1
|
He Y, Ye MJ, Xi CY, Yu JJ, Chen BB, Chen HY, Li DW. A Fluorescence-SERS Dual-Mode Nanoprobe for Imaging of HSP90 mRNA and Peroxynitrite in Living Cells. ACS Sens 2025; 10:3737-3745. [PMID: 40340371 DOI: 10.1021/acssensors.5c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The dysregulation of heat shock protein 90 mRNA (HSP90 mRNA) and reactive oxygen species (ROS) is implicated in stress response and various diseases. Visualizing HSP90 mRNA and ROS dynamics is important to studying their interactions and related physiopathological mechanisms. However, effective methods for detecting both remain lacking. Herein, a covalent organic framework-based (COF-based) dual-mode nanoprobe is designed to monitor HSP90 mRNA and ONOO- (ROS model). The nanoprobe is prepared by in situ assembly of a COF shell as the aptamer carrier on the gold nanorods (AuNRs), followed by conjugation of the ONOO--responsive molecule, 4-mercaptophenylboronic acid (4-MPBA), to the AuNRs and modification of the HSP90 mRNA aptamer (HSP90MB) onto the COF shell. The prepared nanoprobe enables sensitive and selective fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) detection of HSP90 mRNA and ONOO-, respectively. The dual-channel detection highlights the advantages of facilitating spectral analysis and eliminating mutual interference. In addition, the proposed strategy visualizes a positive interaction between HSP90 mRNA and ONOO- in living cells, revealing their cellular response mechanism under stress conditions and related diseases.
Collapse
Affiliation(s)
- Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming-Jie Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng-Ye Xi
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun-Jie Yu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua-Ying Chen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Li K, Wang S, Li J, Wang L, Zhang Q, Hou L, Yu X, Liu Z, Lv T, Shang L. Low shear stress induces vascular endothelial cells apoptosis via miR-330 /SOD2 /HSP70 signaling pathway. Exp Cell Res 2025; 445:114410. [PMID: 39788367 DOI: 10.1016/j.yexcr.2025.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Atherosclerosis (AS) is a chronic disease initiated by vascular endothelial dysfunction, with low shear stress (SS) being a critical inducing factor in this dysfunction. Apoptosis, a form of programmed cell death, is closely associated with AS progression. However, the impact of low SS on endothelial apoptosis and its specific molecular mechanisms remains unclear. Our study revealed that low SS induces apoptosis in endothelial cells and contributes to endothelial dysfunction. Under low SS conditions, miR-330 expression was markedly upregulated, which subsequently targeted and inhibited SOD2 expression, leading to ROS accumulation and oxidative stress. Overexpression of SOD2 under low SS conditions markedly elevated HSP70 expression, contributing to endothelial homeostasis. However, when HSP70 expression was inhibited in the context of SOD2 overexpression, there was a significant increase in pro-apoptotic proteins (BAX and cleaved-caspase-3) and total apoptosis rate, along with a significant reduction in endothelial function markers such as nitric oxide and endothelial nitric oxide synthase. Notably, our experiments indicated no direct interaction between SOD2 and HSP70. Furthermore, inhibiting ROS production significantly raised HSP70 expression, suggesting that SOD2 regulates HSP70 in an indirect process involving ROS. In summary, our findings elucidate that low SS induces endothelial apoptosis and dysfunction through the miR-330/SOD2/HSP70 signaling pathway, providing valuable insights into AS intervention and prevention.
Collapse
Affiliation(s)
- Ke Li
- Department of Gastroenterology, 215 Hospital of Shaanxi Province, Xianyang, 712000, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Shaohu Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Immunization and Planning, Heping District Center for Disease Control and Prevention, Tianjin, 300041, China
| | - Jiana Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Gastroenterology, No.983rd Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, Tianjin, 300143, China
| | - Lingling Wang
- Department of Gastroenterology, 215 Hospital of Shaanxi Province, Xianyang, 712000, China
| | - Qin Zhang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Liming Hou
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinyi Yu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhendong Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ting Lv
- Department of Gastroenterology, 215 Hospital of Shaanxi Province, Xianyang, 712000, China.
| | - Luxiang Shang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, 250014, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
3
|
Wang GN, Yang M, Wu B, Huo Y, Xu W. The long non-coding RNA mir155hg promotes NLRP3-inflammasome activation and oxidative stress response in acute lung injury by targeting miR-450b-5p to regulate HIF-1α. Free Radic Biol Med 2024; 222:638-649. [PMID: 39019096 DOI: 10.1016/j.freeradbiomed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Acute lung injury (ALI) can cause multiple organ dysfunction and a high mortality rate. Inflammatory responses, oxidative stress, and immune damage contribute to their pathogenic mechanisms. We studied the role of the newly discovered lncRNA, Lncmir155hg, in ALI. METHODS The levels of Lncmir155hg and miR-450b-5p from mice with ALI were detected via polymerase chain reaction analysis (qRT-PCR) and Fluorescence in situ hybridization (FISH). Pathological changes of lung were detected by HE (hematoxylin and eosin) staining, and HIF-1α, NOD-like receptor 3 (NLRP3) and caspase-1 protein changes were detected by immunohistochemistry. MLE-12 cells proliferation was detected by Cell-Counting Kit 8 analysis, and reactive oxygen species (ROS) was detected via flow cytometry. NLRP3, apoptosis-associated speck-like protein (ASC), and caspase-1 were measured via western blotting, and enzyme-linked immunosorbent assays detected the expression of Inflammatory factors. Lncmir155hg, miR-450b-5p, miR-450b-5p, and HIF-1α targets were predicted using LncTar and miRWalk and confirmed in dual-luciferase reporter assays. RESULTS In mice with ALI and MLE-12 cells induced by lipopolysaccharide (LPS), Lncmir155hg was high-expressed and miR-450b-5p was low-expressed. sh-Lncmir155hg reduced the damage of lung tissue, the production of inflammatory cytokines and oxidative stress reaction induced by LPS,miR-450b-5p reverses the effect of Lncmir155hg in mice. sh-Lncmir155hg decreased the protein levels of HIF-1α, NLRP3 and caspase-1 in LPS-induced lung tissues. sh-Lncmir155hg + miR-450b-5p inhibitor transfection reversed the effect of sh-Lncmir155hg on the expression of HIF-1α, NLRP3 and caspase-1. Lncmir155hg knockdown induced proliferation and inhibited NLRP3-inflammasome activation and oxidative stress in MLE-12 cells of ALI. miR-450b-5p was identified to have binding with Lncmir155hg, and inhibition of miR-450b-5p eliminated the effect of si-Lncmir155hg in MLE-12 cells of ALI. More importantly, miR-450b-5p was directly combined with HIF-1α, miR-450b-5p mimic promoted proliferation and inhibited activation of inflammasome associated proteins and reaction of oxidative stress, and HIF-1α overexpression abolished these effects. CONCLUSION Lncmir155hg aggravated ALI via the miR-450b-5p/HIF-1α axis.
Collapse
Affiliation(s)
- Gui Na Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Cho Y, Sukhan ZP, Lee WK, Kho KH. Structural and functional characterization of Hdh-HSBP1 and its involvement in heat stress and early development in Pacific abalone, Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109660. [PMID: 38830519 DOI: 10.1016/j.fsi.2024.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Heat shock factor binding protein 1 (HSBP1) is known to regulate the activity of heat shock factor 1 (HSF1) and the early development of organisms. To understand the involvement of HSBP1 in the heat shock response and embryonic and larval development of Pacific abalone (Haliotis discus hannai), the Hdh-HSBP1 gene was sequenced from the digestive gland (DG) tissue. The full-length sequence of Hdh-HSBP1 encompassed 738 nucleotides, encoding an 8.42 kDa protein consisting of 75 deduced amino acids. The protein contains an HSBP1 domain and a coiled-coil domain, which are conserved features in the HSBP1 protein family. Protein-protein molecular docking revealed that the coiled-coil region of Hdh-HSBP1 binds to the coiled-coil region of Hdh-HSF1. Tissue expression analysis demonstrated that the highest Hdh-HSBP1 expression occurred in the DG, whereas seasonal expression analysis revealed that this gene was most highly expressed in summer. In heat-stressed abalone, the highest expression of Hdh-HSBP1 occurred at 30 °C. Moreover, time-series analysis revealed that the expression of this gene began to increase significantly at 6 h post-heat stress, with higher expression observed at 12 h and 24 h post-heat stress. Furthermore, Hdh-HSBP1 mRNA expression showed a link to ROS production. Additionally, the expression of Hdh-HSBP1 showed significantly higher expression in the early stages of embryonic development in Pacific abalone. These results suggest that Hdh-HSBP1 plays a crucial role in the stress physiology of Pacific abalone by interacting with Hdh-HSF1, as well as its embryonic development.
Collapse
Affiliation(s)
- Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Won-Kyo Lee
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
5
|
Sun X, Arnott SE. Timing determines zooplankton community responses to multiple stressors. GLOBAL CHANGE BIOLOGY 2024; 30:e17358. [PMID: 38822590 DOI: 10.1111/gcb.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, Kingston, Ontario, Canada
| | - Shelley E Arnott
- Biology Department, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Morin M, Jönsson M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Seasonal tissue-specific gene expression in wild crown-of-thorns starfish reveals reproductive and stress-related transcriptional systems. PLoS Biol 2024; 22:e3002620. [PMID: 38743647 PMCID: PMC11093393 DOI: 10.1371/journal.pbio.3002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.
Collapse
Affiliation(s)
- Marie Morin
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, Australia
| | - Mathias Jönsson
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Sandie M. Degnan
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Sun X, Arnott SE, Little AG. Impacts of sequential salinity and heat stress are recovery time-specific in freshwater crustacean, Daphnia pulicaria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115899. [PMID: 38171229 DOI: 10.1016/j.ecoenv.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Stressors can interact to affect animal fitness, but we have limited knowledge about how temporal variation in stressors may impact their combined effect. This limits our ability to predict the outcomes of pollutants and future dynamic environmental changes. Elevated salinity in freshwater ecosystems has been observed worldwide. Meanwhile, heatwaves have become more frequent and intensified as an outcome of climate change. These two stressors can jointly affect organisms; however, their interaction has rarely been explored in the context of freshwater ecosystems. We conducted lab experiments using Daphnia pulicaria, a key species in lakes, to investigate how elevated salinity and heatwave conditions collectively affect freshwater organisms. We also monitored the impacts of various recovery times between the two stressors. Daphnia physiological conditions (metabolic rate, Na+-K+-ATPase (NKA) activity, and lipid peroxidation level) and life history traits (survival, fecundity, and growth) in response to salt stress as well as mortality in heat treatment were examined. We found that Daphnia responded to elevated salinity by upregulating NKA activity and increasing metabolic rate, causing a high lipid peroxidation level. Survival, fecundity, and growth were all negatively affected by this stressor. These impacts on physiological conditions and life history traits persisted for a few days after the end of the exposure. Heat treatments caused mortality in Daphnia, which increased with rising temperature. Results also showed that individuals that experienced salt exposure were more susceptible to subsequent heat stress, but this effect decreased with increasing recovery time between stressors. Findings from this work suggest that the legacy effects from a previous stressor can reduce individual resistance to a subsequent stressor, adding great difficulties to the prediction of outcomes of multiple stressors. Our work also demonstrates that cross-tolerance/susceptibility and the associated mechanisms remain unclear, necessitating further investigation.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Shelley E Arnott
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Alexander G Little
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1 ON, Canada
| |
Collapse
|
8
|
He Y, Yu J, Song Z, Tang Z, Duan JA, Zhu H, Liu H, Zhou J, Cao Z. Anti-oxidant effects of herbal residue from Shengxuebao mixture on heat-stressed New Zealand rabbits. J Therm Biol 2024; 119:103752. [PMID: 38194751 DOI: 10.1016/j.jtherbio.2023.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 01/11/2024]
Abstract
Heat stress can lead to hormonal imbalances, weakened immune system, increased metabolic pressure on the liver, and ultimately higher animal mortality rates. This not only seriously impairs the welfare status of animals, but also causes significant economic losses to the livestock industry. Due to its rich residual bioactive components and good safety characteristics, traditional Chinese medicine (TCM) residue is expected to become a high-quality feed additive with anti-oxidative stress alleviating function. This study focuses on the potential of Shengxuebao mixture herbal residue (SXBR) as an anti-heat stress feed additive. Through the UPLC (ultra performance liquid chromatography) technology, the average residue rate of main active ingredients from SXBR were found to be 25.39%. SXBR were then added into the basal diet of heat stressed New Zealand rabbits at the rates of 5% (SXBRl), 10% (SXBRm) and 20% (SXBRh). Heat stress significantly decreased the weight gain, as well as increased neck and ear temperature, drip loss in meat, inflammation and oxidative stress. Also, the hormone levels were disrupted, with a significant increase in serum levels of CA, COR and INS. After the consumption of SXBR in the basal diet for 3 weeks, the weight of New Zealand rabbits increased significantly, and the SXBRh group restored the redness value of the meat to a similar level as the control group. Furthermore, the serum levels T3 thyroid hormone in the SXBRh group and T4 thyroid hormone in the SXBRm group increased significantly, the SXBRh group showed a significant restoration in inflammation markers (IL-1β, IL-6, and TNF-α) and oxidative stress markers (total antioxidant capacity, HSP-70, MDA, and ROS) levels. Moreover, the real-time fluorescence quantitative PCR analysis found that, the expression levels of antioxidant genes such as Nrf2, HO-1, NQO1, and GPX1 were significantly upregulated in the SXBRh group, and the expression level of the Keap1 gene was significantly downregulated. Additionally, the SXBRm group showed significant upregulation in the expression levels of HO-1 and NQO1 genes. Western blot experiments further confirmed the up-regulation of Nrf2, Ho-1 and NQO1 proteins. This study provides a strategy for the utilization of SXBR and is of great significance for the green recycling of the TCM residues, improving the development of animal husbandry and animal welfare.
Collapse
Affiliation(s)
- Yu He
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jingao Yu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Zhongxing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; China Academy of Chinese Medical Sciences, Beijing, 10070, China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine, Jiangsu Provincial Engineering Research Center for Deep Processing of Plant Medicines, Jiangsu Province Collaborative Innovation Center for Industrialization of Traditional Chinese Medicine Resources, Nanjing, 210023, China
| | - Huaxu Zhu
- Nanjing University of Chinese Medicine, Jiangsu Provincial Engineering Research Center for Deep Processing of Plant Medicines, Jiangsu Province Collaborative Innovation Center for Industrialization of Traditional Chinese Medicine Resources, Nanjing, 210023, China
| | - Hongna Liu
- Tsing Hua De Ren Xi'an Happiness Pharmaceutical Co., Ltd., Xi'an, 710043, China
| | - Jianping Zhou
- Tsing Hua De Ren Xi'an Happiness Pharmaceutical Co., Ltd., Xi'an, 710043, China
| | - Zhaojun Cao
- Tsing Hua De Ren Xi'an Happiness Pharmaceutical Co., Ltd., Xi'an, 710043, China
| |
Collapse
|
9
|
Fu H, Li Y, Tian J, Yang B, Li Y, Li Q, Liu S. Contribution of HIF-1α to Heat Shock Response by Transcriptional Regulation of HSF1/HSP70 Signaling Pathway in Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:691-700. [PMID: 37556001 DOI: 10.1007/s10126-023-10231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023]
Abstract
Ocean temperature rising drastically threatens the adaptation and survival of marine organisms, causing serious ecological impacts and economic losses. It is crucial to understand the adaptive mechanisms of marine organisms in response to high temperature. In this study, a novel regulatory mechanism that is mediated by hypoxia-inducible factor-1α (HIF-1α) was revealed in Pacific oyster (Crassostrea gigas) in response to heat stress. We identified a total of six HIF-1α genes in the C. gigas genome, of which HIF-1α and HIF-1α-like5 were highly induced under heat stress. We found that the HIF-1α and HIF-1α-like5 genes played critical roles in the heat shock response (HSR) through upregulating the expression of heat shock protein (HSP). Knocking down of HIF-1α via RNA interference (RNAi) inhibited the expression of heat shock factor 1 (HSF1) and HSP70 genes in C. gigas under heat stress. Both HIF-1α and HIF-1α-like5 promoted the transcriptional activity of HSF1 by binding to hypoxia response elements (HREs) within the promoter region. Furthermore, the survival of C. gigas under heat stress was significantly decreased after knocking down of HIF-1α. This work for the first time revealed the involvement of HIF-1α/HSF1/HSP70 pathway in response to heat stress in the oyster and provided an insight into adaptive mechanism of bivalves in the face of ocean warming.
Collapse
Affiliation(s)
- Huiru Fu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Jing Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yin Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education and College of Fisheries, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
10
|
Llorente L, Aquilino M, Herrero Ó, de la Peña E, Planelló R. Characterization and expression of heat shock and immune genes in natural populations of Prodiamesa olivacea (Diptera) exposed to thermal stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115359. [PMID: 37595349 DOI: 10.1016/j.ecoenv.2023.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
This paper characterizes the heat stress response (HSR) and explores the impact of temperatures on the immune response of larvae from two chironomid species, Prodiamesa olivacea and Chironomus riparius. Genes involved in crucial metabolic pathways were de novo identified in P. olivacea: Hsp27, Hsp60, Hsp70, Hsc70, Cdc37, and HSF for the heat stress response (HSR) and TOLL, PGRP, C-type lectin, and JAK/hopscotch for the immune system response (ISR). Quantitative real-time PCR was used to evaluate the expression levels of the selected genes in short-term treatments (up to 120') at high temperatures (35 °C and 39 °C). Exposing P. olivacea to elevated temperatures resulted in HSR induction with increased expression of specific heat shock genes, suggesting the potential of HSPs as early indicators of acute thermal stress. Surprisingly, we found that heat shock represses multiple immune genes, revealing the antagonist relation between the heat shock response and the innate immune response in P. olivacea. Our results also showed species-dependent gene responses, with more significant effects in P. olivacea, for most of the biomarkers studied, demonstrating a higher sensitivity in this species to environmental stress conditions than that of C. riparius. This work shows a multi-species approach that enables a deeper understanding of the effects of heat stress at the molecular level in aquatic dipterans.
Collapse
Affiliation(s)
- Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain
| | - Mónica Aquilino
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain
| | - Eduardo de la Peña
- Institute for Subtropical and Mediterranean Horticulture (IHSM-UMA-CSIC), Spanish National Research Council (CSIC), Finca Experimental La Mayora, Algarrobo-Costa, 29750 Malaga, Spain; Department of Plants and Crops, Faculty of Bio-science Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain.
| |
Collapse
|
11
|
Na J, Song J, Jung J. Elevated temperature enhanced lethal and sublethal acute toxicity of polyethylene microplastic fragments in Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104212. [PMID: 37429449 DOI: 10.1016/j.etap.2023.104212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Microplastic (MP) pollution poses a growing concern in freshwater ecosystems, which are further threatened by global warming. Thus, this study investigated the effect of elevated temperature (25 °C) on acute toxicity of polyethylene MP fragments to Daphnia magna over a 48 h period. At the reference temperature (20 °C), MP fragments (41.88 ± 5.71 µm) induced over 70 times higher lethal toxicity than that induced by MP beads (44.50 ± 2.50 µm), with median effective concentrations (EC50) of 3.89 and 275.89 mg L-1, respectively. Elevated temperature significantly increased (p < 0.05) the lethal (EC50 = 1.88 mg L-1) and sublethal (lipid peroxidation and total antioxidant capacity) toxicity in D. magna exposed to MP fragments compared to those at the reference temperature. Additionally, the elevated temperature led to a significant increase (p < 0.05) in the bioconcentration of MP fragments in D. magna. Overall, the present study increases understanding for the ecological risk assessment of microplastics under global warming, highlights that elevated temperature can be seriously increased bioconcentration of MP fragments, leading to increased acute toxicity in D. magna.
Collapse
Affiliation(s)
- Joorim Na
- O-Jeong Eco-Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea
| | - Jinyoung Song
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Boťanská B, Pecníková V, Fogarassyová M, Barančík M. The Role of Heat Shock Proteins and Autophagy in Mechanisms Underlying Effects of Sulforaphane on Doxorubicin-Induced Toxicity in HEK293 Cells. Physiol Res 2023; 72:S47-S59. [PMID: 37294118 DOI: 10.33549/physiolres.935107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Doxorubicin (DOX) is a cytostatic agent belonging to anthracycline group. Important role in mechanism associated with negative effects of DOX plays an oxidative stress. Heat shock proteins (HSPs) are part of mechanisms initiated in response to stressful stimuli and play an important role in cellular responses to oxidative stress through interaction with components of redox signaling. The present work was aimed to study the role of HSPs and autophagy in mechanisms underlying effects of sulforaphane (SFN), a potential activator of Nrf-2, on doxorubicin-induced toxicity in human kidney HEK293 cells. We investigated effects of SFN and DOX on proteins associated with regulation of heat shock response, redox signaling, and autophagy. Results show that SFN significantly reduced cytotoxic effects of DOX. The positive effects of SFN on DOX-induced changes were associated with up-regulation of Nrf-2 and HSP60 protein levels. In the case of another heat shock protein HSP40, SFN increased its levels when was administered alone but not in conditions when cells were exposed to the effects of DOX. Sulforaphane also reversed negative effects of DOX on activities of superoxide dismutases (SODs) and up-regulation of autophagy markers (LC3A/B-II, Atg5, and Atg12). In conclusion, the changes observed in HSP60 are of particular importance in terms of protecting cells from the effects of DOX. Finding that under conditions where SFN reduced cytotoxic effects of DOX were significantly increased protein levels of both Nrf-2 and HSP60 point to the role of HSP60 in mechanisms of redox signaling underlying effects of SFN on DOX-induced toxicity in HEK293 cells. Moreover, data confirmed an important role of autophagy in effects of SFN on DOX-induced toxicity.
Collapse
Affiliation(s)
- B Boťanská
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
13
|
Su X, Su Z, Xu W. ROS elevate HIF-1α phosphorylation for insect lifespan through the CK2-MKP3-p38 pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119389. [PMID: 36372111 DOI: 10.1016/j.bbamcr.2022.119389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Diapause in insects is akin to dauer in Caenorhabditis elegans and hibernation in vertebrates, characterized by metabolic depression and lifespan extension. Previous studies have shown that reactive oxygen species (ROS) and hypoxia-inducible factor-1α (HIF-1α) in brains of diapause-destined pupae are more abundant than those in nondiapause-destined pupae in Helicoverpa armigera, but the ROS regulating HIF-1α activity remain unknown. Here, we showed that high ROS levels in brains of diapause-destined pupae resulted in low casein kinase 2 (CK2) activity and that downregulation of CK2 caused low expression of mitogen-activated protein kinase phosphatase 3 (MKP3), which is an inhibitor of p-p38. Thus, high p-p38 levels accumulate to improve HIF-1α activity via activating HIF-1α phosphorylation at the S732 residue to regulate insect diapause. This is the first report showing that a new pathway, ROS-CK2-MKP3-p38, regulates HIF-1α activity for lifespan in insects.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiren Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Weihua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Ekwudo MN, Malek MC, Anderson CE, Yampolsky LY. The interplay between prior selection, mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response to hypoxia. Ecol Evol 2022; 12:e9319. [PMID: 36248677 PMCID: PMC9548574 DOI: 10.1002/ece3.9319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia has profound and diverse effects on aerobic organisms, disrupting oxidative phosphorylation and activating several protective pathways. Predictions have been made that exposure to mild intermittent hypoxia may be protective against more severe exposure and may extend lifespan. Here we report the lifespan effects of chronic, mild, intermittent hypoxia, and short-term survival in acute severe hypoxia in four clones of Daphnia magna originating from either permanent or intermittent habitats. We test the hypothesis that acclimation to chronic mild intermittent hypoxia can extend lifespan through activation of antioxidant and stress-tolerance pathways and increase survival in acute severe hypoxia through activation of oxygen transport and storage proteins and adjustment to carbohydrate metabolism. Unexpectedly, we show that chronic hypoxia extended the lifespan in the two clones originating from intermittent habitats but had the opposite effect in the two clones from permanent habitats, which also showed lower tolerance to acute hypoxia. Exposure to chronic hypoxia did not protect against acute hypoxia; to the contrary, Daphnia from the chronic hypoxia treatment had lower acute hypoxia tolerance than normoxic controls. Few transcripts changed their abundance in response to the chronic hypoxia treatment in any of the clones. After 12 h of acute hypoxia treatment, the transcriptional response was more pronounced, with numerous protein-coding genes with functionality in oxygen transport, mitochondrial and respiratory metabolism, and gluconeogenesis, showing upregulation. While clones from intermittent habitats showed somewhat stronger differential expression in response to acute hypoxia than those from permanent habitats, contrary to predictions, there were no significant hypoxia-by-habitat of origin or chronic-by-acute treatment interactions. GO enrichment analysis revealed a possible hypoxia tolerance role by accelerating the molting cycle and regulating neuron survival through upregulation of cuticular proteins and neurotrophins, respectively.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Morad C. Malek
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Cora E. Anderson
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Lev Y. Yampolsky
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
15
|
Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP, Chen NH, Wang ZZ, Zhang Y. Mitophagy, a Form of Selective Autophagy, Plays an Essential Role in Mitochondrial Dynamics of Parkinson's Disease. Cell Mol Neurobiol 2022; 42:1321-1339. [PMID: 33528716 PMCID: PMC11421754 DOI: 10.1007/s10571-021-01039-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder caused by the progressive loss of dopaminergic neurons in the substantia nigra and affects millions of people. Currently, mitochondrial dysfunction is considered as a central role in the pathogenesis of both sporadic and familial forms of PD. Mitophagy, a process that selectively targets damaged or redundant mitochondria to the lysosome for elimination via the autophagy devices, is crucial in preserving mitochondrial health. So far, aberrant mitophagy has been observed in the postmortem of PD patients and genetic or toxin-induced models of PD. Except for mitochondrial dysfunction, mitophagy is involved in regulating several other PD-related pathological mechanisms as well, e.g., oxidative stress and calcium imbalance. So far, the mitophagy mechanisms induced by PD-related proteins, PINK1 and Parkin, have been studied widely, and several other PD-associated genes, e.g., DJ-1, LRRK2, and alpha-synuclein, have been discovered to participate in the regulation of mitophagy as well, which further strengthens the link between mitophagy and PD. Thus, in this view, we reviewed mitophagy pathways in belief and discussed the interactions between mitophagy and several PD's pathological mechanisms and how PD-related genes modulate the mitophagy process.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China
| | - Zhi-Peng Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
16
|
Liu Z, Malinowski CR, Sepúlveda MS. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. CHEMOSPHERE 2022; 291:132941. [PMID: 34793845 DOI: 10.1016/j.chemosphere.2021.132941] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle production is on the rise due to its many uses in the burgeoning nanotechnology industry. Although nanoparticles have growing applications, there is great concern over their environmental impact due to their inevitable release into the environment. With uncertainty of environmental concentration and risk to aquatic organisms, the microcrustacean Daphnia spp. has emerged as an important freshwater model organism for risk assessment of nanoparticles because of its biological properties, including parthenogenetic reproduction; small size and short generation time; wide range of endpoints for ecotoxicological studies; known genome, useful for providing mechanistic information; and high sensitivity to environmental contaminants and other stressors. In this review, we (1) highlight the advantages of using Daphnia as an experimental model organism for nanotoxicity studies, (2) summarize the impacts of nanoparticle physicochemical characteristics on toxicity in relation to Daphnia, and (3) summarize the effects of nanoparticles (including nanoplastics) on Daphnia as well as mechanisms of toxicity, and (4) highlight research uncertainties and recommend future directions necessary to develop a deeper understanding of the fate and toxicity of nanoparticles and for the development of safer and more sustainable nanotechnology.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA; School of Life Science, East China Normal University, Shanghai, 200241, China
| | | | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
17
|
Physiological and Transcriptomic Analysis Reveals the Responses and Difference to High Temperature and Humidity Stress in Two Melon Genotypes. Int J Mol Sci 2022; 23:ijms23020734. [PMID: 35054918 PMCID: PMC8776189 DOI: 10.3390/ijms23020734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
Due to the frequent occurrence of continuous high temperatures and heavy rain in summer, extremely high-temperature and high-humidity environments occur, which seriously harms crop growth. High temperature and humidity (HTH) stress have become the main environmental factors of combined stress in summer. The responses of morphological indexes, physiological and biochemical indexes, gas exchange parameters, and chlorophyll fluorescence parameters were measured and combined with chloroplast ultrastructure and transcriptome sequencing to analyze the reasons for the difference in tolerance to HTH stress in HTH-sensitive 'JIN TAI LANG' and HTH-tolerant 'JIN DI' varieties. The results showed that with the extension of stress time, the superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities of the two melon varieties increased rapidly, the leaf water content increased, and the tolerant varieties showed stronger antioxidant capacity. Among the sensitive cultivars, Pn, Fv/Fm, photosystem II, and photosystem I chlorophyll fluorescence parameters were severely inhibited and decreased rapidly with the extension of stress time, while the HTH-tolerant cultivars slightly decreased. The cell membrane and chloroplast damage in sensitive cultivars were more severe, and Lhca1, Lhca3, and Lhca4 proteins in photosystem II and Lhcb1-Lhcb6 proteins in photosystem I were inhibited compared with those in the tolerant cultivar. These conclusions may be the main reason for the different tolerances of the two cultivars. These findings will provide new insights into the response of other crops to HTH stress and also provide a basis for future research on the mechanism of HTH resistance in melon.
Collapse
|
18
|
Im H, Achar JC, Shim T, Jung J. Elevated temperature alleviates benzophenone-3 toxicity in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106047. [PMID: 34864523 DOI: 10.1016/j.aquatox.2021.106047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Water temperature rises due to thermal discharge and global warming and the potential resulting impacts on the ecotoxicity of emerging chemicals are a growing concern. Benzophenone-3 (BP-3) is an ultraviolet filter added to personal care and plastic products, which is detected at highest concentrations during the hot summer season. This study aimed to investigate the effect of elevated temperature on acute (48 h) and chronic (21 d) BP-3 toxicity in Daphnia magna. Neonates (<24 h) acclimated at 28 °C showed much lower acute toxicity (EC50 = 3.91 and 2.69 mg L-1 at 20 and 28 °C, respectively) than those acclimated at 20 °C (EC50 = 2.96 and 2.04 mg L-1 at 20 and 28 °C, respectively). The body length, embryonic development, and the number of offspring in D. magna offspring exposed to BP-3 for 21 d were significantly decreased after exposure to 0.8 mg L-1 BP-3 at 20 °C. However, these adverse effects of BP-3 in D. magna were significantly ameliorated at 28 °C. Under these conditions, stress response genes such as Hb (hemoglobin), Hsp70 (heat shock protein), Cyp4 (cytochrome P450), and GST (glutathione-S-transferase) were significantly upregulated. These findings suggest that elevated temperature activated stress responses in D. magna, leading to enhanced protection against BP-3 toxicity. This study will contribute to a better understanding of the ecotoxicological impacts of toxic chemicals on aquatic organisms at elevated temperature.
Collapse
Affiliation(s)
- Hyungjoon Im
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jerry Collince Achar
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Taeyong Shim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
Zhang T, Li J, Zhao G. Quality Control Mechanisms of Mitochondria: Another Important Target for Treatment of Peripheral Neuropathy. DNA Cell Biol 2021; 40:1513-1527. [PMID: 34851723 DOI: 10.1089/dna.2021.0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria provide energy for various cellular activities and are involved in the regulating of several physiological and pathological processes. Mitochondria constitute a dynamic network regulated by numerous quality control mechanisms; for example, division is necessary for mitochondria to develop, and fusion dilutes toxins produced by the mitochondria. Mitophagy removes damaged mitochondria. The etiologies of peripheral neuropathy include congenital and acquired diseases, and the pathogenesis varies; however, oxidative stress caused by mitochondrial damage is the accepted pathogenesis of peripheral neuropathy. Regulation and control of mitochondrial quality might point the way toward potential treatments for peripheral neuropathy. This article will review mitochondrial quality control mechanisms, their involvement in peripheral nerve diseases, and their potential therapeutic role.
Collapse
Affiliation(s)
- Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Jiannan Li
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Guoqing Zhao
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
20
|
False and true positives in arthropod thermal adaptation candidate gene lists. Genetica 2021; 149:143-153. [PMID: 33963492 DOI: 10.1007/s10709-021-00122-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Genome-wide studies are prone to false positives due to inherently low priors and statistical power. One approach to ameliorate this problem is to seek validation of reported candidate genes across independent studies: genes with repeatedly discovered effects are less likely to be false positives. Inversely, genes reported only as many times as expected by chance alone, while possibly representing novel discoveries, are also more likely to be false positives. We show that, across over 30 genome-wide studies that reported Drosophila and Daphnia genes with possible roles in thermal adaptation, the combined lists of candidate genes and orthologous groups are rapidly approaching the total number of genes and orthologous groups in the respective genomes. This is consistent with the expectation of high frequency of false positives. The majority of these spurious candidates have been identified by one or a few studies, as expected by chance alone. In contrast, a noticeable minority of genes have been identified by numerous studies with the probabilities of such discoveries occurring by chance alone being exceedingly small. For this subset of genes, different studies are in agreement with each other despite differences in the ecological settings, genomic tools and methodology, and reporting thresholds. We provide a reference set of presumed true positives among Drosophila candidate genes and orthologous groups involved in response to changes in temperature, suitable for cross-validation purposes. Despite this approach being prone to false negatives, this list of presumed true positives includes several hundred genes, consistent with the "omnigenic" concept of genetic architecture of complex traits.
Collapse
|
21
|
Fu H, Jiao Z, Li Y, Tian J, Ren L, Zhang F, Li Q, Liu S. Transient Receptor Potential (TRP) Channels in the Pacific Oyster ( Crassostrea gigas): Genome-Wide Identification and Expression Profiling after Heat Stress between C. gigas and C. angulata. Int J Mol Sci 2021; 22:3222. [PMID: 33810107 PMCID: PMC8004665 DOI: 10.3390/ijms22063222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Transmembrane proteins are involved in an array of stress responses, particularly in thermo-sensation and thermo-regulation. In this study, we performed a genome-wide identification and characterization of the Transient Receptor Potential (TRP) genes in the Pacific oyster (Crassostrea gigas) and investigated their expression profiles after heat stress to identify critical TRPs potentially associated with thermal regulation. A total of 66 TRP genes were identified in the C. gigas, which showed significant gene expansion and tandem duplication. Meta-analysis of the available RNA-Seq data generated from samples after acute heat stress revealed a set of heat-inducible TRPs. Further examination of their expression profiles under chronic heat stress, and comparison between C. gigas and C. angulata, two oyster species with different tolerance levels to heat stress, led to the identification of TRPC3.6, TRPC3.7, and TRPV4.7 as important TRPs involved in thermal regulation in oysters. This work provided valuable information for future studies on the molecular mechanism of TRP mediated thermal tolerance, and identification of diagnostic biomarker for thermal stress in the oysters.
Collapse
Affiliation(s)
- Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Qingdao 266003, China; (H.F.); (Z.J.); (Y.L.); (J.T.); (L.R.); (F.Z.); (Q.L.)
| | - Zexin Jiao
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Qingdao 266003, China; (H.F.); (Z.J.); (Y.L.); (J.T.); (L.R.); (F.Z.); (Q.L.)
| | - Yongjing Li
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Qingdao 266003, China; (H.F.); (Z.J.); (Y.L.); (J.T.); (L.R.); (F.Z.); (Q.L.)
| | - Jing Tian
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Qingdao 266003, China; (H.F.); (Z.J.); (Y.L.); (J.T.); (L.R.); (F.Z.); (Q.L.)
| | - Liting Ren
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Qingdao 266003, China; (H.F.); (Z.J.); (Y.L.); (J.T.); (L.R.); (F.Z.); (Q.L.)
| | - Fuqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Qingdao 266003, China; (H.F.); (Z.J.); (Y.L.); (J.T.); (L.R.); (F.Z.); (Q.L.)
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Qingdao 266003, China; (H.F.); (Z.J.); (Y.L.); (J.T.); (L.R.); (F.Z.); (Q.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Qingdao 266003, China; (H.F.); (Z.J.); (Y.L.); (J.T.); (L.R.); (F.Z.); (Q.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
22
|
Metabolic adjustments during starvation in Daphnia pulex. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110591. [PMID: 33662567 DOI: 10.1016/j.cbpb.2021.110591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Zooplankton organisms face a variable food supply in their habitat. Metabolic adjustments during periods of starvation were analysed from changes in metabolite level to gene expression in the microcrustacean Daphnia pulex during starvation. The animals exploited their carbohydrate stores first, but their lipid and protein reserves were also degraded, albeit more slowly. Glycogenolysis and probably gluconeogenesis led to hyperglycaemia after 16 h of starvation. The concentration of α-ketoglutarate and the rate of oxygen consumption also reached maxima during this period. Nuclear HIF-1α levels and α-ketoglutarate concentration showed inverse correlation. Effects of this 2-oxoacid on prolyl hydroxylase activity, HIF-1α stability and the role of this transcription factor in the changes of the expression level of several putatively HIF-1-mediated metabolic genes are discussed. Transcriptome profiling via RNA-Seq revealed a downregulation of genes for protein biosynthesis and an upregulation of genes for carbohydrate metabolism during starvation. Thus, the adjustments of energy metabolism in response to food deprivation were quantified from the level of metabolites, signal transduction and gene expression, and possible connections of the respective dynamics of observed changes were analysed.
Collapse
|
23
|
Pu Y, Zhu Y, Qiao Z, Xin N, Chen S, Sun J, Jin R, Nie Y, Fan H. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. J Mater Chem B 2021; 9:1846-1857. [PMID: 33527969 DOI: 10.1039/d0tb02725a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Based on widely used photoacoustic imaging (PAI) and photothermal properties of polydopamine (PDA), a multifunctional Gd-PDA-Ce6@Gd-MOF (GPCG) nanosystem with a core-shell structure and strong imaging ability was constructed. Benefitting from the metal-organic framework (MOF) structure, GPCG nanoparticles (NPs) showed enhanced magnetic resonance imaging (MRI) ability with high relaxation rates (r1 = 13.72 mM-1 s-1 and r2 = 216.14 mM-1 s-1). The MRI effect of Gd ions combined with the PAI effect of PDA, giving GPCG NPs a dual-modal imaging ability. The core, mainly composed of PDA and photodynamic photosensitizer chlorin e6 (Ce6), achieved photothermal/photodynamic therapy (PTT/PDT) synergistic performance. Besides, to overcome the unexpected release of Ce6, the MOF shell realized pH-sensitive release and a high local concentration. Through in vivo studies, we concluded that GPCG NPs show a good inhibitory effect on tumor growth. In conclusion, we successfully obtained a GPCG theranostic nanoplatform and paved the way for subsequent design of imaging guided therapeutic nanostructures based on metal-doped PDA.
Collapse
Affiliation(s)
- Yiyao Pu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuda Zhu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
24
|
Liu Y, Li M, Du X, Huang Z, Quan N. Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases. Free Radic Biol Med 2021; 163:56-68. [PMID: 33310138 DOI: 10.1016/j.freeradbiomed.2020.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Physiological reactive oxygen species (ROS) play an important role in cellular signal transduction. However, excessive ROS is an important pathological mechanism in most cardiovascular diseases (CVDs), such as myocardial aging, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction) and heart failure. Programmed cell death, hypertrophy and fibrosis may be due to oxidative stress. Sestrin 2 (Sesn2), a stress-inducible protein associated with various stress conditions, is a potential antioxidant. Sesn2 can suppress the process of heart damage caused by oxidative stress, promote cell survival and play a key role in a variety of CVDs. This review discusses the effect of Sesn2 on the redox signal, mainly via participation in the signaling pathway of nuclear factor erythroid 2-related factor 2, activation of adenosine monophosphate-activated protein kinase and inhibition of mammalian target of rapamycin complex 1. It also discusses the effect of Sesn2's antioxidant activity on different CVDs. We speculate that Sesn2 plays an important role in CVDs by stimulating the process of antioxidation and promoting the adaptation of cells to stress conditions and/or the environment, opening a new avenue for related therapeutic strategies.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Meina Li
- Department of Infection Control, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Nanhu Quan
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
25
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
26
|
Dey S, Ballav P, Samanta P, Mandal A, Patra A, Das S, Mondal AK, Ghosh AR. Time-Dependent Naphthalene Toxicity in Anabas testudineus (Bloch): A Multiple Endpoint Biomarker Approach. ACS OMEGA 2021; 6:317-326. [PMID: 33458483 PMCID: PMC7807757 DOI: 10.1021/acsomega.0c04603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/20/2020] [Indexed: 05/23/2023]
Abstract
Polyaromatic compounds are the major, widespread contaminants in the aquatic environment. However, the adverse impacts of these compounds on blood pathophysiology (hematological profiling and serum biochemical responses) are poorly understood. As a consequence, this study was intended to evaluate the toxic effects of naphthalene, one of the polycyclic aromatic hydrocarbons, on the blood pathophysiology of Anabas testudineus using multiple end-point biomarker approach. A. testudineus was exposed to short-term (1 and 5 d) and long-term (10, 15, and 21 d) naphthalene concentrations, that is, T1 (0.71 mg/L indicates 25% of LC50) and T2 (1.42 mg/L indicates 50% of LC50 value). The results disclosed significant decrease in red blood cells, hemoglobin (Hb), packed cell volume, and platelet levels, while other blood parameters, namely, white blood cells, percent lymphocyte, mean cell volume, mean corpuscular Hb, and mean corpuscular Hb concentration showed enhanced levels under naphthalene intoxication. Results were more detrimental under T2 concentration. Cholesterol, glucose, calcium, high-density lipoprotein, and low-density lipoprotein levels gradually increased throughout the different exposure periods under T1 and T2 concentrations, while the triglyceride level gradually decreased during exposure periods. Finally, integrated biomarker responses (IBR) analysis indicated that serum biochemical parameters are more powerful than hematological parameters for determining the naphthalene-induced fish health status. Additionally, the IBR study clearly identified that long-term (>5 d) exposure was more harmful than short-term (<5 d) naphthalene exposure. So, these responses may be derived as biomarkers for monitoring naphthalene pollution in an aquatic ecosystem.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Puspita Ballav
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Palas Samanta
- Department
of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India
| | - Arghya Mandal
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Atanu Patra
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Subhas Das
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Kumar Mondal
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Apurba Ratan Ghosh
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| |
Collapse
|
27
|
Liu Y, Xiang D, Zhang H, Yao H, Wang Y. Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8871476. [PMID: 33282113 PMCID: PMC7685819 DOI: 10.1155/2020/8871476] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extrapulmonary injury factors. Presently, excessive inflammation in the lung and the apoptosis of alveolar epithelial cells are considered to be the key factors in the pathogenesis of ALI. Hypoxia-inducible factor-1 (HIF-1) is an oxygen-dependent conversion activator that is closely related to the activity of reactive oxygen species (ROS). HIF-1 has been shown to play an important role in ALI and can be used as a potential therapeutic target for ALI. This manuscript will introduce the progress of HIF-1 in ALI and explore the feasibility of applying inhibitors of HIF-1 to ALI, which brings hope for the treatment of ALI.
Collapse
Affiliation(s)
- Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115 MA, USA
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|
28
|
Samanta P, Im H, Shim T, Na J, Jung J. Linking multiple biomarker responses in Daphnia magna under thermal stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114432. [PMID: 32247115 DOI: 10.1016/j.envpol.2020.114432] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Temperature is an important abiotic variable that greatly influences the performance of aquatic ectotherms, especially under current anthropogenic global warming and thermal discharges. The aim of the present study was to evaluate thermal stress (20 °C vs 28 °C) in Daphnia magna over 21 d, focusing on the linkage among molecular and biochemical biomarker responses. Thermal stress significantly increased the levels of reactive oxygen species (ROS) and lipid peroxidation, especially in the 3-d short-term exposure treatment. This change in the ROS level was also correlated with mitochondrial membrane damage. These findings suggest that oxidative stress is the major pathway for thermally-induced toxicity of D. magna. Additionally, the expression levels of genes related to hypoxia (Hb), development (Vtg1), and sex determination (Dsx1-α, Dsx1-β, and Dsx2) were greatly increased by elevated temperature in a time-dependent manner. The cellular energy allocation was markedly decreased at the elevated temperature in the 3-d exposure treatment, mainly due to carbohydrates consumption for survival (oxidative stress defense). The present study showed that linking multiples biomarker responses are crucial for understanding the underlying mechanism of thermal stress on D. magna.
Collapse
Affiliation(s)
- Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, West Bengal, India
| | - Hyungjoon Im
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyong Shim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
29
|
Coady KK, Burgoon L, Doskey C, Davis JW. Assessment of Transcriptomic and Apical Responses of Daphnia magna Exposed to a Polyethylene Microplastic in a 21-d Chronic Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1578-1589. [PMID: 32388890 DOI: 10.1002/etc.4745] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
There is global concern regarding the fate and effects of microplastics in the environment, particularly in aquatic systems. In the present study, ethylene acrylic acid copolymer particles were evaluated in a chronic toxicity study with the aquatic invertebrate Daphnia magna. The study design included a natural particle control treatment (silica) to differentiate any potential physical effects of a particle from the intrinsic toxicity of the test material. In addition to the standard endpoints of survival, growth, and reproduction, the transcriptomic profiles of control and ethylene acrylic acid copolymer-exposed D. magna were evaluated at the termination of the 21-d toxicity study. No significant effects on D. magna growth, survival, or reproduction were observed in comparison with both particle and untreated control groups. Significant transcriptomic alterations were induced at the highest treatment level of 2.3 × 1012 particles of the ethylene acrylic acid copolymer/L in key pathways linked to central metabolism and energy reserves, oxidative stress, and ovulation and molting, indicating a global transcriptomic response pattern. To put the results in perspective is challenging at this time, because, to date, microplastic environmental monitoring approaches have not been equipped to detect particles in the nanosize range. However, our results indicate that ethylene acrylic acid copolymer microplastics in the upper nanosize range are not expected to adversely affect D. magna growth, survival, or reproductive outcomes at concentrations of up to 1012 particles/L. Environ Toxicol Chem 2020;39:1578-1589. © 2020 SETAC.
Collapse
Affiliation(s)
- Katherine K Coady
- Toxicology and Environmental Research and Consulting, Dow, Midland, Michigan, USA
| | - Lyle Burgoon
- US Army Engineer Research and Development Center, Raleigh-Durham, North Carolina, USA
| | - Claire Doskey
- Toxicology and Environmental Research and Consulting, Dow, Midland, Michigan, USA
| | - John W Davis
- Toxicology and Environmental Research and Consulting, Dow, Midland, Michigan, USA
| |
Collapse
|
30
|
Hearn J, Clark J, Wilson PJ, Little TJ. Daphnia magna modifies its gene expression extensively in response to caloric restriction revealing a novel effect on haemoglobin isoform preference. Mol Ecol 2020; 29:3261-3276. [PMID: 32687619 DOI: 10.1111/mec.15557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Caloric restriction (CR) produces clear phenotypic effects within and between generations of the model crustacean Daphnia magna. We have previously established that micro-RNAs and cytosine methylation change in response to CR in this organism, and we demonstrate here that CR has a dramatic effect on gene expression. Over 6,000 genes were differentially expressed between CR and well-fed D. magna, with a bias towards up-regulation of genes under caloric restriction. We identified a highly expressed haemoglobin gene that responds to CR by changing isoform proportions. Specifically, a transcript containing three haem-binding erythrocruorin domains was strongly down-regulated under CR in favour of transcripts containing fewer or no such domains. This change in the haemoglobin mix is similar to the response to hypoxia in Daphnia, which is mediated through the transcription factor hypoxia-inducible factor 1, and ultimately the mTOR signalling pathway. This is the first report of a role for haemoglobin in the response to CR. We also observed high absolute expression of superoxide dismutase (SOD) in normally fed individuals, which contrasts with observations of high SOD levels under CR in other taxa. However, key differentially expressed genes, like SOD, were not targeted by differentially expressed micro-RNAs. Whether the link between haemoglobin and CR occurs in other organisms, or is related to the aquatic lifestyle, remains to be tested. It suggests that one response to CR may be to simply transport less oxygen and lower respiration.
Collapse
Affiliation(s)
- Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jessica Clark
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Philip J Wilson
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Wang Z, Chen L, Zhang L, Zhang W, Deng Y, Liu R, Qin Y, Zhou Z, Diao J. Thermal effects on tissue distribution, liver biotransformation, metabolism and toxic responses in Mongolia racerunner (Eremias argus) after oral administration of beta-cyfluthrin. ENVIRONMENTAL RESEARCH 2020; 185:109393. [PMID: 32203733 DOI: 10.1016/j.envres.2020.109393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Effects of temperature on metabolism/biotransformation and toxicokinetics to lizards are significant, but frequently ignored in toxicology studies. Beta-cyfluthrin (BC) is a pyrethroid insecticide and has been widely used globally. The study aimed to understand the diverse adverse effects of BC to the lizard (Eremias argus) at different temperature regimes. We carried out a single oral BC treatment (20 mg/kg bw) for toxicokinetic study and a 7-day BC (10 mg/kg bw) gavage to look at toxicology by monitoring changes in the biomarkers HSP70, SOD, MDA, CarE, UDPGT, GST, cyp genes, and other metabolic responses. Results showed that BC was lethal to lizards, showing oxidative damages in the liver at ambient temperature (25 °C). Heat stress (35 °C) could exacerbate the oxidative damage (MDA increased) caused by BC, due to the disorder of the antioxidant defense system. The result of tissue distribution and toxicokinetic study also showed that temperature affected the BC biotransformation in lizards. The biotransformation of BC maybe relates to the activation of CarE and UDGPT by heat stress. However, the cyp system and GST didn't increase under BC or/and heat treatments. 1H-NMR metabolomics analysis showed that BC or/and heat stress interfered with energy and amino acid metabolism of the liver. Unlike acute lethal toxicity, the occurrence of the BC and heat stresses has detrimental effects on lizard individuals and populations on sub-lethal levels. Our results indicate that pollution and global warming (or some other extremely weather) may generate significant and harmful effects on lizards.
Collapse
Affiliation(s)
- Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Li Chen
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wenjun Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yinan Qin
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
32
|
Wang Y, Huang X, Chang BH, Zhang Z. Growth Performance and Enzymatic Response of the Grasshopper, Calliptamus abbreviatus (Orthoptera: Acrididae), to Six Plant-Derived Compounds. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5851654. [PMID: 32501501 PMCID: PMC7273521 DOI: 10.1093/jisesa/ieaa049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Plant-derived compounds are sources of biopesticides for the control of insect pests. We compared the growth performance and enzymatic response of the grasshopper Calliptamus abbreviatus Ikonn to six plant-derived compounds (rutin, quercetin, nicotine, matrine, azadirachtin, and rotenone) in laboratory and field trials. When exposed to the six compounds, C. abbreviatus had significantly reduced growth and survival. All the compounds significantly induced an elevated level of reactive oxygen species, indicating oxidative damage. The activity of detoxifying enzymes, including cytochrome P450s, carboxylesterase, glutathione-S-transferase, and UDP-glucuronosyltransferase, and the antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase, all significantly increased after exposure to the six compounds. These data suggest that the six plant-derived compounds had negative effects on C. abbreviatus. Of the six compounds, matrine, azadirachtin, and rotenone were more toxic to C. abbreviatus, followed by nicotine, quercetin, and rutin. These results show the potential of these compounds as botanical pesticides, which can be applied for the biological control of the grasshopper C. abbreviatus.
Collapse
Affiliation(s)
- Yueyue Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, P.R. China
| | - Xunbing Huang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, P.R. China
| | - Babar Hussain Chang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, P.R. China
- Department of Entomology, Sindh Agriculture University, Tando Jam, Pakistan
| | - Zehua Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, P.R. China
| |
Collapse
|
33
|
Im H, Na J, Jung J. Multigenerational plasticity of Daphnia magna under thermal stress across ten generations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110400. [PMID: 32135379 DOI: 10.1016/j.ecoenv.2020.110400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The effects of increasing temperature owing to thermal discharge and global warming on zooplanktons such as Daphnia magna are a growing concern. The purpose of this study was to evaluate the effects of elevated temperature (25 °C) on oxidative stress responses, growth, and reproduction of D. magna across 10 generations. The number of offspring per female at 21 d was significantly increased and the rate of adult somatic growth (5-21 d) was decreased in the F0 generation at 25 °C compared with those at the reference temperature 20 °C. However, the F3 generation showed the lowest number of offspring and the highest adult somatic growth rate and oxidative stress responses (5 d) at 25 °C. Moreover, all life-history traits seemed to recover to the levels of the control group from the F6 generation at 20 °C. These findings suggest that D. magna under continuous thermal stress exhibits non-adaptive responses in the early generations (F0-F3) and changes to adaptive responses in the later generations (F6-F9). However, the underlying epigenetic mechanism should be identified in the future.
Collapse
Affiliation(s)
- Hyungjoon Im
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
34
|
Liu Z, Huang Y, Jiao Y, Chen Q, Wu D, Yu P, Li Y, Cai M, Zhao Y. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105420. [PMID: 31986404 DOI: 10.1016/j.aquatox.2020.105420] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Recently, research on the biological effects of nanoplastics has grown exponentially. However, studies on the effects of nanoplastics on freshwater organisms and the mechanisms of the biological effects of nanoplastics are limited. In this study, the content of reactive oxygen species (ROS), gene and protein expression in the MAPK-HIF-1/NFkB pathway, and antioxidant gene expressions and enzyme activities were measured in Daphnia pulex exposed to polystyrene nanoplastic. In addition, the full-length extracellular signal-regulated kinases (ERK) gene, which plays an important role in the MAPK pathway, was cloned in D. pulex, and the amino acid sequence, function domain, and phylogenetic tree were analyzed. The results show that nanoplastic caused the overproduction of ROS along with other dose-dependent effects. Low nanoplastic concentrations (0.1 and/or 0.5 mg/L) significantly increased the expressions of genes of the MAPK pathway (ERK; p38 mitogen-activated protein kinases, p38; c-Jun amino-terminal kinases, JNK; and protein kinase B, AKT), HIF-1 pathway (prolyl hydroxylasedomain, PHD; vascular endothelial growth factor, VEGF; glucose transporter, GLUT; pyruvate kinase M, PKM; hypoxia-inducible factor 1, HIF1), and CuZn superoxide dismutase (SOD) along with the activity of glutathione-S-transferase. As the nanoplastic concentration increased, these indicators were significantly suppressed. The protein expression ratio of ERK, JNK, AKT, HIF1α, and NFkBp65 (nuclear transcription factor-kB p65) as well as the phosphorylation of ERK and NFkBp65 were increased in a dose-dependent manner. The activities of other antioxidant enzymes (catalase, total SOD, and CuZn SOD) were significantly decreased upon exposure to nanoplastic. Combined with our previous work, these results suggest that polystyrene nanoplastic causes the overproduction of ROS and activates the downstream pathway, resulting in inhibited growth, development, and reproduction. The present study fosters a better understanding of the biological effects of nanoplastics on zooplankton.
Collapse
Affiliation(s)
- Zhiquan Liu
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China.
| | - Youhui Huang
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yang Jiao
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qiang Chen
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Donglei Wu
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ping Yu
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yiming Li
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Mingqi Cai
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
35
|
Chen B, Yang B, Zhu J, Wu J, Sha J, Sun J, Bao E, Zhang X. Hsp90 Relieves Heat Stress-Induced Damage in Mouse Kidneys: Involvement of Antiapoptotic PKM2-AKT and Autophagic HIF-1α Signaling. Int J Mol Sci 2020; 21:ijms21051646. [PMID: 32121259 PMCID: PMC7084842 DOI: 10.3390/ijms21051646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
Heat stress can particularly affect the kidney because of its high rate of adenosine triphosphate consumption. Competition between apoptosis and autophagy-mediated survival always exists in damaged tissue. And Hsp90 can enhance cellular protection to resist heat stress. However, the relationship between Hsp90 and the above competition and its underlying mechanism in the kidney are unclear. The present study found that heat stress induced obvious histopathological and oxidative injury, which was connected with cellular apoptosis and autophagy in the kidney and was associated with the levels of Hsp90 expression or function. The data showed that during heat stress, Hsp90 activated the PKM2-Akt signaling pathway to exert antiapoptotic effects and induce Hsp70 expression regulated by HSF-1, stimulated autophagy-mediated survival through the HIF-1α-BNIP3/BNIP3L pathway, and finally protected the kidney from heat-stress injury. Moreover, the nuclear translocation of PKM2, (p-) Akt, HSF-1, and HIF-1α was enhanced by heat stress, but only intranuclear p-Akt and HSF-1 were specifically influenced by Hsp90, contributing to regulate the cellular ability of resisting heat-stress damage. Our study provided new insights regarding the molecular mechanism of Hsp90 in the kidney in response to heat-stress injury, possibly contributing to finding new targets for the pharmacological regulation of human or animal acute kidney injury from heat stress in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohui Zhang
- Correspondence: ; Tel.: +86-258-439-5316; Fax: +86-258-439-8669
| |
Collapse
|
36
|
Carranza ADV, Saragusti A, Chiabrando GA, Carrari F, Asis R. Effects of chlorogenic acid on thermal stress tolerance in C. elegans via HIF-1, HSF-1 and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153132. [PMID: 31790899 DOI: 10.1016/j.phymed.2019.153132] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chlorogenic acid (CGA) is a polyphenol widely distributed in plants and plant-derived food with antioxidant and protective activities against cell stress. Caenorhabditis elegans is a model organism particularly useful for understanding the molecular and biochemical mechanisms associated with aging and stress in mammals. In C. elegans, CGA was shown to improve resistance to thermal, while the underlying mechanisms that lead to this effect require further understanding. PURPOSE The present study was conducted to investigate the underlying molecular mechanisms behind CGA response conferring thermotolerance to C. elegans. METHODS AND RESULTS Signaling pathways that could be involved in the CGA-induced thermotolerance were evaluated in C. elegans strains with loss-of-function mutation. CGA-induced thermotolerance required hypoxia-inducible factor HIF-1 but no insulin pathway. CGA exposition (1.4 µM CGA for 18 h) before thermal stress treatment increased HIF-1 levels and activity. HIF-1 activation could be partly attributed to an increase in radical oxygen species and a decrease in superoxide dismutase activity. In addition, CGA exposition before thermal stress also increased autophagy just as hormetic heat condition (HHC), worms incubated at 36 °C for 1 h. RNAi experiments evidenced that autophagy was increased by CGA via HIF-1, heat-shock transcription factor HSF-1 and heat-shock protein HSP-16 and HSP-70. In contrast, autophagy induced by HHC only required HSF-1 and HSP-70. Moreover, suppression of autophagy induction showed the significance of this process for adapting C. elegans to cope with thermal stress. CONCLUSION This study demonstrates that CGA-induced thermotolerance in C. elegans is mediated by HIF-1 and downstream, by HSF-1, HSPs and autophagy resembling HHC.
Collapse
Affiliation(s)
- Andrea Del Valle Carranza
- CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Alejandra Saragusti
- CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Gustavo Alberto Chiabrando
- CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Fernando Carrari
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Ramón Asis
- CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
37
|
Madan E, Parker TM, Pelham CJ, Palma AM, Peixoto ML, Nagane M, Chandaria A, Tomás AR, Canas-Marques R, Henriques V, Galzerano A, Cabral-Teixeira J, Selvendiran K, Kuppusamy P, Carvalho C, Beltran A, Moreno E, Pati UK, Gogna R. HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids Res 2019; 47:10212-10234. [PMID: 31538203 PMCID: PMC6821315 DOI: 10.1093/nar/gkz766] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hypoxia is associated with a variety of physiological conditions such as rheumatoid arthritis, ischemia/reperfusion injury, stroke, diabetic vasculopathy, epilepsy and cancer. At the molecular level, hypoxia manifests its effects via activation of HIF-dependent transcription. On the other hand, an important transcription factor p53, which controls a myriad of biological functions, is rendered transcriptionally inactive under hypoxic conditions. p53 and HIF-1α are known to share a mysterious relationship and play an ambiguous role in the regulation of hypoxia-induced cellular changes. Here we demonstrate a novel pathway where HIF-1α transcriptionally upregulates both WT and MT p53 by binding to five response elements in p53 promoter. In hypoxic cells, this HIF-1α-induced p53 is transcriptionally inefficient but is abundantly available for protein-protein interactions. Further, both WT and MT p53 proteins bind and chaperone HIF-1α to stabilize its binding at its downstream DNA response elements. This p53-induced chaperoning of HIF-1α increases synthesis of HIF-regulated genes and thus the efficiency of hypoxia-induced molecular changes. This basic biology finding has important implications not only in the design of anti-cancer strategies but also for other physiological conditions where hypoxia results in disease manifestation.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Taylor M Parker
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Antonio M Palma
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Maria L Peixoto
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Aliya Chandaria
- Biosciences unit, College of Life and Environmental Sciences, University of Exeter, Stocker Road Exeter EX4 4QD, UK
| | - Ana R Tomás
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | | | | | | | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Periannan Kuppusamy
- Department of Radiology and Medicine, 601 Rubin Building, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Carlos Carvalho
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Antonio Beltran
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Uttam K Pati
- Transcription and Human Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
38
|
Sphingosine kinase and p38 MAP kinase signaling promote resistance to arsenite-induced lethality in Caenorhabditis elegan. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0045-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Bownik A, Szabelak A, Kulińska M, Wałęka M. Effects of L-proline on swimming parameters of Daphnia magna subjected to heat stress. J Therm Biol 2019; 84:154-163. [PMID: 31466748 DOI: 10.1016/j.jtherbio.2019.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/27/2019] [Accepted: 06/30/2019] [Indexed: 01/19/2023]
Abstract
L-proline (L-PROL) is an essential amino acid, a constituent of many proteins and the osmoprotective molecule produced and accumulated in higher plants and some freshwater microalgae in response to various environmental stressors. Knowledge on thermoprotective effects of this amino acid on freshwater invertebrates is very scarce. Therefore the aim of our study was to determine the effect of L-PROL at concentrations: 10 mg/L, 20 mg/L and 50 mg/L on swimming behavior (immobilization, swimming track density, swimming speed, turning ability) of Daphnia magna subjected to temperatures: 22 °C, 35 °C and 38 °C. We found that L-PROL elevated all the measured swimming parameters at 22 °C when compared to the untreated crustaceans. Furthermore, L-PROL alleviated heat-induced inhibition of these parameters in the experimental animals subjected to 35 °C. The results suggest that L-PROL stimulates swimming performance and alleviates alterations of swimming parameters induced by heat stress in D. magna. Moreover, these findings may support the hypothesis that in natural conditions, L-PROL may protect crustaceans against thermal stress.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Aleksandra Szabelak
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Magdalena Kulińska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Monika Wałęka
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
40
|
Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation. Mol Cell Biol 2019; 39:MCB.00268-18. [PMID: 30692272 DOI: 10.1128/mcb.00268-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstream effectors of mitogenic signaling are still being elucidated. Using primary CGNP cultures, a well-established model for SHH-driven proliferation, we show that SHH-treated CGNPs feature high levels of hypoxia-inducible factor 1α (HIF1α), which is known to promote glycolysis, stemness, and angiogenesis. In CGNPs cultured under normoxic conditions, HIF1α is posttranslationally stabilized in a manner dependent upon reactive oxygen species (ROS) and NADPH oxidase (NOX), both of which are also upregulated in these cells. Inhibition of NOX activity resulted in HIF1α destabilization and reduced levels of cyclin D2, a marker of CGNP proliferation. As CGNPs are the putative cells of origin for the SHH subtype of medulloblastoma and aberrant SHH signaling is implicated in other neoplasms, these studies may also have future relevance in the context of cancer. Taken together, our findings suggest that a better understanding of nonhypoxic HIF1α stabilization through NOX-induced ROS generation can provide insights into normal cell proliferation in cerebellar development and SHH-driven cell proliferation in cancers with aberrant SHH signaling.
Collapse
|
41
|
Wu C, Zhang M, He M, Gu M, Lin M, Zhang G. Selection of solvent for extraction of antioxidant components from Cynanchum auriculatum, Cynanchum bungei, and Cynanchum wilfordii roots. Food Sci Nutr 2019; 7:1337-1343. [PMID: 31024706 PMCID: PMC6475734 DOI: 10.1002/fsn3.967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
In east Asia, "Baishouwu" has been used as an herbal drug and functional dietary supplement for hundreds of years. Actually, "Baishouwu" is the common name of the roots of Cynanchum auriculatum, Cynanchum bungei, and Cynanchum wilfordii. In the present study, roots of these three specie were extracted and then fractionated using petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EA), and water. DPPH scavenging experiments revealed high antioxidant activity of DCM and EA fractions of C. bungei and the EA fraction of C. wilfordii. Treatments with these three fractions significantly reduced malondialdehyde content in heat-stressed Daphnia magna, validating in vivo antioxidant activity. Gas chromatography-mass spectrometer (GC-MS) analyses demonstrated that the chemical components of fractions extracted from C. bungei, C. bungei, and C. wilfordii were different. Further determination of total phenol and total flavonoids contents showed that DCM and EA fractions of C. bungei and EA fraction of C. wilfordii had much higher contents of total phenol and total flavonoids, which might be the reason to explain their strong antioxidant activity. Overall, the present study suggested that these three plants have different chemical components and biological activities. They could not be used as the same drug.
Collapse
Affiliation(s)
- Cheng‐Dong Wu
- Xinyang Agricultural Experiment Station of Yancheng CityYanchengChina
| | - Ming Zhang
- Xinyang Agricultural Experiment Station of Yancheng CityYanchengChina
| | - Ming‐Tao He
- Xinyang Agricultural Experiment Station of Yancheng CityYanchengChina
| | - Min‐Feng Gu
- Xinyang Agricultural Experiment Station of Yancheng CityYanchengChina
| | - Mei Lin
- Shenzhen GenProMetab Biotechnology Company LimitedShenzhenChina
| | - Gen Zhang
- Shenzhen GenProMetab Biotechnology Company LimitedShenzhenChina
| |
Collapse
|
42
|
Bacterial diet and weak cadmium stress affect the survivability of Caenorhabditis elegans and its resistance to severe stress. Heliyon 2019; 5:e01126. [PMID: 30705981 PMCID: PMC6348244 DOI: 10.1016/j.heliyon.2019.e01126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/20/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023] Open
Abstract
Stress may have negative or positive effects in dependence of its intensity (hormesis). We studied this phenomenon in Caenorhabditis elegans by applying weak or severe abiotic (cadmium, CdCl2) and/or biotic stress (different bacterial diets) during cultivation/breeding of the worms and determining their developmental speed or survival and performing transcriptome profiling and RT-qPCR analyses to explore the genetic basis of the detected phenotypic differences. To specify weak or severe stress, developmental speed was measured at different cadmium concentrations, and survival assays were carried out on different bacterial species as feed for the worms. These studies showed that 0.1 μmol/L or 10 mmol/L of CdCl2 were weak or severe abiotic stressors, and that E. coli HT115 or Chitinophaga arvensicola feeding can be considered as weak or severe biotic stress. Extensive phenotypic studies on wild type (WT) and different signaling mutants (e.g., kgb-1Δ and pmk-1Δ) and genetic studies on WT revealed, inter alia, the following results. WT worms bred on E. coli OP50, which is a known cause of high lipid levels in the worms, showed high resistance to severe abiotic stress and elevated gene expression for protein biosynthesis. WT worms bred under weak biotic stress (E. coli HT115 feeding which causes lower lipid levels) showed an elevated resistance to severe biotic stress, elevated gene expression for the innate immune response and signaling but reduced gene expression for protein biosynthesis. WT worms bred under weak biotic and abiotic stress (E. coli HT115 feeding plus 0.1 μmol/L of CdCl2) showed high resistance to severe biotic stress, elevated expression of DAF-16 target genes (e.g., genes for small heat shock proteins) but further reduced gene expression for protein biosynthesis. WT worms bred under weak biotic but higher abiotic stress (E. coli HT115 feeding plus 10 μmol/L of CdCl2) showed re-intensified gene expression for the innate immune response, signaling, and protein biosynthesis, which, however, did not caused a higher resistance to severe biotic stress. E. coli OP50 feeding as well as weak abiotic and biotic stress during incubations also improved the age-specific survival probability of adult WT worms. Thus, this study showed that a bacterial diet resulting in higher levels of energy resources in the worms (E. coli OP50 feeding) or weak abiotic and biotic stress promote the resistance to severe abiotic or biotic stress and the age-specific survival probability of WT.
Collapse
|
43
|
Fan P, Xie XH, Chen CH, Peng X, Zhang P, Yang C, Wang YT. Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy. DNA Cell Biol 2018; 38:10-22. [PMID: 30556744 DOI: 10.1089/dna.2018.4348] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The generation of reactive oxygen species (ROS) in response to oxidative stress has important effects on cell development, normal function, and survival. It may cause oxidative damage to intracellular macromolecular substances and mitochondria through several signaling pathways. However, the damaged mitochondria promote further ROS generation, creating a vicious cycle that can cause cellular injury. In addition, excessive ROS produced by damaged mitochondria can trigger mitophagy, a process that can scavenge impaired mitochondria and reduce ROS level to maintain stable mitochondrial function in cells. Therefore, mitophagy heaps maintain cellular homeostasis under oxidative stress. In this article, we review recent advances in cellular damage caused by excessive ROS, the mechanism of mitophagy, and the close relationship between ROS and mitophagy. This review provides a new perspective on therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Pan Fan
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Xing-Hui Xie
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chang-Hong Chen
- 2 Department of Orthopaedic Surgery, Jiangyin Hospital of Traditional Chinese Medicine , Wuxi, Jiangsu, China
| | - Xin Peng
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Po Zhang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Cheng Yang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Yun-Tao Wang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Guo L, Guo D, Yin W, Hou X. Tolerance strategies revealed in tree peony ( Paeonia suffruticosa; Paeoniaceae) ecotypes differentially adapted to desiccation. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01191. [PMID: 30386716 PMCID: PMC6201725 DOI: 10.1002/aps3.1191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/05/2018] [Indexed: 05/29/2023]
Abstract
PREMISE OF THE STUDY Tree peony (Paeonia suffruticosa; Paeoniaceae) is well known for its ornamental value, edible oil, and medicinal properties. However, its growing area has been limited by drought that has been exacerbated by global climate change. METHODS Gene expression profiles of a drought-tolerant cultivar and a drought-sensitive cultivar during dehydration and rehydration were investigated by transcriptome analysis. Expression patterns of unigenes related to drought and recovery response and unrelated to either cultivar were classified by hierarchical clustering and real-time quantitative PCR (qPCR). RESULTS A total of 81,725 unigenes with a mean length of 762 nucleotides that may play roles in drought response were identified. Unigenes were characterized as being involved in lipid transport metabolism, proline metabolism, and photosynthesis. In addition, plant hormone signaling pathway genes were also characterized as potentially being involved in drought response. Expression patterns of the 20 drought-responsive unigenes verified by qPCR showed a differential expression pattern under either the drought or recovery treatment. DISCUSSION This is the first report to identify and verify unigenes of tree peonies with differing water sensitivity during dehydration and rehydration. This study offers a valuable resource for candidate genes involved in drought and provides insight into the breeding of drought-resistant tree peony cultivars.
Collapse
Affiliation(s)
- Lili Guo
- College of AgricultureHenan University of Science and TechnologyLuoyang471023People's Republic of China
| | - Dalong Guo
- College of ForestryHenan University of Science and TechnologyLuoyang471023People's Republic of China
| | - Weilun Yin
- College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijing100083People's Republic of China
| | - Xiaogai Hou
- College of AgricultureHenan University of Science and TechnologyLuoyang471023People's Republic of China
| |
Collapse
|
45
|
Becker D, Reydelet Y, Lopez JA, Jackson C, Colbourne JK, Hawat S, Hippler M, Zeis B, Paul RJ. The transcriptomic and proteomic responses of Daphnia pulex to changes in temperature and food supply comprise environment-specific and clone-specific elements. BMC Genomics 2018; 19:376. [PMID: 29783951 PMCID: PMC5963186 DOI: 10.1186/s12864-018-4742-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Background Regulatory adjustments to acute and chronic temperature changes are highly important for aquatic ectotherms because temperature affects their metabolic rate as well as the already low oxygen concentration in water, which can upset their energy balance. This also applies to severe changes in food supply. Thus, we studied on a molecular level (transcriptomics and/or proteomics) the immediate responses to heat stress and starvation and the acclimation to different temperatures in two clonal isolates of the model microcrustacean Daphnia pulex from more or less stressful environments, which showed a higher (clone M) or lower (clone G) tolerance to heat and starvation. Results The transcriptomic responses of clone G to acute heat stress (from 20 °C to 30 °C) and temperature acclimation (10 °C, 20 °C, and 24 °C) and the proteomic responses of both clones to acute heat, starvation, and heat-and-starvation stress comprised environment-specific and clone-specific elements. Acute stress (in particular heat stress) led to an early upregulation of stress genes and proteins (e.g., molecular chaperones) and a downregulation of metabolic genes and proteins (e.g., hydrolases). The transcriptomic responses to temperature acclimation differed clearly. They also varied depending on the temperature level. Acclimation to higher temperatures comprised an upregulation of metabolic genes and, in case of 24 °C acclimation, a downregulation of genes for translational processes and collagens. The proteomic responses of the clones M and G differed at any type of stress. Clone M showed markedly stronger and less stress-specific proteomic responses than clone G, which included the consistent expression of a specific heat shock protein (HSP60) and vitellogenin (VTG-SOD). Conclusions The expression changes under acute stress can be interpreted as a switch from standard products of gene expression to stress-specific products. The expression changes under temperature acclimation probably served for an increase in energy intake (via digestion) and, if necessary, a decrease in energy expenditures (e.g, for translational processes). The stronger and less stress-specific proteomic responses of clone M indicate a lower degree of cell damage and an active preservation of the energy balance, which allowed adequate proteomic responses under stress, including the initiation of resting egg production (VTG-SOD expression) as an emergency reaction. Electronic supplementary material The online version of this article (10.1186/s12864-018-4742-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dörthe Becker
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany.,Present address: Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Yann Reydelet
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany
| | - Jacqueline A Lopez
- Present address: Genomics Core Facility, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, USA
| | - Craig Jackson
- Present address: School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - John K Colbourne
- Present address: Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Susan Hawat
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Bettina Zeis
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany
| | - Rüdiger J Paul
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany.
| |
Collapse
|
46
|
Bowman LL, Kondrateva ES, Timofeyev MA, Yampolsky LY. Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species. Mol Ecol 2018; 27:2544-2559. [PMID: 29691934 DOI: 10.1111/mec.14704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022]
Abstract
Local adaptation and phenotypic plasticity are main mechanisms of organisms' resilience in changing environments. Both are affected by gene flow and are expected to be weak in zooplankton populations inhabiting large continuous water bodies and strongly affected by currents. Lake Baikal, the deepest and one of the coldest lakes on Earth, experienced epilimnion temperature increase during the last 100 years, exposing Baikal's zooplankton to novel selective pressures. We obtained a partial transcriptome of Epischura baikalensis (Copepoda: Calanoida), the dominant component of Baikal's zooplankton, and estimated SNP allele frequencies and transcript abundances in samples from regions of Baikal that differ in multiyear average surface temperatures. The strongest signal in both SNP and transcript abundance differentiation is the SW-NE gradient along the 600+ km long axis of the lake, suggesting isolation by distance. SNP differentiation is stronger for nonsynonymous than synonymous SNPs and is paralleled by differential survival during a laboratory exposure to increased temperature, indicating directional selection operating on the temperature gradient. Transcript abundance, generally collinear with the SNP differentiation, shows samples from the warmest, less deep location clustering together with the southernmost samples. Differential expression is more frequent among transcripts orthologous to candidate thermal response genes previously identified in model arthropods, including genes encoding cytoskeleton proteins, heat-shock proteins, proteases, enzymes of central energy metabolism, lipid and antioxidant pathways. We conclude that the pivotal endemic zooplankton species in Lake Baikal exists under temperature-mediated selection and possesses both genetic variation and plasticity to respond to novel temperature-related environmental pressures.
Collapse
Affiliation(s)
- Larry L Bowman
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Elizaveta S Kondrateva
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Maxim A Timofeyev
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk, Russia
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
47
|
Cuenca Cambronero M, Zeis B, Orsini L. Haemoglobin-mediated response to hyper-thermal stress in the keystone species Daphnia magna. Evol Appl 2018; 11:112-120. [PMID: 29302276 PMCID: PMC5748520 DOI: 10.1111/eva.12561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
Anthropogenic global warming has become a major geological and environmental force driving drastic changes in natural ecosystems. Due to the high thermal conductivity of water and the effects of temperature on metabolic processes, freshwater ecosystems are among the most impacted by these changes. The ability to tolerate changes in temperature may determine species long-term survival and fitness. Therefore, it is critical to identify coping mechanisms to thermal and hyper-thermal stress in aquatic organisms. A central regulatory element compensating for changes in oxygen supply and ambient temperature is the respiratory protein haemoglobin (Hb). Here, we quantify Hb plastic and evolutionary response in Daphnia magna subpopulations resurrected from the sedimentary archive of a lake with known history of increase in average temperature and recurrence of heat waves. By measuring constitutive changes in crude Hb protein content among subpopulations, we assessed evolution of the Hb gene family in response to temperature increase. To quantify the contribution of plasticity in the response of this gene family to hyper-thermal stress, we quantified changes in Hb content in all subpopulations under hyper-thermal stress as compared to nonstressful temperature. Further, we tested competitive abilities of genotypes as a function of their Hb content, constitutive and induced. We found that Hb-rich genotypes have superior competitive abilities as compared to Hb-poor genotypes under hyper-thermal stress after a period of acclimation. These findings suggest that whereas long-term adjustment to higher occurrence of heat waves may require a combination of plasticity and genetic adaptation, plasticity is most likely the coping mechanism to hyper-thermal stress in the short term. Our study suggests that with higher occurrence of heat waves, Hb-rich genotypes may be favoured with potential long-term impact on population genetic diversity.
Collapse
Affiliation(s)
| | - Bettina Zeis
- Institute of ZoophysiologyUniversity of MuensterMuensterGermany
| | - Luisa Orsini
- Environmental Genomics GroupSchool of Biosciencesthe University of BirminghamBirminghamUK
| |
Collapse
|
48
|
Weitzel JM, Viergutz T, Albrecht D, Bruckmaier R, Schmicke M, Tuchscherer A, Koch F, Kuhla B. Hepatic thyroid signaling of heat-stressed late pregnant and early lactating cows. J Endocrinol 2017; 234:129-141. [PMID: 28500083 PMCID: PMC5516449 DOI: 10.1530/joe-17-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023]
Abstract
During the transition between late gestation and early lactation, dairy cows experience severe metabolic stress due to the high energy and nutrient requirements of the fetus and the mammary gland. Additional thermal stress that occurs with rising temperatures during the ongoing climate change has further adverse implications on energy intake, metabolism and welfare. The thyroid hormone (TH)-mediated cellular signaling has a pivotal role in regulation of body temperature, energy intake and metabolic adaptation to heat. To distinguish between energy intake and heat stress-related effects, Holstein cows were first kept at thermoneutrality at 15°C followed by exposure to heat stress (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days, in late pregnancy and again in early lactation. Herein, we focused on hepatic metabolic changes associated with alterations in the hypothalamic-pituitary-thyroid axis in HS and PF animals. T3 and T4 levels dropped with HS or PF; however, in HS animals, this decline was more pronounced. Thyroid-stimulating hormone (TSH) levels remain unaffected, while plasma cholesterol concentrations were lower in HS than PF animals. Hepatic marker genes for TH action (THRA, DIO1 and PPARGC1) decreased after HS and were lower compared to PF cows but only post-partum. Proteomics data revealed reduced hepatic amino acid catabolism ante-partum and a shift toward activated beta-oxidation and gluconeogenesis but declined oxidative stress defense post-partum. Thus, liver metabolism of HS and PF cows adapts differently to diminished energy intake both ante-partum and post-partum, and a different TH sensitivity is involved in the regulation of catabolic processes.
Collapse
Affiliation(s)
- Joachim M Weitzel
- Institute of Reproductive BiologyLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive BiologyLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Albrecht
- Institute of MicrobiologyErnst-Moritz-Arndt-University, Greifswald, Germany
| | - Rupert Bruckmaier
- Veterinary PhysiologyVetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marion Schmicke
- Clinic for CattleEndocrinology Laboratory, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armin Tuchscherer
- Institute of Genetics and BiometryLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Franziska Koch
- Institute of Nutritional Physiology 'Oskar Kellner'Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology 'Oskar Kellner'Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
49
|
Sthijns MM, Schiffers PM, Janssen GM, Lemmens KJ, Ides B, Vangrieken P, Bouwman FG, Mariman EC, Pader I, Arnér ES, Johansson K, Bast A, Haenen GR. Rutin protects against H 2 O 2 -triggered impaired relaxation of placental arterioles and induces Nrf2-mediated adaptation in Human Umbilical Vein Endothelial Cells exposed to oxidative stress. Biochim Biophys Acta Gen Subj 2017; 1861:1177-1189. [DOI: 10.1016/j.bbagen.2017.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 01/06/2023]
|
50
|
Coggins BL, Collins JW, Holbrook KJ, Yampolsky LY. Antioxidant capacity, lipid peroxidation, and lipid composition changes during long-term and short-term thermal acclimation in Daphnia. J Comp Physiol B 2017; 187:1091-1106. [DOI: 10.1007/s00360-017-1090-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 11/28/2022]
|