readily internalized in sperm, without compromising cell integrity, while preserving MT’s physiological activity. Our findings highlight the potential of CPP-functionalized nanogold for investigating the physiology of otherwise impermeable non-endocytic cells.
Collapse
Affiliation(s)
- Maria Victoria Berberian
- Institute of Histology and Embryology of Mendoza - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina,
| | - Cristian A Pocognoni
- Institute of Histology and Embryology of Mendoza - CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis S Mayorga
- Institute of Histology and Embryology of Mendoza - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina, .,Institute of Histology and Embryology of Mendoza - CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
34
|
Gallo A, Manfra L, Boni R, Rotini A, Migliore L, Tosti E. Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress. ENVIRONMENT INTERNATIONAL 2018; 118:325-333. [PMID: 29960187 DOI: 10.1016/j.envint.2018.05.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are extensively used in various industrial and commercial applications. Despite their wide application may lead to the contamination of marine ecosystem, their potential environmental effects remain to be determined. Toxicity assessment studies have primarily focused on investigating the effects of CuO NPs on fertilization success and embryo development of different sea urchin species while the impact on sperm quality have never been assessed. In this line, this study aims to assess the effects of CuO NPs on the spermatozoa of the sea urchin Paracentrotus lividus. After sperm exposure to CuO NPs, biomarkers of sperm viability, cytotoxicity, oxidative stress, and genotoxicity as well as morphology were evaluated. Results showed that CuO NPs exposure decreased sperm viability, impaired mitochondrial activity and increased the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, CuO NPs exposure caused DNA damage and morphological alterations. Together with the antioxidant rescue experiments, these results suggest that oxidative stress is the main driver of CuO NP spermiotoxic effects. The mechanism of toxicity is here proposed: the spontaneous generation of ROS induced by CuO NPs and the disruption of the mitochondrial respiratory chain lead to production of ROS that, in turn, induce lipid peroxidation and DNA damage, and result in defective spermatozoa up to induce sperm cytotoxicity. Investigating the effects of CuO NPs on sea urchin spermatozoa, this study provides valuable insights into the mechanism of reproductive toxicity induced by CuO NPs.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Loredana Manfra
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 75100 Potenza, Italy
| | - Alice Rotini
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| |
Collapse
|
35
|
|
36
|
Préaubert L, Tassistro V, Auffan M, Sari-Minodier I, Rose J, Courbiere B, Perrin J. Very low concentration of cerium dioxide nanoparticles induce DNA damage, but no loss of vitality, in human spermatozoa. Toxicol In Vitro 2018; 50:236-241. [PMID: 29625164 DOI: 10.1016/j.tiv.2018.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/18/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022]
Abstract
Cerium dioxide nanoparticles (CeO2NP) are widely used for industrial purposes, as in diesel, paint, wood stain and as potential therapeutic applications. The Organization for Economic Cooperation and Development included CeO2NP in the priority list of nanomaterials requiring urgent evaluation. As metal nanoparticles can cross the blood-testis barrier, CeO2NP could interact with spermatozoa. The genotoxicity of CeO2NP was demonstrated in vitro on human cell lines and mouse gametes. However, the effects of CeO2NP on human spermatozoa DNA remain unknown. We showed significant DNA damage induced in vitro by CeO2NP on human spermatozoa using Comet assay. The genotoxicity was inversely proportional to the concentration (0.01 to 10 mg·L-1). TEM showed no internalization of CeO2NP into the spermatozoa. This study shows for the first time that in vitro exposure to very low concentrations of cerium dioxide nanoparticles can induce significant DNA damage in human spermatozoa. These results add new and important insights regarding the reproductive toxicity of priority nanomaterials, which require urgent evaluation.
Collapse
Affiliation(s)
- L Préaubert
- Aix Marseille Univ, CNRS, IRD, Avignon Univ, IMBE UMR 7263, 13397 Marseille, France
| | - V Tassistro
- Aix Marseille Univ, CNRS, IRD, Avignon Univ, IMBE UMR 7263, 13397 Marseille, France
| | - M Auffan
- CNRS, Aix Marseille Univ, IRD, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France
| | - I Sari-Minodier
- Aix Marseille Univ, CNRS, IRD, Avignon Univ, IMBE UMR 7263, 13397 Marseille, France
| | - J Rose
- CNRS, Aix Marseille Univ, IRD, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France
| | - B Courbiere
- Aix Marseille Univ, CNRS, IRD, Avignon Univ, IMBE UMR 7263, 13397 Marseille, France; Centre Clinico-Biologique d'Assistance Médicale à la Procréation - CECOS, Pôle Femmes Parents Enfants, AP-HM La Conception, Marseille, Cedex 05, France
| | - J Perrin
- Aix Marseille Univ, CNRS, IRD, Avignon Univ, IMBE UMR 7263, 13397 Marseille, France; Centre Clinico-Biologique d'Assistance Médicale à la Procréation - CECOS, Pôle Femmes Parents Enfants, AP-HM La Conception, Marseille, Cedex 05, France.
| |
Collapse
|
37
|
Inhibitory effect of silver nanoparticles on proliferation of estrogen-dependent MCF-7/BUS human breast cancer cells induced by butyl paraben or di-n-butyl phthalate. Toxicol Appl Pharmacol 2017; 337:12-21. [PMID: 29074358 DOI: 10.1016/j.taap.2017.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
Abstract
In this study the effect of silver nanoparticles (AgNPs) on proliferation of estrogen receptor (ER)-positive human breast cancer MCF-7/BUS cells was assessed by means of in vitro assay. The cells were exposed in the absence of estrogens to AgNPs alone or in combination with aluminum chloride (AlCl3), butyl paraben (BPB) and di-n-butyl phthalate (DBPh). The results revealed that AgNPs at the non-cytotoxic concentrations (up to 2μg/mL) and AlCl3 (up to 500μM) did not induce proliferation of MCF-7/BUS cells whereas BPB and DBPh showed strong estrogenic activity with the highest effect at 16μM and 35μM, respectively. AgNPs inhibited the proliferation of the cells induced by DBPh, BPB or even with 17β-estradiol (E2) during 6-day incubation in the absence of estrogens. ICI 182,780 (10nM), a known estrogen receptor (ER) antagonist, induced strong inhibitory effect. AgNPs also decreased transcription of the estrogen-responsive pS2 and progesterone receptor (PGR) genes but modulated expression neither of ERα nor ERβ in MCF-7/BUS cells exposed to BPB, DBPh or E2 for 6h. Our results indicate that AgNPs may inhibit growth of breast cancer cells stimulated by E2 or estrogenic chemicals, i.e. BPB and DBPh.
Collapse
|
38
|
Štiavnická M, Abril-Parreño L, Nevoral J, Králíčková M, García-Álvarez O. Non-Invasive Approaches to Epigenetic-Based Sperm Selection. Med Sci Monit 2017; 23:4677-4683. [PMID: 28961228 PMCID: PMC5633068 DOI: 10.12659/msm.904098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since sperm size and form do not necessarily provide information on internal sperm structures, novel sperm markers need to be found in order to conduct assisted reproductive therapies (ART) successfully. Currently, the priority of andrologists is not only to select those sperm able to fertilize the oocyte, but also a high quality of sperm that will guarantee a healthy embryo. Evidence of this shows us the importance of studying sperm intensively on genetic and epigenetic levels, because these could probably be the cause of a percentage of infertility diagnosed as idiopathic. Thus, more attention is being paid to posttranslational modifications as the key for better understanding of the fertilization process and its impact on embryo and offspring. Advances in the discovery of new sperm markers should go hand in hand with finding appropriate techniques for selecting the healthiest sperm, guaranteeing its non-invasiveness. To date, most sperm selection techniques can be harmful to sperm due to centrifugation or staining procedures. Some methods, such as microfluidic techniques, sperm nanopurifications, and Raman spectroscopy, have the potential to make selection gentle to sperm, tracking small abnormalities undetected by methods currently used. The fact that live cells could be analyzed without harmful effects creates the expectation of using them routinely in ART. In this review, we focus on the combination of sperm epigenetic status (modifications) as quality markers, with non-invasive sperm selection methods as novel approaches to improve ART outcomes.
Collapse
Affiliation(s)
- Miriama Štiavnická
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Laura Abril-Parreño
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Nevoral
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Králíčková
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Olga García-Álvarez
- Laboratory of Reproductive Medicine of Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
39
|
Caldeira DF, Paulini F, Silva RC, Azevedo RBD, Lucci CM. In vitro exposure of bull sperm cells to DMSA-coated maghemite nanoparticles does not affect cell functionality or structure. Int J Hyperthermia 2017; 34:415-422. [PMID: 28605996 DOI: 10.1080/02656736.2017.1341646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Magnetic nanoparticles can be used in different areas of biology. It is therefore important to know the effects of such nanomaterials on germline cells as they may traverse the blood-testis barrier. This work aimed to evaluate the response of bull sperm after exposure to a magnetic fluid containing DMSA-coated maghemite nanoparticles (MNP-DMSA) in order to determine nanotoxicity. Bull sperm was incubated with MNP-DMSA at final concentrations of 0.06, 0.03 or 0.015 mg Fe/mL. Sperm kinetics, plasma membrane integrity and acrosome reaction were evaluated over a 4 h incubation period. The sperm cells were also evaluated by transmission electron microscopy. Exposure of bull sperm to MNP-DMSA did not affect sperm kinetics or integrity. Neither ultrastructural damage of sperm cells nor uptake of nanoparticles by the spermatozoa was observed. In conclusion, MNP-DMSA does not affect sperm function or structure under the conditions tested.
Collapse
Affiliation(s)
| | - Fernanda Paulini
- b Department of Genetics and Morphology/Department of Physiological Sciences , Institute of Biological Sciences, University of Brasilia , Brasilia , Brazil
| | - Renata Carvalho Silva
- b Department of Genetics and Morphology/Department of Physiological Sciences , Institute of Biological Sciences, University of Brasilia , Brasilia , Brazil
| | - Ricardo Bentes de Azevedo
- c Department of Genetics and Morphology , Institute of Biological Sciences, University of Brasilia , Brasilia , Brazil
| | - Carolina Madeira Lucci
- d Department of Physiological Sciences , Institute of Biological Sciences, University of Brasilia , Brasilia , Brazil
| |
Collapse
|
40
|
Feugang JM. Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev 2017; 84:832-841. [PMID: 28481043 DOI: 10.1002/mrd.22831] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/03/2017] [Indexed: 01/15/2023]
Abstract
The stringent selection of viable spermatozoa ensures the transmission of high-quality genetic material to the egg during fertilization. Sperm heterogeneity within or between ejaculates and between males obliges varied post-collection handling of semen to assure satisfactory fertility rates. The current techniques used to assess sperm generally detect non-viable and non-fertilizing gametes in the ejaculate, but do not permit the investigation of semen for improved fertility outcomes. Advances in technology, however, have spurred the search for new approaches to enrich semen with high-quality spermatozoa and to track intra-uterine sperm migration. This review highlights the current and future methodologies used for sperm labeling, selection, tracking, and imaging, with specific emphasis on the recent influence of nanotechnology.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
41
|
Aminzadeh Z, Jamalan M, Chupani L, Lenjannezhadian H, Ghaffari MA, Aberomand M, Zeinali M. In vitroreprotoxicity of carboxyl-functionalised single- and multi-walled carbon nanotubes on human spermatozoa. Andrologia 2016; 49. [DOI: 10.1111/and.12741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Z. Aminzadeh
- Department of Clinical Biochemistry; Cellular and Molecular Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - M. Jamalan
- Abadan School of Medical Sciences; Abadan Iran
| | - L. Chupani
- Faculty of Fisheries and Protection of Waters; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses; Research Institute of Fish Culture and Hydrobiology; University of South Bohemia in Ceske Budejovice; Vodňany Czech Republic
| | - H. Lenjannezhadian
- Biotechnology Research Center; Research Institute of Petroleum Industry (RIPI); Tehran Iran
| | - M. A. Ghaffari
- Department of Clinical Biochemistry; Cellular and Molecular Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - M. Aberomand
- Department of Clinical Biochemistry; Cellular and Molecular Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - M. Zeinali
- Biotechnology Research Center; Research Institute of Petroleum Industry (RIPI); Tehran Iran
| |
Collapse
|
42
|
Nazari M, Talebi AR, Hosseini Sharifabad M, Abbasi A, Khoradmehr A, Danafar AH. Acute and chronic effects of gold nanoparticles on sperm parameters and chromatin structure in Mice. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.10.637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
43
|
Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016; 22:588-619. [PMID: 27385359 DOI: 10.1093/humupd/dmw020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/16/2016] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Engineered nanoparticles (ENPs) offer technological advantages for a variety of industrial and consumer products as well as show promise for biomedical applications. Recent progress in the field of nanotechnology has led to increased exposure to nanoparticles by humans. To date, little is known about the adverse effects of these ENPs on reproductive health, although interest in nanotechnology area is growing. A few biocompatible ENPs have a high loading capacity for exogenous substances, including drugs, DNA or proteins, and can selectively deliver molecular cargo into cells; however, they represent a potential tool for gene delivery into gametes and embryos. OBJECTIVE AND RATIONALE Understanding the reprotoxicological aspects of these ENPs is of the utmost importance to reliably estimate its potential impact on human health. In addition, a search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Therefore, in this review we summarize the toxic effects of a few ENPs (metal and metal oxides, carbon-based nanoparticles, quantum dots and chitosan) in mammalian germ cells and developing embryos, and propose some treatment strategies that could mitigate nanoparticle-mediated toxicity. In addition, we outline the anticipated applications of ENPs in transgenic animal production in order to generate models for investigations into the mechanisms for human disease. SEARCH METHODS A literature search was performed using the National Center for Biotechnology Information PubMed database up until March 2016 and relevant keywords were used to obtain information regarding mammalian germ cell-specific toxicity and embryotoxicity of ENPs, possible treatment strategies, as well as the anticipated applications of nanoparticles in gene delivery in germ cells and embryos. Only English language publications were included. OUTCOMES Here, we demonstrate the toxicological effects of ENPs in mammalian germ cells and developing embryos by considering both in vitro and in vivo experimental models based on the existing literature. The biodistribution and cellular uptake of ENPs and the observed toxicities are mostly dependent on ENP size and surface-coating agents (surface functional groups/surface charge). ENPs have been shown to induce toxicity via oxidative stress, inflammation and DNA damage in both human and mouse germ cells. Use of antioxidant, anti-inflammatory drugs and selective metal chelators would be beneficial against nanoparticle-induced toxicity. WIDER IMPLICATIONS Our review provides the reproductive scientists a mechanistic insight into the reprotoxicological aspects of ENPs to reliably estimate its potential impact on human health and help to select/design protective agents to combat ENP-mediated toxicity. Furthermore, research regarding the detailed mechanism(s) of ENP toxicity in mammalian germ cells and developing embryos as well as the search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Furthermore, we anticipate that investigations into the possibility of applying nanovectors to gene delivery in germ cells and early embryos will open new horizons in reproductive biology.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
44
|
Sycheva LP, Murav’eva LV, Zhurkov VS, Mikhailova RI, Savostikova ON, Alekseeva AV, Sheremet’eva SM. Study of cytogenetic and cytotoxic effects of nanosilver and silver sulfate in germ cells of mice in vivo. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1995078016020191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Lafuente D, Garcia T, Blanco J, Sánchez DJ, Sirvent JJ, Domingo JL, Gómez M. Effects of oral exposure to silver nanoparticles on the sperm of rats. Reprod Toxicol 2016; 60:133-9. [PMID: 26900051 DOI: 10.1016/j.reprotox.2016.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/13/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
It has been demonstrated that exposure to silver nanoparticles (AgNPs) can induce toxicological effects in rodents. In this study, we investigated whether sub-chronic oral exposure to different doses of polyvinil pyrrolidone (PVP)-coated AgNPs (PVP-AgNPs) (50, 100 and 200mg/kg/day) could induce harmful effects on epididymal sperm rat parameters. Sperm motility, viability and morphology were examined. Moreover, a histological evaluation of testis and epididymis was also performed. High doses of PVP-AgNPs showed higher sperm morphology abnormalities, while a progressive, but not significant effect, was observed in other sperm parameters. The current results suggest that oral sub-chronic exposure to PVP-AgNPs induces slight toxicological effects in sperm rat parameters.
Collapse
Affiliation(s)
- D Lafuente
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain; Physiology Unit, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain
| | - T Garcia
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain; Biochemistry Unit, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain
| | - J Blanco
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain; Physiology Unit, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain
| | - D J Sánchez
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain; Physiology Unit, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain
| | - J J Sirvent
- Department of Pathology, University Hospital Joan XXIII, Tarragona, Catalonia, Spain
| | - J L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain
| | - M Gómez
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain; Biochemistry Unit, School of Medicine, IISPV, "Rovira i Virgili" University, Reus, Catalonia, Spain.
| |
Collapse
|
46
|
Falchi L, Bogliolo L, Galleri G, Ariu F, Zedda MT, Pinna A, Malfatti L, Innocenzi P, Ledda S. Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Theriogenology 2015; 85:1274-81.e3. [PMID: 26777564 DOI: 10.1016/j.theriogenology.2015.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
The aim of the study was to investigate the interaction and the short-term effects of increasing doses of cerium dioxide nanoparticles (CeO2 NPs) on ram spermatozoa, stored at 4 °C for up to 24 hours, on the main functional and kinematic parameters. Spermatozoa were incubated with 0, 22, 44, and 220 μg/mL of CeO2 NPs at 4 °C and submitted at 0, 2, and 24 hours to the following analyses: (1) intracellular uptake of CeO2 NPs by the spermatozoa; (2) kinematic parameters; (3) acrosome and membrane integrity; (4) integrity of DNA; (5) mitochondrial activity; (6) ROS production. The results indicated that the exposure of spermatozoa to increasing doses of nanoceria was well tolerated. No intracellular uptake of NPs by the cells was observed and both kinematic parameters and status of the membranes were not affected by the incubation with NPs (P > 0.05). Moreover, no influence on the redox status of spermatozoa and on the levels of fragmentation of DNA was reported among groups at any time (P > 0.05). The data collected provide new information about the impact of CeO2 NPs on the male gamete in large animal model and could open future perspectives about their biomedical use in the assisted reproductive techniques.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy.
| | - Luisa Bogliolo
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Grazia Galleri
- Dipartimento di Medicina Clinica e Sperimentale, Università di Sassari, Sassari, Italy
| | - Federica Ariu
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Maria Teresa Zedda
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Alessandra Pinna
- Laboratorio di Scienza dei Materiali e Nanotecnologie, D.A.D.U., Università di Sassari, CR-INSTM, Alghero, Italy
| | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie, D.A.D.U., Università di Sassari, CR-INSTM, Alghero, Italy
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie, D.A.D.U., Università di Sassari, CR-INSTM, Alghero, Italy
| | - Sergio Ledda
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| |
Collapse
|
47
|
Zakhidov ST, Rudoy VM, Dement’eva OV, Mudzhiri NM, Makarova NV, Zelenina IA, Andreeva LE, Marshak TL. Effect of ultrasmall gold nanoparticles on the murine native sperm chromatin. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015060138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Velikorodnaya YI, Pocheptsov AY, Sokolov OI, Bogatyrev VA, Dykman LA. Effect of gold nanoparticles on proliferation and apoptosis during spermatogenesis in rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1995078015050201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Gambardella C, Costa E, Piazza V, Fabbrocini A, Magi E, Faimali M, Garaventa F. Effect of silver nanoparticles on marine organisms belonging to different trophic levels. MARINE ENVIRONMENTAL RESEARCH 2015; 111:41-9. [PMID: 26065810 DOI: 10.1016/j.marenvres.2015.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 05/24/2023]
Abstract
Silver nanoparticles (Ag-NPs) are increasingly used in a wide range of consumer products and such an extensive use raises questions about their safety and environmental toxicity. We investigated the potential toxicity of Ag-NPs in the marine ecosystem by analyzing the effects on several organisms belonging to different trophic levels. Algae (Dunaliella tertiolecta, Skeletonema costatum), cnidaria (Aurelia aurita jellyfish), crustaceans (Amphibalanus amphitrite and Artemia salina) and echinoderms (Paracentrotus lividus) were exposed to Ag-NPs and different end-points were evaluated: algal growth, ephyra jellyfish immobilization and frequency of pulsations, crustaceans mortality and swimming behavior, and sea urchin sperm motility. Results showed that all the end-points were able to underline a dose-dependent effect. Jellyfish were the most sensitive species, followed by barnacles, sea urchins, green algae, diatoms and brine shrimps. In conclusion, Ag-NPs exposure can influence different trophic levels within the marine ecosystem.
Collapse
Affiliation(s)
| | - Elisa Costa
- CNR - ISMAR, Arsenale - Tesa 104, Castello 2737/F, 30122 Venezia, Italy
| | | | | | - Emanuele Magi
- DCCI, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | | | | |
Collapse
|
50
|
Yoisungnern T, Choi YJ, Han JW, Kang MH, Das J, Gurunathan S, Kwon DN, Cho SG, Park C, Chang WK, Chang BS, Parnpai R, Kim JH. Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci Rep 2015; 5:11170. [PMID: 26054035 PMCID: PMC4459204 DOI: 10.1038/srep11170] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/18/2015] [Indexed: 11/09/2022] Open
Abstract
Silver nanoparticles (AgNPs) have many features that make them attractive as medical devices, especially in therapeutic agents and drug delivery systems. Here we have introduced AgNPs into mouse spermatozoa and then determined the cytotoxic effects of AgNPs on sperm function and subsequent embryo development. Scanning electron microscopy and transmission electron microscopy analyses showed that AgNPs could be internalized into sperm cells. Furthermore, exposure to AgNPs inhibited sperm viability and the acrosome reaction in a dose-dependent manner, whereas sperm mitochondrial copy numbers, morphological abnormalities, and mortality due to reactive oxygen species were significantly increased. Likewise, sperm abnormalities due to AgNPs internalization significantly decreased the rate of oocyte fertilization and blastocyst formation. Blastocysts obtained from AgNPs-treated spermatozoa showed lower expression of trophectoderm-associated and pluripotent marker genes. Overall, we propose that AgNPs internalization into spermatozoa may alter sperm physiology, leading to poor fertilization and embryonic development. Such AgNPs-induced reprotoxicity may be a valuable tool as models for testing the safety and applicability of medical devices using AgNPs.
Collapse
Affiliation(s)
- Ton Yoisungnern
- 1] Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea [2] Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yun-Jung Choi
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Jae Woong Han
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Min-Hee Kang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Joydeep Das
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Sangiliyandi Gurunathan
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Chankyu Park
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Won Kyung Chang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Byung-Soo Chang
- Department of Cosmetology, Hanseo University, Seosan, Chungnam 356-706, Korea
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|