1
|
Zhang W, Miller CA, Wilson MJ. Assessment of the In Vitro Phosphatidylinositol Glycan Class A (PIG-A) Gene Mutation Assay Using Human TK6 and Mouse Hepa1c1c7 Cell Lines. J Xenobiot 2024; 14:1293-1311. [PMID: 39311152 PMCID: PMC11417843 DOI: 10.3390/jox14030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Gene mutations linked to diseases like cancer may be caused by exposure to environmental chemicals. The X-linked phosphatidylinositol glycan class A (PIG-A) gene, required for glycosylphosphatidylinositol (GPI) anchor biosynthesis, is a key target locus for in vitro genetic toxicity assays. Various organisms and cell lines may respond differently to genotoxic agents. Here, we compared the mutagenic potential of directly genotoxic ethyl methane sulfonate (EMS) to metabolically activated pro-mutagenic polycyclic aromatic hydrocarbons (PAHs). The two classes of mutagens were compared in an in vitro PIG-A gene mutation test using the metabolically active murine hepatoma Hepa1c1c7 cell line and the human TK6 cell line, which has limited metabolic capability. Determination of cell viability is required for quantifying mutagenicity. Two common cell viability tests, the MTT assay and propidium iodide (PI) staining measured by flow cytometry, were evaluated. The MTT assay overestimated cell viability in adherent cells at high benzo[a]pyrene (B[a]P) exposure concentrations, so PI-based cytotoxicity was used in calculations. The spontaneous mutation rates for TK6 and Hepa1c1c7 cells were 1.87 and 1.57 per million cells per cell cycle, respectively. TK6 cells exposed to 600 µM and 800 µM EMS showed significantly higher mutation frequencies (36 and 47 per million cells per cell cycle, respectively). Exposure to the pro-mutagen benzo[a]pyrene (B[a]P, 10 µM) did not increase mutation frequency in TK6 cells. In Hepa1c1c7 cells, mutation frequencies varied across exposure groups (50, 50, 29, and 81 per million cells per cell cycle when exposed to 10 µM B[a]P, 5-methylcholanthrene (5-MC), chrysene, or 16,000 µM EMS, respectively). We demonstrate that the choice of cytotoxicity assay and cell line can determine the outcome of the Pig-A mutagenesis assay when assessing a specific mutagen.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Charles A. Miller
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Mark J. Wilson
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
- Chemical Insights Research Institute of Underwriters Laboratories Research Institutes, Marietta, GA 30067, USA
| |
Collapse
|
2
|
Cao L, Miao Y, Liu Y, Huang S, Tian L, Yu M, Huo J, Zhang L, Li X, Chen J. Genotoxic mode of action and threshold exploration of 2-methyl furan under 120-day sub-chronic exposure in male Sprague-Dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116125. [PMID: 38394755 DOI: 10.1016/j.ecoenv.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
2-Methylfuran (2-MF) is an important member of the furan family generated during food thermal processing. An in-vivo multiple endpoint genotoxicity assessment system was applied to explore the genotoxic mode of action and threshold of 2-MF. Male Sprague-Dawley rats received 2-MF by oral gavage at doses of 0.16, 0.625, 2.5, and 10 mg/kg.bw/day for 120 days. An additional 15 days were granted for recovery. The Pig-a gene mutation frequency of RET and RBC showed significant increases among the 2-MF groups on day 120. After a 15-day recovery period, the Pig-a gene mutation frequency returned to levels similar to those in the vehicle control. The tail intensity (TI) values of peripheral blood cells at a dose of 10 mg/kg.bw/day significantly increased from day 4 and remained at a high level after the recovery period. No statistical difference was found in the micronucleus frequency of peripheral blood between any 2-MF dose group and the corn oil group at any timepoint. 2-MF may not induce the production of micronuclei, but it could cause DNA breakage. It could not be ruled out that 2-MF may accumulate in vivo and cause gene mutations. Hence, DNA, other than the spindle, may be directly targeted. The mode of action of 2-MF may be that it was metabolized by EPHX1 to more DNA-active metabolites, thus leading to oxidative and direct DNA damage. The point of departure (PoD) of 2-MF-induced genotoxicity was derived as 0.506 mg/kg bw/day.
Collapse
Affiliation(s)
- Li Cao
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yeqiu Miao
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yufei Liu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Luojia Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengqi Yu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Fowler P, Bearzatto A, Beevers C, Booth ED, Donner EM, Gan L, Hartmann K, Meurer K, Schutte ME, Settivari RS. Assessment of the three-test genetic toxicology battery for groundwater metabolites. Mutagenesis 2024; 39:146-155. [PMID: 38183270 DOI: 10.1093/mutage/gead037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024] Open
Abstract
The two-test in vitro battery for genotoxicity testing (Ames and micronucleus) has in the majority of cases replaced the three-test battery (as two-test plus mammalian cell gene mutation assay) for the routine testing of chemicals, pharmaceuticals, cosmetics, and agrochemical metabolites originating from food and feed as well as from water treatment. The guidance for testing agrochemical groundwater metabolites, however, still relies on the three-test battery. Data collated in this study from 18 plant protection and related materials highlights the disparity between the often negative Ames and in vitro chromosome aberration data and frequently positive in vitro mammalian cell gene mutation assays. Sixteen of the 18 collated materials with complete datasets were Ames negative, and overall had negative outcomes in in vitro chromosome damage tests (weight of evidence from multiple tests). Mammalian cell gene mutation assays (HPRT and/or mouse lymphoma assay (MLA)) were positive in at least one test for every material with this data. Where both MLA and HPRT tests were performed on the same material, the HPRT seemed to give fewer positive responses. In vivo follow-up tests included combinations of comet assays, unscheduled DNA synthesis, and transgenic rodent gene mutation assays, all gave negative outcomes. The inclusion of mammalian cell gene mutation assays in a three-test battery for groundwater metabolites is therefore not justified and leads to unnecessary in vivo follow-up testing.
Collapse
Affiliation(s)
- Paul Fowler
- FStox Consulting Ltd, Raunds, United Kingdom
| | | | | | | | | | - Lin Gan
- Exigent Sciences LLC, Arizona, United States
| | | | | | | | | |
Collapse
|
4
|
Lawrence R, Munn K, Naser H, Thomas L, Haboubi H, Williams L, Doak S, Jenkins G. The PIG-A gene mutation assay in human biomonitoring and disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:480-493. [PMID: 37926486 DOI: 10.1002/em.22577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The blood cell phosphatidylinositol glycan class A (PIG-A) gene mutation assay has been extensively researched in rodents for in vivo mutagenicity testing and is now being investigated in humans. The PIG-A gene is involved in glycosyl phosphatidylinositol (GPI)-anchor biosynthesis. A single mutation in this X-linked gene can lead to loss of membrane-bound GPI anchors, which can be enumerated via corresponding GPI-anchored proteins (e.g., CD55) using flow cytometry. The studies published to date by different research groups demonstrate a remarkable consistency in PIG-A mutant frequencies. Moreover, with the low background level of mutant erythrocytes in healthy subjects (2.9-5.56 × 10-6 mutants), induction of mutation post genotoxic exposure can be detected. Cigarette smoking, radiotherapy, and occupational exposures, including lead, have been shown to increase mutant levels. Future applications of this test include identifying new harmful agents and establishing new exposure limits. This mutational monitoring approach may also identify individuals at higher risk of cancer development. In addition, identifying protective agents that could mitigate these effects may reduce baseline somatic mutation levels and such behaviors can be encouraged. Further technological progress is required including establishing underlying mechanisms of GPI anchor loss, protocol standardization, and the development of cryopreservation methods to improve GPI-anchor stability over time. If successful, this assay has the potential be widely employed, for example, in rural and low-income countries. Here, we review the current literature on PIG-A mutation in humans and discuss the potential role of this assay in human biomonitoring and disease detection.
Collapse
Affiliation(s)
- Rachel Lawrence
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kathryn Munn
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Hamsa Naser
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Laura Thomas
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Hasan Haboubi
- Department of Gastroenterology, University Hospital Llandough, Cardiff and Vale University Health Board, Cardiff, UK
| | - Lisa Williams
- Department of Gastroenterology, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Shareen Doak
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Gareth Jenkins
- Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
5
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
6
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
7
|
Githaka JM. Molnupiravir Does Not Induce Mutagenesis in Host Lung Cells during SARS-CoV-2 Treatment. Bioinform Biol Insights 2022; 16:11779322221085077. [PMID: 35342288 PMCID: PMC8950025 DOI: 10.1177/11779322221085077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/11/2022] [Indexed: 01/24/2023] Open
Abstract
As SARS-CoV-2 continues to evolve and spread with the emergence of new variants, interest in small molecules with broad-spectrum antiviral activity has grown. One such molecule, Molnupiravir (MOV; other names: MK-4482, EIDD-2801), a ribonucleoside analogue, has emerged as an effective SARS-CoV-2 treatment by inducing catastrophic viral mutagenesis during replication. However, there are growing concerns as MOV’s potential to induce host DNA mutagenesis remains an open question. Analysis of RNA-seq data from SARS-CoV-2–infected MOV-treated golden hamster lung biopsies confirmed MOV’s efficiency in stopping SARS-CoV-2 replication. Importantly, MOV treatment did not increase mutations in the host lung cells. This finding calls for additional mutation calls on host biopsies from more proliferative tissues to fully explore MOV’s hypothesized mutagenic risk.
Collapse
Affiliation(s)
- John Maringa Githaka
- John Maringa Githaka, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
8
|
Groff K, Evans SJ, Doak SH, Pfuhler S, Corvi R, Saunders S, Stoddart G. In vitro and integrated in vivo strategies to reduce animal use in genotoxicity testing. Mutagenesis 2021; 36:389-400. [PMID: 34555171 DOI: 10.1093/mutage/geab035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Scientific, financial, and ethical drivers have led to unprecedented interest in implementing human-relevant, mechanistic in vitro and in silico testing approaches. Further, as non-animal approaches are being developed and validated, researchers are interested in strategies that can immediately reduce the use of animals in toxicology testing. Here, we aim to outline a testing strategy for assessing genotoxicity beginning with standard in vitro methods, such as the bacterial reverse mutation test and the in vitro micronucleus test, followed by a second tier of in vitro assays including those using advanced 3D tissue models. Where regulatory agencies require in vivo testing, one demonstrated strategy is to combine genotoxicity studies traditionally conducted separately into a single test or to integrate genotoxicity studies into other toxicity studies. Standard setting organisations and regulatory agencies have encouraged such strategies, and examples of their use can be found in the scientific literature. Employing approaches outlined here will reduce animal use as well as study time and costs.
Collapse
Affiliation(s)
- Katherine Groff
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | | | | | | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Gilly Stoddart
- PETA Science Consortium International e.V., Stuttgart, Germany
| |
Collapse
|
9
|
Møller P, Wils RS, Di Ianni E, Gutierrez CAT, Roursgaard M, Jacobsen NR. Genotoxicity of multi-walled carbon nanotube reference materials in mammalian cells and animals. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108393. [PMID: 34893158 DOI: 10.1016/j.mrrev.2021.108393] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon nanotubes (CNTs) were the first nanomaterials to be evaluated by the International Agency for Research on Cancer (IARC). The categorization as possibly carcinogenic agent to humans was only applicable to multi-walled carbon nanotubes called MWCNT-7. Other types of CNTs were not classifiable because of missing data and it was not possible to pinpoint unique CNT characteristics that cause cancer. Importantly, the European Commission's Joint Research Centre (JRC) has established a repository of industrially manufactured nanomaterials that encompasses at least four well-characterized MWCNTs called NM-400 to NM-403 (original JRC code). This review summarizes the genotoxic effects of these JRC materials and MWCNT-7. The review consists of 36 publications with results on cell culture experiments (22 publications), animal models (9 publications) or both (5 publications). As compared to the publications in the IARC monograph on CNTs, the current database represents a significant increase as there is only an overlap of 8 publications. However, the results come mainly from cell cultures and/or measurements of DNA strand breaks by the comet assay and the micronucleus assay (82 out of 97 outcomes). A meta-analysis of cell culture studies on DNA strand breaks showed a genotoxic response by MWCNT-7, less consistent effect by NM-400 and NM-402, and least consistent effect by NM-401 and NM-403. Results from other in vitro tests indicate strongest evidence of genotoxicity for MWCNT-7. There are too few observations from animal models and humans to make general conclusions about genotoxicity.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Emilio Di Ianni
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Claudia Andrea Torero Gutierrez
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Tahara H, Nemoto S, Yamagiwa Y, Haranosono Y, Kurata M. Investigation of in vivo unscheduled DNA synthesis in rabbit corneas following instillation of genotoxic agents. Cutan Ocul Toxicol 2021; 40:26-36. [PMID: 33461361 DOI: 10.1080/15569527.2021.1874006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE An unscheduled DNA synthesis (UDS) test is used for in vitro or in vivo genotoxicity evaluation. The UDS test with hepatocytes is well established; however, drug exposure levels at the application site for topically administered drugs (e.g. ophthalmic drugs) often exceed the exposure levels for systemic administration. To establish in vivo genotoxicity on the ocular surface, we performed the UDS test using rabbit corneas from eyes subjected to instillation of genotoxic agents. MATERIALS AND METHODS Five genotoxic agents - 1,1'-dimethyl-4,4'-bipyridinium dichloride (paraquat); acridine orange; ethidium bromide; acrylamide; and 4-nitroquinoline 1-oxide (4-NQO) - were instilled once onto both eyes of male Japanese white rabbits. Physiological saline or a general vehicle for ophthalmic solution were instilled as the negative controls. Dimethyl sulfoxide was instilled as the vehicle control. Isolated corneas were incubated with tritium-labelled thymidine and the number of sparsely labelled cells (SLCs, cells undergoing UDS) was counted by autoradiography. RESULTS Statistically significant increases in the mean appearance rates of SLCs in the corneal epithelium were noted in paraquat-, acridine orange-, ethidium bromide-, and 4-NQO-treated eyes compared with those of the controls. These increases generally appeared in a dose-dependent manner. Acrylamide did not induce an increase in the mean appearance rates of SLCs, presumably because it caused the generation of fewer metabolites in the cornea. CONCLUSIONS UDS tests revealed DNA damage in the cornea epitheliums treated with well-known genotoxic agents. These results suggest that the UDS test is one of the useful tools for the assessment of in vivo genotoxicity on the ocular surface in the development of ophthalmic drugs.
Collapse
Affiliation(s)
- Haruna Tahara
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| | - Shingo Nemoto
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| | - Yoshinori Yamagiwa
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| | - Yu Haranosono
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| | - Masaaki Kurata
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| |
Collapse
|
11
|
Bonetto RM, Castel P, Robert SP, Tassistro VM, Claeys-Bruno M, Sergent M, Delecourt CA, Cowen D, Carcopino X, Orsière TG. Evaluation of PIG-A-mutated granulocytes and ex-vivo binucleated micronucleated lymphocytes frequencies after breast cancer radiotherapy in humans. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:18-28. [PMID: 33169419 DOI: 10.1002/em.22413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Although the PIG-A gene mutation frequency (MF) is considered a good proxy to evaluate the somatic MF in animals, evidence remains scarce in humans. In this study, a granulocyte PIG-A-mutant assay was evaluated in patients undergoing radiation therapy (RT) for breast cancer. Breast cancer patients undergoing adjuvant RT were prospectively enrolled. RT involved the whole breast, with (WBNRT) or without (WBRT) nodal area irradiation. Blood samples were obtained from participants before (T0) RT, and T1, T2, and T3 samples were collected 3 weeks after the initiation of RT, at the end of RT, and at least 10 weeks after RT discontinuation, respectively. The MF was assessed using a flow cytometry protocol identifying PIG-A-mutant granulocytes. Cytokinesis-blocked micronucleated lymphocyte (CBML) frequencies were also evaluated. Thirty patients were included, and five of them had received chemotherapy prior to RT. The mean (±SD) PIG-A MFs were 7.7 (±12.1) per million at T0, 5.2 (±8.6) at T1, 6.4 (±8.0) at T2 and 3.8 (±36.0) at T3. No statistically significant increases were observed between the PIG-A MF at T0 and the MFs at other times. RT significantly increased the CBML frequencies: 7.9 ‰ (±3.1‰) versus 33.6‰ (±17.2‰) (p < .0001). By multivariate analysis, the CBML frequency was correlated with age at RT initiation (p = .043) and irradiation volume at RT discontinuation (p = .0001) but not with chemotherapy. RT for breast cancer therapy failed to induce an increase in the PIG-A MF. The PIG-A assay in humans needs further evaluation, in various genotoxic exposures and including various circulating human cells.
Collapse
Affiliation(s)
- Rémi M Bonetto
- Aix Marseille University, APHM, CHU TIMONE, Service de Radiothérapie-Oncologie, Marseille, France
| | - Pierre Castel
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Stéphane P Robert
- Aix Marseille University, INSERM, INRA, C2VN, AMUTICYT Core Facility, Faculté de Pharmacie, Marseille, France
| | - Virginie M Tassistro
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Magalie Claeys-Bruno
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Michelle Sergent
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Camille A Delecourt
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Didier Cowen
- Aix Marseille University, APHM, CHU TIMONE, Service de Radiothérapie-Oncologie, Marseille, France
| | - Xavier Carcopino
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille University, APHM, CHU NORD, Service de Gynécologie-Obstétrique, Marseille, France
| | - Thierry G Orsière
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
12
|
Direct quantification of in vivo mutagenesis and carcinogenesis using duplex sequencing. Proc Natl Acad Sci U S A 2020; 117:33414-33425. [PMID: 33318186 PMCID: PMC7776782 DOI: 10.1073/pnas.2013724117] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Error-corrected next-generation sequencing (ecNGS) can be used to rapidly detect and quantify the in vivo mutagenic impact of environmental exposures or endogenous processes in any tissue, from any species, at any genomic location. The greater speed, higher scalability, richer data outputs, and cross-species and cross-locus applicability of ecNGS compared to existing methods make it a powerful new tool for mutational research, regulatory safety testing, and emerging clinical applications. The ability to accurately measure mutations is critical for basic research and identifying potential drug and chemical carcinogens. Current methods for in vivo quantification of mutagenesis are limited because they rely on transgenic rodent systems that are low-throughput, expensive, prolonged, and do not fully represent other species such as humans. Next-generation sequencing (NGS) is a conceptually attractive alternative for detecting mutations in the DNA of any organism; however, the limit of resolution for standard NGS is poor. Technical error rates (∼1 × 10−3) of NGS obscure the true abundance of somatic mutations, which can exist at per-nucleotide frequencies ≤1 × 10−7. Using duplex sequencing, an extremely accurate error-corrected NGS (ecNGS) technology, we were able to detect mutations induced by three carcinogens in five tissues of two strains of mice within 31 d following exposure. We observed a strong correlation between mutation induction measured by duplex sequencing and the gold-standard transgenic rodent mutation assay. We identified exposure-specific mutation spectra of each compound through trinucleotide patterns of base substitution. We observed variation in mutation susceptibility by genomic region, as well as by DNA strand. We also identified a primordial marker of carcinogenesis in a cancer-predisposed strain of mice, as evidenced by clonal expansions of cells carrying an activated oncogene, less than a month after carcinogen exposure. These findings demonstrate that ecNGS is a powerful method for sensitively detecting and characterizing mutagenesis and the early clonal evolutionary hallmarks of carcinogenesis. Duplex sequencing can be broadly applied to basic mutational research, regulatory safety testing, and emerging clinical applications.
Collapse
|
13
|
Cao Y, Wang T, Xi J, Zhang G, Wang T, Liu W, You X, Zhang X, Xia Z, Luan Y. PIG-A gene mutation as a genotoxicity biomarker in human population studies: An investigation in lead-exposed workers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:611-621. [PMID: 32285465 DOI: 10.1002/em.22373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
The rodent Pig-a gene mutation assay has demonstrated remarkable sensitivity in identifying in vivo mutagens, while much less is known about the value of the human PIG-A assay for risk assessment. To obtain more evidence of its potential as a predictive biomarker for carcinogen exposure, we investigated PIG-A mutant frequencies (MFs), along with performing the Comet assay and micronucleus (MN) test, in 267 workers occupationally exposed to lead. Multivariate Poisson regression showed that total red blood cell PIG-A MFs were significantly higher in lead-exposed workers (10.90 ± 10.7 × 10-6 ) than in a general population that we studied previously (5.25 ± 3.6 × 10-6 ) (p < .0001). In contrast, there was no increase in lymphocyte MN frequency or in DNA damage as measured by percentage comet tail intensity in whole blood cells. Current year worker blood lead levels (BLL), an exposure biomarker, were elevated (232.6 ± 104.6 μg/L, median: 225.4 μg/L); a cumulative blood lead index (CBLI) also was calculated based on a combination of current and historical worker BLL data. Chi-square testing indicated that PIG-A MFs were significantly related to CBLI (p = .0249), but independent of current year BLL (p = .4276). However, % comet tail intensity and MN frequencies were better associated with current year BLL than CBLI. This study indicates that the PIG-A assay could serve as biomarker to detect the genotoxic effects of lead exposure and demonstrates that a battery of genotoxicity biomarkers having mechanistic complementarity may be useful for comprehensively monitoring human carcinogenic risk.
Collapse
Affiliation(s)
- Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanghui Zhang
- Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Tongshuai Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, China
| | - Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XinYu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaolin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
15
|
Bemis JC, Heflich RH. In vitro mammalian cell mutation assays based on the Pig-a gene: A report of the 7th International Workshop on Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403028. [PMID: 31699348 DOI: 10.1016/j.mrgentox.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Pig-a gene mutation assays enumerate cells with the glycosylphosphatidylinositol (GPI) anchor-deficient phenotype as a reporter of mutation in the endogenous Pig-a gene. Methods for measuring mutation in this gene are quite well established for in vivo systems. This approach to mutagenicity assessment has now been extended to in vitro mammalian cell-based systems. An expert workgroup from the 7th International Workshop on Genotoxicity Testing tasked with assessing the status of in vitro mammalian cell mutation assays has investigated the merits and limitations of in vitro Pig-a gene mutation assays. A review of the current status of these developing methodologies and the formation of consensus statements on the utility and application of these assays were performed to provide guidance for their potential use in genotoxicity hazard identification and risk assessment.
Collapse
Affiliation(s)
- J C Bemis
- Litron Laboratories, Rochester, NY, USA.
| | - R H Heflich
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
16
|
Dose-dependence of chemical carcinogenicity: Biological mechanisms for thresholds and implications for risk assessment. Chem Biol Interact 2019; 301:112-127. [DOI: 10.1016/j.cbi.2019.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/11/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
|
17
|
Igl BW, Dertinger SD, Dobrovolsky VN, Raschke M, Sutter A, Vonk R. A statistical approach for analyzing data from the in vivo Pig-a gene mutation assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:33-44. [PMID: 29875075 DOI: 10.1016/j.mrgentox.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
Abstract
The in vivo Pig-a gene mutation assay serves to evaluate the genotoxic potential of chemicals. In the rat blood-based assay, the lack of CD59 on the surface of erythrocytes is quantified via fluorophore-labeled antibodies in conjunction with flow cytometric analysis to determine the frequency of Pig-a mutant phenotype cells. The assay has achieved regulatory relevance as it is suggested as an in vivo follow-up test for Ames mutagens in the recent ICH M7 [25] step 4 document. However, very little work exists regarding suitable statistical approaches for analyzing Pig-a data. In the current report, we present a statistical strategy based on a two factor model involving 'treatment' and 'time' incl. their interaction and a baseline covariate for log proportions to compare treatment and vehicle data per time point as well as in time. In doing so, multiple contrast tests allow us to discover time-related changes within and between treatment groups in addition to multiple treatment comparisons to a control group per single time point. We compare our proposed strategy with the results of classical Dunnett and Wilcoxon-Mann-Whitney tests using two data sets describing the mode of action of Chlorambucil and Glycidyl methacrylate both analyzed in a 28-day treatment schedule.
Collapse
Affiliation(s)
| | | | - Vasily N Dobrovolsky
- National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | - Richardus Vonk
- Research and Clinical Sciences Statistics, Bayer AG, Berlin, Germany
| |
Collapse
|
18
|
Avlasevich SL, Labash C, Torous DK, Bemis JC, MacGregor JT, Dertinger SD. In vivo pig-a and micronucleus study of the prototypical aneugen vinblastine sulfate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:30-37. [PMID: 28833575 PMCID: PMC5773054 DOI: 10.1002/em.22122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 05/05/2023]
Abstract
The Pig-a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig-a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty-eight consecutive days with vinblastine dose levels from 0.0156 to 0.125 mg/kg/day. Micronucleated reticulocyte frequencies in peripheral blood were determined at Days 4 and 29, and mutant cell frequencies were determined at Days -4, 15, 29, and 46. Vinblastine affected reticulocyte frequencies, with reductions noted during the treatment phase and increases observed following cessation of treatment. Micronucleated reticulocyte frequencies were significantly elevated at Day 4 in the high dose group. Although a statistically significant increase in mutant reticulocyte frequencies were found for one dose group at a single time point (Day 46), it was not deemed biologically relevant because there was no analogous finding in mutant RBCs, it occurred at the lowest dose tested, and only 1 rat exceeded an upper bound tolerance interval established with historical negative control rats. Therefore, whereas micronucleus induction reflects vinblastine's well-established aneugenic effect on hematopoietic cells, the lack of a Pig-a response indicates that this tubulin-binding agent does not cause appreciable mutagenicity in this same cell type. Environ. Mol. Mutagen. 59:30-37, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
|
19
|
Bemis JC, Avlasevich SL, Labash C, McKinzie P, Revollo J, Dobrovolsky VN, Dertinger SD. Glycosylphosphatidylinositol (GPI) anchored protein deficiency serves as a reliable reporter of Pig-a gene Mutation: Support from an in vitro assay based on L5178Y/Tk +/- cells and the CD90.2 antigen. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:18-29. [PMID: 29115020 PMCID: PMC5771857 DOI: 10.1002/em.22154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Lack of cell surface glycosylphosphatidylinositol (GPI)-anchored protein(s) has been used as a reporter of Pig-a gene mutation in several model systems. As an extension of this work, our laboratory initiated development of an in vitro mutation assay based on the flow cytometric assessment of CD90.2 expression on the cell surface of the mouse lymphoma cell line L5178Y/Tk+/- . Cells were exposed to mutagenic and nonmutagenic compounds for 24 hr followed by washout and incubation for an additional 7 days. Following this mutant manifestation time, cells were labeled with fluorescent antibodies against CD90.2 and CD45 antigens. These reagents indicated the presence of GPI-anchored proteins and general cell surface membrane receptor integrity, respectively. Instrument set-up was aided by parallel processing of a GPI anchor-deficient subclone. Results show that the mutagens reproducibly caused increased frequencies of mutant phenotype cells, while the nonmutagens did not. Further modifications to the method, including application of a viability dye and an isotype control for instrument set-up, were investigated. As a means to verify that the GPI-anchored protein-negative phenotype reflects bona fide Pig-a gene mutation, sequencing was performed on 38 CD90.2-negative L5178Y/Tk+/- clones derived from cultures treated with ethyl methanesulfonate. All clones were found to have mutation(s) within the Pig-a gene. The continued investigation of L5178Y/Tk+/- cells, CD90.2 labeling, and flow cytometric analysis as the basis of an in vitro mutation assay is clearly supported by this work. These data also provide evidence of the reliability of using GPI anchor-deficiency as a valid reporter of Pig-a gene mutation. Environ. Mol. Mutagen. 59:18-29, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Page McKinzie
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Javier Revollo
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Vasily N Dobrovolsky
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | |
Collapse
|
20
|
Graupner A, Eide DM, Brede DA, Ellender M, Lindbo Hansen E, Oughton DH, Bouffler SD, Brunborg G, Olsen AK. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in Apc Min/+ mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:560-569. [PMID: 28856770 PMCID: PMC5656900 DOI: 10.1002/em.22121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc+/+ (wild type) and ApcMin/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h-1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min-1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The ApcMin/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Anne Graupner
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| | - Dag M. Eide
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Toxicology and Risk AssessmentNorwegian Institute of Public HealthOslo0403Norway
| | - Dag A. Brede
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Environmental SciencesNorwegian University of Life SciencesÅs 1432Norway
| | - Michele Ellender
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental Hazards, Public Health EnglandChiltonDidcotOX11 0RQEngland
| | - Elisabeth Lindbo Hansen
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of ResearchNorwegian Radiation Protection AuthorityØsterås1361Norway
| | - Deborah H. Oughton
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Environmental SciencesNorwegian University of Life SciencesÅs 1432Norway
| | - Simon D. Bouffler
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental Hazards, Public Health EnglandChiltonDidcotOX11 0RQEngland
| | - Gunnar Brunborg
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| | - Ann Karin Olsen
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| |
Collapse
|
21
|
Holme JA, Froetschl R, Knudsen LE. The European Environmental Mutagenesis and Genomics Society Annual Meeting, 14-18 August 2016, Copenhagen, Denmark. Basic Clin Pharmacol Toxicol 2017. [DOI: 10.1111/bcpt.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jørn A. Holme
- Division of Environmental medicine; Norwegian Institute of Public Health; Oslo Norway
| | | | - Lisbeth E. Knudsen
- Department of Public Health; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|