1
|
Stellingwerff MD, Al-Saady ML, Chan KS, Dvorak A, Marques JP, Kolind S, Schoenmakers DH, van Voorst R, Roosendaal SD, Barkhof F, Wolf NI, Berkhof J, Pouwels PJW, van der Knaap MS. Quantitative MRI distinguishes different leukodystrophies and correlates with clinical measures. Eur Radiol 2025; 35:1845-1857. [PMID: 39320477 PMCID: PMC11914348 DOI: 10.1007/s00330-024-11089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The leukodystrophy "vanishing white matter" (VWM) and "metachromatic leukodystrophy" (MLD) affect the brain's white matter, but have very different underlying pathology. We aim to determine whether quantitative MRI reflects known neuropathological differences and correlates with clinical scores in these leukodystrophies. METHODS VWM and MLD patients and controls were prospectively included between 2020 and 2023. Clinical scores were recorded. MRI at 3 T included multi-compartment relaxometry diffusion-informed myelin water imaging (MCR-DIMWI) and multi-echo T2-relaxation imaging with compressed sensing (METRICS) to determine myelin water fractions (MWF). Multi-shell diffusion-weighted data were used for diffusion tensor imaging measures and neurite orientation dispersion and density imaging (NODDI) analysis, which estimates neurite density index, orientation dispersion index, and free water fraction. As quantitative MRI measures are age-dependent, ratios between actual and age-expected MRI measures were calculated. We performed the multilevel analysis with subsequent post-hoc and correlation tests to assess differences between groups and clinico-radiological correlations. RESULTS Sixteen control (age range: 2.3-61.3 years, 8 male), 37 VWM (2.4-56.5 years, 20 male), and 14 MLD (2.2-41.7 years, 6 male) subjects were included. Neurite density index and MWF were lower in patients than in controls (p < 0.001). Free water fraction was highest in VWM (p = 0.01), but similar to controls in MLD (p = 0.99). Changes in diffusion tensor imaging measures relative to controls were generally more pronounced in VWM than in MLD. In both patient groups, MCR-DIMWI MWF correlated strongest with clinical measures. CONCLUSION Quantitative MRI correlates to clinical measures and yields differential profiles in VWM and MLD, in line with differences in neuropathology. KEY POINTS Question Can quantitative MRI reflect known neuropathological differences and correlate with clinical scores for these leukodystrophies? Finding Quantitative MRI measures, e.g., MWF, neurite density index, and free water fraction differ between leukodystrophies and controls, in correspondence to known histological differences. Clinical relevance MRI techniques producing quantitative, biologically-specific, measures regarding the health of myelin and axons deliver more comprehensive information regarding pathological changes in leukodystrophies than current approaches, and are thus viable tools for monitoring patients and providing clinical trial outcome measures.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Murtadha L Al-Saady
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Kwok-Shing Chan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Adam Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Shannon Kolind
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Daphne H Schoenmakers
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Romy van Voorst
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Stefan D Roosendaal
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers and Amsterdam Neuroscience, Amsterdam, The Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Johannes Berkhof
- Department of Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Chen CW, Papadopoli D, Szkop KJ, Guan BJ, Alzahrani M, Wu J, Jobava R, Asraf MM, Krokowski D, Vourekas A, Merrick WC, Komar AA, Koromilas AE, Gorospe M, Payea MJ, Wang F, Clayton BLL, Tesar PJ, Schaffer A, Miron A, Bederman I, Jankowsky E, Vogel C, Valášek LS, Dinman JD, Zhang Y, Tirosh B, Larsson O, Topisirovic I, Hatzoglou M. Plasticity of the mammalian integrated stress response. Nature 2025:10.1038/s41586-025-08794-6. [PMID: 40140574 DOI: 10.1038/s41586-025-08794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025]
Abstract
An increased level of phosphorylation of eukaryotic translation initiation factor 2 subunit-α (eIF2α, encoded by EIF2S1; eIF2α-p) coupled with decreased guanine nucleotide exchange activity of eIF2B is a hallmark of the 'canonical' integrated stress response (c-ISR)1. It is unclear whether impaired eIF2B activity in human diseases including leukodystrophies2, which occurs in the absence of eIF2α-p induction, is synonymous with the c-ISR. Here we describe a mechanism triggered by decreased eIF2B activity, distinct from the c-ISR, which we term the split ISR (s-ISR). The s-ISR is characterized by translational and transcriptional programs that are different from those observed in the c-ISR. Opposite to the c-ISR, the s-ISR requires eIF4E-dependent translation of the upstream open reading frame 1 and subsequent stabilization of ATF4 mRNA. This is followed by altered expression of a subset of metabolic genes (for example, PCK2), resulting in metabolic rewiring required to maintain cellular bioenergetics when eIF2B activity is attenuated. Overall, these data demonstrate a plasticity of the mammalian ISR, whereby the loss of eIF2B activity in the absence of eIF2α-p induction activates the eIF4E-ATF4-PCK2 axis to maintain energy homeostasis.
Collapse
Affiliation(s)
- Chien-Wen Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - David Papadopoli
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Krzysztof J Szkop
- Department of Oncology-Pathology, Karolinska Institute, Science of Life Laboratory, Solna, Sweden
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Mohammed Alzahrani
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mais M Asraf
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - William C Merrick
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Anton A Komar
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Clinical and Translational Research, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute of Aging Intramural Research Program, NIH, Baltimore, MD, USA
| | - Matthew J Payea
- Laboratory of Genetics and Genomics, National Institute of Aging Intramural Research Program, NIH, Baltimore, MD, USA
| | - Fangfang Wang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Institute for Glial Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Institute for Glial Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, USA
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ola Larsson
- Department of Oncology-Pathology, Karolinska Institute, Science of Life Laboratory, Solna, Sweden.
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
- Division of Clinical and Translational Research, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Fernandes MGF, Pernin F, Antel JP, Kennedy TE. From BBB to PPP: Bioenergetic requirements and challenges for oligodendrocytes in health and disease. J Neurochem 2025; 169:e16219. [PMID: 39253904 PMCID: PMC11657931 DOI: 10.1111/jnc.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Mature myelinating oligodendrocytes, the cells that produce the myelin sheath that insulates axons in the central nervous system, have distinct energetic and metabolic requirements compared to neurons. Neurons require substantial energy to execute action potentials, while the energy needs of oligodendrocytes are directed toward building the lipid-rich components of myelin and supporting neuronal metabolism by transferring glycolytic products to axons as additional fuel. The utilization of energy metabolites in the brain parenchyma is tightly regulated to meet the needs of different cell types. Disruption of the supply of metabolites can lead to stress and oligodendrocyte injury, contributing to various neurological disorders, including some demyelinating diseases. Understanding the physiological properties, structures, and mechanisms involved in oligodendrocyte energy metabolism, as well as the relationship between oligodendrocytes and neighboring cells, is crucial to investigate the underlying pathophysiology caused by metabolic impairment in these disorders. In this review, we describe the particular physiological properties of oligodendrocyte energy metabolism and the response of oligodendrocytes to metabolic stress. We delineate the relationship between oligodendrocytes and other cells in the context of the neurovascular unit, and the regulation of metabolite supply according to energetic needs. We focus on the specific bioenergetic requirements of oligodendrocytes and address the disruption of metabolic energy in demyelinating diseases. We encourage further studies to increase understanding of the significance of metabolic stress on oligodendrocyte injury, to support the development of novel therapeutic approaches for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Milton Guilherme Forestieri Fernandes
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Florian Pernin
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Jack P. Antel
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Timothy E. Kennedy
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Hol EM, Dykstra W, Chevalier J, Cuadrado E, Bugiani M, Aronica E, Verkhratsky A. Neuroglia in leukodystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:159-175. [PMID: 40148043 DOI: 10.1016/b978-0-443-19102-2.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic neurologic disorders characterized by white matter degeneration resulting from mutations affecting glial cells. This review focuses on the primary subtypes-astroglial, oligodendroglial, and microglial leukodystrophies-offering a detailed description of their neuropathologic features and clinical manifestations. It delves into key aspects of the pathogenesis, emphasizing the distinct cellular mechanisms that drive white matter damage. Advances in disease modeling, including the development of animal models with pathologic gene expressions and patient-derived iPS-cell models, have significantly enhanced our understanding of these rare disorders. Insights into the roles of different glial cell types highlight the complexity of leukodystrophies and provide a foundation for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Juliette Chevalier
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eloy Cuadrado
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
5
|
Thuppanattumadam Ananthasubramanian S, Arunachal G, Padmanabha H, Mahale RR. Adult-Onset EIF2B-Pathies: A Clinical, Imaging and Genetic Profiling with Literature Review. Can J Neurol Sci 2024:1-8. [PMID: 39450483 DOI: 10.1017/cjn.2024.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Vanishing white matter syndrome is one of the leukoencephalopathies caused by recessive mutations in gene EIF2B1-5. Adult-onset EIF2B-pathies (clinical onset after age 16 years) have been reported to be less common. OBJECTIVE Description of the clinical, imaging and genetic profile of adult-onset EIF2B-pathies and comparison of Indian cohort with Asian and European cohorts. METHODS Report of two cases of adult-onset EIF2B-pathies and a comprehensive review of genetically confirmed adult-onset EIF2B-pathies since 2001 from Indian, Asian and European cohorts. RESULTS Two patients were females, with median age at presentation of 25.5 years (24-27 years) and onset at 19 years (18-20 years). The median duration of symptoms was 6.5 years (6-7 years). Both had cerebellar ataxia, spasticity, cognitive impairment and bladder involvement. Brain magnetic resonance imaging (MRI) showed leukoencephalopathy with rarefaction in both patients and corpus callosum involvement in one patient. Genetics showed homozygous missense variant in the EIF2B3 gene in both patients. The Indian cohort of seven patients had similar clinical and radiological features and common variants in EIF2B3 (n = 4). The Asian cohort had 24 cases, and the European cohort had 61 cases with similar clinical features, radiological features and common variants in EIF2B5. CONCLUSION Adult-onset EIF2B-pathies have a distinct clinical profile of female predominance with cerebellar ataxia, spasticity and cognitive decline as the commonest triad of clinical manifestations and leukoencephalopathy with rarefaction on brain MRI. Variants in EIF2B5 were common in the Asian and European cohorts and EIF2B3 in the Indian cohort.
Collapse
Affiliation(s)
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Rohan Ramachandra Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| |
Collapse
|
6
|
Yulyaningsih E, Suh JH, Fanok M, Chau R, Solanoy H, Takahashi R, Bakardjiev AI, Becerra I, Benitez NB, Chiu CL, Davis SS, Dowdle WE, Earr T, Estrada AA, Gill A, Ha C, Haddick PCG, Henne KR, Larhammar M, Leung AWS, Maciuca R, Memarzadeh B, Nguyen HN, Nugent AA, Osipov M, Ran Y, Rebadulla K, Roche E, Sandmann T, Wang J, Lewcock JW, Scearce-Levie K, Kane LA, Sanchez PE. DNL343 is an investigational CNS penetrant eukaryotic initiation factor 2B activator that prevents and reverses the effects of neurodegeneration caused by the integrated stress response. eLife 2024; 12:RP92173. [PMID: 39287504 PMCID: PMC11407769 DOI: 10.7554/elife.92173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The integrated stress response (ISR) is a conserved pathway in eukaryotic cells that is activated in response to multiple sources of cellular stress. Although acute activation of this pathway restores cellular homeostasis, intense or prolonged ISR activation perturbs cell function and may contribute to neurodegeneration. DNL343 is an investigational CNS-penetrant small-molecule ISR inhibitor designed to activate the eukaryotic initiation factor 2B (eIF2B) and suppress aberrant ISR activation. DNL343 reduced CNS ISR activity and neurodegeneration in a dose-dependent manner in two established in vivo models - the optic nerve crush injury and an eIF2B loss of function (LOF) mutant - demonstrating neuroprotection in both and preventing motor dysfunction in the LOF mutant mouse. Treatment with DNL343 at a late stage of disease in the LOF model reversed elevation in plasma biomarkers of neuroinflammation and neurodegeneration and prevented premature mortality. Several proteins and metabolites that are dysregulated in the LOF mouse brains were normalized by DNL343 treatment, and this response is detectable in human biofluids. Several of these biomarkers show differential levels in CSF and plasma from patients with vanishing white matter disease (VWMD), a neurodegenerative disease that is driven by eIF2B LOF and chronic ISR activation, supporting their potential translational relevance. This study demonstrates that DNL343 is a brain-penetrant ISR inhibitor capable of attenuating neurodegeneration in mouse models and identifies several biomarker candidates that may be used to assess treatment responses in the clinic.
Collapse
Affiliation(s)
| | - Jung H Suh
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | - Roni Chau
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | | | | | | | | | - Chi-Lu Chiu
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | | | - Timothy Earr
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | - Audrey Gill
- Denali TherapeuticsSouth San FranciscoUnited States
| | - Connie Ha
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | - Kirk R Henne
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | | | | | | | | | | | | | - Yingqing Ran
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | - Elysia Roche
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | - Jing Wang
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | | | | | | |
Collapse
|
7
|
Escobar-Pacheco M, Luna-Álvarez M, Dávila-Ortiz de Montellano D, Yescas-Gómez P, Ramírez-García MÁ. Ovarioleukodystrophy Due to EIF2B Genes: Systematic Review and Case Report. Cureus 2024; 16:e64497. [PMID: 39139316 PMCID: PMC11319890 DOI: 10.7759/cureus.64497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Leukodystrophies comprise a spectrum of genetic disorders affecting white matter (WM) formation in the central nervous system (CNS), of which vanishing white matter disease (VWMD) is one. VWMD presents with progressive neurological deterioration and a variety of manifestations. Ovarioleukodystrophy, a subtype of VWMD, exhibits a distinctive clinical profile encompassing both CNS WM alterations and ovarian dysfunction. Variants in genes of the eukaryotic translation initiation factor 2B (EIF2B) complex affect the full form and are implicated in VWMD, including ovarioleukodystrophy. This work aimed to systematically review all published cases of ovarioleukodystrophy associated with variants in the EIF2B1-5 gene complex based on the first case identified in a Mexican population. We performed a systematic review according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines of published cases of ovarioleukodystrophy associated with the EIF2B gene complex, including a newly identified case from Mexico. We identified 207 publications using PUBMED, SCOPUS, and PMC databases. One hundred fifty-one publications were eliminated due to duplicates, titles, abstracts, or other reasons, while 56 publications were revised, of which 29 were eliminated because they dealt with other genes or non-human research, and 27 reports were assessed for eligibility. Finally, 14 reports describing ovarian involvement, neuroimaging, and molecular variants were included. Our review identified 20 cases worldwide, with a median age of onset of 19 years. Clinical features included WM involvement, ovarian abnormalities, gait disturbances, epilepsy, cognitive and language impairment, and other neurological manifestations. Neuroimaging showed characteristic WM changes, highlighting the importance of MRI in diagnosis. Missense variants predominated among the identified genetic mutations, especially in the EIF2B4 and EIF2B5 genes. Ovarioleukodystrophy is an ultra-rare disorder with a wide range of clinical manifestations and ovarian changes. Gynecological evaluation is crucial in suspected cases of ovarioleukodystrophy, as ovarian manifestations may precede neurological symptoms. The role of MRI is crucial in the diagnostic approach to this entity. Continued collaborative efforts are essential to elucidate genotype-phenotype correlations, improve clinical management, and promote therapeutic advances for this rare disorder.
Collapse
Affiliation(s)
- Mariana Escobar-Pacheco
- Genetics, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
| | - Mariana Luna-Álvarez
- Genetics, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
- Genetics, National Institute of Pediatrics, Mexico City, MEX
| | | | - Petra Yescas-Gómez
- Genetics, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
| | - Miguel Á Ramírez-García
- Genetics, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, MEX
| |
Collapse
|
8
|
Herstine JA, Chang PK, Chornyy S, Stevenson TJ, Sunshine AC, Nokhrina K, Rediger J, Wentz J, Vetter TA, Scholl E, Holaway C, Pyne NK, Bratasz A, Yeoh S, Flanigan KM, Bonkowsky JL, Bradbury AM. Evaluation of safety and early efficacy of AAV gene therapy in mouse models of vanishing white matter disease. Mol Ther 2024; 32:1701-1720. [PMID: 38549375 PMCID: PMC11184306 DOI: 10.1016/j.ymthe.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.
Collapse
Affiliation(s)
- Jessica A Herstine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA
| | - Pi-Kai Chang
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Sergiy Chornyy
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Tamara J Stevenson
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Alex C Sunshine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Neurology, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ksenia Nokhrina
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Jessica Rediger
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Julia Wentz
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Erika Scholl
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Caleb Holaway
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Nettie K Pyne
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Anna Bratasz
- Small Animal Imaging Core, The Ohio State University, Columbus, OH 43210, USA
| | - Stewart Yeoh
- Preclinical Imaging Core, The University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA; Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT 84113, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Plug BC, Revers IM, Breur M, González GM, Timmerman JA, Meijns NRC, Hamberg D, Wagendorp J, Nutma E, Wolf NI, Luchicchi A, Mansvelder HD, van Til NP, van der Knaap MS, Bugiani M. Human post-mortem organotypic brain slice cultures: a tool to study pathomechanisms and test therapies. Acta Neuropathol Commun 2024; 12:83. [PMID: 38822428 PMCID: PMC11140981 DOI: 10.1186/s40478-024-01784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024] Open
Abstract
Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.
Collapse
Affiliation(s)
- Bonnie C Plug
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Ilma M Revers
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Marjolein Breur
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Gema Muñoz González
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jaap A Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niels R C Meijns
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Daniek Hamberg
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Jikke Wagendorp
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Erik Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
| | - Nicole I Wolf
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niek P van Til
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marjo S van der Knaap
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marianna Bugiani
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
| |
Collapse
|
10
|
Man JHK, Zarekiani P, Mosen P, de Kok M, Debets DO, Breur M, Altelaar M, van der Knaap MS, Bugiani M. Proteomic dissection of vanishing white matter pathogenesis. Cell Mol Life Sci 2024; 81:234. [PMID: 38789799 PMCID: PMC11126554 DOI: 10.1007/s00018-024-05258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Vanishing white matter (VWM) is a leukodystrophy caused by biallelic pathogenic variants in eukaryotic translation initiation factor 2B. To date, it remains unclear which factors contribute to VWM pathogenesis. Here, we investigated the basis of VWM pathogenesis using the 2b5ho mouse model. We first mapped the temporal proteome in the cerebellum, corpus callosum, cortex, and brainstem of 2b5ho and wild-type (WT) mice. Protein changes observed in 2b5ho mice were then cross-referenced with published proteomic datasets from VWM patient brain tissue to define alterations relevant to the human disease. By comparing 2b5ho mice with their region- and age-matched WT counterparts, we showed that the proteome in the cerebellum and cortex of 2b5ho mice was already dysregulated prior to pathology development, whereas proteome changes in the corpus callosum only occurred after pathology onset. Remarkably, protein changes in the brainstem were transient, indicating that a compensatory mechanism might occur in this region. Importantly, 2b5ho mouse brain proteome changes reflect features well-known in VWM. Comparison of the 2b5ho mouse and VWM patient brain proteomes revealed shared changes. These could represent changes that contribute to the disease or even drive its progression in patients. Taken together, we show that the 2b5ho mouse brain proteome is affected in a region- and time-dependent manner. We found that the 2b5ho mouse model partly replicates the human disease at the protein level, providing a resource to study aspects of VWM pathogenesis by highlighting alterations from early to late disease stages, and those that possibly drive disease progression.
Collapse
Affiliation(s)
- Jodie H K Man
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Parand Zarekiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Mosen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Mike de Kok
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Böck D, Revers IM, Bomhof ASJ, Hillen AEJ, Boeijink C, Kissling L, Egli S, Moreno-Mateos MA, van der Knaap MS, van Til NP, Schwank G. In vivo base editing of a pathogenic Eif2b5 variant improves vanishing white matter phenotypes in mice. Mol Ther 2024; 32:1328-1343. [PMID: 38454603 PMCID: PMC11081866 DOI: 10.1016/j.ymthe.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Vanishing white matter (VWM) is a fatal leukodystrophy caused by recessive mutations in subunits of the eukaryotic translation initiation factor 2B. Currently, there are no effective therapies for VWM. Here, we assessed the potential of adenine base editing to correct human pathogenic VWM variants in mouse models. Using adeno-associated viral vectors, we delivered intein-split adenine base editors into the cerebral ventricles of newborn VWM mice, resulting in 45.9% ± 5.9% correction of the Eif2b5R191H variant in the cortex. Treatment slightly increased mature astrocyte populations and partially recovered the integrated stress response (ISR) in female VWM animals. This led to notable improvements in bodyweight and grip strength in females; however, locomotor disabilities were not rescued. Further molecular analyses suggest that more precise editing (i.e., lower rates of bystander editing) as well as more efficient delivery of the base editors to deep brain regions and oligodendrocytes would have been required for a broader phenotypic rescue. Our study emphasizes the potential, but also identifies limitations, of current in vivo base-editing approaches for the treatment of VWM or other leukodystrophies.
Collapse
Affiliation(s)
- Desirée Böck
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Ilma M Revers
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands
| | - Anastasia S J Bomhof
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands
| | - Anne E J Hillen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands
| | - Claire Boeijink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands
| | - Lucas Kissling
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Sabina Egli
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Miguel A Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, 41013 Seville, Spain; Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013 Seville, Spain
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
| | - Niek P van Til
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands.
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
12
|
Leonardi R, Licciardello L, Zanghì A, La Cognata D, Maniaci A, Vecchio M, Polizzi A, Falsaperla R, Praticò AD. Megalencephaly: Classification, Genetic Causes, and Related Syndromes. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:149-157. [DOI: 10.1055/s-0044-1786787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMegalencephaly is a developmental disorder due to an abnormal neuronal proliferation and migration during intrauterine or postnatal brain development that leads to cerebral overgrowth and neurological dysfunction. This cerebral overgrowth may affect the whole encephalon or only a region; when it involves one hemisphere it is referred to as hemimegalencephaly. Megalencephaly presents with a head circumference measurement of 2 standard deviations above the average measure for age. This group of disorders is clinically characterized by early onset and refractory to therapy epilepsy, neurodevelopmental disorders, behavioral problems, and autism spectrum disorder. Syndromic forms of megalencephaly should be considered when associated with other congenital abnormalities. Megalencephaly in fact could be associated with segmental overgrowth and cutaneous/vascular abnormalities (i.e., Proteus syndrome, CLOVES [congenital lipomatous overgrowth, vascular malformations, epidermal naevi, scoliosis, and/ or skeletal abnormalities] syndrome, Klippel-Trenaunay syndrome, megalencephaly-capillary malformation-polymicrogyria syndrome , megalencephaly-postaxial polydactyly-polymicrogyria-hydrocephalus syndrome, etc.) or generalized overgrowth (i.e., Weaver or Beckwith-Wiedemann syndrome) as well as with nanism in achondroplasia where megalencephaly is associated with disproportionate short stature, primary skeletal dysplasia, characteristic facies (prominent forehead, flat nasal bridge), narrow chest, and normal intelligence. It is possible to identify three main groups of disorders associated with megalencephaly: idiopathic or benign, metabolic, and anatomic. The idiopathic (benign) form indicates an abnormal increased head circumference in absence of neurological impairment, such as in benign familial megalencephaly. In metabolic megalencephaly (such as in organic acid disorders, metabolic leukoencephalopathies, or lysosomal diseases) there is an increase of different constituents that increase the size of the brain, whereas in the anatomical form there are underlying genetic causes. Neuroimaging is crucial for diagnosis, as it can reveal a generalized brain growth or a segmental one and possible specific frameworks associated. In all these conditions it is necessary to identify possible microdeletion-microduplication by chromosomal arrays.
Collapse
Affiliation(s)
- Roberta Leonardi
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Laura Licciardello
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Daria La Cognata
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonino Maniaci
- Chair of Otorhinolaryngology, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| |
Collapse
|
13
|
Asundi J, Zhang C, Donnelly‐Roberts D, Solorio JZ, Challagundla M, Connelly C, Boch C, Chen J, Richter M, Maneshi MM, Swensen AM, Lebon L, Schiffmann R, Sanyal S, Sidrauski C, Kolumam G, Baruch A. GDF15 is a dynamic biomarker of the integrated stress response in the central nervous system. CNS Neurosci Ther 2024; 30:e14600. [PMID: 38357857 PMCID: PMC10867791 DOI: 10.1111/cns.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
AIM Characterize Growth Differentiation Factor 15 (GDF15) as a secreted biomarker of the integrated stress response (ISR) within the central nervous system (CNS). METHODS We determined GDF15 levels utilizing in vitro and in vivo neuronal systems wherein the ISR was activated. Primarily, we used the murine model of vanishing white matter disease (VWMD), a neurological disease driven by persistent ISR in the CNS, to establish a link between levels of GDF15 in the cerebrospinal fluid (CSF) and ISR gene expression signature in the CNS. GDF15 was also determined in the CSF of VWM patients. RESULTS GDF15 expression was increased concomitant to ISR activation in stress-induced primary astrocytes as well as in retinal ganglion cells following optic nerve crush, while treatment with 2Bact, a specific eIF2B activator, suppressed both the ISR and GDF15. In the VWMD model, CSF GDF15 levels corresponded with the magnitude of the ISR and were reduced by 2BAct. In VWM patients, mean CSF GDF15 was elevated >20-fold as compared to healthy controls, whereas plasma GDF15 was undifferentiated. CONCLUSIONS These data suggest that CSF GDF15 is a dynamic marker of ISR activation in the CNS and may serve as a pharmacodynamic biomarker for ISR-modulating therapies.
Collapse
Affiliation(s)
- Jyoti Asundi
- Calico Life Sciences LLCSouth San FranciscoCaliforniaUSA
| | - Chunlian Zhang
- Calico Life Sciences LLCSouth San FranciscoCaliforniaUSA
| | | | | | | | | | | | | | | | | | | | - Lauren Lebon
- Calico Life Sciences LLCSouth San FranciscoCaliforniaUSA
| | | | | | | | - Ganesh Kolumam
- Calico Life Sciences LLCSouth San FranciscoCaliforniaUSA
| | - Amos Baruch
- Calico Life Sciences LLCSouth San FranciscoCaliforniaUSA
| |
Collapse
|
14
|
van der Knaap MS, Bugiani M, Abbink TEM. Vanishing white matter. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:77-94. [PMID: 39322396 DOI: 10.1016/b978-0-323-99209-1.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
"Vanishing white matter" (VWM) is a leukodystrophy caused by autosomal recessive pathogenic variants in the genes encoding the subunits of eukaryotic initiation factor 2B (eIF2B). Disease onset and disease course are extremely variable. Onset varies from the antenatal period until senescence. The age of onset is predictive of disease severity. VWM is characterized by chronic neurologic deterioration and, additionally, episodes of rapid and major neurologic decline, provoked by stresses such as febrile infections and minor head trauma. The disease is dominated by degeneration of the white matter of the central nervous system due to dysfunction of oligodendrocytes and in particular astrocytes. Organs other than the brain are rarely affected, with the exception of the ovaries. The reason for the selective vulnerability of the white matter of the central nervous system and, less consistently, the ovaries is poorly understood. eIF2B is a central regulatory factor in the integrated stress response (ISR). Genetic variants decrease eIF2B activity and thereby cause constitutive activation of the ISR downstream of eIF2B. Strikingly, the ISR is specifically activated in astrocytes. Modulation of eIF2B activity and ISR activation in VWM mouse models impacts disease severity, revealing eIF2B-regulated pathways as potential druggable targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Kater MSJ, Baumgart KF, Badia-Soteras A, Heistek TS, Carney KE, Timmerman AJ, van Weering JRT, Smit AB, van der Knaap MS, Mansvelder HD, Verheijen MHG, Min R. A novel role for MLC1 in regulating astrocyte-synapse interactions. Glia 2023; 71:1770-1785. [PMID: 37002718 DOI: 10.1002/glia.24368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Loss of function of the astrocyte membrane protein MLC1 is the primary genetic cause of the rare white matter disease Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC), which is characterized by disrupted brain ion and water homeostasis. MLC1 is prominently present around fluid barriers in the brain, such as in astrocyte endfeet contacting blood vessels and in processes contacting the meninges. Whether the protein plays a role in other astrocyte domains is unknown. Here, we show that MLC1 is present in distal astrocyte processes, also known as perisynaptic astrocyte processes (PAPs) or astrocyte leaflets, which closely interact with excitatory synapses in the CA1 region of the hippocampus. We find that the PAP tip extending toward excitatory synapses is shortened in Mlc1-null mice. This affects glutamatergic synaptic transmission, resulting in a reduced rate of spontaneous release events and slower glutamate re-uptake under challenging conditions. Moreover, while PAPs in wildtype mice retract from the synapse upon fear conditioning, we reveal that this structural plasticity is disturbed in Mlc1-null mice, where PAPs are already shorter. Finally, Mlc1-null mice show reduced contextual fear memory. In conclusion, our study uncovers an unexpected role for the astrocyte protein MLC1 in regulating the structure of PAPs. Loss of MLC1 alters excitatory synaptic transmission, prevents normal PAP remodeling induced by fear conditioning and disrupts contextual fear memory expression. Thus, MLC1 is a new player in the regulation of astrocyte-synapse interactions.
Collapse
Affiliation(s)
- Mandy S J Kater
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Katharina F Baumgart
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Aina Badia-Soteras
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Karen E Carney
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - A Jacob Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Man JHK, van Gelder CAGH, Breur M, Molenaar D, Abbink T, Altelaar M, Bugiani M, van der Knaap MS. Regional vulnerability of brain white matter in vanishing white matter. Acta Neuropathol Commun 2023; 11:103. [PMID: 37349783 PMCID: PMC10286497 DOI: 10.1186/s40478-023-01599-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Vanishing white matter (VWM) is a leukodystrophy that primarily manifests in young children. In this disease, the brain white matter is differentially affected in a predictable pattern with telencephalic brain areas being most severely affected, while others remain allegedly completely spared. Using high-resolution mass spectrometry-based proteomics, we investigated the proteome patterns of the white matter in the severely affected frontal lobe and normal appearing pons in VWM and control cases to identify molecular bases underlying regional vulnerability. By comparing VWM patients to controls, we identified disease-specific proteome patterns. We showed substantial changes in both the VWM frontal and pons white matter at the protein level. Side-by-side comparison of brain region-specific proteome patterns further revealed regional differences. We found that different cell types were affected in the VWM frontal white matter than in the pons. Gene ontology and pathway analyses identified involvement of region specific biological processes, of which pathways involved in cellular respiratory metabolism were overarching features. In the VWM frontal white matter, proteins involved in glycolysis/gluconeogenesis and metabolism of various amino acids were decreased compared to controls. By contrast, in the VWM pons white matter, we found a decrease in proteins involved in oxidative phosphorylation. Taken together, our data show that brain regions are affected in parallel in VWM, but to different degrees. We found region-specific involvement of different cell types and discovered that cellular respiratory metabolism is likely to be differentially affected across white matter regions in VWM. These region-specific changes help explain regional vulnerability to pathology in VWM.
Collapse
Affiliation(s)
- Jodie H K Man
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CS, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CS, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Douwe Molenaar
- Department of Systems Bioinformatics, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Truus Abbink
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CS, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CS, The Netherlands
| | - Marianna Bugiani
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands.
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands.
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands.
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
17
|
Bugiani M, Abbink TEM, Edridge AWD, van der Hoek L, Hillen AEJ, van Til NP, Hu‐A‐Ng GV, Breur M, Aiach K, Drevot P, Hocquemiller M, Laufer R, Wijburg FA, van der Knaap MS. Focal lesions following intracerebral gene therapy for mucopolysaccharidosis IIIA. Ann Clin Transl Neurol 2023; 10:904-917. [PMID: 37165777 PMCID: PMC10270249 DOI: 10.1002/acn3.51772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVE Mucopolysaccharidosis type IIIA (MPSIIIA) caused by recessive SGSH variants results in sulfamidase deficiency, leading to neurocognitive decline and death. No disease-modifying therapy is available. The AAVance gene therapy trial investigates AAVrh.10 overexpressing human sulfamidase (LYS-SAF302) delivered by intracerebral injection in children with MPSIIIA. Post-treatment MRI monitoring revealed lesions around injection sites. Investigations were initiated in one patient to determine the cause. METHODS Clinical and MRI details were reviewed. Stereotactic needle biopsies of a lesion were performed; blood and CSF were sampled. All samples were used for viral studies. Immunohistochemistry, electron microscopy, and transcriptome analysis were performed on brain tissue of the patient and various controls. RESULTS MRI revealed focal lesions around injection sites with onset from 3 months after therapy, progression until 7 months post therapy with subsequent stabilization and some regression. The patient had transient slight neurological signs and is following near-normal development. No evidence of viral or immunological/inflammatory cause was found. Immunohistochemistry showed immature oligodendrocytes and astrocytes, oligodendrocyte apoptosis, strong intracellular and extracellular sulfamidase expression and hardly detectable intracellular or extracellular heparan sulfate. No activation of the unfolded protein response was found. INTERPRETATION Results suggest that intracerebral gene therapy with local sulfamidase overexpression leads to dysfunction of transduced cells close to injection sites, with extracellular spilling of lysosomal enzymes. This alters extracellular matrix composition, depletes heparan sulfate, impairs astrocyte and oligodendrocyte function, and causes cystic white matter degeneration at the site of highest gene expression. The AAVance trial results will reveal the potential benefit-risk ratio of this therapy.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of PathologyAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Truus E. M. Abbink
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Arthur W. D. Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Centre for Global Child HealthAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Anne E. J. Hillen
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Niek P. van Til
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Gino V. Hu‐A‐Ng
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marjolein Breur
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | | | | | | | | | - Frits A. Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center “Sphinx”Amsterdam University Medical Centers, Academic Medical CenterAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
| |
Collapse
|
18
|
Deng J, Zhang J, Gao K, Zhou L, Jiang Y, Wang J, Wu Y. Human-induced pluripotent stem cell-derived cerebral organoid of leukoencephalopathy with vanishing white matter. CNS Neurosci Ther 2023; 29:1049-1066. [PMID: 36650674 PMCID: PMC10018084 DOI: 10.1111/cns.14079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Leukoencephalopathy with vanishing white matter (VWM) is a rare autosomal recessive leukoencephalopathy resulting from mutations in EIF2B1-5, which encode subunits of eukaryotic translation initiation factor 2B (eIF2B). Studies have found that eIF2B mutation has a certain influence on embryonic brain development. So far, the effect of the eIF2B mutations on the dynamic process of brain development is not fully understood yet. AIMS Three-dimensional brain organoid technology has promoted the study of human nervous system developmental diseases in recent years, providing a potential platform for elucidating the pathological mechanism of neurodevelopmental diseases. In this study, we aimed to investigate the effects of eIF2B mutation on the differentiation and development of different nerve cells during dynamic brain development process using 3D brain organoids. RESULTS We constructed eIF2B mutant and wild-type brain organoid model with induced pluripotent stem cell (iPSC). Compared with the wild type, the mutant brain organoids were significantly smaller, accompanied by increase in apoptosis, which might be resulted from overactivation of unfolded protein response (UPR). Neuronal development was delayed in early stage, but with normal superficial neuronal differentiation in later stage. eIF2B mutations resulted in immature astrocytes with increased expression of GFAPδ, nestin, and αB-crystallin, and there were increased oligodendrocyte progenitor cells, decreased mature oligodendrocytes, and sparse myelin in mutant cerebral organoids in the later stage. CONCLUSION we constructed the first eIF2B mutant cerebral organoids to explore the dynamic brain development process, which provides a platform for further research on the specific pathogenesis of VWM.
Collapse
Affiliation(s)
- Jiong Deng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Zhou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
19
|
Lim CG, Hahm MH, Lee HJ. Juxtacortical White Matter Hypointensity on T2*Gradient Echo Image in Vanishing White Matter Disease: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e938569. [PMID: 36793200 PMCID: PMC9942535 DOI: 10.12659/ajcr.938569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Vanishing white matter disease (VWMD) - also known as childhood ataxia with central nervous system hypomyelination - is one of the most commonly inherited white matter diseases in children. Notably, a course of chronic progressive disease with episodes of rapid and major stress-induced neurological deterioration, such as fever and minor head trauma, is a typical clinical feature of VWMD. The combination of clinical features with specific magnetic resonance imaging findings, including diffuse and extensive white matter lesions with rarefaction or cystic destruction, could recommend a genetic diagnosis. However, VWMD is phenotypically diverse and can affect individuals of all ages. CASE REPORT A 29-year-old female patient presented with recent aggravation in gait disturbance. She had progressive movement disorder, with symptoms ranging from hand tremors to upper- and lower-extremity weakness, for 5 years. Whole-exome sequencing was performed to confirm the diagnosis of VWMD, and it revealed a mutation in homozygous eIF2B2 gene. The temporal evolution of VWMD observed in the patient for 17 years (from the age of 12 to 29 years) indicated an increased extent of T2 white matter hyperintensity in the cerebrum into the cerebellum and an increased amount of dark signal intensities in the globus pallidus and dentate nucleus. Moreover, a T2*-weighted imaging (WI) scan revealed diffuse, linear, and symmetrical hypointensity along the juxtacortical white matter on the magnification view. CONCLUSIONS This is the case report about rare and unusual finding of diffuse linear juxtacortical white matter hypointensity on T2*-WI scan as a potential radiographic marker for adult-onset VWMD.
Collapse
Affiliation(s)
- Chun Geun Lim
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, South Korea,Department of Radiology, Kyungpook National University Hospital, Daegu, South Korea
| | - Myong Hun Hahm
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, South Korea,Department of Radiology, Kyungpook National University Hospital, Daegu, South Korea,Department of Radiology, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Hui Joong Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, South Korea,Department of Radiology, Kyungpook National University Hospital, Daegu, South Korea,Corresponding Author: Hui Joong Lee, e-mail:
| |
Collapse
|
20
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
21
|
Molina-Gonzalez I, Miron VE, Antel JP. Chronic oligodendrocyte injury in central nervous system pathologies. Commun Biol 2022; 5:1274. [PMID: 36402839 PMCID: PMC9675815 DOI: 10.1038/s42003-022-04248-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Myelin, the membrane surrounding neuronal axons, is critical for central nervous system (CNS) function. Injury to myelin-forming oligodendrocytes (OL) in chronic neurological diseases (e.g. multiple sclerosis) ranges from sublethal to lethal, leading to OL dysfunction and myelin pathology, and consequent deleterious impacts on axonal health that drive clinical impairments. This is regulated by intrinsic factors such as heterogeneity and age, and extrinsic cellular and molecular interactions. Here, we discuss the responses of OLs to injury, and perspectives for therapeutic targeting. We put forward that targeting mature OL health in neurological disease is a promising therapeutic strategy to support CNS function.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK
| | - Veronique E. Miron
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK ,grid.415502.7Barlo Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, Canada
| | - Jack P. Antel
- grid.14709.3b0000 0004 1936 8649Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
22
|
Man JHK, van Gelder CAGH, Breur M, Okkes D, Molenaar D, van der Sluis S, Abbink T, Altelaar M, van der Knaap MS, Bugiani M. Cortical Pathology in Vanishing White Matter. Cells 2022; 11:cells11223581. [PMID: 36429009 PMCID: PMC9688115 DOI: 10.3390/cells11223581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/24/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies.
Collapse
Affiliation(s)
- Jodie H. K. Man
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Charlotte A. G. H. van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CS Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CS Utrecht, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Daniel Okkes
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Douwe Molenaar
- Department of Systems Bioinformatics, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Department of Child and Adolescent Psychology and Psychiatry, Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Truus Abbink
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CS Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CS Utrecht, The Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marianna Bugiani
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-6-48517239
| |
Collapse
|
23
|
Secretomics Alterations and Astrocyte Dysfunction in Human iPSC of Leukoencephalopathy with Vanishing White Matter. Neurochem Res 2022; 47:3747-3760. [PMID: 36198922 DOI: 10.1007/s11064-022-03765-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 10/10/2022]
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is an inherited leukoencephalopathy characterized by progressive rarefaction of cerebral white matter. Dysfunction of patient astrocyte plays a central role in the pathogenesis, while the immaturity of oligodendrocyte is probably secondary. How eIF2B mutant astrocytes affect the maturation and myelination of oligodendrocyte precursor cells (OPCs) is unclear yet. We used induced pluripotent stem cells (iPSCs) derived from our patient with EIF2B5 mutations to differentiate into astrocytes (AS) and OPCs, and aimed to verify that patient astrocytes inhibited the differentiation of OPCs by abnormalities of secreted proteins. eIF2B mutant astrocytes and astrocyte-conditioned medium (ACM) both inhibited the maturation of OPCs. It was revealed that 13 promising proteins exhibited a similar up- or downregulation by the PRM method correlated well with TMT results. eIF2B mutant astrocytes may secrete abnormal extracellular matrix (HA, LAMA4, BGN, FBN1, VASN, PCOLCE, MFAP4), cytokines (IL-6, CRABP1, ISG15), growth factors (PDGF-AA, CNTF, IGF-II, sFRP1, SERPINF1) and increased FABP7, which might lead to the differentiation and maturation disorder of OPCs. We analyzed the astrocyte-conditioned medium to find the key secretory molecules affecting the differentiation and maturation of OPCs, which provides potential clues for further research on the mechanism of VWM.
Collapse
|
24
|
Human iPSC-derived astrocytes generated from donors with globoid cell leukodystrophy display phenotypes associated with disease. PLoS One 2022; 17:e0271360. [PMID: 35921286 PMCID: PMC9348679 DOI: 10.1371/journal.pone.0271360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Globoid cell leukodystrophy (Krabbe disease) is a fatal neurodegenerative, demyelinating disease caused by dysfunctional activity of galactosylceramidase (GALC), leading to the accumulation of glycosphingolipids including psychosine. While oligodendrocytes have been extensively studied due to their high levels of GALC, the contribution of astrocytes to disease pathogenesis remains to be fully elucidated. In the current study, we generated induced pluripotent stem cells (iPSCs) from two donors with infantile onset Krabbe disease and differentiated them into cultures of astrocytes. Krabbe astrocytes recapitulated many key findings observed in humans and rodent models of the disease, including the accumulation of psychosine and elevated expression of the pro-inflammatory cytokine IL-6. Unexpectedly, Krabbe astrocytes had higher levels of glucosylceramide and ceramide, and displayed compensatory changes in genes encoding glycosphingolipid biosynthetic enzymes, suggesting a shunting away from the galactosylceramide and psychosine pathway. In co-culture, Krabbe astrocytes negatively impacted the survival of iPSC-derived human neurons while enhancing survival of iPSC-derived human microglia. Substrate reduction approaches targeting either glucosylceramide synthase or serine palmitoyltransferase to reduce the sphingolipids elevated in Krabbe astrocytes failed to rescue their detrimental impact on neuron survival. Our results suggest that astrocytes may contribute to the progression of Krabbe disease and warrant further exploration into their role as therapeutic targets.
Collapse
|
25
|
Adang L. Leukodystrophies. Continuum (Minneap Minn) 2022; 28:1194-1216. [PMID: 35938662 PMCID: PMC11320896 DOI: 10.1212/con.0000000000001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article reviews the most common leukodystrophies and is focused on diagnosis, clinical features, and emerging therapeutic options. RECENT FINDINGS In the past decade, the recognition of leukodystrophies has exponentially increased, and now this class includes more than 30 distinct disorders. Classically recognized as progressive and fatal disorders affecting young children, it is now understood that leukodystrophies are associated with an increasing spectrum of neurologic trajectories and can affect all ages. Next-generation sequencing and newborn screening allow the opportunity for the recognition of presymptomatic and atypical cases. These new testing opportunities, in combination with growing numbers of natural history studies and clinical consensus guidelines, have helped improve diagnosis and clinical care. Additionally, a more granular understanding of disease outcomes informs clinical trial design and has led to several recent therapeutic advances. This review summarizes the current understanding of the clinical manifestations of disease and treatment options for the most common leukodystrophies. SUMMARY As early testing becomes more readily available through next-generation sequencing and newborn screening, neurologists will better understand the true incidence of the leukodystrophies and be able to diagnose children within the therapeutic window. As targeted therapies are developed, it becomes increasingly imperative that this broad spectrum of disorders is recognized and diagnosed. This work summarizes key advances in the leukodystrophy field.
Collapse
|
26
|
Ren Y, Yu X, Chen B, Tang H, Niu S, Wang X, Pan H, Zhang Z. Genotypic and phenotypic characteristics of juvenile/adult onset vanishing white matter: a series of 14 Chinese patients. Neurol Sci 2022; 43:4961-4977. [DOI: 10.1007/s10072-022-06011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
27
|
Hillen AEJ, Hruzova M, Rothgangl T, Breur M, Bugiani M, van der Knaap MS, Schwank G, Heine VM. In vivo targeting of a variant causing vanishing white matter using CRISPR/Cas9. Mol Ther Methods Clin Dev 2022; 25:17-25. [PMID: 35317047 PMCID: PMC8917273 DOI: 10.1016/j.omtm.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/19/2022] [Indexed: 11/17/2022]
Abstract
Vanishing white matter (VWM) is a leukodystrophy caused by recessive variants in subunits of eIF2B. At present, no curative treatment is available and patients often die at young age. Due to its monogenic nature, VWM is a promising candidate for the development of CRISPR/Cas9-mediated gene therapy. Here we tested a dual-AAV approach in VWM mice encoding CRISPR/Cas9 and a DNA donor template to correct a pathogenic variant in Eif2b5. We performed sequencing analysis to assess gene correction rates and examined effects on the VWM phenotype, including motor behavior. Sequence analysis demonstrated that over 90% of CRISPR/Cas9-induced edits at the targeted locus are insertion or deletion (indel) mutations, rather than precise corrections from the DNA donor template by homology-directed repair. Around half of the CRISPR/Cas9-treated animals died prematurely. VWM mice showed no improvement in motor skills, weight, or neurological scores at 7 months of age, and CRISPR/Cas9-treated controls displayed an induced VWM phenotype. In conclusion, CRISPR/Cas9-induced DNA double-strand breaks (DSBs) at the Eif2b5 locus did not lead to sufficient correction of the VWM variant. Moreover, indel formation in Eif2b5 induced an exacerbated VWM phenotype. Therefore, DSB-independent strategies like base- or prime editing might better suited for VWM correction.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Pediatrics and Child Neurology, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Martina Hruzova
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Tanja Rothgangl
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marjolein Breur
- Department of Pediatrics and Child Neurology, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Marianna Bugiani
- Department of Pediatrics and Child Neurology, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- Department of Pediatrics and Child Neurology, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1085, 1081 Amsterdam, the Netherlands
| | - Gerald Schwank
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vivi M Heine
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1085, 1081 Amsterdam, the Netherlands.,Department of Child and Adolescence Psychiatry, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1085, 1081 Amsterdam, the Netherlands
| |
Collapse
|
28
|
The role of eIF2 phosphorylation in cell and organismal physiology: new roles for well-known actors. Biochem J 2022; 479:1059-1082. [PMID: 35604373 DOI: 10.1042/bcj20220068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Control of protein synthesis (mRNA translation) plays key roles in shaping the proteome and in many physiological, including homeostatic, responses. One long-known translational control mechanism involves phosphorylation of initiation factor, eIF2, which is catalysed by any one of four protein kinases, which are generally activated in response to stresses. They form a key arm of the integrated stress response (ISR). Phosphorylated eIF2 inhibits eIF2B (the protein that promotes exchange of eIF2-bound GDP for GTP) and thus impairs general protein synthesis. However, this mechanism actually promotes translation of certain mRNAs by virtue of specific features they possess. Recent work has uncovered many previously unknown features of this regulatory system. Several studies have yielded crucial insights into the structure and control of eIF2, including that eIF2B is regulated by several metabolites. Recent studies also reveal that control of eIF2 and the ISR helps determine organismal lifespan and surprising roles in sensing mitochondrial stresses and in controlling the mammalian target of rapamycin (mTOR). The latter effect involves an unexpected role for one of the eIF2 kinases, HRI. Phosphoproteomic analysis identified new substrates for another eIF2 kinase, Gcn2, which senses the availability of amino acids. Several genetic disorders arise from mutations in genes for eIF2α kinases or eIF2B (i.e. vanishing white matter disease, VWM and microcephaly, epileptic seizures, microcephaly, hypogenitalism, diabetes and obesity, MEHMO). Furthermore, the eIF2-mediated ISR plays roles in cognitive decline associated with Alzheimer's disease. New findings suggest potential therapeutic value in interfering with the ISR in certain settings, including VWM, for example by using compounds that promote eIF2B activity.
Collapse
|
29
|
van der Knaap MS, Bonkowsky JL, Vanderver A, Schiffmann R, Krägeloh-Mann I, Bertini E, Bernard G, Fatemi SA, Wolf NI, Saunier-Vivar E, Rauner R, Dekker H, van Bokhoven P, van de Ven P, Leferink PS. Therapy Trial Design in Vanishing White Matter: An Expert Consortium Opinion. Neurol Genet 2022; 8:e657. [PMID: 35128050 PMCID: PMC8811717 DOI: 10.1212/nxg.0000000000000657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023]
Abstract
Vanishing white matter (VWM) is a leukodystrophy caused by recessive variants in the genes EIF2B1-EIF2B5. It is characterized by chronic neurologic deterioration with superimposed stress-provoked episodes of rapid decline. Disease onset spans from the antenatal period through senescence. Age at onset predicts disease evolution for patients with early onset, whereas disease evolution is unpredictable for later onset; patients with infantile and early childhood onset consistently have severe disease with rapid neurologic decline and often early death, whereas patients with later onset have highly variable disease. VWM is rare, but likely underdiagnosed, particularly in adults. Apart from measures to prevent stressors that could provoke acute deteriorations, only symptomatic care is currently offered. With increased insight into VWM disease mechanisms, opportunities for treatment have emerged. EIF2B1-EIF2B5 encode the 5-subunit eukaryotic initiation factor 2B complex, which is essential for translation of mRNAs into proteins and is a principal regulator of the integrated stress response (ISR). ISR deregulation is central to VWM pathology. Targeting components of the ISR has proven beneficial in mutant VWM mouse models, and several drugs are now in clinical development. However, clinical trials in VWM pose considerable challenges: low numbers of known patients with VWM, unpredictable disease course for patients with onset after early childhood, absence of intermediate biomarkers, and novel first-in-human molecular targets. Given these challenges and considering the critical need to offer therapies, we have formulated recommendations for enhanced diagnosis, drug trial setup, and patient selection, based on our expert evaluation of molecular, laboratory, and clinical data.
Collapse
Affiliation(s)
- Marjo S. van der Knaap
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Joshua L. Bonkowsky
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Adeline Vanderver
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphael Schiffmann
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ingeborg Krägeloh-Mann
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Enrico Bertini
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Genevieve Bernard
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Seyed Ali Fatemi
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Nicole I. Wolf
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elise Saunier-Vivar
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Robert Rauner
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Hanka Dekker
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Pieter van Bokhoven
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Peter van de Ven
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Prisca S. Leferink
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Genetic causes of acute encephalopathy in adults: beyond inherited metabolic and epileptic disorders. Neurol Sci 2022; 43:1617-1626. [PMID: 35066645 PMCID: PMC8783656 DOI: 10.1007/s10072-022-05899-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/13/2022] [Indexed: 01/18/2023]
|
31
|
Practical Genetics for the Neuroradiologist: Adding Value in Neurogenetic Disease. Acad Radiol 2022; 29 Suppl 3:S1-S27. [PMID: 33495073 DOI: 10.1016/j.acra.2020.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 11/23/2022]
Abstract
Genetic discoveries have transformed our understanding of many neurologic diseases. Identification of specific causal pathogenic variants has improved understanding of pathophysiology and enabled replacement of many confusing eponyms and acronyms with more meaningful and clinically relevant genetics-based terminology. In this era of rapid scientific advancement, multidisciplinary collaboration among pediatricians, neurologists, geneticists, radiologists, and other members of the health care team is increasingly important in the care of patients with genetic neurologic diseases. Radiologists familiar with neurogenetic disease add value by (1) recognizing constellations of characteristic imaging findings that are associated with a genetic disease before one is clinically suspected; (2) predicting the most likely genotypes for a given imaging phenotype in clinically suspected genetic disease; and (3) providing detailed and accurate descriptions of the imaging phenotype in challenging cases with unknown or uncertain genotypes. This review aims to increase awareness and understanding of pathogenic variants relating to neurologic disease by (1) briefly reviewing foundational knowledge of chromosomes, inheritance patterns, and mutagenesis; (2) providing concrete examples of and detailed information about specific neurologic diseases resulting from pathogenic variants; and (3) highlighting clinical and imaging features that are of greatest relevance for the radiologist.
Collapse
|
32
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
33
|
Heaven MR, Herren AW, Flint DL, Pacheco NL, Li J, Tang A, Khan F, Goldman JE, Phinney BS, Olsen ML. Metabolic Enzyme Alterations and Astrocyte Dysfunction in a Murine Model of Alexander Disease With Severe Reactive Gliosis. Mol Cell Proteomics 2022; 21:100180. [PMID: 34808356 PMCID: PMC8717607 DOI: 10.1016/j.mcpro.2021.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.
Collapse
Affiliation(s)
| | - Anthony W Herren
- University of California at Davis Proteomics Core, Davis, California, USA
| | | | - Natasha L Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jiangtao Li
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Brett S Phinney
- University of California at Davis Proteomics Core, Davis, California, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
34
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
35
|
Stifani S. Taking Cellular Heterogeneity Into Consideration When Modeling Astrocyte Involvement in Amyotrophic Lateral Sclerosis Using Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:707861. [PMID: 34602979 PMCID: PMC8485040 DOI: 10.3389/fncel.2021.707861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Astrocytes are a large group of glial cells that perform a variety of physiological functions in the nervous system. They provide trophic, as well as structural, support to neuronal cells. Astrocytes are also involved in neuroinflammatory processes contributing to neuronal dysfunction and death. Growing evidence suggests important roles for astrocytes in non-cell autonomous mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Understanding these mechanisms necessitates the combined use of animal and human cell-based experimental model systems, at least in part because human astrocytes display a number of unique features that cannot be recapitulated in animal models. Human induced pluripotent stem cell (hiPSC)-based approaches provide the opportunity to generate disease-relevant human astrocytes to investigate the roles of these cells in ALS. These approaches are facing the growing recognition that there are heterogenous populations of astrocytes in the nervous system which are not functionally equivalent. This review will discuss the importance of taking astrocyte heterogeneity into consideration when designing hiPSC-based strategies aimed at generating the most informative preparations to study the contribution of astrocytes to ALS pathophysiology.
Collapse
Affiliation(s)
- Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Sims SG, Cisney RN, Lipscomb MM, Meares GP. The role of endoplasmic reticulum stress in astrocytes. Glia 2021; 70:5-19. [PMID: 34462963 PMCID: PMC9292588 DOI: 10.1002/glia.24082] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes are glial cells that support neurological function in the central nervous system (CNS), in part, by providing structural support for neuronal synapses and blood vessels, participating in electrical and chemical transmission, and providing trophic support via soluble factors. Dysregulation of astrocyte function contributes to neurological decline in CNS diseases. Neurological diseases are highly heterogeneous but share common features of cellular stress including the accumulation of misfolded proteins. Endoplasmic reticulum (ER) stress has been reported in nearly all neurological and neurodegenerative diseases. ER stress occurs when there is an accumulation of misfolded proteins in the ER lumen and the protein folding demand of the ER is overwhelmed. ER stress initiates the unfolded protein response (UPR) to restore homeostasis by abating protein translation and, if the cell is irreparably damaged, initiating apoptosis. Although protein aggregation and misfolding in neurological disease has been well described, cell-specific contributions of ER stress and the UPR in physiological and disease states are poorly understood. Recent work has revealed a role for active UPR signaling that may drive astrocytes toward a maladaptive phenotype in various model systems. In response to ER stress, astrocytes produce inflammatory mediators, have reduced trophic support, and can transmit ER stress to other cells. This review will discuss the current known contributions and consequences of activated UPR signaling in astrocytes.
Collapse
Affiliation(s)
- Savannah G Sims
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Rylee N Cisney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Marissa M Lipscomb
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia, USA.,Rockefeller Neuroscience Institute, Morgantown, West Virginia, USA
| |
Collapse
|
37
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Herrero M, Daw M, Atzmon A, Elroy-Stein O. The Energy Status of Astrocytes Is the Achilles' Heel of eIF2B-Leukodystrophy. Cells 2021; 10:1858. [PMID: 34440627 PMCID: PMC8393801 DOI: 10.3390/cells10081858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Translation initiation factor 2B (eIF2B) is a master regulator of global protein synthesis in all cell types. The mild genetic Eif2b5(R132H) mutation causes a slight reduction in eIF2B enzymatic activity which leads to abnormal composition of mitochondrial electron transfer chain complexes and impaired oxidative phosphorylation. Previous work using primary fibroblasts isolated from Eif2b5(R132H/R132H) mice revealed that owing to increased mitochondrial biogenesis they exhibit normal cellular ATP level. In contrast to fibroblasts, here we show that primary astrocytes isolated from Eif2b5(R132H/R132H) mice are unable to compensate for their metabolic impairment and exhibit chronic state of low ATP level regardless of extensive adaptation efforts. Mutant astrocytes are hypersensitive to oxidative stress and to further energy stress. Moreover, they show migration deficit upon exposure to glucose starvation. The mutation in Eif2b5 prompts reactive oxygen species (ROS)-mediated inferior ability to stimulate the AMP-activated protein kinase (AMPK) axis, due to a requirement to increase the mammalian target of rapamycin complex-1 (mTORC1) signalling in order to enable oxidative glycolysis and generation of specific subclass of ROS-regulating proteins, similar to cancer cells. The data disclose the robust impact of eIF2B on metabolic and redox homeostasis programs in astrocytes and point at their hyper-sensitivity to mutated eIF2B. Thereby, it illuminates the central involvement of astrocytes in Vanishing White Matter Disease (VWMD), a genetic neurodegenerative leukodystrophy caused by homozygous hypomorphic mutations in genes encoding any of the 5 subunits of eIF2B.
Collapse
Affiliation(s)
- Melisa Herrero
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (M.H.); (M.D.); (A.A.)
| | - Maron Daw
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (M.H.); (M.D.); (A.A.)
| | - Andrea Atzmon
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (M.H.); (M.D.); (A.A.)
| | - Orna Elroy-Stein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (M.H.); (M.D.); (A.A.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
39
|
Lin NH, Yang AW, Chang CH, Perng MD. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. FASEB J 2021; 35:e21614. [PMID: 33908669 DOI: 10.1096/fj.202100087r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Alexander disease (AxD) caused by mutations in the coding region of GFAP is a neurodegenerative disease characterized by astrocyte dysfunction, GFAP aggregation, and Rosenthal fiber accumulation. Although how GFAP mutations cause disease is not fully understood, Rosenthal fibers could be induced by forced overexpression of human GFAP and this could be lethal in mice implicate that an increase in GFAP levels is central to AxD pathogenesis. Our recent studies demonstrated that intronic GFAP mutations cause disease by altering GFAP splicing, suggesting that an increase in GFAP isoform expression could lead to protein aggregation and astrocyte dysfunction that typify AxD. Here we test this hypothesis by establishing primary astrocyte cultures from transgenic mice overexpressing human GFAP. We found that GFAP-δ and GFAP-κ were disproportionately increased in transgenic astrocytes and both were enriched in Rosenthal fibers of human AxD brains. In vitro assembly studies showed that while the major isoform GFAP-α self-assembled into typical 10-nm filaments, minor isoforms including GFAP-δ, -κ, and -λ were assembly-compromised and aggregation prone. Lentiviral transduction showed that expression of these minor GFAP isoforms decreased filament solubility and increased GFAP stability, leading to the formation of Rosenthal fibers-like aggregates that also disrupted the endogenous intermediate filament networks. The aggregate-bearing astrocytes lost their normal morphology and glutamate buffering capacity, which had a toxic effect on neighboring neurons. In conclusion, our findings provide evidence that links elevated GFAP isoform expression with GFAP aggregation and impaired glutamate transport, and suggest a potential non-cell-autonomous mechanism underlying neurodegeneration through astrocyte dysfunction.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ai-Wen Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
40
|
Alata M, González-Vega A, Piazza V, Kleinert-Altamirano A, Cortes C, Ahumada-Juárez JC, Eguibar JR, López-Juárez A, Hernandez VH. Longitudinal Evaluation of Cerebellar Signs of H-ABC Tubulinopathy in a Patient and in the taiep Model. Front Neurol 2021; 12:702039. [PMID: 34335454 PMCID: PMC8317997 DOI: 10.3389/fneur.2021.702039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a central neurodegenerative disease due to mutations in the tubulin beta-4A (TUBB4A) gene, characterized by motor development delay, abnormal movements, ataxia, spasticity, dysarthria, and cognitive deficits. Diagnosis is made by integrating clinical data and radiological signs. Differences in MRIs have been reported in patients that carry the same mutation; however, a quantitative study has not been performed so far. Our study aimed to provide a longitudinal analysis of the changes in the cerebellum (Cb), corpus callosum (CC), ventricular system, and striatum in a patient suffering from H-ABC and in the taiep rat. We correlated the MRI signs of the patient with the results of immunofluorescence, gait analysis, segmentation of cerebellum, CC, and ventricular system, performed in the taiep rat. We found that cerebellar and callosal changes, suggesting a potential hypomyelination, worsened with age, in concomitance with the emergence of ataxic gait. We also observed a progressive lateral ventriculomegaly in both patient and taiep, possibly secondary to the atrophy of the white matter. These white matter changes are progressive and can be involved in the clinical deterioration. Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) gives rise to a spectrum of clinical signs whose pathophysiology still needs to be understood.
Collapse
Affiliation(s)
| | - Arturo González-Vega
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Carmen Cortes
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Juan C Ahumada-Juárez
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jose R Eguibar
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Research Office, Vicerrectory of Research and Postgraduate Studies, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alejandra López-Juárez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Victor H Hernandez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
41
|
Paisley CE, Kay JN. Seeing stars: Development and function of retinal astrocytes. Dev Biol 2021; 478:144-154. [PMID: 34260962 DOI: 10.1016/j.ydbio.2021.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Throughout the central nervous system, astrocytes adopt precisely ordered spatial arrangements of their somata and arbors, which facilitate their many important functions. Astrocyte pattern formation is particularly important in the retina, where astrocytes serve as a template that dictates the pattern of developing retinal vasculature. Thus, if astrocyte patterning is disturbed, there are severe consequences for retinal angiogenesis and ultimately for vision - as seen in diseases such as retinopathy of prematurity. Here we discuss key steps in development of the retinal astrocyte population. We describe how fundamental developmental forces - their birth, migration, proliferation, and death - sculpt astrocytes into a template that guides angiogenesis. We further address the radical changes in the cellular and molecular composition of the astrocyte network that occur upon completion of angiogenesis, paving the way for their adult functions in support of retinal ganglion cell axons. Understanding development of retinal astrocytes may elucidate pattern formation mechanisms that are deployed broadly by other axon-associated astrocyte populations.
Collapse
Affiliation(s)
- Caitlin E Paisley
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeremy N Kay
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
42
|
Stellingwerff MD, Al-Saady ML, van de Brug T, Barkhof F, Pouwels PJW, van der Knaap MS. MRI Natural History of the Leukodystrophy Vanishing White Matter. Radiology 2021; 300:671-680. [PMID: 34184934 DOI: 10.1148/radiol.2021210110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background In vanishing white matter (VWM), a form of leukodystrophy, earlier onset is associated with faster clinical progression. MRI typically shows rarefaction and cystic destruction of the cerebral white matter. Information on the evolution of VWM according to age at onset is lacking. Purpose To determine whether nature and progression of cerebral white matter abnormalities in VWM differ according to age at onset. Materials and Methods Patients with genetically confirmed VWM were stratified into six groups according to age at onset: younger than 1 year, 1 year to younger than 2 years, 2 years to younger than 4 years, 4 years to younger than 8 years, 8 years to younger than 18 years, and 18 years or older. With institutional review board approval, all available MRI scans obtained between 1985 and 2019 were retrospectively analyzed with three methods: (a) ratio of the width of the lateral ventricles over the skull (ventricle-to-skull ratio [VSR]) was measured to estimate brain atrophy; (b) cerebral white matter was visually scored as percentage normal, hyperintense, rarefied, or cystic on fluid-attenuated inversion recovery (FLAIR) images and converted into a white matter decay score; and (c) the intracranial volume was segmented into normal-appearing white and gray matter, abnormal but structurally present (FLAIR-hyperintense) and rarefied or cystic (FLAIR-hypointense) white matter, and ventricular and extracerebral cerebrospinal fluid (CSF). Multilevel regression analyses with patient as a clustering variable were performed to account for the nested data structure. Results A total of 461 examinations in 270 patients (median age, 7 years [interquartile range, 3-18 years]; 144 female patients) were evaluated; 112 patients had undergone serial imaging. Patients with later onset had higher VSR [F(5) = 8.42; P < .001] and CSF volume [F(5) = 21.7; P < .001] and lower white matter decay score [F(5) = 4.68; P < .001] and rarefied or cystic white matter volume [F(5) = 13.3; P < .001]. Rate of progression of white matter decay scores [b = -1.6, t(109) = -3.9; P < .001] and VSRs [b = -0.05, t (109) = -3.7; P < .001] were lower with later onset. Conclusion A radiologic spectrum based on age at onset exists in vanishing white matter. The earlier the onset, the faster and more cystic the white matter decay, whereas with later onset, white matter atrophy and gliosis predominate. © RSNA, 2021.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Murtadha L Al-Saady
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Tim van de Brug
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Frederik Barkhof
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Petra J W Pouwels
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Marjo S van der Knaap
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| |
Collapse
|
43
|
Jiang T, Luo J, Pan X, Zheng H, Yang H, Zhang L, Hu X. Physical exercise modulates the astrocytes polarization, promotes myelin debris clearance and remyelination in chronic cerebral hypoperfusion rats. Life Sci 2021; 278:119526. [PMID: 33894268 DOI: 10.1016/j.lfs.2021.119526] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
AIMS White matter damage is the main pathological feature of chronic cerebral hypoperfusion (CCH) and glial activation is crucial in this process. Physical exercise has protective effects on CCH, but the mechanism is unclear. Therefore, this study focuses on investigating the influence of physical exercise on activated astrocytes polarization and its role in CCH. MAIN METHODS Rats were given wheel running 48 h after 2VO (2 vessel occlusion) surgery. The cognitive function was evaluated by Morris water maze and novel object recognition test. Inflammatory cytokines expressions were detected by ELISA. Astrocytes polarization was analyzed by immunofluorescence. Myelin debris clearance and remyelination were detected by immunofluorescence and transmission electron microscopy. KEY FINDINGS Astrocytes were activated and mainly switched to A1 phenotype in rats 2 and 3 months after 2VO. Myelin debris deposition and limited remyelination can be observed at the corresponding time. Whereas physical exercise can improve the cognitive function of 2VO rats, downregulate the expression of inflammatory factors IL-1α, C1q and TNF, upregulate the release of TGFβ, and promote activated astrocytes transformation from A1 to A2 phenotype. In addition, it can also enhance myelin debris removal and remyelination. SIGNIFICANCE These findings suggest that the benefits of physical exercise on white matter repair and cognition improvement may be related to its regulation of astrocytes polarization, which contributes to myelin debris clearance and effective remyelination in CCH.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Xiaona Pan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Huaichun Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
44
|
Accogli A, Geraldo AF, Piccolo G, Riva A, Scala M, Balagura G, Salpietro V, Madia F, Maghnie M, Zara F, Striano P, Tortora D, Severino M, Capra V. Diagnostic Approach to Macrocephaly in Children. Front Pediatr 2021; 9:794069. [PMID: 35096710 PMCID: PMC8795981 DOI: 10.3389/fped.2021.794069] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 01/19/2023] Open
Abstract
Macrocephaly affects up to 5% of the pediatric population and is defined as an abnormally large head with an occipitofrontal circumference (OFC) >2 standard deviations (SD) above the mean for a given age and sex. Taking into account that about 2-3% of the healthy population has an OFC between 2 and 3 SD, macrocephaly is considered as "clinically relevant" when OFC is above 3 SD. This implies the urgent need for a diagnostic workflow to use in the clinical setting to dissect the several causes of increased OFC, from the benign form of familial macrocephaly and the Benign enlargement of subarachnoid spaces (BESS) to many pathological conditions, including genetic disorders. Moreover, macrocephaly should be differentiated by megalencephaly (MEG), which refers exclusively to brain overgrowth, exceeding twice the SD (3SD-"clinically relevant" megalencephaly). While macrocephaly can be isolated and benign or may be the first indication of an underlying congenital, genetic, or acquired disorder, megalencephaly is most likely due to a genetic cause. Apart from the head size evaluation, a detailed family and personal history, neuroimaging, and a careful clinical evaluation are crucial to reach the correct diagnosis. In this review, we seek to underline the clinical aspects of macrocephaly and megalencephaly, emphasizing the main differential diagnosis with a major focus on common genetic disorders. We thus provide a clinico-radiological algorithm to guide pediatricians in the assessment of children with macrocephaly.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ana Filipa Geraldo
- Diagnostic Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Gianluca Piccolo
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesca Madia
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
45
|
Nagai J, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, Hastings MH, Haydon PG, Rowitch D, Shaham S, Khakh BS. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 2020; 109:576-596. [PMID: 33385325 DOI: 10.1016/j.neuron.2020.12.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Astrocytes are a large and diverse population of morphologically complex cells that exist throughout nervous systems of multiple species. Progress over the last two decades has shown that astrocytes mediate developmental, physiological, and pathological processes. However, a long-standing open question is how astrocytes regulate neural circuits in ways that are behaviorally consequential. In this regard, we summarize recent studies using Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, and Mus musculus. The data reveal diverse astrocyte mechanisms operating in seconds or much longer timescales within neural circuits and shaping multiple behavioral outputs. We also refer to human diseases that have a known primary astrocytic basis. We suggest that including astrocytes in mechanistic, theoretical, and computational studies of neural circuits provides new perspectives to understand behavior, its regulation, and its disease-related manifestations.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; RIKEN Center for Brain Science, 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 514 Burrill Hall, 407 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University in St. Louis, School of Medicine, Campus Box 8108, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Marc R Freeman
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kelly R Monk
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - David Rowitch
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
46
|
Zimmer TS, Broekaart DWM, Gruber VE, van Vliet EA, Mühlebner A, Aronica E. Tuberous Sclerosis Complex as Disease Model for Investigating mTOR-Related Gliopathy During Epileptogenesis. Front Neurol 2020; 11:1028. [PMID: 33041976 PMCID: PMC7527496 DOI: 10.3389/fneur.2020.01028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) represents the prototypic monogenic disorder of the mammalian target of rapamycin (mTOR) pathway dysregulation. It provides the rational mechanistic basis of a direct link between gene mutation and brain pathology (structural and functional abnormalities) associated with a complex clinical phenotype including epilepsy, autism, and intellectual disability. So far, research conducted in TSC has been largely neuron-oriented. However, the neuropathological hallmarks of TSC and other malformations of cortical development also include major morphological and functional changes in glial cells involving astrocytes, oligodendrocytes, NG2 glia, and microglia. These cells and their interglial crosstalk may offer new insights into the common neurobiological mechanisms underlying epilepsy and the complex cognitive and behavioral comorbidities that are characteristic of the spectrum of mTOR-associated neurodevelopmental disorders. This review will focus on the role of glial dysfunction, the interaction between glia related to mTOR hyperactivity, and its contribution to epileptogenesis in TSC. Moreover, we will discuss how understanding glial abnormalities in TSC might give valuable insight into the pathophysiological mechanisms that could help to develop novel therapeutic approaches for TSC or other pathologies characterized by glial dysfunction and acquired mTOR hyperactivation.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| |
Collapse
|
47
|
Sarnat HB. Proteoglycan (Keratan Sulfate) Barrier in Developing Human Forebrain Isolates Cortical Epileptic Networks From Deep Heterotopia, Insulates Axonal Fascicles, and Explains Why Axosomatic Synapses Are Inhibitory. J Neuropathol Exp Neurol 2020; 78:1147-1159. [PMID: 31633782 DOI: 10.1093/jnen/nlz096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Axons from deep heterotopia do not extend through U-fibers, except transmantle dysplasias. Keratan sulfate (KS) in fetal spinal cord/brainstem median septum selectively repels glutamatergic axons while enabling GABAergic commissural axons. Immunocytochemical demonstration of KS in neocortical resections and forebrain at autopsy was studied in 12 fetuses and neonates 9-41 weeks gestational age (GA), 9 infants, children, and adolescents and 5 patients with focal cortical dysplasias (FCD1a). From 9 to 15 weeks GA, no KS is seen in the cortical plate; 19-week GA reactivity is detected in the molecular zone. By 28 weeks GA, patchy granulofilamentous reactivity appears in extracellular matrix and adheres to neuronal somata with increasing intensity in deep cortex and U-fibers at term. Perifascicular KS surrounds axonal bundles of both limbs of the internal capsule and within basal ganglia from 9 weeks GA. Thalamus and globus pallidus exhibit intense astrocytic reactivity from 9 weeks GA. In FCD1a, U-fiber reactivity is normal, discontinuous or radial. Ultrastructural correlates were not demonstrated; KS is not electron-dense. Proteoglycan barrier of the U-fiber layer impedes participation of deep heterotopia in cortical epileptic networks. Perifascicular KS prevents aberrant axonal exit from or entry into long and short tracts. KS adhesion to neuronal somatic membranes may explain inhibitory axosomatic synapses.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology), and Clinical Neurosciences, University of Calgary, Cumming School of Medicine; and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, Alberta, Canada
| |
Collapse
|
48
|
Trimouille A, Marguet F, Sauvestre F, Lasseaux E, Pelluard F, Martin-Négrier ML, Plaisant C, Rooryck C, Lacombe D, Arveiler B, Boespflug-Tanguy O, Naudion S, Laquerrière A. Foetal onset of EIF2B related disorder in two siblings: cerebellar hypoplasia with absent Bergmann glia and severe hypomyelination. Acta Neuropathol Commun 2020; 8:48. [PMID: 32293553 PMCID: PMC7161274 DOI: 10.1186/s40478-020-00929-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
Bi-allelic pathogenic variants in genes of the EIF2B family are responsible for Childhood Ataxia with Central nervous system Hypomyelination/Vanishing White Matter disease, a progressive neurodegenerative disorder of the central white matter. Only seven molecularly proven cases with antenatal onset have been reported so far. We report for the first time the neuropathological findings obtained from two foetuses harbouring deleterious variants in the EIF2B5 gene who presented in utero growth retardation and microcephaly with simplified gyral pattern that led to a medical termination of the pregnancy at 27 and 32 weeks of gestation. Neuropathological examination confirmed microcephaly with delayed gyration, periventricular pseudo-cysts and severe cerebellar hypoplasia. Histologically, the cerebellar cortex was immature, the dentate nuclei were fragmented and myelin stains revealed almost no myelination of the infratentorial structures. Bergmann glia was virtually absent associated to a drastic decreased number of mature astrocytes in the cerebellar white matter, multiple nestin-positive immature astrocytes as well as increased numbers of PDGRFα-positive oligodendrocyte precursors. Whole exome sequencing performed in the two foetuses and their parents allowed the identification of two EIF2B5 compound heterozygous variants in the two foetuses: c.468C > G p.Ile156Met and c.1165G > A p.Val389Met, the parents being heterozygous carriers. These variants are absent in the genome Aggregation Database (gnomAD r2.0.2). Contrary to the variant Ile156Met already described in a patient with CACH syndrome, the variant p.Val389Met is novel and predicted to be deleterious using several softwares. Neuropathological findings further expand the phenotypic spectrum of the disease that very likely occurs during early gestation and may manifest from the second half of pregnancy by a severe impairment of cerebral and cerebellar development.
Collapse
|
49
|
Accogli A, Brais B, Tampieri D, La Piana R. Long-Standing Psychiatric Features as the Only Clinical Presentation of Vanishing White Matter Disease. J Neuropsychiatry Clin Neurosci 2020; 31:276-279. [PMID: 31046592 DOI: 10.1176/appi.neuropsych.18110279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Andrea Accogli
- The Departments of Neurology and Neurosurgery and Pediatrics, McGill University, Montreal (Accogli); DINOGMI-Università di Genova, Italy (Accogli); IRCCS Ospedale Policlinico San Martino, Genova, Italy (Accogli); the Laboratory of Neurogenetics of Motion, Montreal Neurological Institute, McGill University, Montreal (Brais, La Piana); the Department of Human Genetics, McGill University, Montreal (Brais); the Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada (Tampieri); and the Department of Neuroradiology, Montreal Neurological Hospital and Institute, McGill University, Montreal (La Piana)
| | - Bernard Brais
- The Departments of Neurology and Neurosurgery and Pediatrics, McGill University, Montreal (Accogli); DINOGMI-Università di Genova, Italy (Accogli); IRCCS Ospedale Policlinico San Martino, Genova, Italy (Accogli); the Laboratory of Neurogenetics of Motion, Montreal Neurological Institute, McGill University, Montreal (Brais, La Piana); the Department of Human Genetics, McGill University, Montreal (Brais); the Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada (Tampieri); and the Department of Neuroradiology, Montreal Neurological Hospital and Institute, McGill University, Montreal (La Piana)
| | - Donatella Tampieri
- The Departments of Neurology and Neurosurgery and Pediatrics, McGill University, Montreal (Accogli); DINOGMI-Università di Genova, Italy (Accogli); IRCCS Ospedale Policlinico San Martino, Genova, Italy (Accogli); the Laboratory of Neurogenetics of Motion, Montreal Neurological Institute, McGill University, Montreal (Brais, La Piana); the Department of Human Genetics, McGill University, Montreal (Brais); the Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada (Tampieri); and the Department of Neuroradiology, Montreal Neurological Hospital and Institute, McGill University, Montreal (La Piana)
| | - Roberta La Piana
- The Departments of Neurology and Neurosurgery and Pediatrics, McGill University, Montreal (Accogli); DINOGMI-Università di Genova, Italy (Accogli); IRCCS Ospedale Policlinico San Martino, Genova, Italy (Accogli); the Laboratory of Neurogenetics of Motion, Montreal Neurological Institute, McGill University, Montreal (Brais, La Piana); the Department of Human Genetics, McGill University, Montreal (Brais); the Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada (Tampieri); and the Department of Neuroradiology, Montreal Neurological Hospital and Institute, McGill University, Montreal (La Piana)
| |
Collapse
|
50
|
Astrocyte and Oligodendrocyte Cross-Talk in the Central Nervous System. Cells 2020; 9:cells9030600. [PMID: 32138223 PMCID: PMC7140446 DOI: 10.3390/cells9030600] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, ion and water balance, the plasticity of neurotransmitters and synapses, cerebral blood flow, and are important immune cells. During disease astrocytes become reactive and hypertrophic, a response that was long considered to be pathogenic. However, recent studies reveal that astrocytes also have a strong tissue regenerative role. Whilst most astrocyte research focuses on modulating neuronal function and synaptic transmission little is known about the cross-talk between astrocytes and oligodendrocytes, the myelinating cells of the CNS. This communication occurs via direct cell-cell contact as well as via secreted cytokines, chemokines, exosomes, and signalling molecules. Additionally, this cross-talk is important for glial development, triggering disease onset and progression, as well as stimulating regeneration and repair. Its critical role in homeostasis is most evident when this communication fails. Here, we review emerging evidence of astrocyte-oligodendrocyte communication in health and disease. Understanding the pathways involved in this cross-talk will reveal important insights into the pathogenesis and treatment of CNS diseases.
Collapse
|