1
|
Chi F, Cheng C, Liu K, Sun T, Zhang M, Hou Y, Bai G. Baicalein disrupts the KEAP1-NRF2 interaction to alleviate oxidative stress injury by inhibiting M1 macrophage polarization. Free Radic Biol Med 2025; 227:557-569. [PMID: 39694117 DOI: 10.1016/j.freeradbiomed.2024.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Macrophages are key players in maintaining the balance of tissues and dealing with inflammation, carrying out vital functions specific to different tissues while safeguarding the body against infections. The intricate interplay between oxidative stress and macrophage polarization and how this contributes to pneumonia is not fully understood. Herein, a predominant accumulation of baicalein in lung macrophages of pathogen-infected mice was observed by an alkynyl-modified probe. Baicalein effectively reduces oxidative stress in vivo and in vitro by modulating the KEAP1-NRF2/ARE signaling pathway. Further investigation indicated that baicalein has inhibitory effects on M1 macrophage polarization and phagocytic capacity, reducing inflammatory cytokine expression. As a protein-protein interaction (PPI) inhibitor, baicalein disrupts the KEAP1-NRF2 interaction by competitively binding to the DGR/Kelch domain of KEAP1. This process helps NRF2 move to the nucleus, which activates the antioxidant transcriptional program, suppresses the production of reactive oxygen species (ROS), and mitigates oxidative stress damage. These findings suggest a different approach to developing treatments for oxidative stress that focuses on inhibiting the interaction between KEAP1-NRF2.
Collapse
Affiliation(s)
- Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Tong Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
2
|
Lei C, Yu Y, Zhu Y, Li Y, Ma C, Ding L, Han L, Zhang H. The most recent progress of baicalein in its anti-neoplastic effects and mechanisms. Biomed Pharmacother 2024; 176:116862. [PMID: 38850656 DOI: 10.1016/j.biopha.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Problems, such as toxic side effects and drug resistance of chemoradiotherapy, target therapy and immunotherapy accompanying the current anti-cancer treatments, have become bottlenecks limiting the clinical benefit for patients. Therefore, it is urgent to find promising anti-cancer strategies with higher efficacy and lesser side effects. Baicalein, a flavonoid component derived from the Chinese medicine scutellaria baicalensis, has been widely studied for its remarkable anti-cancer activity in multiple types of malignancies both at the molecular and cellular levels. Baicalein exerts its anti-tumor effects by inhibiting angiogenesis, invasion and migration, inducing cell apoptosis and cell cycle arrest, as well as regulating cell autophagy, metabolism, the tumor microenvironment and cancer stem cells with no obvious toxic side effects. The role of classic signaling pathways, such as PI3K/AKT/mTOR, MAPK, AMPK, Wnt/β-catenin, JAK/STAT3, MMP-2/-9, have been highlighted as the major targets for baicalein exerting its anti-malignant potential. Besides, baicalein can regulate the relevant non-coding RNAs, such as lncRNAs, miRNAs and circ-RNAs, to inhibit tumorigenesis and progression. In addition to the mentioned commonalities, baicalein shows some specific anti-tumor characteristics in some specific cancer types. Moreover, the preclinical studies of the combination of baicalein and chemoradiotherapy pave the way ahead for developing baicalein as an adjunct treatment with chemoradiotherapy. Our aim is to summary the role of baicalein in different types of cancer with its mechanisms based on in vitro and in vivo experiments, hoping providing proof for baicalein serving as an effective and safe compound for cancer treatment in clinic in the future.
Collapse
Affiliation(s)
- Chenjing Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yaya Yu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Yanjuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China
| | - Yanan Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Changju Ma
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Lina Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ling Han
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China.
| | - Haibo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
3
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Chauhan D, Yadav P, Rana R, Kalleti N, Gayen JR, Wahajuddin, Rath SK, Mugale MN, Mitra K, Chourasia MK. Ratiometric codelivery of Paclitaxel and Baicalein loaded nanoemulsion for enhancement of breast cancer treatment. Int J Pharm 2023; 643:123209. [PMID: 37422142 DOI: 10.1016/j.ijpharm.2023.123209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
The most prevalent clinical option for treating cancer is combination chemotherapy. In combination therapy, assessment and optimization for obtaining a synergistic ratio could be obtained by various preclinical setups. Currently, in vitro optimization is used to get synergistic cytotoxicity while constructing combinations. Herein, we co-encapsulated Paclitaxel (PTX) and Baicalein (BCLN) with TPP-TPGS1000 containing nanoemulsion (TPP-TPGS1000-PTX-BCLN-NE) for breast cancer treatment. The assessment of cytotoxicity of PTX and BCLN at different molar weight ratios provided an optimized synergistic ratio (1:5). Quality by Design (QbD) approach was later applied for the optimization as well as characterization of nanoformulation for its droplet size, zeta potential and drug content. TPP-TPGS1000-PTX-BCLN-NE significantly enhanced cellular ROS, cell cycle arrest, and depolarization of mitochondrial membrane potential in the 4T1 breast cancer cell line compared to other treatments. In the syngeneic 4T1 BALB/c tumor model, TPP-TPGS1000-PTX-BCLN-NE outperformed other nanoformulation treatments. The pharmacokinetic, biodistribution and live imaging studies pivoted TPP-TPGS1000-PTX-BCLN-NE enhanced bioavailability and PTX accumulation at tumor site. Later, histology studies confirmed nanoemulsion non-toxicity, expressing new opportunities and potential to treat breast cancer. These results suggested that current nanoformulation can be a potential therapeutic approach to effectively address breast cancer therapy.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Navodayam Kalleti
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Srikanta K Rath
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Madhav N Mugale
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
4
|
Yu Z, Peng Y, Gao J, Zhou M, Shi L, Zhao F, Wang C, Tian X, Feng L, Huo X, Zhang B, Liu M, Fang D, Ma X. The p23 co-chaperone is a succinate-activated COX-2 transcription factor in lung adenocarcinoma tumorigenesis. SCIENCE ADVANCES 2023; 9:eade0387. [PMID: 37390202 PMCID: PMC10313168 DOI: 10.1126/sciadv.ade0387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
P23, historically known as a heat shock protein 90 (HSP90) co-chaperone, exerts some of its critical functions in an HSP90-independent manner, particularly when it translocates into the nucleus. The molecular nature underlying how this HSP90-independent p23 function is achieved remains as a biological mystery. Here, we found that p23 is a previously unidentified transcription factor of COX-2, and its nuclear localization predicts the poor clinical outcomes. Intratumor succinate promotes p23 succinylation at K7, K33, and K79, which drives its nuclear translocation for COX-2 transcription and consequently fascinates tumor growth. We then identified M16 as a potent p23 succinylation inhibitor from 1.6 million compounds through a combined virtual and biological screening. M16 inhibited p23 succinylation and nuclear translocation, attenuated COX-2 transcription in a p23-dependent manner, and markedly suppressed tumor growth. Therefore, our study defines p23 as a succinate-activated transcription factor in tumor progression and provides a rationale for inhibiting p23 succinylation as an anticancer chemotherapy.
Collapse
Affiliation(s)
- Zhenlong Yu
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Yulin Peng
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Meirong Zhou
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Lei Shi
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Feng Zhao
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Chao Wang
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Xiangge Tian
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Lei Feng
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Xiaokui Huo
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Baojing Zhang
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Min Liu
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaochi Ma
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
5
|
Morshed AKMH, Paul S, Hossain A, Basak T, Hossain MS, Hasan MM, Hasibuzzaman MA, Rahaman TI, Mia MAR, Shing P, Sohel M, Bibi S, Dey D, Biswas P, Hasan MN, Ming LC, Tan CS. Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives. Cancers (Basel) 2023; 15:2128. [PMID: 37046789 PMCID: PMC10093079 DOI: 10.3390/cancers15072128] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Despite significant therapeutic advancements for cancer, an atrocious global burden (for example, health and economic) and radio- and chemo-resistance limit their effectiveness and result in unfavorable health consequences. Natural compounds are generally considered safer than synthetic drugs, and their use in cancer treatment alone, or in combination with conventional therapies, is increasingly becoming accepted. Interesting outcomes from pre-clinical trials using Baicalein in combination with conventional medicines have been reported, and some of them have also undergone clinical trials in later stages. As a result, we investigated the prospects of Baicalein, a naturally occurring substance extracted from the stems of Scutellaria baicalensis Georgi and Oroxylum indicum Kurz, which targets a wide range of molecular changes that are involved in cancer development. In other words, this review is primarily driven by the findings from studies of Baicalein therapy in several cancer cell populations based on promising pre-clinical research. The modifications of numerous signal transduction mechanisms and transcriptional agents have been highlighted as the major players for Baicalein's anti-malignant properties at the micro level. These include AKT serine/threonine protein kinase B (AKT) as well as PI3K/Akt/mTOR, matrix metalloproteinases-2 & 9 (MMP-2 & 9), Wnt/-catenin, Poly(ADP-ribose) polymerase (PARP), Mitogen-activated protein kinase (MAPK), NF-κB, Caspase-3/8/9, Smad4, Notch 1/Hes, Signal transducer and activator of transcription 3 (STAT3), Nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap 1), Adenosine monophosphate-activated protein kinase (AMPK), Src/Id1, ROS signaling, miR 183/ezrin, and Sonic hedgehog (Shh) signaling cascades. The promise of Baicalein as an anti-inflammatory to anti-apoptotic/anti-angiogenic/anti-metastatic medicinal element for treating various malignancies and its capability to inhibit malignant stem cells, evidence of synergistic effects, and design of nanomedicine-based drugs are altogether well supported by the data presented in this review study.
Collapse
Affiliation(s)
- A K M Helal Morshed
- Pathology and Pathophysiology, Academy of Medical Science, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Supti Paul
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arafat Hossain
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tuli Basak
- Department of Genetic Engineering and Biotechnology, Faculty of Science and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Md. Sanower Hossain
- Centre for Sustainability of Ecosystem and Earth Resources (Pusat ALAM), Universiti Malaysia Pahang, Gambang, Kuantan 26300, Malaysia
| | - Md. Mehedi Hasan
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Al Hasibuzzaman
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Pollob Shing
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Shabana Bibi
- Department of Bioscience, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia;
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| |
Collapse
|
6
|
Diao Y, Ding Q, Xu G, Li Y, Li Z, Zhu H, Zhu W, Wang P, Shi Y. Qingfei Litan Decoction Against Acute Lung Injury/Acute Respiratory Distress Syndrome: The Potential Roles of Anti-Inflammatory and Anti-Oxidative Effects. Front Pharmacol 2022; 13:857502. [PMID: 35677439 PMCID: PMC9168533 DOI: 10.3389/fphar.2022.857502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is an acute respiratory failure syndrome characterized by progressive arterial hypoxemia and dyspnea. Qingfei Litan (QFLT) decoction, as a classic prescription for the treatment of acute respiratory infections, is effective for the treatment of ALI/ARDS. In this study, the compounds, hub targets, and major pathways of QFLT in ALI/ARDS treatment were analyzed using Ultra high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) and systemic pharmacology strategies. UHPLC-MS identified 47 main components of QFLT. To explore its anti-inflammatory and anti-oxidative mechanisms, gene ontology (Go) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and network pharmacological analysis were conducted based on the main 47 components. KEGG enrichment analysis showed that TNF signaling pathway and Toll-like receptor signaling pathway may be the key pathways of ALI/ARDS. We explored the anti-inflammatory and anti-oxidative pharmacological effects of QFLT in treatment of ALI/ARDS in vivo and in vitro. QFLT suppressed the levels of proinflammatory cytokines and alleviated oxidative stress in LPS-challenged mice. In vitro, QFLT decreased the levels of TNF-α, IL-6, IL-1β secreted by LPS-activated macrophages, increased GSH level and decreased the LPS-activated reactive oxygen species (ROS) in lung epithelial A549 cells. This study suggested that QFLT may have anti-inflammatory and anti-oxidative effects on ALI/ARDS, combining in vivo and in vitro experiments with systemic pharmacology, providing a potential therapeutic strategy option.
Collapse
Affiliation(s)
- Yirui Diao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Gonghao Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yadong Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenqiu Li
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanping Zhu
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Peng Wang
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Shi
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Chandrashekar N, Pandi A. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma. J Food Biochem 2022; 46:e14230. [PMID: 35543192 DOI: 10.1111/jfbc.14230] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Plant-derived flavonoids are reported to function as potential anti-cancer agents against different types of cancer. Baicalein (BE) is an important flavonoid found in the roots of Scutellaria baicalensis that is popularly used in Chinese medicine as an ingredient in herbal tea preparations to promote wellness. BE has been studied for its several biological effects including antioxidant, anti-inflammatory, anti-hepatotoxic, antiviral, and anti-tumor properties. BE has now been discovered to be an effective agent against lung neoplasm. The molecular factors supporting baicalein's anti-cancer activity against lung cancer and its value to human health are discussed in this article. This would help in identifying BE as a promising competent drug against lung carcinoma. PRACTICAL APPLICATIONS: Baicalein is a flavonoid obtained from the roots of Scutellaria baicalensis. It has been widely used as an antioxidant, anti-inflam5matory, anti-hepatotoxic, antiviral, and anti-cancer agent. Lung cancer is one of the most common malignancies in the world with a high fatality rate. Several studies have found that Baicalein is an important candidate for treating lung cancer. Its mechanism of action includes regulation of cell proliferation, metastasis, apoptosis, autophagy, and so on. Baicalein could be used as a novel anti-cancer drug for the treatment of lung carcinoma.
Collapse
Affiliation(s)
| | - Anandakumar Pandi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, India
| |
Collapse
|
8
|
Baicalein Inhibits the SMYD2/RPS7 Signaling Pathway to Inhibit the Occurrence and Metastasis of Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3796218. [PMID: 35432530 PMCID: PMC9012617 DOI: 10.1155/2022/3796218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Objective This study investigated the potential effects of Baicalein on proliferation, migration, and invasion of human lung cancer A549 and NCI-H1299 cells and its possible mechanisms. Methods The effects of Baicalein on proliferation and invasion of A549 and NCI-H1299 cells were detected by MTT assay, clonogenesis assay, and Transwell assay. A subcutaneous transplanted tumor model was used to evaluate the effects of SMYD2 and Baicalein on the proliferation of lung cancer. Baicalein inhibited in SMYD2/RPS7 signaling pathway in tumor cells was also detected by qRT-PCR. Results Baicalein significantly inhibited the growth of lung cancer cells. In addition, Baicalein significantly reduced the rate of A549 and NCI-H1299 cell invasion and clone formation in a dose-dependent manner. Animal experiments showed that both SMYD2 and Baicalein treatments could inhibit lung cancer tumor proliferation. Mechanism studies suggest that Baicalein inhibits the SMYD2/RPS7 signaling pathway. Conclusion These results indicated that Baicalein could inhibit the proliferation, migration, and invasion of LUNG cancer A549 and NCI-H1299 cells. Baicalein inhibits cell proliferation by downregulating the SMYD2/RPS7 signaling pathway.
Collapse
|
9
|
Chandrashekar N, Subramanian R, Thiruvengadam D. Baicalein inhibits cell proliferation and enhances apoptosis in human A549 cells and benzo(a)pyrene-induced pulmonary carcinogenesis in mice. J Biochem Mol Toxicol 2022; 36:e23053. [PMID: 35332611 DOI: 10.1002/jbt.23053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/06/2022] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Our current study is done to explore the possible mechanisms to elaborate on the growth inhibitory effect of baicalein (BE) in human lung carcinoma. Initially, BE (25 and 50 µM) treatment for 24 h, suppressed the viability and inhibited population growth in A549 cells. BE upholds the production of reactive oxygen species (ROS) with concomitant replenishment of glutathione, catalase, and glutathione peroxidase activity. The expression level of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 markedly increased after BE treatment will intimidate A549 cells proliferation by the ROS-independent pathway via the antioxidant pathway. In vivo investigations were carried out on BE (12 mg/kg, oral) in benzo(a)pyrene (B(a)P; 50 mg/kg, oral) induced lung carcinogenesis in mice. BE induces caspase-dependent apoptosis by increasing the levels of cytosolic cytochrome c accompanied by upregulating the outflow of p53, Bax, and caspase-3 with a concomitant abatement in the outflow of Bcl-2 in both in vitro and in vivo. In the murine model, BE treatment hindered the countenance of proliferation-related proteins (argyrophilic nucleolar organizing regions and proliferating cell nuclear antigen). Additionally, appraisal of the cell nucleus by transmission electron microscopic assessment uncovered that BE treatment adequately counteracts B(a)P-induced lung cancer cell survival. During the transition of the G0 /G1 phase, BE is arrested in the cell cycle process. This might be the cause of a substantial increase in the appearance of p21Cip1 with concomitant downregulating the expressions of CDK4, cyclin D, and cyclin E both in vitro and in vivo. Our results conclude that BE treatment induced apoptosis and repressed proliferation both in vitro and in vivo of human lung carcinoma.
Collapse
Affiliation(s)
- Naveenkumar Chandrashekar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India.,Department of Biochemistry, Indian Academy Degree College - Autonomous, Meganahalli, Bengaluru, Karnataka, India
| | - Raghunandhakumar Subramanian
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Devaki Thiruvengadam
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Xiang L, Gao Y, Chen S, Sun J, Wu J, Meng X. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153727. [PMID: 34535372 DOI: 10.1016/j.phymed.2021.153727] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Globally, lung cancer is the leading cause of cancer associated mortalities. The current conventional chemotherapy remains the preferred treatment option for lung cancer, as surgical resection plays little role in the treatment of over 75% of lung cancer patients. Therefore, there is a need to develop novel potential therapeutic drugs or adjuvants with a high efficiency and safety against lung cancer. Scutellaria baicalensis Georgi, a common Chinese medicinal herb that has been in use for more than 2000 years, has recently been shown to possess significant activities against lung cancer. However, current research progress on pharmacological effects and relevant molecular mechanisms of S. baicalensis in lung cancer therapy have not been systematically summarized. PURPOSE This review aimed at elucidating on the anti-lung cancer mechanisms and antitumor efficacies of S. baicalensis as well as its active ingredients, and providing a valuable reference for further investigation in this field. METHODS We used "Scutellaria baicalensis" or the name of the compound in S. baicalensis, in combination with "lung cancer" as key words to systematically search for relevant literature from the Web of Science and PubMed databases. Publications that investigated molecular mechanisms were the only ones selected for analysis. The PRISMA guidelines were followed. RESULTS Fifty-four publications met the inclusion criteria for this study. Five anti-lung cancer mechanisms of S. baicalensis and its constituent components are discussed. These mechanisms include apoptosis induction, cell-cycle arrest, suppression of proliferation, blockade of invasion and metastasis, and overcoming drug-resistance. These compounds exhibited high antitumor efficacies and safety against lung cancer xenografts. CONCLUSION Studies should aim at elucidating on the anti-cancer mechanisms of S. baicalensis to achieve the ultimate goal of lung cancer therapy.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiyu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Liu BY, Chiou JZ, Huang KM, Chen TY, Hwang DF. Effects of taurine against benzo[α]pyrene-induced cell cycle arrest and reactive oxygen species-mediated nuclear factor-kappa B apoptosis via reduction of mitochondrial stress in A549 cells. CHINESE J PHYSIOL 2022; 65:199-208. [DOI: 10.4103/0304-4920.354803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:14-26. [PMID: 35656442 PMCID: PMC9118284 DOI: 10.22038/ijbms.2022.60380.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
The flavonoids, baicalin, and its aglycone baicalein possess multi-fold therapeutic properties and are mainly found in the roots of Oroxylum indicum (L.) Kurz and Scutellaria baicalensis Georgi. These flavonoids have been reported to possess various pharmacological properties, including antibacterial, antiviral, anticancer, anticonvulsant, anti-oxidant, hepatoprotective, and neuroprotective effects. The pharmacological properties of baicalin and baicalein are due to their abilities to scavenge reactive oxygen species (ROS) and interaction with various signaling molecules associated with apoptosis, inflammation, autophagy, cell cycle, mitochondrial dynamics, and cytoprotection. In this review, we summarized the molecular mechanisms underlying the chemopreventive and chemotherapeutic applications of baicalin and baicalein in the treatment of cancer and inflammatory diseases. In addition, the preventive effects of baicalin and baicalein on mitochondrial dynamics and functions were highlighted with a particular emphasis on their anti-oxidative and cytoprotective properties. The current review highlights could be useful for future prospective studies to further improve the pharmacological applications of baicalein and baicalin. These studies should define the threshold for optimal drug exposure, dose optimization and focus on therapeutic drug monitoring, objective disease markers, and baicalin/baicalein drug levels.
Collapse
Affiliation(s)
- Zhihua Hu
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Yurong Guan
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Wanying Hu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Xu
- Hubei Zhiying Medical Imaging Center, Radiology Department of Huanggang Hospital of Traditional Chinese Medicine, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
13
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
14
|
Omidian K, Rafiei H, Bandy B. Increased mitochondrial content and function by resveratrol and select flavonoids protects against benzo[a]pyrene-induced bioenergetic dysfunction and ROS generation in a cell model of neoplastic transformation. Free Radic Biol Med 2020; 152:767-775. [PMID: 31972341 DOI: 10.1016/j.freeradbiomed.2020.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Dietary polyphenols act in cancer prevention and may inhibit carcinogenesis. A possible mitochondrial mechanism for carcinogen-induced neoplastic transformation and chemoprevention by polyphenols, however, is largely unexplored. Using the Bhas 42 cell model of carcinogen-induced neoplastic transformation, we investigated benzo[a]pyrene (B[a]P) along with different polyphenols for their effects on mitochondrial content and function, and on mitochondrial and intracellular ROS generation. Bhas 42 cells were either co-treated with 5 μM polyphenol starting 2 h before exposure to 4 μM B[a]P for 24 or 72 h, or pre-treated with polyphenol for 24 h and removed prior to B[a]P exposure. Exposure to B[a]P decreased mitochondrial content (by 46% after 24 h and 30% after 72 h), decreased mitochondrial membrane potential and cellular ATP, and increased generation of mitochondrial superoxide and intracellular ROS. Polyphenol co-treatments protected against the decreased mitochondrial content, with resveratrol being the most effective (increasing the mitochondrial content after 72 h by 75%). Measurements after 24 h of mRNA for mitochondria-related proteins and of SIRT1 enzyme activity suggested an involvement of increased mitochondrial biogenesis in the polyphenol effects. The polyphenol co-treatments also ameliorated B[a]P-induced deficits in mitochondrial function (most strongly resveratrol), and increases in generation of mitochondrial superoxide and intracellular ROS. Notably, 24 h pre-treatments with polyphenols strongly suppressed subsequent B[a]P-induced increases, after 24 and 72 h, in mitochondrial superoxide and intracellular ROS generation, with resveratrol being the most effective. In conclusion, the results support a mechanism for B[a]P carcinogenesis involving impaired mitochondrial function and increased mitochondria-derived ROS, that can be ameliorated by dietary polyphenols. The evidence supports an increase in mitochondrial biogenesis behind the strong chemoprevention by resveratrol, and a mitochondrial antioxidant effect in chemoprevention by quercetin.
Collapse
Affiliation(s)
- Kosar Omidian
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| | - Hossein Rafiei
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| | - Brian Bandy
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
15
|
Dong Y, Xing Y, Sun J, Sun W, Xu Y, Quan C. Baicalein Alleviates Liver Oxidative Stress and Apoptosis Induced by High-Level Glucose through the Activation of the PERK/Nrf2 Signaling Pathway. Molecules 2020; 25:E599. [PMID: 32019168 PMCID: PMC7037940 DOI: 10.3390/molecules25030599] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Baicalein, a widely-distributed natural flavonoid, exhibits antioxidative activity in mice with type-2 diabetes. However, the underlying mechanisms remain partially elucidated. In this study, we investigated the effect of baicalein on protein kinase R-like ER kinase (PERK)/nuclear factor erythroid-2-related factor 2 (Nrf2) pathway for the alleviation of oxidative stress and apoptosis. Human liver HL-7702 cells were stimulated with 60.5 mM of glucose to induce oxidative stress and treated with baicalein. The apoptosis was determined by fluorescence microscopy and flow cytometry. The regulation of the PERK/Nrf2 pathway by baicalein was determined by immunoblotting in both HL-7702 cells and liver tissues from diabetic mice. We found that baicalein significantly alleviated the oxidative stress and apoptosis in HL-7702 cells stimulated with glucose. Mechanistic studies showed that baicalein downregulated PERK and upregulated Nrf2, two key proteins involved in endoplasmic reticulum stress, in both HL-7702 cells and liver tissues from diabetic mice receiving baicalein treatment. Furthermore, the subcellular localization of Nrf2 and the regulation of downstream proteins including heme oxygenase-1 and CCAAT-enhancer-binding protein homologous protein (CHOP) by baicalein were also investigated. Our results suggest that the regulation of the PERK/Nrf2 pathway is one of the mechanisms contributing to the bioactivities of baicalein to improve diabetes-associated complications.
Collapse
Affiliation(s)
- Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Xing
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jin Sun
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wenlong Sun
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116024, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116024, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
16
|
Koul A, Garg S, Mohan V. Chemopreventive role of arabinogalactan against experimentally induced pulmonary carcinogenesis: a study in relation to its initiation phase. Drug Chem Toxicol 2019; 44:642-654. [PMID: 31379226 DOI: 10.1080/01480545.2019.1643877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the present study is to divulge the chemopreventive potential of arabinogalactan (AG) on benzo(a)pyrene [B(a)P] induced initiation of lung carcinogenesis. AG is one of the naturally occurring bioactive polysaccharides which is widely found in medicinal plants. Male Balb/c mice were divided into four experimental groups. Group I served as control. Group II animals were injected with B(a)P (50 mg/kg b. wt. i.p.). Group III animals were administered with AG (7.5 mg/kg b.wt.) orally. Group IV animals received B(a)P and AG as in group II and group III, respectively. B(a)P treatment in mice resulted in imbalance of carcinogen metabolizing enzymes and respiratory marker enzymes at 2nd, 6th and 10th week of the experimental protocol. Also, it leads to the increased protein synthesis as depicted by increased argyrophilic nucleolar organizer regions (AgNOR) positive cells and altered histopathological features. Studies on bronchoalveolar lavage fluid (balf) of B(a)P exposed animals revealed increase in surface tension when compared with control counterparts. Apart from target tissue (lung), B(a)P also led to the clastogenic damage in other tissues (spleen and bone marrow) as depicted by increase in percentage of micronucleus cells at different time intervals. Treatment with AG efficiently counteracted all the above anomalies and restored cellular homeostasis. These observations suggest that AG has the potential to modulate B(a)P induced changes in the pulmonary tissue as well as other tissues which could have implications in delaying the initiation of carcinogenesis, however, further investigations are required to explore its complete mechanism of action.
Collapse
Affiliation(s)
- Ashwani Koul
- Department of Biophysics, Basic Medical Science Block II, Panjab University, Chandigarh, India
| | - Shaffy Garg
- Department of Biophysics, Basic Medical Science Block II, Panjab University, Chandigarh, India
| | - Vandana Mohan
- Department of Biophysics, Basic Medical Science Block II, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
18
|
Lou Y, Guo Z, Zhu Y, Kong M, Zhang R, Lu L, Wu F, Liu Z, Wu J. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:242. [PMID: 31174565 PMCID: PMC6556055 DOI: 10.1186/s13046-019-1255-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Background Lung cancer remains the most common cause of cancer-related deaths, with a high incidence and mortality in both sexes worldwide. Chemoprevention has been the most effective strategy for lung cancer prevention. Thus, exploring novel and effective candidate agents with low toxicity for chemoprevention is essential and urgent. Houttuynia cordata Thunb. (Saururaceae) (H. cordata), which is a widely used herbal medicine and is also popularly consumed as a healthy vegetable, exhibits anti-inflammatory, antioxidant and antitumor activity. However, the chemopreventive effect of H. cordata against benzo(a)pyrene (B[a]P)-initiated lung tumorigenesis and the underlying mechanism remain unclear. Methods A B[a]P-stimulated lung adenocarcinoma animal model in A/J mice in vivo and a normal lung cell model (BEAS.2B) in vitro were established to investigate the chemopreventive effects of H. cordata and its bioactive compound 2-undecanone against lung tumorigenesis and to clarify the underlying mechanisms. Results H. cordata and 2-undecanone significantly suppressed B[a]P-induced lung tumorigenesis without causing obvious systemic toxicity in mice in vivo. Moreover, H. cordata and 2-undecanone effectively decreased B[a]P-induced intracellular reactive oxygen species (ROS) overproduction and further notably protected BEAS.2B cells from B[a]P-induced DNA damage and inflammation by significantly inhibiting phosphorylated H2A.X overexpression and interleukin-1β secretion. In addition, H. cordata and 2-undecanone markedly activated the Nrf2 pathway to induce the expression of the antioxidative enzymes heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO-1). Nrf2 silencing by transfection with Nrf2 siRNA markedly decreased the expression of HO-1 and NQO-1 to diminish the reductions in B[a]P-induced ROS overproduction, DNA damage and inflammation mediated by H. cordata and 2-undecanone. Conclusions H. cordata and 2-undecanone could effectively activate the Nrf2-HO-1/NQO-1 signaling pathway to counteract intracellular ROS generation, thereby attenuating DNA damage and inflammation induced by B[a]P stimulation and playing a role in the chemoprevention of B[a]P-induced lung tumorigenesis. These findings provide new insight into the pharmacological action of H. cordata and indicate that H. cordata is a novel candidate agent for the chemoprevention of lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1255-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yuanfeng Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Rongrong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Feichi Wu
- Hunan Zhengqing Pharmaceutical Group Limited, Huaihua, 418005, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
19
|
Mohan V, Koul A. Anticancer potential of Tinospora cordifolia and arabinogalactan against benzo(a)pyrene induced pulmonary tumorigenesis: a study in relevance to various biomarkers. JOURNAL OF HERBMED PHARMACOLOGY 2018. [DOI: 10.15171/jhp.2018.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
20
|
He S, Ou R, Wang W, Ji L, Gao H, Zhu Y, Liu X, Zheng H, Liu Z, Wu P, Lu L. Camptosorus sibiricus rupr aqueous extract prevents lung tumorigenesis via dual effects against ROS and DNA damage. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:44-56. [PMID: 29258855 DOI: 10.1016/j.jep.2017.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Camptosorus sibiricus Rupr (CSR) is a widely used herbal medicine with antivasculitis, antitrauma, and antitumor effects. However, the effect of CSR aqueous extract on B[a]P-initiated tumorigenesis and the underlying mechanism remain unclear. Moreover, the compounds in CSR aqueous extract need to be identified and structurally characterized. AIM OF THE STUDY We aim to investigate the chemopreventive effect of CSR and the underlying molecular mechanism. MATERIALS AND METHODS A B[a]P-stimulated normal cell model (BEAS.2B) and lung adenocarcinoma animal model were established on A/J mice. In B[a]P-treated BEAS.2B cells, the protective effects of CSR aqueous extract on B[a]P-induced DNA damage and ROS production were evaluated through flow cytometry, Western blot, real-time quantitative PCR, single-cell gel electrophoresis, and immunofluorescence. Moreover, a model of B[a]P-initiated lung adenocarcinoma was established on A/J mice to determine the chemopreventive effect of CSR in vivo. The underlying mechanism was analyzed via immunohistochemistry and microscopy. Furthermore, the new compounds in CSR aqueous extract were isolated and structurally characterized using IR, HR-ESI-MS, and 1D and 2D NMR spectroscopy. RESULTS CSR effectively suppressed ROS production by re-activating Nrf2-mediated reductases HO-1 and NQO-1. Simultaneously, CSR attenuated the DNA damage of BEAS.2B cells in the presence of B[a]P. Moreover, CSR at 1.5 and 3 g/kg significantly suppressed tumorigenesis with tumor inhibition ratios of 36.65% and 65.80%, respectively. The tumor volume, tumor size, and multiplicity of B[a]P-induced lung adenocarcinoma were effectively decreased by CSR in vivo. After extracting and identifying the compounds in CSR aqueous extract, three new triterpene saponins were isolated and characterized structurally. CONCLUSIONS CSR aqueous extract prevents lung tumorigenesis by exerting dual effects against ROS and DNA damage, suggesting that CSR is a novel and effective agent for B[a]P-induced carcinogenesis. Moreover, by isolating and structurally characterizing three new triterpene saponins, our study further standardized the quality of CSR aqueous extract, which could widen CSR clinical applications.
Collapse
Affiliation(s)
- Shugui He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Rilan Ou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Wensheng Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Hui Gao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Yuanfeng Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Xiaomin Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Hongming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Peng Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China.
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, 232 Waihuan Dong Road, Guangzhou, Guangdong 510006, China; State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| |
Collapse
|
21
|
Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma. J Nat Med 2017; 71:433-441. [PMID: 28176233 DOI: 10.1007/s11418-017-1076-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Autophagy modulation has been considered a potential therapeutic strategy for oral squamous cell carcinoma (OSCC). A previous study confirmed that baicalein might possess significant anti-carcinogenic activity. However, whether baicalein induces autophagy and its role in cell death in OSCC are still unclear. The aim of this study was to investigate the anticancer activity and molecular targets of baicalein in OSCC in vitro. In this study, we found that baicalein induced significant apoptosis in OSCC cells Cal27. In addition to showing apoptosis induction, we also demonstrated baicalein-induced autophagic response in Cal27 cells. Moreover, pharmacologically or genetically blocking autophagy enhanced baicalein-induced apoptosis, indicating the cytoprotective role of autophagy in baicalein-treated Cal27 cells. Importantly, we found that baicalein triggered reactive oxygen species (ROS) generation in Cal27 cells. Furthermore, N-acetyl-cysteine, a ROS scavenger, abrogated the effects of baicalein on ROS-dependent autophagy. Therefore, we found that baicalein increased autophagy through the promotion of ROS signaling pathways in OSCC. These data also suggest that a strategy of blocking ROS-dependent autophagy to enhance the activity of baicalein warrants further attention for the treatment of OSCC.
Collapse
|
22
|
Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, Chen A, Huang H. The Fascinating Effects of Baicalein on Cancer: A Review. Int J Mol Sci 2016; 17:ijms17101681. [PMID: 27735841 PMCID: PMC5085714 DOI: 10.3390/ijms17101681] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide and a major global health problem. In recent decades, the rates of both mortality and morbidity of cancer have rapidly increased for a variety of reasons. Despite treatment options, there are serious side effects associated with chemotherapy drugs and multiple forms of drug resistance that significantly reduce their effects. There is an accumulating amount of evidence on the pharmacological activities of baicalein (e.g., anti-inflammatory, antioxidant, antiviral, and antitumor effects). Furthermore, there has been great progress in elucidating the target mechanisms and signaling pathways of baicalein's anti-cancer potential. The anti-tumor functions of baicalein are mainly due to its capacities to inhibit complexes of cyclins to regulate the cell cycle, to scavenge oxidative radicals, to attenuate mitogen activated protein kinase (MAPK), protein kinase B (Akt) or mammalian target of rapamycin (mTOR) activities, to induce apoptosis by activating caspase-9/-3 and to inhibit tumorinvasion and metastasis by reducing the expression of matrix metalloproteinase-2/-9 (MMP-2/-9). In this review, we focused on the relevant biological mechanisms of baicalein involved in inhibiting various cancers, such as bladder cancer, breast cancer, and ovarian cancer. Moreover, we also summarized the specific mechanisms by which baicalein inhibited the growth of various tumors in vivo. Taken together, baicalein may be developed as a potential, novel anticancer drug to treat tumors.
Collapse
Affiliation(s)
- Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yutong Gao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhipeng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
23
|
Ji X, Li Y, He J, Shah W, Xue X, Feng G, Zhang H, Gao M. Depletion of mitochondrial enzyme system in liver, lung, brain, stomach and kidney induced by benzo(a)pyrene. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:83-93. [PMID: 26970059 DOI: 10.1016/j.etap.2016.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Mitochondrial dysfunction has recently received considerable attention as it plays an important role in adult human pathology caused by various drugs, endogenous agents and environmental agents. Benzo(a)pyrene (BaP), is a ubiquitous environmental contaminant mainly derived from anthropogenic activity during incomplete combustion of organic materials from various sources. The present study aimed to evaluate the effects of benzo(a)pyrene (BaP) on mitochondrial enzymes in the multiple organs including liver, lung, brain, stomach and kidney. ICR mice were exposed to different doses of BaP (2.5, 5 and 10mg/kg body weight) through oral gavage and intraperitoneal injection treatment for 13 weeks consecutively. The induced mitochondrial damage in the examined organs was assayed in terms of significant increase in lipid peroxidation (LPO) and prominent decrease in antioxidant enzymes. Non enzymatic antioxidants and Krebs cycle's enzymes were also significantly decreased in mitochondria. Additionally, BaP induced the body growth retardation and decrease in relative liver weight, increase in relative lung, stomach, kidney and brain weights, and this was further certified through histopathological lesions. Liver and lungs were more prominently damaged by BaP. The mitochondrial depletion increased in BaP dose-dependent manner.
Collapse
Affiliation(s)
- Xiaoying Ji
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Yongfei Li
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China
| | - Jianlong He
- Xi'an Jiaotong University, Xi'an 710049, China
| | - Walayat Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guodong Feng
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 17 Changle West Road, Shaanxi, Xi'an 710032, China
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China.
| |
Collapse
|
24
|
Bodduluru LN, Kasala ER, Madhana RM, Barua CC, Hussain MI, Haloi P, Borah P. Naringenin ameliorates inflammation and cell proliferation in benzo(a)pyrene induced pulmonary carcinogenesis by modulating CYP1A1, NFκB and PCNA expression. Int Immunopharmacol 2016; 30:102-110. [DOI: 10.1016/j.intimp.2015.11.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/22/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
25
|
Antiproliferative and antioxidant potential of hesperetin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Chem Biol Interact 2015; 242:345-52. [DOI: 10.1016/j.cbi.2015.10.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022]
|
26
|
de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM. The effects of baicalein and baicalin on mitochondrial function and dynamics: A review. Pharmacol Res 2015; 100:296-308. [PMID: 26318266 DOI: 10.1016/j.phrs.2015.08.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria play an essential role in cell survival by providing energy, calcium buffering, and regulating apoptosis. A growing body of evidence shows that mitochondrial dysfunction and its consequences, including impairment of the mitochondrial respiratory chain, excessive generation of reactive oxygen species, and excitotoxicity, play a pivotal role in the pathogenesis of different diseases such as neurodegenerative diseases, neuropsychiatric disorders, and cancer. The therapeutical role of flavonoids on these diseases is gaining increasing acceptance. Numerous studies on experimental models have revealed the favorable role of flavonoids on mitochondrial function and structure. This review highlights the promising role of baicalin and its aglycone form, baicalein, on mitochondrial function and structure with a focus on its therapeutic effects. We also discuss their chemistry, sources and bioavailability.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Rajasekaran D, Manoharan S, Prabhakar MM, Manimaran A. Enicostemma littorale prevents tumor formation in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Hum Exp Toxicol 2015; 34:911-21. [DOI: 10.1177/0960327114562033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oral cancer is one of the most common malignancies worldwide, and India has recorded the highest annual incidence of oral cancer in comparison with other countries. Altered lipid peroxidation and antioxidant status along with defect in detoxification cascade have been implicated in the pathogenesis of several cancers including oral cancer. The aim of this study was to investigate the chemopreventive potential of ethanolic extract of Enicostemma littorale leaves (ElELet) in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch carcinogenesis. Oral tumor was developed in the buccal pouches of male golden Syrian hamsters by painting with 0.5% DMBA three times a week for 14 weeks. We observed 100% tumor formation with increase in tumor volume and tumor burden in the hamsters treated with DMBA alone. Imbalance in phase I (cytochrome P450 and cytochrome b5) and phase II (glutathione reductase, glutathione- S-transferase, glutathione, and Deoxythymidine-diaphorase (DT)-diaphorase) detoxification agents and lipid peroxidation by-products (thiobarbituric acid reactive substances) and antioxidant (superoxide dismutase, catalase, glutathione peroxidase, and vitamins E and C) status was noticed in hamsters treated with DMBA alone. Oral administration of ElELet at a dose of 250 mg/kg body weight to hamsters treated with DMBA significantly prevented both precancerous and cancerous lesions in the oral cavity. ElELet modulated the status of phase I and II detoxification agents and antioxidants in favor of the suppression of oral carcinogenesis. This study thus suggests that E. littorale might have inhibited the oral carcinogenesis in DMBA-treated hamsters through its antioxidant potential. The present findings are also substantiated by histological studies during DMBA-induced oral carcinogenesis.
Collapse
Affiliation(s)
- D Rajasekaran
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - S Manoharan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - MM Prabhakar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - A Manimaran
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
28
|
Kasala ER, Bodduluru LN, Barua CC, Sriram CS, Gogoi R. Benzo(a)pyrene induced lung cancer: Role of dietary phytochemicals in chemoprevention. Pharmacol Rep 2015; 67:996-1009. [PMID: 26398396 DOI: 10.1016/j.pharep.2015.03.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022]
Abstract
Lung cancer is the major cause of overall cancer deaths, and chemoprevention is a promising strategy to control this disease. Benzo(a)pyrene [B(a)P], a polycyclic aromatic hydrocarbon, is one among the principal constituents of tobacco smoke that plays a key role in lung carcinogenesis. The B(a)P induced lung cancer in mice offers a relevant model to study the effect of natural products and has been widely used by many researchers and found considerable success in ameliorating the pathophysiological changes of lung cancer. Currently available synthetic drugs that constitute the pharmacological armamentarium are themselves effective in managing the condition but not without setbacks. These hunches have accelerated the requisite for natural products, which may be used as dietary supplement to prevent the progress of lung cancer. Besides, these agents also supplement the conventional treatment and offer better management of the condition with less side effects. In the context of soaring interest toward dietary phytochemicals as newer pharmacological interventions for lung cancer, in the present review, we are attempting to give a silhouette of mechanisms of B(a)P induced lung carcinogenesis and the role of dietary phytochemicals in chemoprevention.
Collapse
Affiliation(s)
- Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Chandana C Barua
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Chandra Shekhar Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
29
|
Liu TY, Gong W, Tan ZJ, Lu W, Wu XS, Weng H, Ding Q, Shu YJ, Bao RF, Cao Y, Wang XA, Zhang F, Li HF, Xiang SS, Jiang L, Hu YP, Mu JS, Li ML, Wu WG, Shen BY, Jiang LX, Liu YB. Baicalein inhibits progression of gallbladder cancer cells by downregulating ZFX. PLoS One 2015; 10:e0114851. [PMID: 25617627 PMCID: PMC4305301 DOI: 10.1371/journal.pone.0114851] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 11/13/2014] [Indexed: 02/05/2023] Open
Abstract
Baicalein, a widely used Chinese herbal medicine, has multiple pharmacological activities. However, the precise mechanisms of the anti-proliferation and anti-metastatic effects of baicalein on gallbladder cancer (GBC) remain poorly understood. Therefore, the aim of this study was to assess the anti-proliferation and anti-metastatic effects of baicalein and the related mechanism(s) on GBC. In the present study, we found that treatment with baicalein induced a significant inhibitory effect on proliferation and promoted apoptosis in GBC-SD and SGC996 cells, two widely used gallbladder cancer cell lines. Additionally, treatment with baicalein inhibited the metastasis of GBC cells. Moreover, we demonstrated for the first time that baicalein inhibited GBC cell growth and metastasis via down-regulation of the expression level of Zinc finger protein X-linked (ZFX). In conclusion, our studies suggest that baicalein may be a potential phytochemical flavonoid for therapeutics of GBC and ZFX may serve as a molecular marker or predictive target for GBC.
Collapse
Affiliation(s)
- Tian-Yu Liu
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Gong
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Zhu-Jun Tan
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Lu
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Xiang-Song Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Hao Weng
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Qian Ding
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Yi-Jun Shu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Run-Fa Bao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Yang Cao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Xu-An Wang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Huai-Feng Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Shan-Shan Xiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Lin Jiang
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Yun-ping Hu
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Jia-Sheng Mu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Mao-Lan Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Wen-Guang Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| | - Bai-Yong Shen
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Li-Xin Jiang
- Department of General Surgery, Jiangyin hospital of traditional Chinese medicine, Jiangyin, China
| | - Ying-Bin Liu
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
30
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013; 7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | |
Collapse
|