1
|
Takyi E, Nirmalkar K, Adams J, Krajmalnik-Brown R. Interventions targeting the gut microbiota and their possible effect on gastrointestinal and neurobehavioral symptoms in autism spectrum disorder. Gut Microbes 2025; 17:2499580. [PMID: 40376856 PMCID: PMC12087657 DOI: 10.1080/19490976.2025.2499580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/18/2025] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that is characterized by deficits in social communication and restricted, repetitive, and stereotyped behaviors. In addition to neurobehavioral symptoms, children with ASD often have gastrointestinal symptoms (e.g. constipation, diarrhea, gas, abdominal pain, reflux). Several studies have proposed the role of gut microbiota and metabolic disorders in gastrointestinal symptoms and neurodevelopmental dysfunction in ASD patients; these results offer promising avenues for novel treatments of this disorder. Interventions targeting the gut microbiota - such as fecal microbiota transplant (FMT), microbiota transplant therapy (MTT), probiotics, prebiotics, synbiotics, antibiotics, antifungals, and diet - promise to improve gut health and can potentially improve neurological symptoms. The modulation of the gut microbiota using MTT in ASD has shown beneficial and long-term effects on GI symptoms and core symptoms of autism. Also, the modulation of the gut microbiota to resemble that of typically developing individuals seems to be the most promising intervention. As most of the studies carried out with MTT are open-label studies, more extensive double-blinded randomized control trials are needed to confirm the efficacy of MTT as a therapeutic option for ASD. This review examines the current clinical research evidence for the use of interventions that target the microbiome - such as antibiotics, antifungals, probiotics/prebiotics, synbiotics, and MTT - and their effectiveness in changing the gut microbiota and improving gastrointestinal and neurobehavioral symptoms in ASD.
Collapse
Affiliation(s)
- Evelyn Takyi
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Khemlal Nirmalkar
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - James Adams
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Snelson M, Muralitharan RR, Liu CF, Markó L, Forslund SK, Marques FZ, Tang WHW. Gut-Heart Axis: The Role of Gut Microbiota and Metabolites in Heart Failure. Circ Res 2025; 136:1382-1406. [PMID: 40403109 PMCID: PMC12101525 DOI: 10.1161/circresaha.125.325516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 05/24/2025]
Abstract
Heart failure is a global health issue with significant mortality and morbidity. There is increasing evidence that alterations in the gastrointestinal microbiome, gut epithelial permeability, and gastrointestinal disorders contribute to heart failure progression through various pathways, including systemic inflammation, metabolic dysregulation, and modulation of cardiac function. Moreover, several medications used to treat heart failure directly impact the microbiome. The relationship between the gastrointestinal tract and the heart is bidirectional, termed the gut-heart axis. It is increasingly understood that diet-derived microbial metabolites are key mechanistic drivers of the gut-heart axis. This includes, for example, trimethylamine N-oxide and short-chain fatty acids. This review discusses current insights into the interplay between heart failure, its associated risk factors, and the gut microbiome, focusing on key metabolic pathways, the role of dietary interventions, and the potential for gut-targeted therapies. Understanding these complex interactions could pave the way for novel strategies to mitigate heart failure progression and improve patient outcomes.
Collapse
Affiliation(s)
- Matthew Snelson
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Rikeish R. Muralitharan
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| | - Lajos Markó
- Charité – Universitätsmedizin Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center ( ECRC), Berlin, Germany
| | - Sofia K. Forslund
- Charité – Universitätsmedizin Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center ( ECRC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Francine Z. Marques
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - W. H. Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
3
|
Karmisholt Grosen A, Mikkelsen S, Aas Hindhede L, Ellegaard Paaske S, Dahl Baunwall SM, Mejlby Hansen M, Frederik Dahlerup J, Steen Mortensen M, Rask Licht T, Kjærgaard Boldsen J, Tornvig Erikstrup L, Lodberg Hvas C, Erikstrup C. Effects of clinical donor characteristics on the success of faecal microbiota transplantation for patients in Denmark with Clostridioides difficile infection: a single-centre, prospective cohort study. THE LANCET. MICROBE 2025; 6:101034. [PMID: 40024260 DOI: 10.1016/j.lanmic.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 03/04/2025]
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is an effective treatment for patients with recurrent Clostridioides difficile infection, but donor selection can influence its clinical success. We aimed to investigate the effect of clinical donor characteristics on FMT outcomes in patients with C difficile infection. METHODS In this single-centre, prospective cohort study, we included all donors who fulfilled the national criteria for faeces donation and delivered donations to the Centre for Faecal Microbiota Transplantation, Aarhus University Hospital, Denmark, between May 2, 2016, and Oct 31, 2023, and corresponding recipients treated with one-dose FMT for primary or recurrent C difficile infection. In mixed-effects models, we evaluated the effect of donor sex, age, BMI, smoking status, donation stool consistency, total donation weight, antibiotic use, Helicobacter pylori carriage, birth mode, donor-recipient sex concordance, and the alpha diversity of faeces donations on FMT outcomes in recipients. The primary outcome was the resolution of diarrhoea associated with C difficile infection in patients 8 weeks after FMT. FINDINGS Among 145 blood donors who also donated faeces, 115 (79·3%) were men and 30 (20·7%) were women. 90 (62·1%) provided faeces for 1351 evaluable FMTs in 952 patients with C difficile infection. 1037 (76·8%) FMTs were administered through oral capsules, 151 (11·2%) via colonoscopy, and 163 FMTs (12·1%) via nasojejunal tube. Antibiotic use 3-12 months before donation decreased the effectiveness of FMT (odds ratio 0·55 [95% CI 0·33-0·91]; p=0·019). Compared with donations with a Bristol Stool Form Scale (BSFS) score of 3, donations with a score of 4 (odds ratio 1·38 [95% CI 1·04-1·83]; p=0·024) and 5 or above (2·89 [1·33-6·26]; p=0·0072) showed improved FMT effectiveness. Donor sex, BMI, smoking status, H pylori carriage, birth mode, total donation weight, and donor-recipient sex concordance did not affect FMT outcomes. INTERPRETATION Expanding current donor selection criteria to avoid antibiotic use in the 12 months preceding donation and including donations with a BSFS score of 5 might improve FMT outcomes for patients with C difficile infection. Our findings call for the revision of current clinical donor screening practices, and future studies could further optimise the criteria for selecting optimal faeces donors. FUNDING Innovation Fund Denmark.
Collapse
Affiliation(s)
- Anne Karmisholt Grosen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Lotte Aas Hindhede
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Sara Ellegaard Paaske
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mette Mejlby Hansen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Frederik Dahlerup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens Kjærgaard Boldsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Danish Big Data Centre for Environment and Health, Aarhus University, Aarhus, Denmark
| | | | - Christian Lodberg Hvas
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Ishikawa D, Watanabe H, Nomura K, Zhang X, Maruyama T, Odakura R, Koma M, Shibuya T, Osada T, Fukuda S, Nakahara T, Terauchi J, Nagahara A, Yamada T. Patient-donor similarity and donor-derived species contribute to the outcome of fecal microbiota transplantation for ulcerative colitis. J Crohns Colitis 2025; 19:jjaf054. [PMID: 40168084 DOI: 10.1093/ecco-jcc/jjaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Indexed: 04/03/2025]
Abstract
BACKGROUND AND AIMS Clinical applications of fecal microbiota transplantation (FMT) for treating ulcerative colitis (UC) have shown promising results. However, whether the beneficial effects of FMT are due to the transfer and colonization of donor-derived species in patients remains unclear. Here, we investigated the factors affecting the efficacy of the administration of triple antibiotics (A-FMT) and the criteria for appropriate donor and patient-donor matching. METHODS Ninety-seven patients with active UC who were enrolled between March 2014 and October 2019 underwent FMT. The clinical features were assessed based on a reduction in Lichtiger's clinical activity index 4 weeks after A-FMT, with long-term responders (LTR) defined as those with no increase or intensification within 12 months after A-FMT. Microbiome analysis was performed on 147 fecal samples (pre-A-FMT, post-A-FMT, and donor) from 49 patient-donor combinations that were assigned using the one-patient-to-one-donor strategy. RESULTS Of the 97 patients, 61 achieved a clinical response, and of those, 35 were classified as having clinical remission. The efficacy of A-FMT was affected by UC severity and previous administration of steroids (P = .027), immunosuppressants (P = .049), and biologics (P = .029). Effective donors were rich in taxa such as Bacteroidota, which are lost in UC, and the abundances of "patient-origin" and "new-amplicon sequence variant" taxa were significantly lower in Responders compared to Nonresponders (Remission; P = .03, LTR; P = .05). "Donor-derived" amplicon sequence variant sequences, Oscillospiraceae UCG-002 and Alistipes, were significantly enriched in Responders (P < .05). Our results showed that the taxonomic composition of patients and the similarity of Bacteroides and butyric-acid-producing bacteria in the patient-donor microbiota significantly influenced A-FMT efficacy (P < .05). CONCLUSIONS This study provides important insights for developing patient-tailored FMT-based therapies for UC.
Collapse
Affiliation(s)
- Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Metagen Therapeutics, Inc., Yamagata, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Hikaru Watanabe
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Metagen Therapeutics, Inc., Yamagata, Japan
| | - Kei Nomura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Xiaochen Zhang
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Takafumi Maruyama
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Rina Odakura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Masao Koma
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Fukuda
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Metagen Therapeutics, Inc., Yamagata, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | | | | | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Juntendo University Graduate School of Medicine Innovative Microbiome Therapy Research Center, Tokyo, Japan
| | | |
Collapse
|
5
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
6
|
Murgiano M, Bartocci B, Puca P, di Vincenzo F, Del Gaudio A, Papa A, Cammarota G, Gasbarrini A, Scaldaferri F, Lopetuso LR. Gut Microbiota Modulation in IBD: From the Old Paradigm to Revolutionary Tools. Int J Mol Sci 2025; 26:3059. [PMID: 40243712 PMCID: PMC11988433 DOI: 10.3390/ijms26073059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders primarily comprising two main conditions: ulcerative colitis and Crohn's disease. The gut microbiota's role in driving inflammation in IBD has garnered significant attention, yet the precise mechanisms through which the microbiota influences IBD pathogenesis remain largely unclear. Given the limited therapeutic options for IBD, alternative microbiota-targeted therapies-including prebiotics, probiotics, postbiotics, and symbiotics-have been proposed. While these approaches have shown promising results, microbiota modulation is still mainly considered an adjunct therapy to conventional treatments, with a demonstrated impact on patients' quality of life. Fecal microbiota transplantation (FMT), already approved for treating Clostridioides difficile infection, represents the first in a series of innovative microbiota-based therapies under investigation. Microbial biotherapeutics are emerging as personalized and cutting-edge tools for IBD management, encompassing next-generation probiotics, bacterial consortia, bacteriophages, engineered probiotics, direct metabolic pathway modulation, and nanotherapeutics. This review explores microbial modulation as a therapeutic strategy for IBDs, highlighting current approaches and examining promising tools under development to better understand their potential clinical applications in managing intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Federica di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Alfredo Papa
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi Link, 00165 Rome, Italy
| |
Collapse
|
7
|
Liu Y, Li X, Chen Y, Yao Q, Zhou J, Wang X, Meng Q, Ji J, Yu Z, Chen X. Fecal microbiota transplantation: application scenarios, efficacy prediction, and factors impacting donor-recipient interplay. Front Microbiol 2025; 16:1556827. [PMID: 40201444 PMCID: PMC11975908 DOI: 10.3389/fmicb.2025.1556827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fecal microbiota transplantation (FMT) represents a therapeutic approach that directly regulates the gut microbiota of recipients, normalizes its composition and reaping therapeutic rewards. Currently, in addition to its general application in treating Clostridium difficile (C. difficile) infection (CDI), FMT treatment has also been extended to the fields of other gastrointestinal diseases, infections, gut-liver or gut-brain axis disorders, metabolic diseases and cancer, etc. Prior to FMT, rigorous donor screening is essential to reduce the occurrence of adverse events. In addition, it is imperative to evaluate whether the recipient can safely and effectively undergo FMT treatment. However, the efficacy of FMT is influenced by the complex interactions between the gut microbiota of donor and recipient, the degree of donor microbiota engraftment is not necessarily positively related with the success rate of FMT. Furthermore, an increasing number of novel factors affecting FMT outcomes are being identified in recent clinical trials and animal experiments, broadening our understanding of FMT treatment. This article provides a comprehensive review of the application scenarios of FMT, the factors influencing the safety and efficacy of FMT from the aspects of both the donors and the recipients, and summarizes how these emerging novel regulatory factors can be combined to predict the clinical outcomes of patients undergoing FMT.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinru Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Rahman R, Fouhse JM, Ju T, Fan Y, Bhardwaj T, Brook RK, Nosach R, Harding J, Willing BP. The impact of wild-boar-derived microbiota transplantation on piglet microbiota, metabolite profile, and gut proinflammatory cytokine production differs from sow-derived microbiota. Appl Environ Microbiol 2025; 91:e0226524. [PMID: 39902926 PMCID: PMC11921332 DOI: 10.1128/aem.02265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Colonization of co-evolved, species-specific microbes in early life plays a crucial role in gastrointestinal development and immune function. This study hypothesized that modern pig production practices have resulted in the loss of co-evolved species and critical symbiotic host-microbe interactions. To test this, we reintroduced microbes from wild boars (WB) into conventional piglets to explore their colonization dynamics and effects on gut microbial communities, metabolite profiles, and immune responses. At postnatal day (PND) 21, 48 piglets were assigned to four treatment groups: (i) WB-derived mixed microbial community (MMC), (ii) sow-derived MMC, (iii) a combination of WB and sow MMC (Mix), or (iv) Control (PBS). Post-transplantation analyses at PND 48 revealed distinct microbial communities in WB-inoculated piglets compared with Controls, with trends toward differentiation from Sow but not Mix groups. WB-derived microbes were more successful in colonizing piglets, particularly in the Mix group, where they competed with Sow-derived microbes. WB group cecal digesta enriched with Lactobacillus helveticus, Lactobacillus mucosae, and Lactobacillus pontis. Cecal metabolite analysis showed that WB piglets were enriched in histamine, acetyl-ornithine, ornithine, citrulline, and other metabolites, with higher histamine levels linked to Lactobacillus abundance. WB piglets exhibited lower cecal IL-1β and IL-6 levels compared with Control and Sow groups, whereas the Mix group showed reduced IFN-γ, IL-2, and IL-6 compared with the Sow group. No differences in weight gain, fecal scores, or plasma cytokines were observed, indicating no adverse effects. These findings support that missing WB microbes effectively colonize domestic piglets and may positively impact metabolite production and immune responses.IMPORTANCEThis study addresses the growing concern over losing co-evolved, species-specific microbes in modern agricultural practices, particularly in pig production. The implementation of strict biosecurity measures and widespread antibiotic use in conventional farming systems may disrupt crucial host-microbe interactions that are essential for gastrointestinal development and immune function. Our research demonstrates that by reintroducing wild boar-derived microbes into domestic piglets, these microbes can successfully colonize the gut, influence microbial community composition, and alter metabolite profiles and immune responses without causing adverse effects. These findings also suggest that these native microbes can fill an intestinal niche, positively impacting immune activation. This research lays the groundwork for future strategies to enhance livestock health and performance by restoring natural microbial populations that produce immune-modulating metabolites.
Collapse
Affiliation(s)
- Rajibur Rahman
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Janelle M. Fouhse
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tingting Ju
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yi Fan
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tulika Bhardwaj
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
- University of Calgary, Calgary, Alberta, Canada
| | - Ryan K. Brook
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Roman Nosach
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin P. Willing
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Xiao HL, Zhu H, Zeng TA, Xu F, Yu SH, Yang CJ. Potential similarities in gut microbiota composition between autism spectrum disorder and neurotypical siblings: Insights from a comprehensive meta-analysis. Neuroscience 2025; 567:172-181. [PMID: 39788315 DOI: 10.1016/j.neuroscience.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Previous studies have explored the differences in gut microbiota (GM) between individuals with autism spectrum disorder (ASD) and neurotypical controls. However, factors such as diet, lifestyle, and environmental exposure influence GM, leading to significant variability, even among neurotypical individuals. Comparing the GM of ASD individuals with neurotypical siblings, who share similar genes and living conditions, may offer better insights into the GM mechanisms associated with ASD. Therefore, this study aims to analyze the GM composition in ASD by comparing it to that of neurotypical siblings, potentially identifying microbiota that influence ASD. METHODS We explored electronic databases up to July 2024, including EBSCOhost, PubMed, ScienceDirect, Web of Science, and Scopus. Meta-analysis using RevMan 5.4 assessed the relative abundance (RA) of gut bacteria from 8 phyla and 4 genera in ASD individuals and neurotypical siblings. RESULTS Eight studies were included, involving 248 people with ASD and 197 neurotypical siblings. Significant but unstable differences were observed in the RA of Bacteroidetes, Firmicutes, and Fusobacteria. No significant differences were found in the RA of Proteobacteria, Cyanobacteria, Actinobacteria, Verrucomicrobia, Tenericutes, or Bacteroides, Roseburia, Sutterella, Bifidobacterium. CONCLUSIONS GM composition in ASD individuals closely resembles that of neurotypical siblings, with only a few unstable differences. This suggests that other crucial bacteria or certain interacting environmental factors play a role. Further studies are needed to gather stronger evidence to uncover the differences in GM and their mechanisms in ASD people.
Collapse
Affiliation(s)
- Hong-Li Xiao
- Faculty of Education, East China Normal University, Shanghai, China
| | - Han Zhu
- Faculty of Education, East China Normal University, Shanghai, China
| | - Tong-Ao Zeng
- Faculty of Education, East China Normal University, Shanghai, China
| | - Fang Xu
- Faculty of Education, East China Normal University, Shanghai, China; Hangzhou Health Experimental School, Zhejiang, China
| | - Su-Hong Yu
- Faculty of Education, East China Normal University, Shanghai, China.
| | - Chang-Jiang Yang
- Faculty of Education, East China Normal University, Shanghai, China; China Research Institute of Care and Education of Infants and Young, ECNU, Shanghai, China.
| |
Collapse
|
10
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
11
|
Saha S, Schnabl B. Modulating the microbiome in chronic liver diseases - current evidence on the role of fecal microbiota transplantation. Expert Rev Gastroenterol Hepatol 2025; 19:53-64. [PMID: 39760535 PMCID: PMC11882407 DOI: 10.1080/17474124.2025.2450707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/07/2025]
Abstract
INTRODUCTION The gut microbiota has a complex relationship with the human host and is key to maintaining health. Disruption of the healthy diverse gut microbial milieu plays an important role in the pathogenesis of several diseases including Clostridioides difficile infection (CDI), inflammatory bowel disease, irritable bowel syndrome, alcohol-related liver disease and metabolic-dysfunction associated steatotic liver disease (MASLD). Fecal microbiota transplantation (FMT) is highly effective in treating CDI, though its utility in other diseases is still being explored. AREAS COVERED In this narrative review, we explore the role of gut microbiota in liver diseases, focusing on key changes in the microbial composition and function. We summarize current evidence on the role of FMT, identifying gaps in current research and outlining future directions for investigation. We comprehensively searched PubMed through 15 October 2024 to identify relevant studies. EXPERT OPINION While data from available studies shows promise, more research is necessary before we can use FMT for liver diseases. Key areas that require further study are - determining the optimal FMT regimen for each disease, establishing efficacy and safety with larger clinical trials, ensuring safe and equitable access to the FMT product and mechanistic insights into the reasons for success or failure of FMT.
Collapse
Affiliation(s)
- Srishti Saha
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Diego, San Diego, CA
| | - Bernd Schnabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Diego, San Diego, CA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
12
|
Laperrousaz B, Levast B, Fontaine M, Nancey S, Dechelotte P, Doré J, Lehert P. Safety comparison of single-donor and pooled fecal microbiota transfer product preparation in ulcerative colitis: systematic review and meta-analysis. BMC Gastroenterol 2024; 24:402. [PMID: 39528920 PMCID: PMC11552227 DOI: 10.1186/s12876-024-03487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Multiple studies have evaluated fecal microbiota transfer (FMT) in patients with ulcerative colitis (UC) using single-donor (SDN) and multidonor (MDN) products. Systematic review and meta-analysis were performed to compare the safety of SDN and MDN products. METHODS Systematic searches were performed in Web of Science, Scopus, PubMed, and Orbit Intelligence to identify studies that compared FMT products manufactured using SDN or MDN strategies against control treatment in patients with UC. Fifteen controlled studies were selected for meta-analysis (11 randomized controlled trials and 4 controlled cohort trials). Safety of each treatment type was assessed using the counts of adverse events and serious adverse events using fixed- and random-effects models. Significance of the indirect difference between FMT preparations was assessed using a network approach. Benefit-risk ratios were calculated by multiplicative utility model, incorporating geometric mean of risk ratios (RRs) of efficacy and safety. RESULTS Safety data was collected for a total of 587 patients (193 exposed to SDN products, 114 exposed to MDN products and 280 exposed to control treatment). The 12 studies showed similar overall safety event counts for MDN and SDN versus placebo (RRs: 0.90 and 1.09, respectively [P = 0.206 and P = 0.420, respectively]). Results indicated similar risk of safety events for MDN compared to SDN (RR: 0.83, P = 0.159). Positive benefit-risk ratios were demonstrated for MDN and SDN versus placebo (RRs: 1.70 and 1.16, respectively [P = 0.003 and P = 0.173, respectively]). MDN had a greater benefit-risk ratio compared to SDN (RR: 1.46, P = 0.072). CONCLUSION Similar safety profiles were observed for MDN and SDN strategies. Alongside previously described superior efficacy, treatment with MDN has greater benefit-risk ratio than SDN in patients with UC. Further development of MDN FMT treatment for UC should be considered.
Collapse
Affiliation(s)
| | | | | | - Stéphane Nancey
- Department of Gastroenterology, Lyon-Sud Hospital, CHU de Lyon, University Claude Bernard Lyon 1 and CIRI-INSERM U1111, Lyon, France
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParis Tech, MICALIS, Jouy-en-Josas, 78350, France
| | - Philippe Lehert
- Faculty of Management, UCL, Louvain, Belgium
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Bénard MV, de Goffau MC, Blonk J, Hugenholtz F, van Buuren J, Paramsothy S, Kaakoush NO, D'Haens GRAM, Borody TJ, Kamm MA, Ponsioen CY. Gut Microbiota Features in Relation to Fecal Microbiota Transplantation Outcome in Ulcerative Colitis: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00907-8. [PMID: 39442743 DOI: 10.1016/j.cgh.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND & AIMS Fecal microbiota transplantation (FMT) can induce remission in patients with ulcerative colitis, yet its efficacy needs improvement. We conducted a comprehensive evaluation of the current literature on microbial factors affecting outcome, as well as a meta-analysis on some of the largest datasets regarding composition. METHODS MEDLINE, Embase, and Cochrane were systematically searched through August 2024 for relevant studies. The quality of studies was analyzed with JBI tools and a composite critical appraisal score. Additionally, species-level data from 2 landmark FMT trials (the Transplantation of Feces in Ulcerative Colitis; Returning Nature's Homeostasis [TURN] and Fecal Microbiota Transplantation for Chronic Active Ulcerative Colitis [FOCUS] trials) were reanalyzed from a compositional perspective. RESULTS Out of 3755 citations identified, 56 met the inclusion criteria, of which 29 fulfilled quality standards. Higher microbial α-diversity, either in donors or recipients (at baseline or following FMT treatment), was associated with better clinical response rates. Engraftment of the donors' microbiota could not be clearly linked with clinical response, possibly because not every donor has an ideal microbiome. Butyrate-producing species from the Lachnospiraceae and Oscillospiraceae families were often related with response, whereas the reverse was true for Fusobacteria, many Proteobacteria, and Ruminococcus gnavus. Compositional analyses showed that clinical response is associated with a shift from a low-diversity, often Bacteroides-dominant composition to one with higher diversity, either dominated by various butyrate producers, the Christensenellaceae-Methanobrevibacter trophic network, or a moderate/high-diversity composition with abundant but not excessive levels of Prevotella copri. CONCLUSIONS This systematic review/meta-analysis yielded a coherent picture from a compositional perspective, which may help identify beneficial donor profiles and guide personalized FMT approaches.
Collapse
Affiliation(s)
- Mèlanie V Bénard
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Justine Blonk
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joep van Buuren
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sudarshan Paramsothy
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, Concord, New South Wales, Australia; Department of Gastroenterology, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Geert R A M D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Cibulková I, Řehořová V, Wilhelm M, Soukupová H, Hajer J, Duška F, Daňková H, Cahová M. Evaluating Bacterial Viability in Faecal Microbiota Transplantation: A Comparative Analysis of In Vitro Cultivation and Membrane Integrity Methods. J Clin Lab Anal 2024; 38:e25105. [PMID: 39360586 PMCID: PMC11520942 DOI: 10.1002/jcla.25105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is a developing therapy for disorders related to gut dysbiosis. Despite its growing application, standardised protocols for FMT filtrate preparation and quality assessment remain undeveloped. The viability of bacteria in the filtrate is crucial for FMT's efficacy and for validating protocol execution. We compared two methods-in vitro cultivation and membrane integrity assessment-for their accuracy, reproducibility and clinical applicability in measuring bacterial viability in frozen FMT stool filtrate. METHODS Bacterial viability in stool filtrate was evaluated using (i) membrane integrity through fluorescent DNA staining with SYTO9 and propidium iodide, followed by flow cytometry and (ii) culturable bacteria counts (colony-forming units, CFU) under aerobic or anaerobic conditions. RESULTS Using different types of samples (pure bacterial culture, stool of germ-free and conventionally bred mice, native and heat-treated human stool), we refined the bacterial DNA staining protocol integrated with flow cytometry for assessment of bacterial viability in frozen human stool samples. Both the membrane integrity-based and cultivation-based methods exhibited significant variability in bacterial viability across different FMT filtrates, without correlation. The cultivation-based method showed a mean coefficient of variance of 30.3%, ranging from 7.4% to 60.1%. Conversely, the membrane integrity approach yielded more reproducible results, with a mean coefficient of variance for viable cells of 6.4% ranging from 0.2% to 18.2%. CONCLUSION Bacterial viability assessment in stool filtrate using the membrane integrity method offers robust and precise data, making it a suitable option for faecal material evaluation in FMT. In contrast, the cultivation-dependent methods produce inconsistent outcomes.
Collapse
Affiliation(s)
- Ivana Cibulková
- Division of Gastroenterology, Department of Internal MedicineKralovske Vinohrady University HospitalPragueCzech Republic
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Veronika Řehořová
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Anaesthesia and Intensive Care MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Marek Wilhelm
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Hana Soukupová
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of MicrobiologyKralovske Vinohrady University HospitalPragueCzech Republic
| | - Jan Hajer
- Division of Gastroenterology, Department of Internal MedicineKralovske Vinohrady University HospitalPragueCzech Republic
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - František Duška
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Anaesthesia and Intensive Care MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Helena Daňková
- Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Monika Cahová
- Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| |
Collapse
|
15
|
Ye ZN, Eslick GD, Huang SG, He XX. Faecal microbiota transplantation for eradicating Helicobacter pylori infection: clinical practice and theoretical postulation. EGASTROENTEROLOGY 2024; 2:e100099. [PMID: 39944265 PMCID: PMC11770466 DOI: 10.1136/egastro-2024-100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The sustained increase in antibiotic resistance leads to a declining trend in the eradication rate of Helicobacter pylori (H. pylori) infection with antibiotic-based eradication regimens. Administration of a single probiotic shows limited efficacy in eradicating H. pylori infection. This review indicates that faecal microbiota transplantation (FMT), a novel therapeutic approach, either as a monotherapy or adjunctive therapy, exhibits beneficial effects in terms of the eradication of H. pylori infection and the prevention of adverse events. The role of FMT in H. pylori eradication may be associated directly or indirectly with some therapeutic constituents within the faecal suspension, including bacteria, viruses, antimicrobial peptides and metabolites. In addition, variations in donor selection, faecal suspension preparation and delivery methods are believed to be the main factors determining the effectiveness of FMT for the treatment of H. pylori infection. Future research should refine the operational procedures of FMT to achieve optimal efficacy for H. pylori infection and explore the mechanisms by which FMT acts against H. pylori.
Collapse
Affiliation(s)
- Zhi-Ning Ye
- The Affiliated Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Guy D Eslick
- The Australian Paediatric Surveillance Unit, The University of Sydney, The Children's Hospital, Sydney, New South Wale, Australia
| | - Shao-Gang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xing-Xiang He
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
16
|
Jiang P, Ji S, Su D, Zhao Y, Goncalves VBE, Xu G, Zhang M. The biofunction of Akkermansia muciniphila in intestinal-related diseases. MICROBIOME RESEARCH REPORTS 2024; 3:47. [PMID: 39741950 PMCID: PMC11684987 DOI: 10.20517/mrr.2024.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 01/03/2025]
Abstract
Intestinal homeostasis is essential for maintaining human health, and its dysfunction is related to the onset and progression of various diseases, including immune and metabolic disorders, and even tumorigenesis. Intestinal microbiota plays a critical role in intestinal homeostasis, with Akkermansia muciniphila (A. muciniphila) emerging as a key commensal bacterium utilizing mucin as its sole carbon and nitrogen source. A. muciniphila has been recognized in both experimental and clinical studies for its beneficial role in managing intestinal inflammation, tumors, functional gastrointestinal disorders, and secondary conditions such as liver and metabolic diseases. This review provides a comprehensive overview of the research history and current understanding of A. muciniphila, its association with various intestinal-related diseases, and the potential mechanisms behind its effects. This paper also explores the possibilities of leveraging the probiotic enzyme such as the active ingredients of A. muciniphila for the innovative clinical treatment of intestinal-related diseases.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
- Authors contributed equally
| | - Siqi Ji
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Authors contributed equally
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, MA 02472, USA
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL 60637, USA
| | - Viriania Berta Esperanca Goncalves
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
17
|
van Lingen E, Nooij S, Terveer EM, Crossette E, Prince AL, Bhattarai SK, Watson A, Galazzo G, Menon R, Szabady RL, Bucci V, Norman JM, van der Woude CJ, van der Marel S, Verspaget HW, van der Meulen-de Jong AE, Keller JJ. Faecal Microbiota Transplantation Engraftment After Budesonide or Placebo in Patients With Active Ulcerative Colitis Using Pre-selected Donors: A Randomized Pilot Study. J Crohns Colitis 2024; 18:1381-1393. [PMID: 38572716 PMCID: PMC11369067 DOI: 10.1093/ecco-jcc/jjae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/30/2023] [Indexed: 04/05/2024]
Abstract
BACKGROUND Faecal microbiota transplantation [FMT] shows some efficacy in treating patients with ulcerative colitis [UC], although variability has been observed among donors and treatment regimens. We investigated the effect of FMT using rationally selected donors after pretreatment with budesonide or placebo in active UC. METHODS Patients ≥18 years old with mild to moderate active UC were randomly assigned to 3 weeks of budesonide [9 mg] or placebo followed by 4-weekly infusions of a donor faeces suspension. Two donors were selected based on microbiota composition, regulatory T cell induction and short-chain fatty acid production in mice. The primary endpoint was engraftment of donor microbiota after FMT. In addition, clinical efficacy was assessed. RESULTS In total, 24 patients were enrolled. Pretreatment with budesonide did not increase donor microbiota engraftment [p = 0.56] nor clinical response, and engraftment was not associated with clinical response. At week 14, 10/24 [42%] patients achieved [partial] remission. Remarkably, patients treated with FMT suspensions from one donor were associated with clinical response [80% of responders, p < 0.05] but had lower overall engraftment of donor microbiota. Furthermore, differences in the taxonomic composition of the donors and the engraftment of certain taxa were associated with clinical response. CONCLUSION In this small study, pretreatment with budesonide did not significantly influence engraftment or clinical response after FMT. However, clinical response appeared to be donor-dependent. Response to FMT may be related to transfer of specific strains instead of overall engraftment, demonstrating the need to characterize mechanisms of actions of strains that maximize therapeutic benefit in UC.
Collapse
Affiliation(s)
- Emilie van Lingen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sam Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Shakti K Bhattarai
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Worcester, MA, USA
| | | | | | | | - Rose L Szabady
- Vedanta Biosciences, Cambridge, MA, USA
- Ferring Pharmaceuticals, San Diego, CA, USA
| | - Vanni Bucci
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Worcester, MA, USA
| | | | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander van der Marel
- Department of Gastroenterology and Hepatology, Haaglanden Medisch Centrum, den Haag, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Josbert J Keller
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gastroenterology and Hepatology, Haaglanden Medisch Centrum, den Haag, The Netherlands
| |
Collapse
|
18
|
Fanizzi F, D'Amico F, Zanotelli Bombassaro I, Zilli A, Furfaro F, Parigi TL, Cicerone C, Fiorino G, Peyrin-Biroulet L, Danese S, Allocca M. The Role of Fecal Microbiota Transplantation in IBD. Microorganisms 2024; 12:1755. [PMID: 39338430 PMCID: PMC11433743 DOI: 10.3390/microorganisms12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota dysbiosis has a critical role in the pathogenesis of inflammatory bowel diseases, prompting the exploration of novel therapeutic approaches like fecal microbiota transplantation, which involves the transfer of fecal microbiota from a healthy donor to a recipient with the aim of restoring a balanced microbial community and attenuating inflammation. Fecal microbiota transplantation may exert beneficial effects in inflammatory bowel disease through modulation of immune responses, restoration of mucosal barrier integrity, and alteration of microbial metabolites. It could alter disease course and prevent flares, although long-term durability and safety data are lacking. This review provides a summary of current evidence on fecal microbiota transplantation in inflammatory bowel disease management, focusing on its challenges, such as variability in donor selection criteria, standardization of transplant protocols, and long-term outcomes post-transplantation.
Collapse
Affiliation(s)
- Fabrizio Fanizzi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Isadora Zanotelli Bombassaro
- Department of Gastroenterology and Endoscopy, Santa Casa de Misericordia de Porto Alagre, Porto Alegre 90020-090, Brazil
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, Nutrition-Genetics and Exposure to Environmental Risks Research Unit (NGERE), University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Fédération Hospitalo-Universitaire CARE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
19
|
Zhang YJ, Bousvaros A, Docktor M, Kaplan AL, Rufo PA, Leier M, Weatherly M, Zimmerman L, Nguyen LTT, Barton B, Russell G, Alm EJ, Kahn SA. Higher alpha diversity and Lactobacillus blooms are associated with better engraftment after fecal microbiota transplant in inflammatory bowel disease. Sci Rep 2024; 14:18188. [PMID: 39107366 PMCID: PMC11303812 DOI: 10.1038/s41598-024-68619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Fecal Microbiota Transplant (FMT) has shown some success in treating inflammatory bowel diseases (IBD). There is emerging evidence that host engraftment of donor taxa is a tenet of successful FMT. We undertook a double-blind, randomized, placebo-controlled pilot study to characterize the response to FMT in children and young adults with mild to moderate active Crohn's disease (CD) and ulcerative colitis (UC). Subjects with CD or UC were randomized to receive antibiotics and weekly FMT or placebo in addition to baseline medications. We enrolled 15 subjects aged 14-29 years. Four subjects had CD, and 11 had UC. Subjects exhibited a wide range of microbial diversity and donor engraftment. Specifically, engraftment ranged from 26 to 90% at week 2 and 3-92% at 2 months. Consistent with the current literature, increases over time of both alpha diversity (p < 0.05) and donor engraftment (p < 0.05) correlated with improved clinical response. We discovered that the post-antibiotic but pre-FMT time point was rich in microbial correlates of eventual engraftment. Greater residual alpha diversity after antibiotic treatment was positively correlated with engraftment and subsequent clinical response. Interestingly, a transient rise in the relative abundance of Lactobacillus was also positively correlated with engraftment, a finding that we recapitulated with our analysis of another FMT trial.
Collapse
Affiliation(s)
- Yanjia Jason Zhang
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St., Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Athos Bousvaros
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Docktor
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Abby L Kaplan
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Paul A Rufo
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - McKenzie Leier
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Madison Weatherly
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Lori Zimmerman
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Le Thanh Tu Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St., Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brenda Barton
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - George Russell
- Gastroenterology/Nutrition, Maine Medical Center, 22 Bramhall St., Portland, ME, USA
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St., Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy A Kahn
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA.
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA.
| |
Collapse
|
20
|
Catone S, Iannantuono S, Genovese D, Von Hunolstein C, Franciosa G. Viability-PCR for the selective detection of Lactobacillus acidophilus and Bifidobacterium bifidum in live bacteria-containing products. Front Microbiol 2024; 15:1400529. [PMID: 39021625 PMCID: PMC11251893 DOI: 10.3389/fmicb.2024.1400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
To exert their beneficial effects, microorganisms used in live bacteria-containing products must be viable and present in certain amounts. In this study, we developed a viability assay based on quantitative PCR coupled with propidium monoazide for the identification and enumeration of viable Lactobacillus acidophilus and Bifidobacterium bifidum. In order to optimize the protocol, the thermal inactivation conditions for the two target microorganisms and the PMA concentration inhibiting DNA amplification from the dead cells while allowing it from the live cells were first determined. The viability-PCR protocol was then applied to analyze a commercial product containing the two microorganisms. The quantities of both microorganisms determined using viability-PCR in the tested product were significantly higher than those obtained using the standard plate count, suggesting the presence of bacteria in a viable but non-culturable physiological state. Moreover, lower amounts of the two microorganisms were detected using viability-PCR compared to those achieved using quantitative PCR, possibly because of the presence of dead cells in the samples. Our results suggest that the viability-PCR method proposed here is a suitable alternative for rapid and accurate quantification and assessment of the viability of L. acidophilus and B. bifidum and could be easily adopted in the quality control screening of live bacteria-containing products.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Franciosa
- Biologicals and Biotechnologicals Unit, Istituto Superiore di Sanità, National Center for the Evaluation and Control of Medicines, Rome, Italy
| |
Collapse
|
21
|
Pacuta I, Gancarcikova S, Lauko S, Hajduckova V, Janicko M, Demeckova V, Rynikova M, Adamkova P, Mudronova D, Ambro L, Fialkovicova M, Nemetova D, Bertkova I. Evaluation of the Suitability of Selecting a Faecal Microbiota Transplant: Bacterial Composition and Subsequent Long-Term Monitoring of the Viability of Its Frozen and Lyophilised Forms. APPLIED SCIENCES 2024; 14:4856. [DOI: 10.3390/app14114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Objectives: The aim of this study was to confirm the effectiveness of FMT on the basis of optimum composition of the faecal microbiota of the donor for support therapy in patients with ulcerative colitis, and to observe the viability of the microbiota in frozen and lyophilised administration forms of FMT under various storage conditions. Methods: The bacterial microbiota composition of the FMT samples was assessed using amplicon sequencing via next-generation sequencing (NGS) technology, conducted on the Illumina MiSeq platform. The BD FACS Canto flow cytometer was used to analyse the metabolic activity of FMT samples. Results: FMT analysis confirmed the presence of key butyrate-producing organisms, specifically highlighting species such as Bifidobacterium adolescentis, Faecalibacterium prausnitzi, Coprococcus catus, Eubacterium rectale, alongside contributions from genera Roseburia and Blautia. These organisms play a crucial role in maintaining intestinal health in humans. The viable microorganism counts were significantly higher (p < 0.001) in the frozen form of FMT (−70 °C) in comparison to lyophilised forms (−70 °C, 4 °C and 20 °C) throughout the storage period. Conclusion: The conducted NGS analyses allowed us to confirm the suitability of our FMT donor as a potential candidate for the target group of patients diagnosed with ulcerative colitis. From the point of view of optimum utilisation of FMT at its highest metabolic activity for the purpose of transplantation, its storage for a maximum of 2 months under specified conditions was confirmed as the most suitable for the frozen and all lyophilised FMT forms.
Collapse
Affiliation(s)
- Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Maria Rynikova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Petra Adamkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Maria Fialkovicova
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| |
Collapse
|
22
|
Algavi YM, Borenstein E. Relative dispersion ratios following fecal microbiota transplant elucidate principles governing microbial migration dynamics. Nat Commun 2024; 15:4447. [PMID: 38789466 PMCID: PMC11126695 DOI: 10.1038/s41467-024-48717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms frequently migrate from one ecosystem to another. Yet, despite the potential importance of this process in modulating the environment and the microbial ecosystem, our understanding of the fundamental forces that govern microbial dispersion is still lacking. Moreover, while theoretical models and in-vitro experiments have highlighted the contribution of species interactions to community assembly, identifying such interactions in vivo, specifically in communities as complex as the human gut, remains challenging. To address this gap, here we introduce a robust and rigorous computational framework, termed Relative Dispersion Ratio (RDR) analysis, and leverage data from well-characterized fecal microbiota transplant trials, to rigorously pinpoint dependencies between taxa during the colonization of human gastrointestinal tract. Our analysis identifies numerous pairwise dependencies between co-colonizing microbes during migration between gastrointestinal environments. We further demonstrate that identified dependencies agree with previously reported findings from in-vitro experiments and population-wide distribution patterns. Finally, we explore metabolic dependencies between these taxa and characterize the functional properties that facilitate effective dispersion. Collectively, our findings provide insights into the principles and determinants of community dynamics following ecological translocation, informing potential opportunities for precise community design.
Collapse
Affiliation(s)
- Yadid M Algavi
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
23
|
Reygner J, Delannoy J, Barba-Goudiaby MT, Gasc C, Levast B, Gaschet E, Ferraris L, Paul S, Kapel N, Waligora-Dupriet AJ, Barbut F, Thomas M, Schwintner C, Laperrousaz B, Corvaïa N. Reduction of product composition variability using pooled microbiome ecosystem therapy and consequence in two infectious murine models. Appl Environ Microbiol 2024; 90:e0001624. [PMID: 38651930 PMCID: PMC11107171 DOI: 10.1128/aem.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Growing evidence demonstrates the key role of the gut microbiota in human health and disease. The recent success of microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on its potential in conditions associated with gut dysbiosis, such as acute graft-versus-host disease, intestinal bowel diseases, neurodegenerative diseases, or even cancer. However, the difficulty in defining a "good" donor as well as the intrinsic variability of donor-derived products' taxonomic composition limits the translatability and reproducibility of these studies. Thus, the pooling of donors' feces has been proposed to homogenize product composition and achieve higher taxonomic richness and diversity. In this study, we compared the metagenomic profile of pooled products to corresponding single donor-derived products. We demonstrated that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria known to produce anti-inflammatory short chain fatty acids compared to single donor-derived products. We then evaluated pooled products' efficacy compared to corresponding single donor-derived products in Salmonella and C. difficile infectious mouse models. We were able to demonstrate that pooled products decreased pathogenicity by inducing a structural change in the intestinal microbiota composition. Single donor-derived product efficacy was variable, with some products failing to control disease progression. We further performed in vitro growth inhibition assays of two extremely drug-resistant bacteria, Enterococcus faecium vanA and Klebsiella pneumoniae oxa48, supporting the use of pooled microbiotherapies. Altogether, these results demonstrate that the heterogeneity of donor-derived products is corrected by pooled fecal microbiotherapies in several infectious preclinical models.IMPORTANCEGrowing evidence demonstrates the key role of the gut microbiota in human health and disease. Recent Food and Drug Administration approval of fecal microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on their potential to treat pathological conditions associated with gut dysbiosis. In this study, we combined metagenomic analysis with in vitro and in vivo studies to compare the efficacy of pooled microbiotherapy products to corresponding single donor-derived products. We demonstrate that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria compared to single donor-derived products. We further reveal that pooled products decreased Salmonella and Clostridioides difficile pathogenicity in mice, while single donor-derived product efficacy was variable, with some products failing to control disease progression. Altogether, these findings support the development of pooled microbiotherapies to overcome donor-dependent treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stéphane Paul
- Team GIMAP, Centre International de Recherche en Infectiologie, Université Jean Monnet, Saint-Etienne, France
- Inserm, Université Claude Bernard Lyon, Lyon, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Nathalie Kapel
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- Service de Coprologie fonctionnelle, Hôpital de la Pitié-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | | | - Frederic Barbut
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- National Reference Laboratory for Clostridioides difficile, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- The European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, Basel, Switzerland
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
24
|
Halle-Smith JM, Pearce H, Nicol S, Hall LA, Powell-Brett SF, Beggs AD, Iqbal T, Moss P, Roberts KJ. Involvement of the Gut Microbiome in the Local and Systemic Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:996. [PMID: 38473357 DOI: 10.3390/cancers16050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The systemic and local immunosuppression exhibited by pancreatic ductal adenocarcinoma (PDAC) contributes significantly to its aggressive nature. There is a need for a greater understanding of the mechanisms behind this profound immune evasion, which makes it one of the most challenging malignancies to treat and thus one of the leading causes of cancer death worldwide. The gut microbiome is now thought to be the largest immune organ in the body and has been shown to play an important role in multiple immune-mediated diseases. By summarizing the current literature, this review examines the mechanisms by which the gut microbiome may modulate the immune response to PDAC. Evidence suggests that the gut microbiome can alter immune cell populations both in the peripheral blood and within the tumour itself in PDAC patients. In addition, evidence suggests that the gut microbiome influences the composition of the PDAC tumour microbiome, which exerts a local effect on PDAC tumour immune infiltration. Put together, this promotes the gut microbiome as a promising route for future therapies to improve immune responses in PDAC patients.
Collapse
Affiliation(s)
- James M Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lewis A Hall
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Sarah F Powell-Brett
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tariq Iqbal
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Microbiome Treatment Centre, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Keith J Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Barko P, Nguyen-Edquilang J, Williams DA, Gal A. Fecal microbiome composition and diversity of cryopreserved canine stool at different duration and storage conditions. PLoS One 2024; 19:e0294730. [PMID: 38324560 PMCID: PMC10849402 DOI: 10.1371/journal.pone.0294730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/07/2023] [Indexed: 02/09/2024] Open
Abstract
Fresh-frozen stool banks intended for humans with gastrointestinal and metabolic disorders have been recently established and there are ongoing efforts to establish the first veterinary fresh-frozen stool bank. Fresh frozen stored feces provide an advantage of increased availability and accessibility to high-quality optimal donor fecal material. The stability of frozen canine feces regarding fecal microbiome composition and diversity has not been reported in dogs, providing the basis for this study. We hypothesized that fecal microbial composition and diversity of healthy dogs would remain stable when stored at -20°C and -80°C for up to 12 months compared to baseline samples evaluated before freezing. Stool samples were collected from 20 apparently healthy dogs, manually homogenized, cryopreserved in 20% glycerol and aliquoted, frozen in liquid nitrogen and stored at -20°C or -80°C for 3, 6, 9, and 12 months. At baseline and after period of storage, aliquots were thawed and treated with propidium monoazide before fecal DNA extraction. Following long-read 16S-rRNA amplicon sequencing, bacterial community composition and diversity were compared among treatment groups. We demonstrated that fresh-frozen canine stools collected from 20 apparently healthy dogs could be stored for up to 12 months at -80°C with minimal change in microbial community composition and diversity and that storage at -80°C is superior to storage at -20°C. We also found that differences between dogs had the largest effect on community composition and diversity. Relative abundances of certain bacterial taxa, including those known to be short-chain fatty acid producers, varied significantly with specific storage temperatures and duration. Further work is required to ascertain whether fecal donor material that differs in bacterial community composition and diversity across storage conditions and duration could lead to differences in clinical efficacy for specific clinical indications of fecal microbiota transplantation.
Collapse
Affiliation(s)
- Patrick Barko
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Julie Nguyen-Edquilang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - David A. Williams
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
26
|
Singh A, Midha V, Chauhan NS, Sood A. Current perspectives on fecal microbiota transplantation in inflammatory bowel disease. Indian J Gastroenterol 2024; 43:129-144. [PMID: 38334893 DOI: 10.1007/s12664-023-01516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic modality within the domain of inflammatory bowel disease (IBD). While FMT has secured approval and demonstrated efficacy in addressing recurrent and refractory Clostridioides difficile infection, its application in IBD remains an area of active exploration and research. The current status of FMT in IBD reflects a nuanced landscape, with ongoing investigations delving into its effectiveness, safety and optimal implementation. Early-stage clinical trials and observational studies have provided insights into the potential of FMT to modulate the dysbiotic gut microbiota associated with IBD, aiming to mitigate inflammation and promote mucosal healing. However, considerable complexities persist, including variations in donor selection, treatment protocols and outcome assessments. Challenges in standardizing FMT protocols for IBD treatment are compounded by the dynamic nature of the gut microbiome and the heterogeneity of IBD itself. Despite these challenges, enthusiasm for FMT in IBD emanates from its capacity to address gut microbial dysbiosis, signifying a paradigm shift towards more comprehensive approaches in IBD management. As ongoing research progresses, an enhanced understanding of FMT's role in IBD therapy is anticipated. This article synthesizes the current status of FMT in IBD, elucidating the attendant challenges and aspiring towards the refinement of its application for improved patient outcomes.
Collapse
Affiliation(s)
- Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124 001, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India.
| |
Collapse
|
27
|
Vestergaard MV, Allin KH, Eriksen C, Zakerska-Banaszak O, Arasaradnam RP, Alam MT, Kristiansen K, Brix S, Jess T. Gut microbiota signatures in inflammatory bowel disease. United European Gastroenterol J 2024; 12:22-33. [PMID: 38041519 PMCID: PMC10859715 DOI: 10.1002/ueg2.12485] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), affect millions of people worldwide with increasing incidence. OBJECTIVES Several studies have shown a link between gut microbiota composition and IBD, but results are often limited by small sample sizes. We aimed to re-analyze publicly available fecal microbiota data from IBD patients. METHODS We extracted original fecal 16S rRNA amplicon sequencing data from 45 cohorts of IBD patients and healthy individuals using the BioProject database at the National Center for Biotechnology Information. Unlike previous meta-analyses, we merged all study cohorts into a single dataset, including sex, age, geography, and disease information, based on which microbiota signatures were analyzed, while accounting for varying technical platforms. RESULTS Among 2518 individuals in the combined dataset, we discovered a hitherto unseen number of genera associated with IBD. A total of 77 genera associated with CD, of which 38 were novel associations, and a total of 64 genera associated with UC, of which 28 represented novel associations. Signatures were robust across different technical platforms and geographic locations. Reduced alpha diversity in IBD compared to healthy individuals, in CD compared to UC, and altered microbiota composition (beta diversity) in UC and especially in CD as compared to healthy individuals were found. CONCLUSIONS Combining original microbiota data from 45 cohorts, we identified a hitherto unseen large number of genera associated with IBD. Identification of microbiota features robustly associated with CD and UC may pave the way for the identification of new treatment targets.
Collapse
Affiliation(s)
- Marie Vibeke Vestergaard
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Carsten Eriksen
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Ramesh P Arasaradnam
- Warwick Medical School & Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mohammad T Alam
- Warwick Medical School & Cancer Research Centre, University of Leicester, Leicester, UK
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Karsten Kristiansen
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Brix
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
28
|
Arora U, Kedia S, Ahuja V. The practice of fecal microbiota transplantation in inflammatory bowel disease. Intest Res 2024; 22:44-64. [PMID: 37981746 PMCID: PMC10850701 DOI: 10.5217/ir.2023.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/21/2023] Open
Abstract
Current evidence posits a central role for gut microbiota and the metabolome in the pathogenesis and progression of inflammatory bowel disease (IBD). Fecal microbiota transplantation (FMT) has been established as a means to manipulate this microbiome safely and sustainably. Several aspects of the technical improvement including pretreatment with antibiotics, use of frozen stool samples as well as short donor-to-recipient time are proposed to improve its response rates. Its efficacy in ulcerative colitis has been proven in clinical trials while data is emerging for Crohn's disease. This review describes briefly the biology behind FMT, the available evidence for its use in IBD, and the host, recipient and procedural factors which determine the clinical outcomes.
Collapse
Affiliation(s)
- Umang Arora
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Fossmark R, Lirhus SS, Høivik ML. The impact of proton pump inhibitors on the course of ulcerative colitis: a cohort study of over 10,000 newly diagnosed patients in Norway. Scand J Gastroenterol 2024; 59:46-51. [PMID: 37681998 DOI: 10.1080/00365521.2023.2255710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND AND AIMS Proton pump inhibitors (PPI) affect the gastrointestinal microbiota, which is thought to play a role in the pathogenesis of ulcerative colitis (UC). Previous studies suggest an association between PPI use and risk of incident UC as well as disease course. The aim of the study was to examine if PPI exposure is associated with disease course in UC patients. METHODS A national cohort consisting of all newly diagnosed UC patients from 2010 to 2020 was defined combining data from Norwegian registries. PPI exposure was included as a time dependent variable with a 30 day time lag from starting the drug. Outcomes were starting advanced therapies including anti-TNF, systemic glucocorticoids, any additional systemic anti-inflammatory medication and undergoing colectomy during follow-up. Time-dependent Cox regressions included the variables PPI use, first systemic glucocorticoid prescription, first UC hospitalization, age-groups and sex. RESULTS The study cohort consisted of 10,149 patients with median age 40 years (IQR 27-56) and 56% males. PPI use independently increased the risk of starting advanced therapies (HR 1.54, 95% CI 1.36-1.73, p < 0.005), starting systemic glucocorticoids (HR 1.20, 95% CI 1.07-1.34, p < 0.005), starting any additional anti-inflammatory treatment (HR 1.18, 95%CI 1.05-1.32, p < 0.01) and undergoing colectomy (HR 1.52, 95%CI 1.17-1.98, p < 0.005). CONCLUSIONS PPI use was associated with unfavorable outcomes including advanced therapy initiation, additional anti-inflammatory medications and undergoing colectomy. Although further studies are needed, the evidence suggests that PPIs could affect the course of UC and should be used cautiously in UC patients.
Collapse
Affiliation(s)
- Reidar Fossmark
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway
| | - Sandre Svatun Lirhus
- Department of Health Management and Health Economics, University of Oslo, Oslo, Norway
| | - Marte Lie Høivik
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Zhang Z, Mocanu V, Deehan EC, Hotte N, Zhu Y, Wei S, Kao DH, Karmali S, Birch DW, Walter J, Madsen KL. Recipient microbiome-related features predicting metabolic improvement following fecal microbiota transplantation in adults with severe obesity and metabolic syndrome: a secondary analysis of a phase 2 clinical trial. Gut Microbes 2024; 16:2345134. [PMID: 38685731 PMCID: PMC11062372 DOI: 10.1080/19490976.2024.2345134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Microbial-based therapeutics in clinical practice are of considerable interest, and a recent study demonstrated fecal microbial transplantation (FMT) followed by dietary fiber supplements improved glucose homeostasis. Previous evidence suggests that donor and recipient compatibility and FMT protocol are key determinants, but little is known about the involvement of specific recipient factors. Using data from our recent randomized placebo-control phase 2 clinical trial in adults with obesity and metabolic syndrome, we grouped participants that received FMT from one of 4 donors with either fiber supplement into HOMA-IR responders (n = 21) and HOMA-IR non-responders (n = 8). We further assessed plasma bile acids using targeted metabolomics and performed subgroup analyzes to evaluate the effects of recipient parameters and gastrointestinal factors on microbiota engraftment and homeostatic model assessment of insulin resistance (HOMA2-IR) response. The baseline fecal microbiota composition at genus level of recipients could predict the improvements in HOMA2-IR at week 6 (ROC-AUC = 0.70). Prevotella was identified as an important predictor, with responders having significantly lower relative abundance than non-responders (p = .02). In addition, recipients displayed a highly individualized degree of microbial engraftment from donors. Compared to the non-responders, the responders had significantly increased bacterial richness (Chao1) after FMT and a more consistent engraftment of donor-specific bacteria ASVs (amplicon sequence variants) such as Faecalibacillus intestinalis (ASV44), Roseburia spp. (ASV103), and Christensenellaceae spp. (ASV140) (p < .05). Microbiota engraftment was strongly associated with recipients' factors at baseline including initial gut microbial diversity, fiber and nutrient intakes, inflammatory markers, and bile acid derivative levels. This study identified that responders to FMT therapy had a higher engraftment rate in the transplantation of specific donor-specific microbes, which were strongly correlated with insulin sensitivity improvements. Further, the recipient baseline gut microbiota and related factors were identified as the determinants for responsiveness to FMT and fiber supplementation. The findings provide a basis for the development of precision microbial therapeutics for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, China
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Valentin Mocanu
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Edward C. Deehan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yuanyuan Zhu
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, China
| | - Shanshan Wei
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, China
| | - Dina H. Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Shahzeer Karmali
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Daniel W. Birch
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Karen L. Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Wang X, Wu J, Huang R, Wang S. Moxibustion improved the effect of fecal microbiota transplantation donor to dextran sulfate sodium-induced colitis in mice. Anat Rec (Hoboken) 2023; 306:3144-3155. [PMID: 36495304 DOI: 10.1002/ar.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/14/2023]
Abstract
Fecal microbiota transplantation (FMT) is beneficial for several gastrointestinal diseases because it alters the intestinal microbiota of recipients. The efficacy of FMT is related to the microbial structure and composition of the donor. Mild moxibustion is a non-invasive and safe traditional Chinese therapy that can regulate the gut microbiota. In this study, we investigated whether moxibustion improved the efficacy of FMT in donors using a dextran sulfate sodium (DSS)-induced colitis mouse model. Normal mice were treated with mild moxibustion at acupoints ST25 and ST36 for 7 days. DSS (2%) was administered for 7 days to induce colitis. FMT was performed on Day 8 and lasted for 7 days. The effect of FMT on mice with DSS was observed on Day 21. Using hematoxylin and eosin staining and immunofluorescence, we analyzed the pathology and cell proliferation after FMT in DSS mice. In addition, using 16 S rDNA sequencing analysis, we investigated the gut microbiota of mice. The results indicated that moxibustion altered the colonic microbial community and increased the relative abundance of specific bacteria without changes in morphology and physiological function in normal mice. FMT using donors with moxibustion reduced body weight loss, inflammation, abnormal microbial community structure, and the relative abundance of some bacteria. These results provide potential strategies for the safe and targeted improvement of FMT donors.
Collapse
Affiliation(s)
- Xinting Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jihong Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Huang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shenglan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
32
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
33
|
Liu XY, Wu SD. Fecal microbiota transplantation for treatment of irritable bowel syndrome: Current advances and future perspectives. Shijie Huaren Xiaohua Zazhi 2023; 31:922-932. [DOI: 10.11569/wcjd.v31.i22.922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a kind of functional gastroin-testinal disorder, characterized by recurrent abdominal pain and altered bowel habits. IBS adversely affects the quality of life of patients for the lack of effective treatment. The etiology of IBS remains poorly known. Previous studies suggested a possible role of gut dysbiosis in IBS pathogenesis. Fecal microbiota transplantation (FMT), which aims to reverse the gut dysbiosis, is a promising strategy in IBS management. In this review, we summarize the role of the gut microbiota in IBS pathogenesis from different aspects. We also review recent studies on efficacy evaluation of FMT in IBS. Besides, we discuss factors affecting the efficacy of FMT, hoping to provide a reference for future IBS treatment strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Xin-Yi Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| |
Collapse
|
34
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
35
|
Baker KA, Poole C. CE: Current and Emerging Applications of Fecal Microbiota Transplantation. Am J Nurs 2023; 123:30-38. [PMID: 37678377 DOI: 10.1097/01.naj.0000978920.88346.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
ABSTRACT Fecal microbiota transplantation (FMT) is a life-changing treatment for people with recurrent Clostridioides difficile infection (rCDI). Frequently acquired in the hospital, CDI can cause serious gastrointestinal symptoms, including persistent watery diarrhea, abdominal pain, and severe dehydration. Antibiotics, the primary treatment, can unfortunately disrupt the gut microbiome and lead to antimicrobial resistance. FMT involves introducing stool from a healthy donor into the affected recipient to strengthen their compromised microbiome. Individuals receiving this treatment have reported remarkable improvement in clinical outcomes and quality of life. In addition to a discussion of rCDI within the context of the gastrointestinal microbiome, this article provides an overview of the FMT procedure, discusses nursing management of individuals undergoing FMT, and highlights emerging applications beyond rCDI. A case scenario is also provided to illustrate a typical trajectory for a patient undergoing FMT.
Collapse
Affiliation(s)
- Kathy A Baker
- Kathy A. Baker is a professor in the Harris College of Nursing and Health Sciences at Texas Christian University, Fort Worth, and editor-in-chief of Gastroenterology Nursing . Carsyn Poole is a staff nurse at Mayo Clinic Hospital, Rochester, MN. Contact author: Kathy A. Baker, . Baker is a paid consultant for Healix Infusion Therapy, LLC. The remaining coauthor and planners have disclosed no potential conflicts of interest, financial or otherwise. Lippincott Professional Development has identified and mitigated all relevant financial relationships
| | | |
Collapse
|
36
|
Herrera-deGuise C, Varela E, Sarrabayrouse G, Pozuelo Del Río M, Alonso VR, Sainz NB, Casellas F, Mayorga LF, Manichanh C, Vidaur FA, Guarner F. Gut Microbiota Composition in Long-Remission Ulcerative Colitis is Close to a Healthy Gut Microbiota. Inflamm Bowel Dis 2023; 29:1362-1369. [PMID: 37655859 DOI: 10.1093/ibd/izad058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 09/02/2023]
Abstract
BACKGROUND Microbiome studies report low gut microbial richness and diversity in ulcerative colitis (UC) patients. We explored whether UC patients who reach long-term clinical, endoscopic, and histological remission show a gut microbial ecosystem that is similar to healthy individuals. METHODS We collected 184 stool samples from 111 individuals (UC patients in long remission, short remission, flare, and healthy control subjects). Microbiota was analyzed by amplicon sequencing (16S ribosomal RNA) and quantitative polymerase chain reaction for specific taxa. All UC remission patients were followed-up for 2 years. FINDINGS A drop in species diversity and richness, underrepresentation of butyrate producers, and gain of potentially harmful bacteria were significantly detected in samples from disease-flare and short-remission patients. In contrast, Chao1 and Shannon indexes of diversity did not differ among patients in long remission and healthy control subjects. Long-remission patients also presented fecal bacterial composition closer to that in healthy control subjects. There was a positive correlation between Akkermansia muciniphila abundance and time in remission (rs = 0.53, P < .001). Logistic regression analysis showed that a high Shannon index (odds ratio, 4.83; 95% confidence interval, 1.5-20.6) or presence of A. muciniphila (odds ratio, 4.9; 95% confidence interval, 1.12-29.08) in fecal samples at entry was independently associated with clinical remission over a follow-up period of 24 months. INTERPRETATION UC patients who achieve long-term remission show evidence of substantial recovery of the gut microbial ecosystem in terms of diversity and composition. Recovery may just reflect adequate control of inflammatory activity, but higher bacterial diversity or the presence of A. muciniphila in fecal samples predicts flare-free outcomes.
Collapse
Affiliation(s)
- Claudia Herrera-deGuise
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Encarna Varela
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Guillaume Sarrabayrouse
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
- Unité des technologies Chimiques et Biologiques pour la Santé, French National Centre for Scientific Research, National Institute for Health and Medical Research, Université de Paris, Paris, France
| | - Marta Pozuelo Del Río
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Virginia Robles Alonso
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Natalia Borruel Sainz
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Francesc Casellas
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Luis Fernando Mayorga
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Chaysavanh Manichanh
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Fernando Azpiroz Vidaur
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| | - Francisco Guarner
- Unitat Atenció Crohn-Colitis, Digestive System Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Research, Physiology and Digestive Physiopathology Research Group, Centro de Investigación Biomédica en Red en el Área Tematica de Enfermedades Hepáticas, Barcelona, Spain
| |
Collapse
|
37
|
Chen Q, Fan Y, Zhang B, Yan C, Zhang Q, Ke Y, Chen Z, Wang L, Shi H, Hu Y, Huang Q, Su J, Xie C, Zhang X, Zhou L, Ren J, Xu H. Capsulized Fecal Microbiota Transplantation Induces Remission in Patients with Ulcerative Colitis by Gut Microbial Colonization and Metabolite Regulation. Microbiol Spectr 2023; 11:e0415222. [PMID: 37093057 PMCID: PMC10269780 DOI: 10.1128/spectrum.04152-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhao Ke
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xu Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lixiang Zhou
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
Porcari S, Benech N, Valles-Colomer M, Segata N, Gasbarrini A, Cammarota G, Sokol H, Ianiro G. Key determinants of success in fecal microbiota transplantation: From microbiome to clinic. Cell Host Microbe 2023; 31:712-733. [PMID: 37167953 DOI: 10.1016/j.chom.2023.03.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fecal microbiota transplantation (FMT) has achieved satisfactory results in preventing the recurrence of Clostridioides difficile infection, but these positive outcomes have only been partially replicated in other diseases. Several factors influence FMT success, including those related to donors and recipients (including diversity and specific composition of the gut microbiome, immune system, and host genetics) as well as to working protocols (fecal amount and number of infusions, route of delivery, and adjuvant treatments). Moreover, initial evidence suggests that the clinical success of FMT may be related to the degree of donor microbial engraftment. The application of cutting-edge technologies for microbiome assessment, along with changes in the current vision of fecal transplants, are expected to improve FMT protocols and outcomes. Here, we review the key determinants of FMT success and insights and strategies that will enable a close integration of lab-based and clinical approaches for increasing FMT success.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicolas Benech
- Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France; Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France; French Fecal Transplant Group (GFTF), France
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Harry Sokol
- French Fecal Transplant Group (GFTF), France; Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France; Paris Centre for Microbiome Medicine FHU, Paris, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
39
|
Airola C, Severino A, Porcari S, Fusco W, Mullish BH, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy. Antibiotics (Basel) 2023; 12:antibiotics12050868. [PMID: 37237771 DOI: 10.3390/antibiotics12050868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - William Fusco
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
40
|
Levast B, Fontaine M, Nancey S, Dechelotte P, Doré J, Lehert P. Single-Donor and Pooling Strategies for Fecal Microbiota Transfer Product Preparation in Ulcerative Colitis: A Systematic Review and Meta-analysis. Clin Transl Gastroenterol 2023; 14:e00568. [PMID: 37232579 PMCID: PMC10208705 DOI: 10.14309/ctg.0000000000000568] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Patients with ulcerative colitis (UC) have a less diverse microbiome than healthy subjects. Multiple studies have evaluated fecal microbiota transfer (FMT) in these patients using different methods of product preparation, doses, and routes of administration. A systematic review and meta-analysis was performed to compare the efficacy of single-donor (SDN) and multidonor (MDN) strategies for product preparation. METHODS Systematic searches were performed in Web of Science, Scopus, PubMed, and Orbit Intelligence for studies comparing FMT products manufactured using SDN or MDN strategies to placebo in patients with UC. Fourteen controlled studies were selected for meta-analysis (10 randomized and 4 nonrandomized). The treatment response was assessed by using fixed- and random-effects models, and the significance of the indirect difference between the interventions was assessed using a network approach. RESULTS Considering all 14 studies, MDN and SDN were superior to placebo in terms of treatment response (risk ratios [RRs]: 4.41 and 1.57, respectively [P ≤ 0.001 for both]), and MDN was superior to SDN (RR: 2.81, P = 0.005). Meta-analysis of the 10 studies with high quality of evidence showed that MDN was superior to SDN in terms of treatment response (RR: 2.31, P = 0.042). Results were identical for both models. DISCUSSION There was a significant clinical benefit (remission) for patients with UC who received FMT with products manufactured by MDN strategies. Reduction of donor effect may lead to a gain in microbial diversity that could improve response to treatment. These results may have implications in the treatment approach of other diseases amenable to microbiome manipulation.JOURNAL/cltg/04.03/01720094-202305000-00002/2FFU1/v/2023-05-23T220055Z/r/image-tiff.
Collapse
Affiliation(s)
| | | | - Stéphane Nancey
- Department of Gastroenterology, CHU de Lyon, Lyon-Sud Hospital, University Claude Bernard Lyon 1 and CIRI-INSERM U1111, Lyon, France
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParis Tech, MICALIS, 78350, Jouy-en-Josas, France
| | - Philippe Lehert
- Faculty of Management, UCL, Louvain, Belgium
- Faculty of Medicine, University of Melbourne, Australia
| |
Collapse
|
41
|
Chen Z, Nong Y, Wang Q, Feng L, He Y, Guo B, Qin Y, Zhong X, Qin J, Wei J, Dong M, Pan S, Su Z. Preventive effect of tilapia skin collagen hydrolysates on ulcerative colitis mice based on metabonomic and 16 S rRNA gene sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3645-3658. [PMID: 36645331 DOI: 10.1002/jsfa.12457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tilapia skin collagen hydrolysates (TSCHs) are the product of enzymatic hydrolysis of collagen, which is mainly extracted from tilapia skin. The components of TSCHs have recently been reported to play a preventive role in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). However, it has not been illustrated whether TSCHs can prevent against DSS-induced UC via the gut microbiota and its derived metabolites. RESULTS TSCHs are mainly composed of amino acids, which have similar characteristics to collagen, with most having a molecular weight below 5 kDa. In a mouse model of UC, TSCHs had no toxic effect at a dose of 60 g kg-1 and could reduce body weight changes, colon length, histopathological changes and score, and the level of the serum inflammatory cytokine interleukin (IL)-6. Concurrently, 16 S rRNA sequencing showed that TSCHs significantly reduced the abundance of Bacteroidetes and Proteobacteria at the phylum level and norank_f__Muribaculaceae and Escherichia-Shigella at the genus level, while they increased the abundance of Firmicutes at the phylum level and Lachnoclostridium, Allobaculum, Enterorhabdus, and unclassified__f__Ruminococcaceae at the genus level. Target metabolomic analysis showed that TSCHs elevated the concentration of total acid, acetic acid, propanoic acid, and butanoic acid, but reduced isovaleric acid concentrations. Moreover, Pearson correlation analysis revealed that Allobaculum, unclassified_Ruminococcaceae, and Enterorhabdus were positively correlated with acetic acid and butyric acid, but not Escherichia-Shigella. CONCLUSION These findings suggest that TSCHs can prevent UC by modulating gut microbial and microbiota-derived metabolites. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaoni Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ying He
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Shihan Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning, China
| |
Collapse
|
42
|
Imdad A, Pandit NG, Zaman M, Minkoff NZ, Tanner-Smith EE, Gomez-Duarte OG, Acra S, Nicholson MR. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst Rev 2023; 4:CD012774. [PMID: 37094824 PMCID: PMC10133790 DOI: 10.1002/14651858.cd012774.pub3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, relapsing disease of the gastrointestinal (GI) tract that is thought to be associated with a complex interplay between the immune system, the GI tract lining, the environment, and the gut microbiome, leading to an abnormal inflammatory response in genetically susceptible individuals. An altered composition of the gut's native microbiota, known as dysbiosis, may have a major role in the pathogenesis of ulcerative colitis (UC) and Crohn disease (CD), two subtypes of IBD. There is growing interest in the correction of this underlying dysbiosis using fecal microbiota transplantation (FMT). OBJECTIVES To evaluate the benefits and safety profile of FMT for treatment of IBD in adults and children versus autologous FMT, placebo, standard medication, or no intervention. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, two clinical trial registries, and the reference sections of published trials through 22 December 2022. SELECTION CRITERIA We included randomized controlled trials that studied adults and children with UC or CD. Eligible intervention arms used FMT, defined as the delivery of healthy donor stool containing gut microbiota to a recipient's GI tract, to treat UC or CD. DATA COLLECTION AND ANALYSIS Two review authors independently screened studies for inclusion. Our primary outcomes were: 1. induction of clinical remission, 2. maintenance of clinical remission, and 3. serious adverse events. Our secondary outcomes were: 4. any adverse events, 5. endoscopic remission, 6. quality of life, 7. clinical response, 8. endoscopic response, 9. withdrawals, 10. inflammatory markers, and 11. microbiome outcomes. We used the GRADE approach to assess the certainty of evidence. MAIN RESULTS We included 12 studies with 550 participants. Three studies were conducted in Australia; two in Canada; and one in each of the following: China, the Czech Republic, France, India, the Netherlands, and the USA. One study was conducted in both Israel and Italy. FMT was administered in the form of capsules or suspensions and delivered by mouth, nasoduodenal tube, enema, or colonoscopy. One study delivered FMT by both oral capsules and colonoscopy. Six studies were at overall low risk of bias, while the others had either unclear or high risk of bias. Ten studies with 468 participants, of which nine studies focused on adults and one focused on children, reported induction of clinical remission in people with UC at longest follow-up (range 6 to 12 weeks) and showed that FMT may increase rates of induction of clinical remission in UC compared to control (risk ratio (RR) 1.79, 95% confidence interval (CI) 1.13 to 2.84; low-certainty evidence). Five studies showed that FMT may increase rates of induction of endoscopic remission in UC at longest follow-up (range 8 to 12 weeks); however, the CIs around the summary estimate were wide and included a possible null effect (RR 1.45, 95% CI 0.64 to 3.29; low-certainty evidence). Nine studies with 417 participants showed that FMT may result in little to no difference in rates of any adverse events (RR 0.99, 95% CI 0.85 to 1.16; low-certainty evidence). The evidence was very uncertain about the risk of serious adverse events (RR 1.77, 95% CI 0.88 to 3.55; very low-certainty evidence) and improvement in quality of life (mean difference (MD) 15.34, 95% CI -3.84 to 34.52; very low-certainty evidence) when FMT was used to induce remission in UC. Two studies, of which one also contributed data for induction of remission in active UC, assessed maintenance of remission in people with controlled UC at longest follow-up (range 48 to 56 weeks). The evidence was very uncertain about the use of FMT for maintenance of clinical remission (RR 2.97, 95% CI 0.26 to 34.42; very low-certainty evidence) and endoscopic remission (RR 3.28, 95% CI 0.73 to 14.74; very low-certainty evidence). The evidence was also very uncertain about the risk of serious adverse events, risk of any adverse events, and improvement in quality of life when FMT was used to maintain remission in UC. None of the included studies assessed use of FMT for induction of remission in people with CD. One study with 21 participants reported data on FMT for maintenance of remission in people with CD. The evidence was very uncertain about the use of FMT for maintenance of clinical remission in CD at 24 weeks (RR 1.21, 95% CI 0.36 to 4.14; very low-certainty evidence). The evidence was also very uncertain about the risk of serious or any adverse events when FMT was used to maintain remission in CD. None of the studies reported data on use of FMT for maintenance of endoscopic remission or improvement in quality of life in people with CD. AUTHORS' CONCLUSIONS FMT may increase the proportion of people with active UC who achieve clinical and endoscopic remission. The evidence was very uncertain about whether use of FMT in people with active UC impacted the risk of serious adverse events or improvement in quality of life. The evidence was also very uncertain about the use of FMT for maintenance of remission in people with UC, as well as induction and maintenance of remission in people with CD, and no conclusive statements could be made in this regard. Further studies are needed to address the beneficial effects and safety profile of FMT in adults and children with active UC and CD, as well as its potential to promote longer-term maintenance of remission in UC and CD.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Natasha G Pandit
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Muizz Zaman
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nathan Zev Minkoff
- Pediatric Gastroenterology, Hepatology and Nutrition, Valley Children's Hospital, Madera, CA, USA
| | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Sari Acra
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maribeth R Nicholson
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Pellegrino A, Coppola G, Santopaolo F, Gasbarrini A, Ponziani FR. Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients 2023; 15:nu15081815. [PMID: 37111034 PMCID: PMC10142179 DOI: 10.3390/nu15081815] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota plays a critical role in the modulation of host metabolism and immune response, and its impairment has been implicated in many gastrointestinal and extraintestinal diseases. Current evidence shows the well-documented role of A. muciniphila in maintaining the integrity of the intestinal barrier, modulating the host immune response, and improving several metabolic pathways, making it a key element in the pathogenesis of several human diseases. In this scenario, A. muciniphila is the most promising next-generation probiotic and one of the first microbial species suitable for specific clinical use when compared with traditional probiotics. Further studies are needed to provide more accurate insight into its mechanisms of action and to better elucidate its properties in several major areas, paving the way for a more integrated and personalized therapeutic approach that finally makes the most of our knowledge of the gut microbiota.
Collapse
Affiliation(s)
- Antonio Pellegrino
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
44
|
Cai Y, Li X, Han Q, Bai J, Zheng Q, Sun R, Liu R. Si-Ni-San improves experimental colitis by favoring Akkermensia colonization. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116067. [PMID: 36586523 DOI: 10.1016/j.jep.2022.116067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is widely believed to be a leading risk factor of colorectal cancer. Gut microbiota is a known vital player in the progression of UC. Si-Ni-San (SNS) has been considered to effectively treat colitis in clinical practice during thousands of years, yet whether SNS ameliorated acute colitis mouse model by modulating intestinal flora has not been distinctly elucidated. AIM OF THE STUDY Our study aimed to elucidate the effect of SNS against acute murine colitis and focused on the underlying mechanisms of SNS targeting gut microbiota. MATERIALS AND METHODS 16S RNA sequencing, molecular biological analysis, and fecal microbiota transplants (FMT) were conducted to reveal the mechanisms of SNS in regulating gut microbiota. RESULTS In our study, SNS dramatically inhibited DSS-induced acute inflammatory responses by improving gut microbiota dysbiosis, as evidenced by decreased abundance proinflammatory species, upregulated abundance of anti-inflammatory species and potentially altered microbiota metabolite metabolism. Additionally, intestinal flora knockout and FMT experiments confirmed that the therapeutic effect of SNS on colitis was dependent on gut microbiota, and specifically on favoring the growth of potential probiotics, Akkermansia genus. Furthermore, we found that SNS alone and SNS combined with Akkermansia muciniphila (A. muciniphila) increased Mucin 2 (MUC2) production, thus enhancing the competitive edge of A. muciniphila among pathogenic gut microbiota. CONCLUSION Our study shed lights on the underlying mechanism of SNS in attenuating acute murine colitis from the perspective of intestinal flora and provides novel insights into the discovery of adjacent therapeutic strategy against colitis based on SNS and probiotics. CLASSIFICATION Gastro-intestinal system.
Collapse
Affiliation(s)
- Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Qi Han
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jinzhao Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Rong Sun
- The Second Hospital of Shandong University, Shan Dong University, 247 Bei Yuan Da Jie, Jinan, 250033, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
45
|
Hoelz H, Heetmeyer J, Tsakmaklis A, Hiergeist A, Siebert K, De Zen F, Häcker D, Metwaly A, Neuhaus K, Gessner A, Vehreschild MJGT, Haller D, Schwerd T. Is Autologous Fecal Microbiota Transfer after Exclusive Enteral Nutrition in Pediatric Crohn’s Disease Patients Rational and Feasible? Data from a Feasibility Test. Nutrients 2023; 15:nu15071742. [PMID: 37049583 PMCID: PMC10096730 DOI: 10.3390/nu15071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Exclusive enteral nutrition (EEN) is a highly effective therapy for remission induction in pediatric Crohn’s disease (CD), but relapse rates after return to a regular diet are high. Autologous fecal microbiota transfer (FMT) using stool collected during EEN-induced clinical remission might represent a novel approach to maintaining the benefits of EEN. Methods: Pediatric CD patients provided fecal material at home, which was shipped at 4 °C to an FMT laboratory for FMT capsule generation and extensive pathogen safety screening. The microbial community composition of samples taken before and after shipment and after encapsulation was characterized using 16S rRNA amplicon sequencing. Results: Seven pediatric patients provided fecal material for nine test runs after at least three weeks of nutritional therapy. FMT capsules were successfully generated in 6/8 deliveries, but stool weight and consistency varied widely. Transport and processing of fecal material into FMT capsules did not fundamentally change microbial composition, but microbial richness was <30 genera in 3/9 samples. Stool safety screening was positive for potential pathogens or drug resistance genes in 8/9 test runs. Conclusions: A high pathogen burden, low-diversity microbiota, and practical deficiencies of EEN-conditioned fecal material might render autologous capsule-FMT an unsuitable approach as maintenance therapy for pediatric CD patients.
Collapse
Affiliation(s)
- Hannes Hoelz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Jeannine Heetmeyer
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Anastasia Tsakmaklis
- Clinical Microbiome Research Group, Department of Internal Medicine I, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andreas Hiergeist
- Institute for Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kolja Siebert
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Federica De Zen
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Deborah Häcker
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Klaus Neuhaus
- ZIEL-Institute for Food and Health, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - André Gessner
- Institute for Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Maria J. G. T. Vehreschild
- Clinical Microbiome Research Group, Department of Internal Medicine I, University Hospital of Cologne, 50931 Cologne, Germany
- Section of Infectious Diseases, Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
- ZIEL-Institute for Food and Health, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| |
Collapse
|
46
|
Raue KD, David BT, Fessler RG. Spinal Cord-Gut-Immune Axis and its Implications Regarding Therapeutic Development for Spinal Cord Injury. J Neurotrauma 2023; 40:793-806. [PMID: 36509451 DOI: 10.1089/neu.2022.0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) affects ∼1,300,000 people living in the United States. Most research efforts have been focused on reversing paralysis, as this is arguably the most defining feature of SCI. The damage caused by SCI, however, extends past paralysis and includes other debilitating outcomes including immune dysfunction and gut dysbiosis. Recent efforts are now investigating the pathophysiology of and developing therapies for these more distal manifestations of SCI. One exciting avenue is the spinal cord-gut-immune axis, which proposes that gut dysbiosis amplifies lesion inflammation and impairs SCI recovery. This review will highlight the most recent findings regarding gut and immune dysfunction following SCI, and discuss how the central nervous system (CNS), gut, and immune system all coalesce to form a bidirectional axis that can impact SCI recovery. Finally, important considerations regarding how the spinal cord-gut-immune axis fits within the larger framework of therapeutic development (i.e., probiotics, fecal transplants, dietary modifications) will be discussed, emphasizing the lack of interdepartmental investigation and the missed opportunity to maximize therapeutic benefit in SCI.
Collapse
Affiliation(s)
- Kristen D Raue
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
47
|
Zhang B, Yang L, Ning H, Cao M, Chen Z, Chen Q, Lian G, Tang H, Wang Q, Wang J, Lin Z, Wen J, Liu Y, Xuan J, Li X, Lin A, He J, Zhang L, Hou X, Zeng Q, Xiao C. A Matching Strategy To Guide Donor Selection for Ulcerative Colitis in Fecal Microbiota Transplantation: Meta-Analysis and Analytic Hierarchy Process. Microbiol Spectr 2023; 11:e0215921. [PMID: 36472435 PMCID: PMC9927247 DOI: 10.1128/spectrum.02159-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of ulcerative colitis (UC). However, preliminary trials showed that only a subset of patients responded to FMT, and the heterogeneity in donor gut microbiota probably played important roles in patients' responses, implying the significance of matching an appropriate donor to a specified patient. We developed a strategy to build a donor-recipient matching model to guide rational donor selection for UC in FMT. We collected and uniformly reanalyzed 656 fecal 16S rRNA gene sequencing samples (350 from UC patients and 306 from healthy subjects) from 9 studies. Significantly lower α-diversity indexes were observed in UC patients by random effects model. Thirty-four bacterial genera and 34 predicted pathways were identified with significant odds ratios and classification potentials for UC patients. Based on six bacterial indicators, including richness, overall distance, genera, and pathways (beneficial and harmful), the analytic hierarchy process-based donor-recipient matching model was set to rank and select appropriate donors for patients with UC. Finally, the model showed favorable classification powers (>70%) for FMT effectiveness in two previous clinical trials. This study revealed the dysbiosis of fecal bacterial diversity, composition, and predicted pathways of patients with UC by meta-analysis and hereby developed a donor-recipient matching strategy to guide donor selection for UC in FMT. This strategy can also be applied to other diseases associated with gut microbiota. IMPORTANCE Modulation of gut microbiota by FMT from donors has been applied to the treatment of UC and yielded variable effectiveness in clinical trials. One possibility is that this variable effectiveness was related to donor selection, as a patient's response to FMT may rely on the capability of the used donor's microbiota to restore the specific gut disturbances of the patient. However, the biggest issues on the practical level are what should be considered in the selection process and how to set up such a donor-recipient matching model. In this study, we presented a bacterial profile-based donor-recipient matching strategy to guide donor selection for UC in FMT by first meta-analysis of 656 fecal 16S rRNA gene sequencing samples from 9 studies to identify significant indicators and then setting up the model by an analytic hierarchy process. The applicability and accuracy of this model were verified in the data sets from two previous FMT clinical studies. Our data indicate that the donor-recipient matching model built in this study enables researchers to rationally select donors for UC patients in FMT clinical practice, although it needs more samples and prospective trials for validation. The strategy adopted in this study to leverage existing data sets to build donor-recipient matching models for precision FMT is feasible for other diseases associated with gut microbiota.
Collapse
Affiliation(s)
- Bangzhou Zhang
- School of Life Sciences, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Luxi Yang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Hanbing Ning
- Department of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Man Cao
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Zhangran Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiongyun Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Guanghui Lian
- Department of Gastroenterology, Xiangya Hospital, Changsha, China
| | - Hailing Tang
- Department of Gastroenterology, Xi'an Central Hospital, Xi’an, China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junping Wang
- Department of Gastroenterology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhihui Lin
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianbo Wen
- Department of Gastroenterology, Pingxiang People’s Hospital, Pingxiang, China
| | - Yuedong Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ji Xuan
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Aiqiang Lin
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- School of Medicine, Xiamen University, Xiamen, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Technology and Science, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Technology and Science, Wuhan, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Chuanxing Xiao
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
48
|
Liu J, Lin H, Cao M, Lin T, Lin A, Xu W, Wang H, He J, Li Y, Tang H, Zhang B. Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Front Cell Infect Microbiol 2023; 13:1124256. [PMID: 36814445 PMCID: PMC9939747 DOI: 10.3389/fcimb.2023.1124256] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background and Aims Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.
Collapse
Affiliation(s)
- Jinglong Liu
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hao Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Man Cao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tan Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Aiqiang Lin
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wei Xu
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Han Wang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yuantao Li
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Hailing Tang
- Division of Gastroenterology, Xi’an Central Hospital, Xi’an, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Bangzhou Zhang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| |
Collapse
|
49
|
Salazar J, Morillo V, Suárez MK, Castro A, Ramírez P, Rojas M, Añez R, D’Marco L, Chacín-González M, Bermudez V. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev 2023; 19:e020223213408. [PMID: 36733248 PMCID: PMC10494273 DOI: 10.2174/1573403x19666230202164524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María K Suárez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición. Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | | | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
50
|
S A, K G, A AM. Intermodulation of gut-lung axis microbiome and the implications of biotics to combat COVID-19. J Biomol Struct Dyn 2022; 40:14262-14278. [PMID: 34699326 DOI: 10.1080/07391102.2021.1994875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease pandemic caused by the COVID-19 virus has infected millions of people around the world with a surge in transmission and mortality rates. Although it is a respiratory viral infection that affects airway epithelial cells, a diverse set of complications, including cytokine storm, gastrointestinal disorders, neurological distress, and hyperactive immune responses have been reported. However, growing evidence indicates that the bidirectional crosstalk of the gut-lung axis can decipher the complexity of the disease. Though not much research has been focused on the gut-lung axis microbiome, there is a translocation of COVID-19 infection from the lung to the gut through the lymphatic system resulting in disruption of gut permeability and its integrity. It is believed that detailed elucidation of the gut-lung axis crosstalk and the role of microbiota can unravel the most significant insights on the discovery of diagnosis using microbiome-based-therapeutics for COVID-19. This review calls attention to relate the influence of dysbiosis caused by COVID-19 and the involvement of the gut-lung axis. It presents first of its kind details that concentrate on the momentousness of biotics in disease progression and restoration. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya S
- Department of Bioinformatics, Stella Maris College, Chennai, India.,Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Gunasekaran K
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Anita Margret A
- Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|