1
|
Dong L, Zhao B, Lu Y, Li L, Huang C, Zhou X, You T, Qian W, Zhang J, Luo G. A ROS-responsive nanoprodrug-engineered phage biotherapy for precision treatment of multidrug-resistant Gram-negative bacterial pneumonia. J Control Release 2025; 382:113708. [PMID: 40204131 DOI: 10.1016/j.jconrel.2025.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Multidrug-resistant Gram-negative bacteria (MDR-GNB) pose a significant threat to global healthcare, causing severe morbidity and mortality rates in pneumonia cases. Despite the effectiveness of polymyxins, their clinical use is limited by toxicity and emerging bacterial resistance. Here, we describe a precisely targeting, biohybrid therapeutic platform that combines a polymyxin B-based prodrug nanosystem with an engineered phage. This biohybrid system enables the accumulation of polymyxin B at pathogens and its release in a reactive oxygen species (ROS)-triggered manner at inflamed sites. In vitro and in vivo studies demonstrate that this system shows robust lung distribution and tissue retention, effectively eliminating pathogens, reducing oxidative damage, and alleviating inflammation in a model of bacterial pneumonia. Our findings highlight the potential of this phage-prodrug biohybrid nanoplatform for targeted antibiotic delivery, offering a therapeutic paradigm against infectious diseases caused by MDR-GNB.
Collapse
Affiliation(s)
- Lanlan Dong
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Baohua Zhao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Can Huang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xuan Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tingting You
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
2
|
Li M, Yuan W, Duan S, Li Y, Zhang S, Zhao Y, Xiao S, Zhong K. Rare earth element erbium induces immune toxicity through the ROS/NF-κB pathway in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110129. [PMID: 39828015 DOI: 10.1016/j.fsi.2025.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The large-scale mining and utilization of rare earth elements have significantly increased their concentration in the environment, especially in regions surrounding mining areas. These environmentally-enriched rare earth elements accumulate in agricultural products and organisms through soil and water, potentially impacting in human health through the food chain. Erbium (Er), a rare earth element of the lanthanide series (Group IIIB), plays a crucial role in various modern technological applications. It is primarily utilized in ceramics, glass coloring, optical fibers, laser technology, and the nuclear industry, among others. However, a paucity of information on the health effects and ecotoxicity of erbium is currently available. In this study, we used the zebrafish as experimental animal to investigate the potential impact of the rare earth element erbium on the immune system. We exposed fertilized zebrafish embryos to different concentrations of erbium (0, 4, 8 and 16 mg/L) from 6 hours post-fertilization (hpf) until 72 hpf. We found that with increasing concentrations of erbium exposure, there was an increasing and dispersing trend in the number of zebrafish neutrophils; a decreasing trend in the number of macrophages. Exposure to erbium was demonstrated to impair the phagocytic capability of macrophages, reduce the recruitment of neutrophils to the wound site, and lower the resistance of zebrafish to Escherichia coli infection. Erbium exposure led to macrophage apoptosis and upregulation of oxidative stress in the zebrafish. The individual application of the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine, the IKBKB inhibitor resveratrol and the NF-κB inhibitor andrographolide were demonstrated to alleviate erbium-induced immune toxicity, as confirmed by assays including acridine orange staining, neutrophils enumeration and recruitment, and real-time quantitative PCR. Therefore, the rare earth element erbium induced immune toxicity in zebrafish through the ROS/NF-κB pathway. The findings of this study provide information for assessing the impact of rare earth elements on human health and ecosystems.
Collapse
Affiliation(s)
- Mijia Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Wei Yuan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Shiyi Duan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yang Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sijie Zhang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yan Zhao
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Shimei Xiao
- National Center of Quality Testing and Inspection for Tungsten and Rare Earth Products, Ganzhou, 341000, China; Jiangxi Institute of Tungsten and Rare Earth, Ganzhou, 341000, China
| | - Keyuan Zhong
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Miranda S, Lassnig C, Schmidhofer K, Kjartansdottir H, Vogl C, Tangermann S, Tsymala I, Babl V, Müller M, Kuchler K, Strobl B. Lack of TYK2 signaling enhances host resistance to Candida albicans skin infection. Nat Commun 2024; 15:10493. [PMID: 39622833 PMCID: PMC11612186 DOI: 10.1038/s41467-024-54888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing diseases ranging from local to life-threating systemic infections. Tyrosine kinase 2 (TYK2), a crucial mediator in several cytokine signaling pathways, has been associated with protective functions in various microbial infections. However, its specific contribution in the immune response to fungal infections has remained elusive. In this study, we show that mice lacking TYK2 or its enzymatic activity exhibit enhanced resistance to C. albicans skin infections, limiting fungal spread and accelerating wound healing. Impaired TYK2-signaling prompted the formation of a distinctive layer of necrotic neutrophils around the fungal pathogens. Transcriptomic analysis revealed TYK2's pivotal role in regulating interferon-inducible genes in neutrophils, thereby impacting their antifungal capacity during infection. Furthermore, we show that TYK2-dependent interferon-gamma (IFNγ) production contributes to fungal dissemination from the skin to the kidneys. Our study uncovers a hitherto unrecognized detrimental role of TYK2 in cutaneous C. albicans infections.
Collapse
Affiliation(s)
- Sara Miranda
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Schmidhofer
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hrönn Kjartansdottir
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Tangermann
- Centre of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Verena Babl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Ghosh S, Tuz AA, Stenzel M, Singh V, Richter M, Soehnlein O, Lange E, Heyer R, Cibir Z, Beer A, Jung M, Nagel D, Hermann DM, Hasenberg A, Grüneboom A, Sickmann A, Gunzer M. Proteomic Characterization of 1000 Human and Murine Neutrophils Freshly Isolated From Blood and Sites of Sterile Inflammation. Mol Cell Proteomics 2024; 23:100858. [PMID: 39395581 PMCID: PMC11630641 DOI: 10.1016/j.mcpro.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6200 mouse and ∼5300 human proteins from circulating neutrophils. 4800 mouse and 3400 human proteins were recovered from 1000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production, while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue-infiltrated neutrophils.
Collapse
Affiliation(s)
- Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Emanuel Lange
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Heyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marcel Jung
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dennis Nagel
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Cibir Z, Hassel J, Sonneck J, Kowitz L, Beer A, Kraus A, Hallekamp G, Rosenkranz M, Raffelberg P, Olfen S, Smilowski K, Burkard R, Helfrich I, Tuz AA, Singh V, Ghosh S, Sickmann A, Klebl AK, Eickhoff JE, Klebl B, Seidl K, Chen J, Grabmaier A, Viga R, Gunzer M. ComplexEye: a multi-lens array microscope for high-throughput embedded immune cell migration analysis. Nat Commun 2023; 14:8103. [PMID: 38081825 PMCID: PMC10713721 DOI: 10.1038/s41467-023-43765-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Autonomous migration is essential for the function of immune cells such as neutrophils and plays an important role in numerous diseases. The ability to routinely measure or target it would offer a wealth of clinical applications. Video microscopy of live cells is ideal for migration analysis, but cannot be performed at sufficiently high-throughput (HT). Here we introduce ComplexEye, an array microscope with 16 independent aberration-corrected glass lenses spaced at the pitch of a 96-well plate to produce high-resolution movies of migrating cells. With the system, we enable HT migration analysis of immune cells in 96- and 384-well plates with very energy-efficient performance. We demonstrate that the system can measure multiple clinical samples simultaneously. Furthermore, we screen 1000 compounds and identify 17 modifiers of migration in human neutrophils in just 4 days, a task that requires 60-times longer with a conventional video microscope. ComplexEye thus opens the field of phenotypic HT migration screens and enables routine migration analysis for the clinical setting.
Collapse
Affiliation(s)
- Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jacqueline Hassel
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Justin Sonneck
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Faculty of Computer Science, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Lennart Kowitz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Gabriel Hallekamp
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Martin Rosenkranz
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Pascal Raffelberg
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Sven Olfen
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Kamil Smilowski
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Roman Burkard
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Iris Helfrich
- Department of Dermatology and Allergology, Medical Faculty of the Ludwig Maximilian University of Munich, Munich, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, AB24 3FX, Aberdeen, UK
| | | | | | - Bert Klebl
- Lead Discovery Center GmbH, Dortmund, Germany
| | - Karsten Seidl
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Jianxu Chen
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Anton Grabmaier
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany
| | - Reinhard Viga
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Duisburg, Germany.
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.
| |
Collapse
|
6
|
Gupta S, Sarangi PP. Inflammation driven metabolic regulation and adaptation in macrophages. Clin Immunol 2023; 246:109216. [PMID: 36572212 DOI: 10.1016/j.clim.2022.109216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Macrophages are a diverse population of phagocytic immune cells involved in the host defense mechanisms and regulation of homeostasis. Usually, macrophages maintain healthy functioning at the cellular level, but external perturbation in their balanced functions can lead to acute and chronic disease conditions. By sensing the cues from the tissue microenvironment, these phagocytes adopt a plethora of phenotypes, such as inflammatory or M1 to anti-inflammatory (immunosuppressive) or M2 subtypes, to fulfill their spectral range of functions. The existing evidence in the literature supports that in macrophages, regulation of metabolic switches and metabolic adaptations are associated with their functional behaviors under various physiological and pathological conditions. Since these macrophages play a crucial role in many disorders, therefore it is necessary to understand their heterogeneity and metabolic reprogramming. Consequently, these macrophages have also emerged as a promising target for diseases in which their role is crucial in driving the disease pathology and outcome (e.g., Cancers). In this review, we discuss the recent findings that link many metabolites with macrophage functions and highlight how this metabolic reprogramming can improve our understanding of cellular malfunction in the macrophages during inflammatory disorders. A systematic analysis of the interconnecting crosstalk between metabolic pathways with macrophages should inform the selection of immunomodulatory therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
7
|
Goretzki A, Zimmermann J, Lin YJ, Schülke S. Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases? FRONTIERS IN ALLERGY 2022; 3:825931. [PMID: 35386646 PMCID: PMC8974690 DOI: 10.3389/falgy.2022.825931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023] Open
|
8
|
Role of macrophage extracellular traps in innate immunity and inflammatory disease. Biochem Soc Trans 2022; 50:21-32. [PMID: 35191493 DOI: 10.1042/bst20210962] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Macrophages play an integral role in initiating innate immune defences and regulating inflammation. They are also involved in maintaining homeostasis and the resolution of inflammation, by promoting tissue repair and wound healing. There is evidence that like neutrophils, macrophages can release extracellular traps following exposure to a range of pathogenic and pro-inflammatory stimuli. Extracellular traps are released by a specialised cell death pathway termed 'ETosis', and consist of a backbone of DNA and histones decorated with a range of other proteins. The composition of extracellular trap proteins can be influenced by both the cell type and the local environment in which the traps are released. In many cases, these proteins have an antimicrobial role and assist with pathogen killing. Therefore, the release of extracellular traps serves as a means to both immobilise and destroy invading pathogens. In addition to their protective role, extracellular traps are also implicated in disease pathology. The release of neutrophil extracellular traps (NETs) is causally linked to the development of wide range of human diseases. However, whether macrophage extracellular traps (METs) play a similar role in disease pathology is less well established. Moreover, macrophages are also involved in the clearance of extracellular traps, which could assist in the resolution of tissue damage associated with the presence of extracellular traps. In this review, we will provide an overview of the pathways responsible for macrophage extracellular trap release, and discuss the role of these structures in innate immunity and disease pathology and possible therapeutic strategies.
Collapse
|
9
|
Sun W, Zhang J, Shah A, Arias K, Berk Z, Griffith BP, Wu ZJ. Neutrophil dysfunction due to continuous mechanical shear exposure in mechanically assisted circulation in vitro. Artif Organs 2022; 46:83-94. [PMID: 34516005 PMCID: PMC8688241 DOI: 10.1111/aor.14068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/10/2021] [Accepted: 09/04/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Leukocytes play an important role in the body's immune system. The aim of this study was to assess alterations in neutrophil phenotype and function in pump-assisted circulation in vitro. METHODS Human blood was circulated for four hours in three circulatory flow loops with a CentriMag blood pump operated at a flow of 4.5 L/min at three rotational speeds (2100, 2800, and 4000 rpm), against three pressure heads (75, 150, and 350 mm Hg), respectively. Blood samples were collected hourly for analyses of neutrophil activation state (Mac-1, CD62L, CD162), neutrophil reactive oxygen species (ROS) production, apoptosis, and neutrophil phagocytosis. RESULTS Activated neutrophils indicated by both Mac-1 expression and decreased surface expression of CD62L and CD162 receptors increased with time in three loops. The highest level of neutrophil activation was observed in the loop with the highest rotational speed. Platelet-neutrophil aggregates (PNAs) progressively increased in two loops with lower rotational speeds. PNAs peaked at one hour after circulation and decreased subsequently in the loop with the highest rotational speed. Neutrophil ROS production dramatically increased at one hour after circulation and decreased subsequently in all three loops with similar levels and trends. Apoptotic neutrophils increased with time in all three loops. Neutrophil phagocytosis capacity in three loops initially elevated at one hour after circulation and decreased subsequently. Apoptosis and altered phagocytosis were dependent on rotational speed. CONCLUSIONS Our study revealed that the pump-assisted circulation induced neutrophil activation, apoptosis, and functional impairment. The alterations were strongly associated with pump operating condition and duration.
Collapse
Affiliation(s)
- Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aakash Shah
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katherin Arias
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Zachary Berk
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
10
|
Grüneboom A, Aust O, Cibir Z, Weber F, Hermann DM, Gunzer M. Imaging innate immunity. Immunol Rev 2021; 306:293-303. [PMID: 34837251 DOI: 10.1111/imr.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.
Collapse
Affiliation(s)
- Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Oliver Aust
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Flora Weber
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.,Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Fu X, Liu H, Huang G, Dai SS. The emerging role of neutrophils in autoimmune-associated disorders: effector, predictor, and therapeutic targets. MedComm (Beijing) 2021; 2:402-413. [PMID: 34766153 PMCID: PMC8554667 DOI: 10.1002/mco2.69] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are essential components of the immune system and have vital roles in the pathogenesis of autoimmune disorders. As effector cells, neutrophils promote autoimmune disease by releasing cytokines and chemokines cascades that accompany inflammation, neutrophil extracellular traps (NETs) regulating immune responses through cell-cell interactions. More recent evidence has extended functions of neutrophils. Accumulating evidence implicated neutrophils contribute to tissue damage during a broad range of disorders, involving rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary sjögren's syndrome (pSS), multiple sclerosis (MS), crohn's disease (CD), and gout. A variety of studies have reported on the functional role of neutrophils as therapeutic targets in autoimmune diseases. However, challenges and controversies in the field remain. Enhancing our understanding of neutrophils' role in autoimmune disorders may further advance the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| |
Collapse
|
12
|
Sun W, Wang S, Zhang J, Arias K, Griffith BP, Wu ZJ. Neutrophil injury and function alterations induced by high mechanical shear stress with short exposure time. Artif Organs 2021; 45:577-586. [PMID: 33237583 PMCID: PMC11549970 DOI: 10.1111/aor.13874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
High mechanical shear stresses (HMSS) can cause damage to blood, which manifests as morphologic changes, shortened life span, biochemical alterations, and complete rupture of blood cells and proteins, leading to the alterations of normal blood function. The aim of this study is to determine the state of neutrophil activation and function alterations caused by HMSS with short exposure time relevant to ventricular assist devices. Blood from healthy donors was exposed to three levels of HMSS (75Pa, 125Pa, and 175Pa) for a short exposure time (0.5 s) using our Couette-type blood-shearing device. Neutrophil activation (Mac-1, platelet-neutrophil aggregates) and surface expression levels of two key functional receptors (CD62L and CD162) on neutrophils were evaluated by flow cytometry. Neutrophil phagocytosis and transmigration were also examined with functional assays. Results showed that the expression of Mac-1 on neutrophils and platelet-neutrophil aggregates increased significantly while the level of CD62L expression on neutrophils decreased significantly after the exposure to HMSS. The Mac-1 expression progressively increased while the CD62L expression progressively decreased with the increased level of HMSS. The level of CD162 expression on neutrophils slightly increased after the exposure to HMSS, but the increase was not significant. The phagocytosis assay data revealed that the ability of neutrophils to phagocytose latex beads coated with fluorescently labeled rabbit IgG increased significantly with the increased level of HMSS. The transmigration ability of neutrophils slightly increased after the exposure to HMSS, but did not reach a significant level. In summary, HMSS with a short exposure time of 0.5 seconds could induce neutrophil activation, platelet-neutrophil aggregation, shedding of CD62L receptor, and increased phagocytic ability. However, the exposure to the three levels of HMSS did not cause a significant change in neutrophil transmigration capacity and shedding of CD162 receptor on neutrophils.
Collapse
Affiliation(s)
- Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Shigang Wang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Katherin Arias
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland 20742
| | - Bartley P. Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Zhongjun J. Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
13
|
Rodríguez-Ruiz L, Lozano-Gil JM, Lachaud C, Mesa-Del-Castillo P, Cayuela ML, García-Moreno D, Pérez-Oliva AB, Mulero V. Zebrafish Models to Study Inflammasome-Mediated Regulation of Hematopoiesis. Trends Immunol 2020; 41:1116-1127. [PMID: 33162327 DOI: 10.1016/j.it.2020.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a complex process through which immature bone marrow precursor cells mature into all types of blood cells. Although the association of hematopoietic lineage bias (including anemia and neutrophilia) with chronic inflammatory diseases has long been appreciated, the causes involved are obscure. Recently, cytosolic multiprotein inflammasome complexes were shown to activate inflammatory and immune responses, and directly regulate hematopoiesis in zebrafish models; this was deemed to occur via cleavage and inactivation of the master erythroid transcription factor GATA1. Herein summarized are the zebrafish models that are currently available to study this unappreciated role of inflammasome-mediated regulation of hematopoiesis. Novel putative therapeutic strategies, for the treatment of hematopoietic alterations associated with chronic inflammatory diseases in humans, are also proposed.
Collapse
Affiliation(s)
- Lola Rodríguez-Ruiz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain
| | - Juan M Lozano-Gil
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain
| | - Christophe Lachaud
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Pablo Mesa-Del-Castillo
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30120 Murcia, Spain
| | - María L Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30120 Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| | - Ana B Pérez-Oliva
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| |
Collapse
|
14
|
Bornemann L, Schuster M, Schmitz S, Sobczak C, Bessen C, Merz SF, Jöckel KH, Haverkamp T, Gunzer M, Göthert JR. Defective migration and dysmorphology of neutrophil granulocytes in atypical chronic myeloid leukemia treated with ruxolitinib. BMC Cancer 2020; 20:650. [PMID: 32660441 PMCID: PMC7359613 DOI: 10.1186/s12885-020-07130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/02/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The identification of pathologically altered neutrophil granulocyte migration patterns bears strong potential for surveillance and prognostic scoring of diseases. We recently identified a strong correlation between impaired neutrophil motility and the disease stage of myelodysplastic syndrome (MDS). Here, we apply this assay to study quantitively increased neutrophils of a patient suffering from a rare leukemia subtype, atypical chronic myeloid leukemia (aCML). METHODS A 69-year-old male was analyzed in this study. Besides routine analyses, we purified the patient's neutrophils from peripheral whole blood and studied their migration behavior using time-lapse video microscopy in a standardized assay. These live cell migration analyses also allowed for the quantification of cell morphology. Furthermore, the cells were stained for the markers CD15, CD16, fMLPR, CXCR1 and CXCR2. RESULTS Despite cytoreductive therapy with hydroxyurea, the patient's WBC and ANC were poorly controlled and severe dysgranulopoiesis with hypogranularity was observed. Neutrophils displayed strongly impaired migration when compared to healthy controls and migrating cells exhibited a more flattened-out morphology than control neutrophils. Because of a detected CSF3R (p.T618I) mutation and constitutional symptoms treatment with ruxolitinib was initiated. Within 1 week of ruxolitinib treatment, the cell shape normalized and remained indistinguishable from healthy control neutrophils. However, neutrophil migration did not improve over the course of ruxolitinib therapy but was strikingly altered shortly before a sinusitis with fever and bleeding from a gastric ulcer. Molecular work-up revealed that under ruxolitinib treatment, the CSF3R clone was depleted, yet the expansion of a NRAS mutated subclone was promoted. CONCLUSION These results demonstrate the usefulness of neutrophil migration analyses to uncover corresponding alterations of neutrophil migration in rare myeloid neoplasms. Furthermore, in addition to monitoring migration the determination of morphological features of live neutrophils might represent a useful tool to monitor the effectiveness of therapeutic approaches.
Collapse
Affiliation(s)
- Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Marc Schuster
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,Present address: Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Saskia Schmitz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Charlyn Sobczak
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Clara Bessen
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Simon F Merz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,Department of Dermatology, Venerology and Allergology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Thomas Haverkamp
- MVZ Dr. Eberhard & Partner, Brauhausstraße 4, 44137, Dortmund, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V, Dortmund, Germany
| | - Joachim R Göthert
- Department of Hematology, University Hospital, West German Cancer Center (WTZ), University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| |
Collapse
|
15
|
Martínez-Navarro FJ, Martínez-Morcillo FJ, de Oliveira S, Candel S, Cabas I, García-Ayala A, Martínez-Menchón T, Corbalán-Vélez R, Mesa-Del-Castillo P, Cayuela ML, Pérez-Oliva AB, García-Moreno D, Mulero V. Hydrogen peroxide in neutrophil inflammation: Lesson from the zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103583. [PMID: 31862296 DOI: 10.1016/j.dci.2019.103583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/15/2023]
Abstract
The zebrafish has become an excellent model for the study of inflammation and immunity. Its unique advantages for in vivo imaging and gene and drug screening have allowed the visualization of dual oxidase 1 (Duox1)-derived hydrogen peroxide (H2O2) tissue gradients and its crosstalk with neutrophil infiltration to inflamed tissue. Thus, it has been shown that H2O2 directly recruits neutrophils via the Src-family tyrosine kinase Lyn and indirectly by the activation of several signaling pathways involved in inflammation, such as nuclear factor κB (NF-κB), mitogen activated kinases and the transcription factor AP1. In addition, this model has also unmasked the unexpected ability of H2O2 to induce the expression of the gene encoding the key neutrophil chemoattractant CXC chemokine ligand 8 by facilitating the accessibility of transcription factors to its promoter through histone covalent modifications. Finally, zebrafish models of psoriasis have shown that a H2O2/NF-κB/Duox1 positive feedback inflammatory loop operates in this chronic inflammatory disorder and that pharmacological inhibition of Duox1, but not of downstream mediators, inhibits inflammation and restores epithelial homeostasis. Therefore, these results have pointed out DUOX1 and H2O2 as therapeutic targets for the treatment of skin inflammatory disorders, such as psoriasis.
Collapse
Affiliation(s)
- Francisco J Martínez-Navarro
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Francisco J Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sofia de Oliveira
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Isabel Cabas
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Alfonsa García-Ayala
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Mesa-Del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| |
Collapse
|
16
|
Zhao H, Raines LN, Huang SCC. Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells 2020; 9:cells9030562. [PMID: 32121028 PMCID: PMC7140477 DOI: 10.3390/cells9030562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Immune activation is now understood to be fundamentally linked to intrinsic and/or extrinsic metabolic processes which are essential for immune cells to survive, proliferate, and perform their effector functions. Moreover, disruption or dysregulation of these pathways can result in detrimental outcomes and underly a number of pathologies in both communicable and non-communicable diseases. In this review, we discuss how the metabolism of carbohydrates and amino acids in particular can modulate innate immunity and how perturbations in these pathways can result in failure of these immune cells to properly function or induce unfavorable phenotypes.
Collapse
Affiliation(s)
- Haoxin Zhao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
| | - Lydia N. Raines
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-3909
| |
Collapse
|
17
|
Weisenburger-Lile D, Dong Y, Yger M, Weisenburger G, Polara GF, Chaigneau T, Ochoa RZ, Marro B, Lapergue B, Alamowitch S, Elbim C. Harmful neutrophil subsets in patients with ischemic stroke: Association with disease severity. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e571. [PMID: 31355307 PMCID: PMC6624098 DOI: 10.1212/nxi.0000000000000571] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Objective To better understand the functional state of circulating neutrophils in patients with ischemic stroke (IS) for planning future clinical trials. Methods We analyzed by flow cytometry activation state of circulating neutrophils and the distribution of neutrophil peripheral subsets in 41 patients with acute IS less than 6 hours before admission and compared them with 22 age-matched healthy controls. Results Our results demonstrated continuous basal hyperactivation of circulating neutrophils during acute IS, characterized by lower l-selectin expression and higher CD11b expression at the cell surface, increased ROS production by neutrophils, and greater circulating levels of neutrophil elastase. Neutrophil hyperactivation was associated with deregulation of the equilibrium between apoptotic and necrotic. Patients also had higher percentages than controls of the overactive senescent (CXCR4bright/CD62Ldim) neutrophil subset and increased percentage of neutrophils with a reverse transendothelial migration (CD54highCXCR1low) phenotype. Importantly, neutrophil alterations were associated with the clinical severity of the stroke, evaluated by its NIH Stroke Scale score. Conclusion Altogether, our results indicate that during acute IS, the inflammatory properties of circulating neutrophils rise, associated with the expansion of harmful neutrophil subsets. These changes in neutrophil homeostasis, associated with disease severity, may play an instrumental role by contributing to systemic inflammation and to the blood-brain barrier breakdown. Our findings highlight new potential therapeutic approaches of stroke by rebalancing the ratio of senescent to immunosuppressive neutrophils or decreasing reverse neutrophil transmigration or both.
Collapse
Affiliation(s)
- David Weisenburger-Lile
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Yuan Dong
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Marion Yger
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Gaëlle Weisenburger
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Giulia Frasca Polara
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Thomas Chaigneau
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Riccardo Zapata Ochoa
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Beatrice Marro
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Bertrand Lapergue
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Sonia Alamowitch
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Carole Elbim
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| |
Collapse
|
18
|
Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, Brenzel A, Merz S, Bornemann L, Zec K, Wuelling M, Kling L, Hasenberg M, Voortmann S, Lang S, Baum W, Ohs A, Kraff O, Quick HH, Jäger M, Landgraeber S, Dudda M, Danuser R, Stein JV, Rohde M, Gelse K, Garbe AI, Adamczyk A, Westendorf AM, Hoffmann D, Christiansen S, Engel DR, Vortkamp A, Krönke G, Herrmann M, Kamradt T, Schett G, Hasenberg A, Gunzer M. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab 2019; 1:236-250. [PMID: 31620676 PMCID: PMC6795552 DOI: 10.1038/s42255-018-0016-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Closed circulatory systems (CCS) underlie the function of vertebrate organs, but in long bones their structure is unclear, although they constitute the exit route for bone marrow (BM) leukocytes. To understand neutrophil emigration from BM, we studied the vascular system of murine long bones. Here we show that hundreds of capillaries originate in BM, cross murine cortical bone perpendicularly along the shaft and connect to the periosteal circulation. Structures similar to these trans-cortical-vessels (TCVs) also exist in human limb bones. TCVs express arterial or venous markers and transport neutrophils. Furthermore, over 80% arterial and 59% venous blood passes through TCVs. Genetic and drug-mediated modulation of osteoclast count and activity leads to substantial changes in TCV numbers. In a murine model of chronic arthritic bone inflammation, new TCVs develop within weeks. Our data indicate that TCVs are a central component of the CCS in long bones and may represent an important route for immune cell export from the BM.
Collapse
Affiliation(s)
- Anika Grüneboom
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Ibrahim Hawwari
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Daniela Weidner
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Stephan Culemann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Sylvia Müller
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Sophie Henneberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Alexandra Brenzel
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Simon Merz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Kristina Zec
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Manuela Wuelling
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Lasse Kling
- Max Planck Institute for the Science of Light, Christiansen Research Group, Erlangen, Germany
- Helmholtz-Zentrum Berlin, Institute for Nanoarchitectures for Energy Conversion, Berlin, Germany
| | - Mike Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Sylvia Voortmann
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Stefanie Lang
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Baum
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Alexandra Ohs
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Marcus Jäger
- Department of Orthopaedics and Trauma Surgery, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Stefan Landgraeber
- Department of Orthopaedics and Trauma Surgery, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Orthopaedics and Trauma Surgery, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Renzo Danuser
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich Alexander University Erlangen-Nuremberg andUniversitaetsklinikum Erlangen, Erlangen, Germany
| | - Annette I Garbe
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering , Technische Universität Dresden, Cluster of Excellence, Dresden, Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Silke Christiansen
- Max Planck Institute for the Science of Light, Christiansen Research Group, Erlangen, Germany
- Helmholtz-Zentrum Berlin, Institute for Nanoarchitectures for Energy Conversion, Berlin, Germany
| | - Daniel Robert Engel
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Thomas Kamradt
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
19
|
Rayner BS, Zhang Y, Brown BE, Reyes L, Cogger VC, Hawkins CL. Role of hypochlorous acid (HOCl) and other inflammatory mediators in the induction of macrophage extracellular trap formation. Free Radic Biol Med 2018; 129:25-34. [PMID: 30189264 DOI: 10.1016/j.freeradbiomed.2018.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022]
Abstract
The infiltration of activated leukocytes, including macrophages, at sites of inflammation and the formation and presence of hypochlorous acid (HOCl) are interlinked hallmarks of many debilitating disease processes, including atherosclerosis, arthritis, neurological and renal disease, diabetes and obesity. The production of extracellular traps by activated leukocytes in response to a range of inflammatory stimuli is increasingly recognised as an important process within a range of disease settings. We show that exposure of human monocyte-derived macrophages to pathophysiological levels of HOCl results in the dose-dependent extrusion of DNA and histones into the cellular supernatant, consistent with extracellular trap formation. Concurrent with, but independent of these findings, macrophage exposure to HOCl also resulted in an immediate and sustained cytosolic accumulation of Ca2+, culminating in the increased production of cytokines and chemokines. Polarisation of the macrophages prior to HOCl exposure revealed a greater propensity for inflammatory M1 macrophages to produce extracellular traps, whereas alternatively-activated M2 macrophages were less susceptible to HOCl insult. M1 macrophages also produced extracellular traps on exposure to phorbol myristate acetate (PMA), interleukin-8 (IL-8) and tumour necrosis factor α (TNFα). Taken together, these data indicate a potential role for macrophages in mediating extracellular trap formation, which may be relevant in pathological conditions characterised by chronic inflammation or excessive HOCl formation.
Collapse
Affiliation(s)
- Benjamin S Rayner
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Yunjia Zhang
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Bronwyn E Brown
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Leila Reyes
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Victoria C Cogger
- Sydney Medical School, University of Sydney, NSW 2006, Australia; ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Clare L Hawkins
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3, Copenhagen N DK-2200, Denmark.
| |
Collapse
|
20
|
Schuster M, Moeller M, Bornemann L, Bessen C, Sobczak C, Schmitz S, Witjes L, Kruithoff K, Kohn C, Just O, Kündgen A, Pundt N, Pelzer B, Ampe C, Van Troys M, Nusch A, Haas R, Germing U, Martens L, Jöckel KH, Gunzer M. Surveillance of Myelodysplastic Syndrome via Migration Analyses of Blood Neutrophils: A Potential Prognostic Tool. THE JOURNAL OF IMMUNOLOGY 2018; 201:3546-3557. [PMID: 30446567 DOI: 10.4049/jimmunol.1801071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Autonomous migration is a central characteristic of immune cells, and changes in this function have been correlated to the progression and severity of diseases. Hence, the identification of pathologically altered leukocyte migration patterns might be a promising approach for disease surveillance and prognostic scoring. However, because of the lack of standardized and robust assays, migration patterns have not been clinically exploited so far. In this study, we introduce an easy-to-use and cross-laboratory, standardized two-dimensional migration assay for neutrophil granulocytes from peripheral blood. By combining time-lapse video microscopy and automated cell tracking, we calculated the average migration of neutrophils from 111 individual participants of the German Heinz Nixdorf Recall MultiGeneration study under steady-state, formyl-methionyl-leucyl-phenylalanine-, CXCL1-, and CXCL8-stimulated conditions. Comparable values were obtained in an independent laboratory from a cohort in Belgium, demonstrating the robustness and transferability of the assay. In a double-blinded retrospective clinical analysis, we found that neutrophil migration strongly correlated with the Revised International Prognostic Scoring System scoring and risk category of myelodysplastic syndrome (MDS) patients. In fact, patients suffering from high-risk subtypes MDS with excess blasts I or II displayed highly significantly reduced neutrophil migration. Hence, the determination of neutrophil migration patterns might represent a useful tool in the surveillance of MDS. Taken together, we suggest that standardized migration assays of neutrophils and other leukocyte subtypes might be broadly applicable as prognostic and surveillance tools for MDS and potentially for other diseases.
Collapse
Affiliation(s)
- Marc Schuster
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Mischa Moeller
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Clara Bessen
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Charlyn Sobczak
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Saskia Schmitz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Laura Witjes
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Katja Kruithoff
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Christina Kohn
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Olga Just
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Andrea Kündgen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Noreen Pundt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Benedikt Pelzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | | | - Arnd Nusch
- Onkologische Praxis Velbert, 40822 Mettmann, Germany; and
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lennart Martens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
21
|
Hermann DM, Kleinschnitz C, Gunzer M. Role of polymorphonuclear neutrophils in the reperfused ischemic brain: insights from cell-type-specific immunodepletion and fluorescence microscopy studies. Ther Adv Neurol Disord 2018; 11:1756286418798607. [PMID: 30245743 PMCID: PMC6144496 DOI: 10.1177/1756286418798607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023] Open
Abstract
Polymorphonuclear neutrophil granulocytes (PMNs) are part of the early post-ischemic immune response that orchestrates the removal of infarcted brain tissue. PMNs contribute to secondary brain injury in experimental stroke models. In human patients, high PMN-to-lymphocyte ratios in peripheral blood are predictive of poor stroke outcome. Following earlier studies indicating that the cerebral microvasculature forms an efficient barrier that impedes PMN brain entry even under conditions of ischemia, more recent studies combining intravital two-photon microscopy and ex vivo immunohistochemistry unequivocally demonstrated the accumulation of PMNs in the ischemic brain parenchyma. In the meantime, transgenic mouse lines, such as mice expressing Cre-recombinase and the red fluorescent reporter protein tdTomato under the highly granulocyte-specific locus for the gene Ly6G (so-called Catchup mice), have become available that allow study of dynamic interactions of PMNs with brain parenchymal cells. These mice will further help us understand how PMNs promote brain injury and disturb brain remodeling and plasticity.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen D-45122, Germany
| | | | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Affiliation(s)
- Matthias Gunzer
- University of Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, Essen, Germany.
| |
Collapse
|
23
|
Vallés J, Santos MT, Latorre AM, Tembl J, Salom J, Nieves C, Lago A, Moscardó A. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost 2017; 117:1919-1929. [DOI: 10.1160/th17-02-0130] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022]
Abstract
SummaryNeutrophil extracellular traps (NETs) are networks of DNA, histones, and proteolytic enzymes produced by activated neutrophils through different mechanisms. NET formation is promoted by activated platelets and can in turn activate platelets, thus favoring thrombotic processes. NETs have been detected in venous and arterial thrombosis, but data in stroke are scarce. The aim of this study was to evaluate NETs in the plasma of patients with acute ischemic stroke and their potential association with baseline clinical characteristics, stroke severity, and one-year clinical outcomes. The study included 243 patients with acute ischemic stroke. Clinical and demographic data and scores of stroke severity (NIHSS and mRs) at onset and discharge were recorded. Markers of NETs (cell-free DNA, nucleosomes, and citrullinated histone 3 (citH3)), were determined in plasma. Patients were followed-up for 12 months after the ischemic event. NETs were significantly elevated in the plasma of patients with acute ischemic stroke when compared to healthy subjects. NETs were increased in patients who were over 65 years of age and in those with a history of atrial fibrillation (AF), cardioembolic stroke, high glucose levels, and severe stroke scores at admission and discharge. In multivariate analysis, elevated levels of citH3, the most specific marker of NETs, at onset were independently associated with AF and all-cause mortality at oneyear follow-up. NETs play a role in the pathophysiology of stroke and are associated with severity and mortality. In conclusion, citH3 may constitute a useful prognostic marker and therapeutic target in patients with acute stroke.
Collapse
|
24
|
Seddigh P, Bracht T, Molinier-Frenkel V, Castellano F, Kniemeyer O, Schuster M, Weski J, Hasenberg A, Kraus A, Poschet G, Hager T, Theegarten D, Opitz CA, Brakhage AA, Sitek B, Hasenberg M, Gunzer M. Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Aspergillus fumigatus Infection. Mol Cell Proteomics 2017; 16:2184-2198. [PMID: 28951444 DOI: 10.1074/mcp.ra117.000072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
The ubiquitous mold Aspergillus fumigatus threatens immunosuppressed patients as inducer of lethal invasive aspergillosis. A. fumigatus conidia are airborne and reach the alveoli, where they encounter alveolar epithelial cells (AEC). Previous studies reported the importance of the surfactant-producing AEC II during A. fumigatus infection via in vitro experiments using cell lines. We established a negative isolation protocol yielding untouched primary murine AEC II with a purity >90%, allowing ex vivo analyses of the cells, which encountered the mold in vivo By label-free proteome analysis of AEC II isolated from mice 24h after A. fumigatus or mock infection we quantified 2256 proteins and found 154 proteins to be significantly differentially abundant between both groups (ANOVA p value ≤ 0.01, ratio of means ≥1.5 or ≤0.67, quantified with ≥2 peptides). Most of these proteins were higher abundant in the infected condition and reflected a comprehensive activation of AEC II on interaction with A. fumigatus This was especially represented by proteins related to oxidative phosphorylation, hence energy production. However, the most strongly induced protein was the l-amino acid oxidase (LAAO) Interleukin 4 induced 1 (IL4I1) with a 42.9 fold higher abundance (ANOVA p value 2.91-10). IL4I1 has previously been found in B cells, macrophages, dendritic cells and rare neurons. Increased IL4I1 abundance in AEC II was confirmed by qPCR, Western blot and immunohistology. Furthermore, A. fumigatus infected lungs showed high levels of IL4I1 metabolic products. Importantly, higher IL4I1 abundance was also confirmed in lung tissue from human aspergilloma. Because LAAO are key enzymes for bactericidal product generation, AEC II might actively participate in pathogen defense. We provide insights into proteome changes of primary AEC II thereby opening new avenues to analyze the molecular changes of this central lung cell on infectious threats. Data are available via ProteomeXchange with identifier PXD005834.
Collapse
Affiliation(s)
- Pegah Seddigh
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Thilo Bracht
- ¶Ruhr-Universität Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany
| | | | - Flavia Castellano
- **INSERM U955, Equipe 09, UMR_S955, UPEC, APHP, Hôpital H Mondor, Créteil, France
| | - Olaf Kniemeyer
- ‖Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institutes (HKI), Department of Molecular and Applied Microbiology, Jena, 07745 Jena, Germany
| | - Marc Schuster
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Juliane Weski
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Anja Hasenberg
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Andreas Kraus
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Gernot Poschet
- §§Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Thomas Hager
- ¶¶University Duisburg-Essen, University Hospital, Institute for Pathology, 45147 Essen, Germany
| | - Dirk Theegarten
- ¶¶University Duisburg-Essen, University Hospital, Institute for Pathology, 45147 Essen, Germany
| | - Christiane A Opitz
- ‡‡German Cancer Research Center (DKFZ), Junior Group Brain Cancer Metabolism (G161), 69120 Heidelberg, Germany
| | - Axel A Brakhage
- ‖Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institutes (HKI), Department of Molecular and Applied Microbiology, Jena, 07745 Jena, Germany
| | - Barbara Sitek
- ¶Ruhr-Universität Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany;
| | - Mike Hasenberg
- §University Duisburg-Essen, University Hospital, Imaging Center Essen (IMCES), Electron Microscopy Unit, 45147 Essen, Germany;
| | - Matthias Gunzer
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany;
| |
Collapse
|
25
|
Wieser V, Adolph TE, Enrich B, Kuliopulos A, Kaser A, Tilg H, Kaneider NC. Reversal of murine alcoholic steatohepatitis by pepducin-based functional blockade of interleukin-8 receptors. Gut 2017; 66:930-938. [PMID: 26858343 PMCID: PMC5531226 DOI: 10.1136/gutjnl-2015-310344] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Alcoholic steatohepatitis is a life-threatening condition with short-term mortality up to 40%. It features hepatic neutrophil infiltration and blood neutrophilia, and may evolve from ethanol-induced breakdown of the enteric barrier and consequent bacteraemia. Signalling through CXCR1/2 G-protein-coupled-receptors (GPCRs), the interleukin (IL)-8 receptors, is critical for the recruitment and activation of neutrophils. We have developed short lipopeptides (pepducins), which inhibit post-ligand GPCR activation precisely targeting individual GPCRs. DESIGN Experimental alcoholic liver disease was induced by administering alcohol and a Lieber-DeCarli high-fat diet. CXCR1/2 GPCRs were blocked via pepducins either from onset of the experiment or after disease was fully established. Hepatic inflammatory infiltration, hepatocyte lipid accumulation and overall survival were assessed as primary outcome parameters. Neutrophil activation was assessed by myeloperoxidase activity and liver cell damage by aspartate aminotransferase and alanine aminotransferase plasma levels. Chemotaxis assays were performed to identify chemoattractant signals derived from alcohol-exposed hepatocytes. RESULTS Here, we show that experimental alcoholic liver disease is driven by CXCR1/2-dependent activation of neutrophils. CXCR1/2-specific pepducins not only protected mice from liver inflammation, weight loss and mortality associated with experimental alcoholic liver disease, but therapeutic administration cured disease and prevented further mortality in fully established disease. Hepatic neutrophil infiltration and triglyceride accumulation was abrogated by CXCR1/2 blockade. Moreover, CXCL-1 plasma levels were decreased with the pepducin therapy as was the transcription of hepatic IL-1β mRNA. CONCLUSIONS We propose that high circulating IL-8 in human alcoholic hepatitis may cause pathogenic overzealous neutrophil activation, and therapeutic blockade via pepducins merits clinical study.
Collapse
Affiliation(s)
- Verena Wieser
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Research Laboratory for Gut Inflammation, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria,Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Athan Kuliopulos
- Center for Hemostasis and Thrombosis Research, Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Massachusetts, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Research Laboratory for Gut Inflammation, Medical University Innsbruck, Innsbruck, Austria
| | - Nicole C Kaneider
- Christian Doppler Research Laboratory for Gut Inflammation, Medical University Innsbruck, Innsbruck, Austria,Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Ricci E, Ronchetti S, Pericolini E, Gabrielli E, Cari L, Gentili M, Roselletti E, Migliorati G, Vecchiarelli A, Riccardi C. Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression. FASEB J 2017; 31:3054-3065. [PMID: 28373208 DOI: 10.1096/fj.201601315r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
Abstract
The glucocorticoid-induced leucine zipper (GILZ) gene is a pivotal mediator of the anti-inflammatory effects of glucocorticoids (GCs) that are known to regulate the function of both adaptive and innate immunity cells. Our aim was to investigate the role of GILZ in GC-induced inhibition of neutrophil migration, as this role has not been investigated before. We found that GILZ expression was induced by dexamethasone (DEX), a synthetic GC, in neutrophils, and that it regulated migration of these cells into inflamed tissues under DEX treatment. Of note, inhibition of neutrophil migration was not observed in GILZ-knockout mice with peritonitis that were treated by DEX. This was because DEX was unable to up-regulate annexin A1 (Anxa1) expression in the absence of GILZ. Furthermore, we showed that GILZ mediates Anxa1 induction by GCs by transactivating Anxa1 expression at the promoter level via binding with the transcription factor, PU.1. The present findings shed light on the role of GILZ in the mechanism of induction of Anxa1 by GCs. As Anxa1 is an important protein for the resolution of inflammatory response, GILZ may represent a new pharmacologic target for treatment of inflammatory diseases.-Ricci, E., Ronchetti, S., Pericolini, E., Gabrielli, E., Cari, L., Gentili, M., Roselletti, E., Migliorati, G., Vecchiarelli, A., Riccardi, C. Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression.
Collapse
Affiliation(s)
- Erika Ricci
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Eva Pericolini
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Department of Diagnostic, Clinic, and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Marco Gentili
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Elena Roselletti
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy;
| |
Collapse
|
27
|
Depletion of Neutrophils Exacerbates the Early Inflammatory Immune Response in Lungs of Mice Infected with Paracoccidioides brasiliensis. Mediators Inflamm 2016; 2016:3183285. [PMID: 27642235 PMCID: PMC5015031 DOI: 10.1155/2016/3183285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Neutrophils predominate during the acute phase of the Paracoccidioides brasiliensis infection. Herein, we determined the role of the neutrophil during the early stages of experimental pulmonary paracoccidioidomycosis using a monoclonal antibody (mAb) specific for neutrophils. Male BALB/c mice were inoculated intranasally with 1.5 × 106 or 2 × 106 P. brasiliensis yeast cells. The mAb was administered 24 h before infection, followed by doses every 48 h until mice were sacrificed. Survival time was evaluated and mice were sacrificed at 48 h and 96 h after inoculation to assess cellularity, fungal load, cytokine/chemokine levels, and histopathological analysis. Neutrophils from mAb-treated mice were efficiently depleted (99.04%). Eighty percent of the mice treated with the mAb and infected with 1.5 × 106 yeast cells died during the first two weeks after infection. When mice were treated and infected with 2 × 106 yeast cells, 100% of them succumbed by the first week after infection. During the acute inflammatory response significant increases in numbers of eosinophils, fungal load and levels of proinflammatory cytokines/chemokines were observed in the mAb-treated mice. We also confirmed that neutrophils are an important source of IFN-γ and IL-17. These results indicate that neutrophils are essential for protection as well as being important for regulating the early inflammatory immune response in experimental pulmonary paracoccidioidomycosis.
Collapse
|
28
|
Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 2015; 6:6673. [PMID: 25809117 PMCID: PMC4389265 DOI: 10.1038/ncomms7673] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) composed of DNA decorated with histones and proteases trap and kill bacteria but also injure host tissue. Here we show that during a bloodstream infection with methicillin-resistant Staphylococcus aureus, the majority of bacteria are sequestered immediately by hepatic Kupffer cells, resulting in transient increases in liver enzymes, focal ischaemic areas and a robust neutrophil infiltration into the liver. The neutrophils release NETs into the liver vasculature, which remain anchored to the vascular wall via von Willebrand factor and reveal significant neutrophil elastase (NE) proteolytic activity. Importantly, DNase although very effective at DNA removal, and somewhat effective at inhibiting NE proteolytic activity, fails to remove the majority of histones from the vessel wall and only partly reduces injury. By contrast, inhibition of NET production as modelled by PAD4-deficiency, or prevention of NET formation and proteolytic activity as modelled in NE−/− mice prevent collateral host tissue damage. Neutrophil extracellular traps (NETs) released by neutrophils trap pathogens but may also cause tissue damage. Here the authors show that during systemic Staphylococcus aureus infection NETs anchoring to the vasculature are only partially DNase-sensitive, advocating for better anti-NET therapies.
Collapse
|
29
|
Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat Methods 2015; 12:445-52. [DOI: 10.1038/nmeth.3322] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022]
|
30
|
Beiter T, Fragasso A, Hudemann J, Schild M, Steinacker J, Mooren FC, Niess AM. Neutrophils release extracellular DNA traps in response to exercise. J Appl Physiol (1985) 2014; 117:325-33. [PMID: 24833781 DOI: 10.1152/japplphysiol.00173.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intense exercise evokes a rapid and transient increase in circulating cell-free DNA (cf-DNA), a phenomenon that is commonly observed in a variety of acute and chronic inflammatory conditions. In this study, we aimed to shed new light on the release and clearance mechanisms of cf-DNA in response to exercise. We hypothesized that activated neutrophils may primarily contribute to exercise-evoked cf-DNA levels by releasing neutrophil extracellular traps (NETs). Analysis of plasma and/or serum samples from male athletes at rest and in response to exhaustive treadmill exercise revealed an immediate and transient increase in cf-DNA that was concomitantly counterbalanced by an increase in serum DNase activity. Consistently, rapid release and clearance kinetics for cf-DNA could also be observed in response to intensive cycling exercise, with no significant differences between endurance-trained (V̇o2max >57 ml·min(-1)·kg(-1)) and healthy (V̇o2max <49 ml·min(-1)·kg(-1)) sedentary individuals. In postexercise blood smear samples, we detected seemingly intact neutrophils displaying morphological signs of NET release, as indicated by abnormal swollen nuclei and emanating DNA fibers. In support, we observed a striking correlation of postexercise cf-DNA concentrations with plasma levels of the granule-derived enzyme myeloperoxidase. Our study indicates that intense exercise induces liberation of NETs, which is sufficiently counterbalanced in healthy individuals by a concomitant rise in serum DNase activity. As aberrant release of NETs has been linked to diverse disease states, monitoring of cf-DNA/DNase levels or activities in response to standardized exercise testing could provide a valuable tool to identify people who are at increased risk for cardiac ischemia, thrombosis, autoimmunity, or chronic fatigue.
Collapse
Affiliation(s)
- Thomas Beiter
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tuebingen;
| | - Annunziata Fragasso
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tuebingen
| | - Jens Hudemann
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tuebingen
| | - Marius Schild
- Department of Sports Medicine, Justus-Liebig University, Giessen; and
| | - Jürgen Steinacker
- Division of Sports and Rehabilitation Medicine, Ulm University Medical Center, Germany
| | - Frank C Mooren
- Department of Sports Medicine, Justus-Liebig University, Giessen; and
| | - Andreas M Niess
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tuebingen
| |
Collapse
|
31
|
Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2014; 2:206-10. [PMID: 24494194 PMCID: PMC3909784 DOI: 10.1016/j.redox.2013.12.026] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 01/27/2023] Open
Abstract
The assessment of metabolic function in cells isolated from human blood for treatment and diagnosis of disease is a new and important area of translational research. It is now becoming clear that a broad range of pathologies which present clinically with symptoms predominantly in one organ, such as the brain or kidney, also modulate mitochondrial energetics in platelets and leukocytes allowing these cells to serve as “the canary in the coal mine” for bioenergetic dysfunction. This opens up the possibility that circulating platelets and leukocytes can sense metabolic stress in patients and serve as biomarkers of mitochondrial dysfunction in human pathologies such as diabetes, neurodegeneration and cardiovascular disease. In this overview we will describe how the utilization of glycolysis and oxidative phosphorylation differs in platelets and leukocytes and discuss how they can be used in patient populations. Since it is clear that the metabolic programs between leukocytes and platelets are fundamentally distinct the measurement of mitochondrial function in distinct cell populations is necessary for translational research. Monocytes, lymphocytes, neutrophils and platelets have distinct bioenergetic programs that regulate energy production. Platelets and monocytes exhibit a high level of aerobic glycolysis and mitochondrial respiration. Lymphocytes have a low glycolytic capacity while neutrophils have little or no detectable oxidative phosphorylation. The levels of mitochondrial complex IV and III subunits differ substantially between lymphocytes, monocytes and platelets.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saranya Ravi
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Balu Chacko
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michelle S Johnson
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|