1
|
Abstract
As a transcriptional factor and the negative regulator of alpha fetal protein (AFP), Zinc fingers and homeoboxes 2 (ZHX2) has a well-established role in protection against hepatocellular carcinoma (HCC). However, recent studies have suggested ZHX2 as an oncogene in clear cell renal cell carcinoma (ccRCC) and triple-negative breast cancer (TNBC). Moreover, mounting evidence has illustrated a much broader role of ZHX2 in multiple cellular processes, including cell proliferation, cell differentiation, lipid metabolism, and immunoregulation. This comprehensive review emphasizes the role of ZHX2 in health and diseases which have been more recently uncovered.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Farrell C, Mumford P, Wiseman FK. Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches. Front Neurosci 2022; 16:909669. [PMID: 35747206 PMCID: PMC9209729 DOI: 10.3389/fnins.2022.909669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis. DS is caused by trisomy of chromosome 21 (Hsa21) thus an additional copy of a gene(s) on the chromosome must cause the development of AD neuropathology and dementia. Indeed, triplication of the gene APP which encodes the amyloid precursor protein is sufficient and necessary for early onset AD (EOAD), both in people who have and do not have DS. However, triplication of other genes on Hsa21 leads to profound differences in neurodevelopment resulting in intellectual disability, elevated incidence of epilepsy and perturbations to the immune system. This different biology may impact on how AD neuropathology and dementia develops in people who have DS. Indeed, genes on Hsa21 other than APP when in three-copies can modulate AD-pathogenesis in mouse preclinical models. Understanding this biology better is critical to inform drug selection for AD prevention and therapy trials for people who have DS. Here we will review rodent preclinical models of AD-DS and how these can be used for both in vivo and ex vivo (cultured cells and organotypic slice cultures) studies to understand the mechanisms that contribute to the early development of AD in people who have DS and test the utility of treatments to prevent or delay the development of disease.
Collapse
|
3
|
Tang XY, Xu L, Wang J, Hong Y, Wang Y, Zhu Q, Wang D, Zhang XY, Liu CY, Fang KH, Han X, Wang S, Wang X, Xu M, Bhattacharyya A, Guo X, Lin M, Liu Y. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J Clin Invest 2021; 131:135763. [PMID: 33945512 DOI: 10.1172/jci135763] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, occurs in 1 of every 800 live births. Early defects in cortical development likely account for the cognitive impairments in DS, although the underlying molecular mechanism remains elusive. Here, we performed histological assays and unbiased single-cell RNA-Seq (scRNA-Seq) analysis on cerebral organoids derived from 4 euploid cell lines and from induced pluripotent stem cells (iPSCs) from 3 individuals with trisomy 21 to explore cell-type-specific abnormalities associated with DS during early brain development. We found that neurogenesis was significantly affected, given the diminished proliferation and decreased expression of layer II and IV markers in cortical neurons in the subcortical regions; this may have been responsible for the reduced size of the organoids. Furthermore, suppression of the DSCAM/PAK1 pathway, which showed enhanced activity in DS, using CRISPR/Cas9, CRISPR interference (CRISPRi), or small-molecule inhibitor treatment reversed abnormal neurogenesis, thereby increasing the size of organoids derived from DS iPSCs. Our study demonstrates that 3D cortical organoids developed in vitro are a valuable model of DS and provide a direct link between dysregulation of the DSCAM/PAK1 pathway and developmental brain defects in DS.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Lei Xu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Jingshen Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Hong
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Zhu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Da Wang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Xin-Yue Zhang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Chun-Yue Liu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai-Heng Fang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Xiao Han
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Shihua Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Min Xu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Anita Bhattacharyya
- Waisman Center and.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Liu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| |
Collapse
|
4
|
Duchon A, Del Mar Muniz Moreno M, Martin Lorenzo S, Silva de Souza MP, Chevalier C, Nalesso V, Meziane H, Loureiro de Sousa P, Noblet V, Armspach JP, Brault V, Herault Y. Multi-influential genetic interactions alter behaviour and cognition through six main biological cascades in Down syndrome mouse models. Hum Mol Genet 2021; 30:771-788. [PMID: 33693642 PMCID: PMC8161522 DOI: 10.1093/hmg/ddab012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is the most common genetic form of intellectual disability caused by the presence of an additional copy of human chromosome 21 (Hsa21). To provide novel insights into genotype–phenotype correlations, we used standardized behavioural tests, magnetic resonance imaging and hippocampal gene expression to screen several DS mouse models for the mouse chromosome 16 region homologous to Hsa21. First, we unravelled several genetic interactions between different regions of chromosome 16 and how they contribute significantly to altering the outcome of the phenotypes in brain cognition, function and structure. Then, in-depth analysis of misregulated expressed genes involved in synaptic dysfunction highlighted six biological cascades centred around DYRK1A, GSK3β, NPY, SNARE, RHOA and NPAS4. Finally, we provide a novel vision of the existing altered gene–gene crosstalk and molecular mechanisms targeting specific hubs in DS models that should become central to better understanding of DS and improving the development of therapies.
Collapse
Affiliation(s)
- Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Maria Del Mar Muniz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Sandra Martin Lorenzo
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Marcia Priscilla Silva de Souza
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Claire Chevalier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Valérie Nalesso
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | | | - Vincent Noblet
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Jean-Paul Armspach
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Veronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France.,Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
5
|
Shimizu R, Ishihara K, Kawashita E, Sago H, Yamakawa K, Mizutani KI, Akiba S. Decrease in the T-box1 gene expression in embryonic brain and adult hippocampus of down syndrome mouse models. Biochem Biophys Res Commun 2021; 535:87-92. [PMID: 33348080 DOI: 10.1016/j.bbrc.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022]
Abstract
Down syndrome (DS, Trisomy 21) is the most common genetic cause of delayed fetal brain development and postnatal intellectual disability. Although delayed fetal brain development might be involved in intellectual disability, no evidence of an association between these abnormal phenotypes has been shown. To identify molecules differentially expressed in both the prenatal forebrain and adult hippocampus of Ts1Cje mice, a mouse model of DS, we employed a transcriptomic analysis. In the present study, we conducted transcriptomic profiling of the hippocampus of adult Ts1Cje mice and compared the results with the previously obtained transcriptomic profile of the prenatal forebrain at embryonic day 14.5. Results showed that the Tbx1 mRNA expression was decreased at both life stages. In addition, the decreased expression of Tbx1 mRNA was confirmed in other DS mouse models, Dp(16)1Yey/+ and Ts1Rhr mice, which carry longer and shorter trisomic regions, respectively. Taken together, these findings suggest that Tbx1 may link the delayed fetal brain development and intellectual disability in DS.
Collapse
Affiliation(s)
- Ryohei Shimizu
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan.
| | - Eri Kawashita
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, 650-8586, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| |
Collapse
|
6
|
Schachtschneider KM, Welge ME, Auvil LS, Chaki S, Rund LA, Madsen O, Elmore MR, Johnson RW, Groenen MA, Schook LB. Altered Hippocampal Epigenetic Regulation Underlying Reduced Cognitive Development in Response to Early Life Environmental Insults. Genes (Basel) 2020; 11:genes11020162. [PMID: 32033187 PMCID: PMC7074491 DOI: 10.3390/genes11020162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is involved in learning and memory and undergoes significant growth and maturation during the neonatal period. Environmental insults during this developmental timeframe can have lasting effects on brain structure and function. This study assessed hippocampal DNA methylation and gene transcription from two independent studies reporting reduced cognitive development stemming from early life environmental insults (iron deficiency and porcine reproductive and respiratory syndrome virus (PRRSv) infection) using porcine biomedical models. In total, 420 differentially expressed genes (DEGs) were identified between the reduced cognition and control groups, including genes involved in neurodevelopment and function. Gene ontology (GO) terms enriched for DEGs were associated with immune responses, angiogenesis, and cellular development. In addition, 116 differentially methylated regions (DMRs) were identified, which overlapped 125 genes. While no GO terms were enriched for genes overlapping DMRs, many of these genes are known to be involved in neurodevelopment and function, angiogenesis, and immunity. The observed altered methylation and expression of genes involved in neurological function suggest reduced cognition in response to early life environmental insults is due to altered cholinergic signaling and calcium regulation. Finally, two DMRs overlapped with two DEGs, VWF and LRRC32, which are associated with blood brain barrier permeability and regulatory T-cell activation, respectively. These results support the role of altered hippocampal DNA methylation and gene expression in early life environmentally-induced reductions in cognitive development across independent studies.
Collapse
Affiliation(s)
- Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Michael E. Welge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Loretta S. Auvil
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Monica R.P. Elmore
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Martien A.M. Groenen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
- Correspondence:
| |
Collapse
|
7
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
8
|
Ishihara K, Shimizu R, Takata K, Kawashita E, Amano K, Shimohata A, Low D, Nabe T, Sago H, Alexander WS, Ginhoux F, Yamakawa K, Akiba S. Perturbation of the immune cells and prenatal neurogenesis by the triplication of the Erg gene in mouse models of Down syndrome. Brain Pathol 2019; 30:75-91. [PMID: 31206867 DOI: 10.1111/bpa.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Some mouse models of Down syndrome (DS), including Ts1Cje mice, exhibit impaired prenatal neurogenesis with yet unknown molecular mechanism. To gain insights into the impaired neurogenesis, a transcriptomic and flow cytometry analysis of E14.5 Ts1Cje embryo brain was performed. Our analysis revealed that the neutrophil and monocyte ratios in the CD45-positive hematopoietic cells were relatively increased, in agreement with the altered expression of inflammation/immune-related genes, in Ts1Cje embryonic brain, whereas the relative number of brain macrophages was decreased in comparison to wild-type mice. Similar upregulation of inflammation-associated mRNAs was observed in other DS mouse models, with variable trisomic region lengths. We used genetic manipulation to assess the contribution of Erg, a trisomic gene in these DS models, known to regulation hemato-immune cells. The perturbed proportions of immune cells in Ts1Cje mouse brain were restored in Ts1Cje-Erg+/+/Mld2 mice, which are disomic for functional Erg but otherwise trisomic on a Ts1Cje background. Moreover, the embryonic neurogenesis defects observed in Ts1Cje cortex were reduced in Ts1Cje-Erg+/+/Mld2 embryos. Our findings suggest that Erg gene triplication contributes to the dysregulation of the homeostatic proportion of the populations of immune cells in the embryonic brain and decreased prenatal cortical neurogenesis in the prenatal brain with DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryohei Shimizu
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuyuki Takata
- Department of Clinical and Translational Physiology, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eri Kawashita
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Warren S Alexander
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
9
|
Sachse SM, Lievens S, Ribeiro LF, Dascenco D, Masschaele D, Horré K, Misbaer A, Vanderroost N, De Smet AS, Salta E, Erfurth ML, Kise Y, Nebel S, Van Delm W, Plaisance S, Tavernier J, De Strooper B, De Wit J, Schmucker D. Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO J 2019; 38:embj.201899669. [PMID: 30745319 DOI: 10.15252/embj.201899669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.
Collapse
Affiliation(s)
- Sonja M Sachse
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sam Lievens
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Luís F Ribeiro
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Delphine Masschaele
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien Horré
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anke Misbaer
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nele Vanderroost
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne Sophie De Smet
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evgenia Salta
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Yoshiaki Kise
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Siegfried Nebel
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | | - Jan Tavernier
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Dementia Research Institute, University College London, London, UK
| | - Joris De Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dietmar Schmucker
- VIB Center for Brain & Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Aziz NM, Guedj F, Pennings JLA, Olmos-Serrano JL, Siegel A, Haydar TF, Bianchi DW. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis Model Mech 2018; 11:dmm031013. [PMID: 29716957 PMCID: PMC6031353 DOI: 10.1242/dmm.031013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Faycal Guedj
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Jose Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ashley Siegel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Diana W Bianchi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Lowe SA, Hodge JJL, Usowicz MM. A third copy of the Down syndrome cell adhesion molecule (Dscam) causes synaptic and locomotor dysfunction in Drosophila. Neurobiol Dis 2017; 110:93-101. [PMID: 29196216 PMCID: PMC5773243 DOI: 10.1016/j.nbd.2017.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Down syndrome (DS) is caused by triplication of chromosome 21 (HSA21). It is characterised by intellectual disability and impaired motor coordination that arise from changes in brain volume, structure and function. However, the contribution of each HSA21 gene to these various phenotypes and to the causal alterations in neuronal and synaptic structure and function are largely unknown. Here we have investigated the effect of overexpression of the HSA21 gene DSCAM (Down syndrome cell adhesion molecule), on glutamatergic synaptic transmission and motor coordination, using Drosophila expressing three copies of Dscam1. Electrophysiological recordings of miniature and evoked excitatory junction potentials at the glutamatergic neuromuscular junction of Drosophila larvae showed that the extra copy of Dscam1 changed the properties of spontaneous and electrically-evoked transmitter release and strengthened short-term synaptic depression during high-frequency firing of the motor nerve. Behavioural analyses uncovered impaired locomotor coordination despite preserved gross motor function. This work identifies DSCAM as a candidate causative gene in DS that is sufficient to modify synaptic transmission and synaptic plasticity and cause a DS behavioural phenotype. Drosophila expressing a third copy of Dscam have altered neuromuscular transmission. Drosophila expressing a third copy of Dscam have deficits in locomotor coordination. Drosophila are a powerful system for studying single-gene effects in Down syndrome.
Collapse
Affiliation(s)
- Simon A Lowe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Maria M Usowicz
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
12
|
A Comprehensive Diverse '-omics' Approach to Better Understanding the Molecular Pathomechanisms of Down Syndrome. Brain Sci 2017; 7:brainsci7040044. [PMID: 28430122 PMCID: PMC5406701 DOI: 10.3390/brainsci7040044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Diverse ‘-omics’ technologies permit the comprehensive quantitative profiling of a variety of biological molecules. Comparative ‘-omics’ analyses, such as transcriptomics and proteomics, are powerful and useful tools for unraveling the molecular pathomechanisms of various diseases. As enhanced oxidative stress has been demonstrated in humans and mice with Down syndrome (DS), a redox proteomic analysis is useful for understanding how enhanced oxidative stress aggravates the state of individuals with oxidative stress-related disorders. In this review, ‘-omics’ analyses in humans with DS and mouse models of DS are summarized, and the molecular dissection of this syndrome is discussed.
Collapse
|
13
|
Shimohata A, Ishihara K, Hattori S, Miyamoto H, Morishita H, Ornthanalai G, Raveau M, Ebrahim AS, Amano K, Yamada K, Sago H, Akiba S, Mataga N, Murphy NP, Miyakawa T, Yamakawa K. Ts1Cje Down syndrome model mice exhibit environmental stimuli-triggered locomotor hyperactivity and sociability concurrent with increased flux through central dopamine and serotonin metabolism. Exp Neurol 2017; 293:1-12. [PMID: 28336394 DOI: 10.1016/j.expneurol.2017.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/26/2022]
Abstract
Ts1Cje mice have a segmental trisomy of chromosome 16 that is orthologous to human chromosome 21 and display Down syndrome-like cognitive impairments. Despite the occurrence of affective and emotional impairments in patients with Down syndrome, these parameters are poorly documented in Down syndrome mouse models, including Ts1Cje mice. Here, we conducted comprehensive behavioral analyses, including anxiety-, sociability-, and depression-related tasks, and biochemical analyses of monoamines and their metabolites in Ts1Cje mice. Ts1Cje mice showed enhanced locomotor activity in novel environments and increased social contact with unfamiliar partners when compared with wild-type littermates, but a significantly lower activity in familiar environments. Ts1Cje mice also exhibited some signs of decreased depression like-behavior. Furthermore, Ts1Cje mice showed monoamine abnormalities, including increased extracellular dopamine and serotonin, and enhanced catabolism in the striatum and ventral forebrain. This study constitutes the first report of deviated monoamine metabolism that may help explain the basis for abnormal behaviors, including the environmental stimuli-triggered hyperactivity, increased sociability and decreased depression-like behavior in Ts1Cje mice.
Collapse
Affiliation(s)
- Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiichi Ishihara
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hiromasa Morishita
- Support Unit for Bio-Material Analysis, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Guy Ornthanalai
- Molecular and Neuropathology Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Abdul Shukkur Ebrahim
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Internal Medicine-Lymphoma Research Lab, Wayne State University & School of Medicine, Room#8229, Scott Hall, 540E Canfield, Detroit, MI 48201, USA
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kazuyuki Yamada
- School of Management, Shizuoka Sangyo University, 1572-1, Owara, Iwata-shi, Shizuoka 438-0043, Japan
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal and Reproductive Medecine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Nobuko Mataga
- Support Unit for Bio-Material Analysis, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Niall P Murphy
- Molecular and Neuropathology Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka, Okazaki, Aichi 444-8585, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
14
|
Tramutola A, Pupo G, Di Domenico F, Barone E, Arena A, Lanzillotta C, Brokeaart D, Blarzino C, Head E, Butterfield DA, Perluigi M. Activation of p53 in Down Syndrome and in the Ts65Dn Mouse Brain is Associated with a Pro-Apoptotic Phenotype. J Alzheimers Dis 2017; 52:359-371. [PMID: 26967221 DOI: 10.3233/jad-151105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, resulting from trisomy of chromosome 21. The main feature of DS neuropathology includes early onset of Alzheimer's disease (AD), with deposition of senile plaques and tangles. We hypothesized that apoptosis may be activated in the presence of AD neuropathology in DS, thus we measured proteins associated with upstream and downstream pathways of p53 in the frontal cortex from DS cases with and without AD pathology and from Ts65Dn mice, at different ages. We observed increased acetylation and phosphorylation of p53, coupled to reduced MDM2/p53 complex level and lower levels of SIRT1. Activation of p53 was associated with a number of targets (BAX, PARP1, caspase-3, p21, heat shock proteins, and PGC1α) that were modulated in both DS and DS/AD compared with age-matched controls. In particular, the most relevant changes (increased p-p53 and acetyl-p53 and reduced formation of MDM2/p53 complex) were found to be modified only in the presence of AD pathology in DS. In addition, a similar pattern of alterations in the p53 pathway was found in Ts65Dn mice. These results suggest that p53 may integrate different signals, which can result in a pro-apoptotic-phenotype contributing to AD neuropathology in people with DS.
Collapse
Affiliation(s)
| | - Gilda Pupo
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Providencia, Santiago, Chile
| | - Andrea Arena
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | | | - Carla Blarzino
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Elizabeth Head
- Sanders-Brown Center of Aging, University of Kentucky, Lexington KY, USA
| | - D Allan Butterfield
- Sanders-Brown Center of Aging, University of Kentucky, Lexington KY, USA.,Department of Chemistry, University of Kentucky, Lexington KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
15
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
16
|
Ferrés MA, Bianchi DW, Siegel AE, Bronson RT, Huggins GS, Guedj F. Perinatal Natural History of the Ts1Cje Mouse Model of Down Syndrome: Growth Restriction, Early Mortality, Heart Defects, and Delayed Development. PLoS One 2016; 11:e0168009. [PMID: 27930746 PMCID: PMC5145234 DOI: 10.1371/journal.pone.0168009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
Background The Ts1Cje model of Down syndrome is of particular interest for perinatal studies because affected males are fertile. This permits affected pups to be carried in wild-type females, which is similar to human pregnancies. Here we describe the early natural history and growth profiles of Ts1Cje embryos and neonates and determine if heart defects are present in this strain. Methods Pups were studied either on embryonic (E) day 15.5, or from postnatal (P) day 3 through weaning on P21. PCR amplification targeting the neomycin cassette (present in Ts1Cje) and Sry (present in males) was used to analyze pup genotypes and sex ratios. Body weights and lengths, as well as developmental milestones, were recorded in Ts1Cje mice and compared to their wild-type (WT) littermates. Histological evaluations were performed at E15.5 to investigate the presence or absence of heart defects. Pups were divided into two groups: Ts1Cje-I pups survived past weaning and Ts1Cje-II pups died at some point before P21. Results Ts1Cje mouse embryos showed expected Mendelian ratios (45.8%, n = 66 for Ts1Cje embryos; 54.2%, n = 78 for WT embryos). Histological analysis revealed the presence of ventricular septal defects (VSDs) in 21% of Ts1Cje E15.5 embryos. After weaning, only 28.2% of pups were Ts1Cje (185 Ts1Cje out of 656 total pups generated), with males predominating (male:female ratio of 1.4:1). Among the recovered dead pups (n = 207), Ts1Cje (63.3%, n = 131, p<0.01) genotype was found significantly more often than WT (36.7%, n = 76). Retrospective analysis of Ts1Cje-II (pre-weaning deceased) pups showed that they were growth restricted compared to Ts1Cje-I pups (post-weaning survivors). Growth restriction correlated with statistically significant delays in achieving several neonatal milestones between P3 and P21 compared to Ts1Cje-I (post-weaning survivors) neonates and WT littermates. Conclusions Ts1Cje genotype is not associated with increased early in utero mortality. Cardiac defects, specifically VSDs, are part of the phenotype in this strain. There is increased neonatal mortality in Ts1Cje pups, with sex differences observed. Ts1Cje mice that died in the neonatal period were more likely to be growth restricted and delayed in achieving neonatal developmental milestones.
Collapse
Affiliation(s)
- Millie A. Ferrés
- Mother Infant Research Institute (MIRI) at Tufts Medical Center and Floating Hospital for Children, Boston, MA, United States
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- * E-mail: (FG); (MAF)
| | - Diana W. Bianchi
- Mother Infant Research Institute (MIRI) at Tufts Medical Center and Floating Hospital for Children, Boston, MA, United States
| | - Ashley E. Siegel
- Mother Infant Research Institute (MIRI) at Tufts Medical Center and Floating Hospital for Children, Boston, MA, United States
| | - Roderick T. Bronson
- Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Gordon S. Huggins
- Molecular Cardiology Research Institute (MCRI) at Tufts Medical Center, Boston, MA, United States
| | - Faycal Guedj
- Mother Infant Research Institute (MIRI) at Tufts Medical Center and Floating Hospital for Children, Boston, MA, United States
- * E-mail: (FG); (MAF)
| |
Collapse
|
17
|
Créau N, Cabet E, Daubigney F, Souchet B, Bennaï S, Delabar J. Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models. Brain Res 2016; 1646:342-353. [PMID: 27297494 DOI: 10.1016/j.brainres.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 12/27/2022]
Abstract
Down syndrome, or trisomy 21, has been modeled with various trisomic and transgenic mice to help understand the consequences of an altered gene dosage in brain development and function. Though Down syndrome has been associated with premature aging, little is known about the molecular and cellular alterations that target brain function. To help identify alterations at specific ages, we analyzed the cerebellum of Ts1Cje mice, trisomic for 77 HSA21 orthologs, at three ages-young (4 months), middle-age (12 months), and old (17 months)-compared to age-matched controls. Quantification of neuronal and glial markers (n=11) revealed increases in GFAP, with an age effect, and S100B, with age and genotype effects. The genotype effect on S100B with age was unexpected as Ts1Cje has only two copies of the S100b gene. Interestingly, the different increase in GFAP observed between Ts1Cje (trisomic segment includes Pcp4 gene) and controls was magnified in TgPCP4 mice (1 extra copy of the human PCP4 gene) at the same age. S100B increase was not found in the TgPCP4 confirming a difference of regulation with aging for GFAP and S100B and excluding the calcium signaling regulator, Pcp4, as a potential candidate for increase of S100B in the Ts1Cje. To understand these differences, comparison of GFAP and S100B immunostainings at young and middle-age were performed. Immunohistochemical detection of differences in GFAP and S100B localization with aging implicate S100B+ oligodendrocytes as a new phenotypic target in this specific aging process.
Collapse
Affiliation(s)
- Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France.
| | - Eva Cabet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Benoit Souchet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Soumia Bennaï
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Jean Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| |
Collapse
|
18
|
Abstract
Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.
Collapse
|
19
|
Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain. Neural Plast 2016; 2016:7434191. [PMID: 26881131 PMCID: PMC4737457 DOI: 10.1155/2016/7434191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition.
Collapse
|
20
|
Edlow AG, Slonim DK, Wick HC, Hui L, Bianchi DW. The pathway not taken: understanding 'omics data in the perinatal context. Am J Obstet Gynecol 2015; 213:59.e1-59.e172. [PMID: 25772209 DOI: 10.1016/j.ajog.2015.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/20/2015] [Accepted: 03/10/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE 'Omics analysis of large datasets has an increasingly important role in perinatal research, but understanding gene expression analyses in the fetal context remains a challenge. We compared the interpretation provided by a widely used systems biology resource (ingenuity pathway analysis [IPA]) with that from gene set enrichment analysis (GSEA) with functional annotation curated specifically for the fetus (Developmental FunctionaL Annotation at Tufts [DFLAT]). STUDY DESIGN Using amniotic fluid supernatant transcriptome datasets previously produced by our group, we analyzed 3 different developmental perturbations: aneuploidy (Trisomy 21 [T21]), hemodynamic (twin-twin transfusion syndrome [TTTS]), and metabolic (maternal obesity) vs sex- and gestational age-matched control subjects. Differentially expressed probe sets were identified with the use of paired t-tests with the Benjamini-Hochberg correction for multiple testing (P < .05). Functional analyses were performed with IPA and GSEA/DFLAT. Outputs were compared for biologic relevance to the fetus. RESULTS Compared with control subjects, there were 414 significantly dysregulated probe sets in T21 fetuses, 2226 in TTTS recipient twins, and 470 in fetuses of obese women. Each analytic output was unique but complementary. For T21, both IPA and GSEA/DFLAT identified dysregulation of brain, cardiovascular, and integumentary system development. For TTTS, both analytic tools identified dysregulation of cell growth/proliferation, immune and inflammatory signaling, brain, and cardiovascular development. For maternal obesity, both tools identified dysregulation of immune and inflammatory signaling, brain and musculoskeletal development, and cell death. GSEA/DFLAT identified substantially more dysregulated biologic functions in fetuses of obese women (1203 vs 151). For all 3 datasets, GSEA/DFLAT provided more comprehensive information about brain development. IPA consistently provided more detailed annotation about cell death. IPA produced many dysregulated terms that pertained to cancer (14 in T21, 109 in TTTS, 26 in maternal obesity); GSEA/DFLAT did not. CONCLUSION Interpretation of the fetal amniotic fluid supernatant transcriptome depends on the analytic program, which suggests that >1 resource should be used. Within IPA, physiologic cellular proliferation in the fetus produced many "false positive" annotations that pertained to cancer, which reflects its bias toward adult diseases. This study supports the use of gene annotation resources with a developmental focus, such as DFLAT, for 'omics studies in perinatal medicine.
Collapse
|
21
|
Guedj F, Pennings JLA, Ferres MA, Graham LC, Wick HC, Miczek KA, Slonim DK, Bianchi DW. The fetal brain transcriptome and neonatal behavioral phenotype in the Ts1Cje mouse model of Down syndrome. Am J Med Genet A 2015; 167A:1993-2008. [PMID: 25975229 DOI: 10.1002/ajmg.a.37156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/27/2015] [Indexed: 11/07/2022]
Abstract
Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3-21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and postnatal neurocognition.
Collapse
Affiliation(s)
- Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Jeroen L A Pennings
- Center for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Millie A Ferres
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Leah C Graham
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| |
Collapse
|