1
|
Thapa D, Ghimire A, Warne LN, Carlessi R. Targeting the Endocannabinoidome: A Novel Approach to Managing Extraintestinal Complications in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2025; 18:478. [PMID: 40283915 PMCID: PMC12030576 DOI: 10.3390/ph18040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic inflammatory disorder marked by persistent gastrointestinal inflammation and a spectrum of systemic effects, including extraintestinal manifestations (EIMs) that impact the joints, skin, liver, and eyes. Conventional therapies primarily target intestinal inflammation, yet they frequently fail to ameliorate these systemic complications. Recent investigations have highlighted the complex interplay among the immune system, gut, and nervous system in IBD pathogenesis, thereby underscoring the need for innovative therapeutic approaches. Methods: We conducted a comprehensive literature search using databases such as PubMed, Scopus, Web of Science, Science Direct, and Google Scholar. Keywords including "cannabinoids", "endocannabinoid system", "endocannabinoidome", "inflammatory bowel disease", and "extraintestinal manifestations" were used to identify peer-reviewed original research and review articles that explore the role of the endocannabinoidome (eCBome) in IBD. Results: Emerging evidence suggests that eCBome-a network comprising lipid mediators, receptors (e.g., CB1, CB2, GPR55, GPR35, PPARα, TRPV1), and metabolic enzymes-plays a critical role in modulating immune responses, maintaining gut barrier integrity, and regulating systemic inflammation. Targeting eCBome not only improves intestinal inflammation but also appears to mitigate metabolic, neurological, and extraintestinal complications such as arthritis, liver dysfunction, and dermatological disorders. Conclusions: Modulation of eCBome represents a promising strategy for comprehensive IBD management by addressing both local and systemic disease components. These findings advocate for further mechanistic studies to develop targeted interventions that leverage eCBome as a novel therapeutic avenue in IBD.
Collapse
Affiliation(s)
- Dinesh Thapa
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (A.G.); (L.N.W.)
| | - Anjali Ghimire
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (A.G.); (L.N.W.)
| | - Leon N. Warne
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (A.G.); (L.N.W.)
- The Vet Pharmacist, East Fremantle, WA 6158, Australia
| | - Rodrigo Carlessi
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (A.G.); (L.N.W.)
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
2
|
Valeriano JDP, Andrade-Silva M, Pereira-Dutra F, Seito LN, Bozza PT, Rosas EC, Souza Costa MF, Henriques MG. Cannabinoid receptor type 2 agonist GP1a attenuates macrophage activation induced by M. bovis-BCG by inhibiting NF-κB signaling. J Leukoc Biol 2025; 117:qiae246. [PMID: 39538989 DOI: 10.1093/jleuko/qiae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide and a major public health problem. Immune evasion mechanisms and antibiotic resistance highlight the need to better understand this disease and explore alternative treatment approaches. Mycobacterial infection modulates the macrophage response and metabolism to persist and proliferate inside the cell. Cannabinoid receptor type 2 (CB2) is expressed mainly in leukocytes and modulates the course of inflammatory diseases. Therefore, our study aimed to evaluate the effects of the CB2-selective agonist GP1a on irradiated Mycobacterium bovis-BCG (iBCG)-induced J774A.1 macrophage activation. We observed increased expression of CB2 in macrophages after iBCG stimulation. The pretreatment with CB2-agonists, GP1a, JWH-133, and GW-833972A (10 µM), reduced iBCG-induced TNF-α and IL-6 release by these cells. Moreover, the CB2-antagonist AM630 (200 nM) treatment confirmed the activity of GP1a on CB2 by scale down its effect on cytokine production. GP1a pretreatment (10 µM) also inhibited the iBCG-induced production of inflammatory mediators as prostaglandin (PG)E2 and nitric oxide by macrophages. Additionally, GP1a pretreatment also reduced the transcription of proinflammatory genes (inos, il1b, and cox2) and genes related to lipid metabolism (dgat1, acat1, plin2, atgl, and cd36). Indeed, lipid droplet accumulation was reduced by GP1a treatment, which was partially blockade by AM630 pretreatment. Finally, GP1a pretreatment reduced the activation of the NF-κB signaling pathway. In conclusion, the activation of CB2 by GP1a modulated the macrophage response to iBCG by reducing inflammatory mediator levels and metabolic reprogramming.
Collapse
Affiliation(s)
- Jessica Do Prado Valeriano
- Immunobiology Department, Immunobiology of Inflammation Laboratory, IB, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas Reis - São Domingos, Niterói - RJ 24210-201, Brazil
- Graduate Program in Biosciences-IBRAG IBRAG, Universidade do Estado do Rio de Janeiro, Blvd. 28 de Setembro, 87 - fundos - Vila Isabel, Rio de Janeiro - RJ 20551-030, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Filipe Pereira-Dutra
- Immunopharmacology Laboratory, IOC, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro - RJ 21040-900, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Patricia Torres Bozza
- Immunopharmacology Laboratory, IOC, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro - RJ 21040-900, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Maria Fernanda Souza Costa
- Immunobiology Department, Immunobiology of Inflammation Laboratory, IB, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas Reis - São Domingos, Niterói - RJ 24210-201, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| |
Collapse
|
3
|
Charytoniuk T, Półjanowski S, Michalak M, Kaźmierczak K, Kałużny B. The endocannabinoid system and ophthalmic pathologies: a review of molecular mechanisms and its implications for clinical practice. Front Med (Lausanne) 2025; 12:1500179. [PMID: 39975680 PMCID: PMC11835801 DOI: 10.3389/fmed.2025.1500179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Within the last decade the role of the endocannabinoid system (ECS) has been a significant part of ophthalmic research, including both ocular physiology and the development of eye pathologies. It is known that this widespread cell-signaling system is involved in retinal neurobiological processes, including visual signal processing, as well as neurotransmission. Furthermore, various research indicated the involvement of ECS in the molecular basis of various pathologies, mostly glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). Therefore, the researchers believe that this biological system, its receptors, pathways, and ligands might be considered as an auxiliary compound to reduce the number of patients suffering from ophthalmic diseases. Despite presented in the literature effects of the endocannabinoid system in the eye, none of the current ECS reviews presented a comprehensive description of the endocannabinoid system, its compounds, and, subsequently ophthalmic disorders. Thus, the aim of this review was to summarize all the major data, including the most up-to-date research, concerning a correlation between the endocannabinoid system and the major ophthalmic pathologies.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Ophthalmology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
4
|
Thapa D, Patil M, Warne LN, Carlessi R, Falasca M. Enhancing Tetrahydrocannabinol's Therapeutic Efficacy in Inflammatory Bowel Disease: The Roles of Cannabidiol and the Cannabinoid 1 Receptor Allosteric Modulator ZCZ011. Pharmaceuticals (Basel) 2025; 18:148. [PMID: 40005963 PMCID: PMC11858241 DOI: 10.3390/ph18020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Current inflammatory bowel disease (IBD) treatments focus on symptomatic relief, highlighting the need for innovative approaches. Dysregulation of the cannabinoid 1 (CB1) receptor, part of the endocannabinoid system, is linked to colitis. While tetrahydrocannabinol (THC) alleviates colitis via CB1 activation, its psychotropic effects limit clinical use. ZCZ011, a CB1R allosteric modulator, and cannabidiol (CBD), a non-psychoactive cannabinoid, offer alternatives. This study investigated combining sub-therapeutic THC doses with ZCZ011 or CBD in a murine model of dextran sodium sulphate (DSS)-induced colitis. Methods: Acute colitis was induced with 4% DSS for 7 days, followed by 3 days of water. Chronic colitis was modelled over 24 days with alternating DSS concentrations. The combination of 2.5 mg/kg THC with 20 mg/kg ZCZ011 or 10 mg/kg CBD was evaluated. Key markers were assessed to determine efficacy and safety, including disease activity index (DAI), inflammation, cytokine levels, GLP-1, and organ health. Results: DSS-induced colitis resulted in increased DAI scores, cytokines, organ inflammation and dysregulation of GLP-1 and ammonia. THC at 10 mg/kg significantly improved colitis markers but was ineffective at 2.5 and 5 mg/kg. ZCZ011 alone showed transient effects. However, combining 2.5 mg/kg THC with either 20 mg/kg ZCZ011 or 10 mg/kg CBD significantly alleviated colitis markers, restored colon integrity and reestablished GLP-1 homeostasis. This combination also maintained favourable haematological and biochemical profiles, including a notable reduction in colitis-induced elevated ammonia levels. Conclusions: This study demonstrates the synergistic potential of low-dose THC combined with CBD or ZCZ011 as a novel, effective and safer therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Dinesh Thapa
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Mohan Patil
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Leon N Warne
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Rodrigo Carlessi
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| |
Collapse
|
5
|
Thapa D, Patil M, Warne LN, Carlessi R, Falasca M. Comprehensive Assessment of Cannabidiol and HU308 in Acute and Chronic Colitis Models: Efficacy, Safety, and Mechanistic Innovations. Cells 2024; 13:2013. [PMID: 39682761 PMCID: PMC11640522 DOI: 10.3390/cells13232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Cannabinoids are emerging as promising treatments for inflammatory diseases such as ulcerative colitis. Specifically, cannabinoid 2 (CB2) receptors, which are upregulated during inflammation, have been distinctively linked to anti-inflammatory and analgesic effects. HU308, a synthetic cannabinoid developed to activate CB2 receptors selectively, aims to minimize unwanted off-target side effects. This study evaluated the effectiveness of both cannabidiol (CBD) and HU308 in mouse models of dextran sodium sulphate (DSS)-induced colitis, which mimic the acute and chronic phases of ulcerative colitis. Mice were treated with DSS in drinking water (four percent for the acute model and one to two percent for the chronic model) to induce colitis, as indicated by increased disease activity index (DAI) scores and inflammatory markers. Treatment with 60 mg/kg of CBD, but not lower doses, significantly reduced colitis symptoms, such as inflammation, cytokine levels, and MPO activity, while also normalizing glucagon-like peptide-1 (GLP-1) levels. HU308 showed comparable efficacy to high-dose CBD (60 mg/kg) but at a much lower dose (2.5 mg/kg), without observable toxicity. HU308 effectively normalized DAI scores, colon inflammation, ammonia levels, and GLP-1 expression in both colitis models. These results suggest that both CBD and HU308 are promising treatments for ulcerative colitis. However, HU308 demonstrates enhanced therapeutic potential by achieving similar outcomes at a fraction of the dose required for CBD, reducing the risk of off-target side effects. The ability of HU308 to modulate GLP-1, a biomarker of gut endocrine function, further underscores its promise as a novel treatment option.
Collapse
Affiliation(s)
- Dinesh Thapa
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Mohan Patil
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Leon N Warne
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Rodrigo Carlessi
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| |
Collapse
|
6
|
Bondok M, Nguyen AXL, Lando L, Wu AY. Adverse Ocular Impact and Emerging Therapeutic Potential of Cannabis and Cannabinoids: A Narrative Review. Clin Ophthalmol 2024; 18:3529-3556. [PMID: 39629058 PMCID: PMC11613704 DOI: 10.2147/opth.s501494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Cannabis is the most used drug worldwide with an estimated 219 million users. This narrative review aims to explore the adverse effects and therapeutic applications of cannabis and cannabinoids on the eye, given its growing clinical and non-clinical uses. The current literature reports several adverse ocular effects of cannabis and cannabinoids, including eyelid tremor, ptosis, reduced corneal endothelial cell density, dry eyes, red eyes, and neuro-retinal dysfunction. Cannabinoids may transiently impair night vision, depth perception, binocular and monocular contrast sensitivity, and dynamic visual acuity. Cannabinoids are not currently considered a first-line treatment option for any ocular conditions. Δ-9-tetrahydrocannabinol been shown to result in short-term intraocular pressure reduction, but insufficient evidence to support its use in treating glaucoma exists. Potential therapeutic applications of cannabinoids include their use as a second-line agent for treatment-refractory blepharospasm, for dry eye disease given corneal anti-inflammatory properties, and for suppression of pendular nystagmus in individuals with multiple sclerosis, which all necessitate further research for informed clinical practices.
Collapse
Affiliation(s)
- Mostafa Bondok
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne Xuan-Lan Nguyen
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, ONT, Canada
| | - Leonardo Lando
- Ocular Oncology Service, Barretos Cancer Hospital, Barretos, Brazil
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Grether U, Foxton RH, Gruener S, Korn C, Kimbara A, Osterwald A, Zirwes E, Uhles S, Thoele J, Colé N, Rogers-Evans M, Röver S, Nettekoven M, Martin RE, Adam JM, Fingerle J, Bissantz C, Guba W, Alker A, Szczesniak AM, Porter RF, Toguri TJ, Revelant F, Poirier A, Perret C, Winther L, Caruso A, Fezza F, Maccarrone M, Kelly MEM, Fauser S, Ullmer C. RG7774 (Vicasinabin), an orally bioavailable cannabinoid receptor 2 (CB2R) agonist, decreases retinal vascular permeability, leukocyte adhesion, and ocular inflammation in animal models. Front Pharmacol 2024; 15:1426446. [PMID: 39070793 PMCID: PMC11272598 DOI: 10.3389/fphar.2024.1426446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents. Methods The in vitro pharmacology of RG7774 was investigated for CB2R binding and receptor activation using recombinant human and mouse CB2R expression in Chinese hamster ovary cells, and endogenous CB2R expression in human Jurkat cells, and rat and mouse spleen cells. The ADMET profile was evaluated and the effects of RG7774 on retinal permeability, leukocyte adhesion, and choroidal neovascularization (CNV) were investigated in rodent models of retinal disease. Pharmacokinetic (PK) parameters and the exposure-response relationship were characterized in healthy animals and in animals with laser-induced CNV. Results RG7774 was found to be a potent (EC50: 2.8 nM and Ki: 51.3 nM), selective, and full CB2R agonist with no signs of cannabinoid receptor type 1 (CB1R) binding or activation. The ligand showed a favorable ADMET profile and exhibited systemic and ocular exposure after oral delivery. Functional potency in vitro translated from recombinant to endogenous expression systems. In vivo, orally administered RG7774 reduced retinal permeability and leukocyte adhesion in rodents with lipopolysaccharide (LPS)-induced uveitis and streptozotocin (STZ)-induced DR, and reduced lesion areas in rats with laser-induced CNV with an ED50 of 0.32 mg/kg. Anatomically, RG7774 reduced the migration of retinal microglia to retinal lesions. Discussion RG7774 is a novel, highly selective, and orally bioavailable CB2R agonist, with an acceptable systemic and ocular PK profile, and beneficial effects on retinal vascular permeability, leukocyte adhesion, and ocular inflammation in rodent animal models. Results support the development of RG7774 as a potential treatment for retinal diseases with similar pathophysiologies as addressed by the animal models.
Collapse
Affiliation(s)
- Uwe Grether
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Richard H. Foxton
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabine Gruener
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Claudia Korn
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Atsushi Kimbara
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anja Osterwald
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Elisabeth Zirwes
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabine Uhles
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Janina Thoele
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Nadine Colé
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Mark Rogers-Evans
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Röver
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Matthias Nettekoven
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Rainer E. Martin
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Jean-Michel Adam
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Jürgen Fingerle
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Caterina Bissantz
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Wolfgang Guba
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - André Alker
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anna M. Szczesniak
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Ross F. Porter
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Tom J. Toguri
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Franco Revelant
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Agnès Poirier
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Camille Perret
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Lotte Winther
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Antonello Caruso
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Filomena Fezza
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, Rome, Italy
| | - Melanie E. M. Kelly
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Sascha Fauser
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Christoph Ullmer
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
8
|
Carruthers ER, Grimsey NL. Cannabinoid CB 2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation. Br J Pharmacol 2024; 181:2247-2269. [PMID: 37349984 DOI: 10.1111/bph.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Cannabinoid CB2 receptor agonists are in development as therapeutic agents, including for immune modulation and pain relief. Despite promising results in rodent preclinical studies, efficacy in human clinical trials has been marginal to date. Fundamental differences in ligand engagement and signalling responses between the human CB2 receptor and preclinical model species orthologues may contribute to mismatches in functional outcomes. This is a tangible possibility for the CB2 receptor in that there is a relatively large degree of primary amino acid sequence divergence between human and rodent. Here, we summarise CB2 receptor gene and protein structure, assess comparative molecular pharmacology between CB2 receptor orthologues, and review the current status of preclinical to clinical translation for drugs targeted at the CB2 receptor, focusing on comparisons between human, mouse and rat receptors. We hope that raising wider awareness of, and proposing strategies to address, this additional challenge in drug development will assist in ongoing efforts toward successful therapeutic translation of drugs targeted at the CB2 receptor. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
9
|
Takeuchi M, Nishio Y, Someya H, Sato T, Yoshimura A, Ito M, Harimoto K. Autoimmune uveitis attenuated in diabetic mice through imbalance of Th1/Th17 differentiation via suppression of AP-1 signaling pathway in Th cells. Front Immunol 2024; 15:1347018. [PMID: 38887289 PMCID: PMC11180723 DOI: 10.3389/fimmu.2024.1347018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Inflammation is involved in the pathogenesis of diabetes, however the impact of diabetes on organ-specific autoimmune diseases remains unexplored. Experimental autoimmune uveoretinitis (EAU) is a widely accepted animal model of human endogenous uveitis. In this study, we investigated the effects of diabetic conditions on the development of EAU using a mouse diabetes model. Methods EAU was induced in wild-type C57BL/6 (WT) mice and Ins2Akita (Akita) mice with spontaneous diabetes by immunization with IRBP peptide. Clinical and histopathological examinations, and analysis of T cell activation state were conducted. In addition, alternations in the composition of immune cell types and gene expression profiles of relevant immune functions were identified using single-cell RNA sequencing. Results The development of EAU was significantly attenuated in immunized Akita (Akita-EAU) mice compared with immunized WT (WT-EAU) mice, although T cells were fully activated in Akita-EAU mice, and the differentiation into Th17 cells and regulatory T (Treg) cells was promoted. However, Th1 cell differentiation was inhibited in Akita-EAU mice, and single-cell analysis indicated that gene expression associated AP-1 signaling pathway (JUN, FOS, and FOSB) was downregulated not only in Th1 cells but also in Th17, and Treg cells in Akita-EAU mice at the onset of EAU. Conclusions In diabetic mice, EAU was significantly attenuated. This was related to selective inhibition of Th1 cell differentiation and downregulated AP-1 signaling pathway in both Th1 and Th17 cells.
Collapse
Affiliation(s)
- Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
10
|
Young AP, Szczesniak AM, Hsu K, Kelly ME, Denovan-Wright EM. Enantiomeric Agonists of the Type 2 Cannabinoid Receptor Reduce Retinal Damage during Proliferative Vitreoretinopathy and Inhibit Hyperactive Microglia In Vitro. ACS Pharmacol Transl Sci 2024; 7:1348-1363. [PMID: 38751621 PMCID: PMC11091991 DOI: 10.1021/acsptsci.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Microglia are resident immune cells of the central nervous system (CNS) and propagate inflammation following damage to the CNS, including the retina. Proliferative vitreoretinopathy (PVR) is a condition that can emerge following retinal detachment and is characterized by severe inflammation and microglial proliferation. The type 2 cannabinoid receptor (CB2) is an emerging pharmacological target to suppress microglial-mediated inflammation when the eyes or brain are damaged. CB2-knockout mice have exacerbated inflammation and retinal pathology during experimental PVR. We aimed to assess the anti-inflammatory effects of CB2 stimulation in the context of retinal damage and also explore the mechanistic roles of CB2 in microglia function. To target CB2, we used a highly selective agonist, HU-308, as well as its enantiomer, HU-433, which is a putative selective agonist. First, β-arrestin2 and Gαi recruitment was measured to compare activation of human CB2 in an in vitro heterologous expression system. Both agonists were then utilized in a mouse model of PVR, and the effects on retinal damage, inflammation, and cell death were assessed. Finally, we used an in vitro model of microglia to determine the effects of HU-308 and HU-433 on phagocytosis, cytokine release, migration, and intracellular signaling. We observed that HU-308 more strongly recruited both β-arrestin2 and Gαi compared to HU-433. Stimulation of CB2 with either drug effectively blunted LPS- and IFNγ-mediated signaling as well as NO and TNF release from microglia. Furthermore, both drugs reduced IL-6 accumulation, total caspase-3 cleavage, and retinal pathology following the induction of PVR. Ultimately, this work supports that CB2 is a valuable target for drugs to suppress inflammation and cell death associated with infection or sterile retinopathy, although the magnitude of effector recruitment may not be predictive of anti-inflammatory capacity.
Collapse
Affiliation(s)
- Alexander P. Young
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Anna-Maria Szczesniak
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karolynn Hsu
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie E.M. Kelly
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
11
|
Livne-Bar I, Maurya S, Gronert K, Sivak JM. Lipoxins A 4 and B 4 inhibit glial cell activation via CXCR3 signaling in acute retinal neuroinflammation. J Neuroinflammation 2024; 21:18. [PMID: 38212822 PMCID: PMC10782675 DOI: 10.1186/s12974-024-03010-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Lipoxins are small lipids that are potent endogenous mediators of systemic inflammation resolution in a variety of diseases. We previously reported that Lipoxins A4 and B4 (LXA4 and LXB4) have protective activities against neurodegenerative injury. Yet, lipoxin activities and downstream signaling in neuroinflammatory processes are not well understood. Here, we utilized a model of posterior uveitis induced by lipopolysaccharide endotoxin (LPS), which results in rapid retinal neuroinflammation primarily characterized by activation of resident macroglia (astrocytes and Müller glia), and microglia. Using this model, we observed that each lipoxin reduces acute inner retinal inflammation by affecting endogenous glial responses in a cascading sequence beginning with astrocytes and then microglia, depending on the timing of exposure; prophylactic or therapeutic. Subsequent analyses of retinal cytokines and chemokines revealed inhibition of both CXCL9 (MIG) and CXCL10 (IP10) by each lipoxin, compared to controls, following LPS injection. CXCL9 and CXCL10 are common ligands for the CXCR3 chemokine receptor, which is prominently expressed in inner retinal astrocytes and ganglion cells. We found that CXCR3 inhibition reduces LPS-induced neuroinflammation, while CXCR3 agonism alone induces astrocyte reactivity. Together, these data uncover a novel lipoxin-CXCR3 pathway to promote distinct anti-inflammatory and proresolution cascades in endogenous retinal glia.
Collapse
Affiliation(s)
- Izhar Livne-Bar
- Department of Vision Sciences, Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada
| | - Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
- Vision Science Program, University of California Berkeley, Berkeley, CA, USA
- Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Sciences, Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada.
| |
Collapse
|
12
|
Zhao FZ, Gu WJ, Li LZ, Qu ZK, Xu MY, Liu K, Zhang F, Liu H, Xu J, Yin HY. Cannabinoid receptor 2 alleviates sepsis-associated acute lung injury by modulating maturation of dendritic cells. Int Immunopharmacol 2023; 123:110771. [PMID: 37582314 DOI: 10.1016/j.intimp.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Dendritic cells (DCs) play a key role in a variety of inflammatory lung diseases, but their role in sepsis-associated acute lung injury (SA-ALI) is currently not been illuminated. Cannabinoid receptor 2 (CNR2) has been reported to regulate the DCs maturation. However, whether the CNR2 in DCs contributes to therapeutic therapy for SA-ALI remain unclear. In current study, the role of CNR2 on DCs maturation and inflammatory during SA-ALI is to explored. METHODS First, the CNR2 level was analyzed in isolated Peripheral Blood Mononuclear Cells (PBMCs) and Bronchoalveolar Lavage Fluid (BALF) from patient with SA-ALI by qRT-PCR and flow cytometry. Subsequently, HU308, a specific agonist of CNR2, and SR144528, a specific antagonist of CNR2, were introduced to explore the function of CNR2 on DCs maturation and inflammatory during SA-ALI. Finally, CNR2 conditional knockout mice were generated to further confirm the function of DCs maturation and Inflammation during SA-ALI. RESULTS First, we found that the expression of CNR2 on DCs was decreased in patient with SA-ALI. Besides, the result showed HU308 could decrease the maturation of DCs and the level of inflammatory cytokines, simultaneously reduce pulmonary pathological injury after LPS-induced sepsis in mice. In contrast of HU308, SR144528 exhibits opposite function of DCs maturate, inflammatory cytokines and lung pathological injury. Furthermore, comparing with SR144528 treatment, similar results were obtained in DCs specific CNR2 knockout mice after LPS treatment. CONCLUSION CNR2 could alleviate SA-ALI by modulating maturation of DCs and inflammatory factors levels. Targeting CNR2 signaling specifically in DCs has therapeutic potential for the treatment of SA-ALI.
Collapse
Affiliation(s)
- Feng-Zhi Zhao
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wan-Jie Gu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Long-Zhu Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhong-Kai Qu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Meng-Yuan Xu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Kai Liu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun Xu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Hai-Yan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Alkholief M, Kalam MA, Raish M, Ansari MA, Alsaleh NB, Almomen A, Ali R, Alshamsan A. Topical Sustained-Release Dexamethasone-Loaded Chitosan Nanoparticles: Assessment of Drug Delivery Efficiency in a Rabbit Model of Endotoxin-Induced Uveitis. Pharmaceutics 2023; 15:2273. [PMID: 37765242 PMCID: PMC10537057 DOI: 10.3390/pharmaceutics15092273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Uveitis is an ocular illness that if not treated properly can lead to a total loss of vision. In this study, we evaluated the utility of HA-coated Dexamethasone-sodium-phosphate (DEX)-chitosan nanoparticles (CSNPs) coated with hyaluronic acid (HA) as a sustained ocular delivery vehicle for the treatment of endotoxin-induced-uveitis (EIU) in rabbits. The CSNPs were characterized for particle size, zeta potential, polydispersity, surface morphology, and physicochemical properties. Drug encapsulation, in vitro drug release, and transcorneal permeation were also evaluated. Finally, eye irritation, ocular pharmacokinetics, and pharmacodynamics were in vivo. The CSNPs ranged from 310.4 nm and 379.3 nm pre-(uncoated) and post-lyophilization (with HA-coated), respectively. The zeta potentials were +32 mV (uncoated) and -5 mV (HA-uncoated), while polydispersity was 0.178-0.427. Drug encapsulation and loading in the CSNPs were 73.56% and 6.94% (uncoated) and 71.07% and 5.54% (HA-coated), respectively. The in vitro DEX release over 12 h was 77.1% from the HA-coated and 74.2% from the uncoated NPs. The physicochemical properties of the CSNPs were stable over a 3-month period when stored at 25 °C. Around a 10-fold increased transcorneal-flux and permeability of DEX was found with HA-CSNPs compared to the DEX-aqueous solution (DEX-AqS), and the eye-irritation experiment indicated its ocular safety. After the ocular application of the CSNPs, DEX was detected in the aqueous humor (AH) till 24 h. The area under the concentrations curve (AUC0-24h) for DEX from the CSNPs was 1.87-fold (uncoated) and 2.36-fold (HA-coated) higher than DEX-AqS. The half-life (t1/2) of DEX from the uncoated and HA-coated NPs was 2.49-and 3.36-fold higher, and the ocular MRT0-inf was 2.47- and 3.15-fold greater, than that of DEX-AqS, respectively. The EIU rabbit model showed increased levels of MPO, TNF-α, and IL-6 in AH. Topical DEX-loaded CSNPs reduced MPO, TNF-α, and IL-6 levels as well as inhibited NF-κB expression. Our findings demonstrate that the DEX-CSNPs platform has improved the delivery properties and, hence, the promising anti-inflammatory effects on EIU in rabbits.
Collapse
Affiliation(s)
- Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (N.B.A.)
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (N.B.A.)
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| |
Collapse
|
14
|
Kolousek A, Pak-Harvey E, Liu-Lam O, White M, Smith P, Henning F, Koval M, Levy JM. The Effects of Endogenous Cannabinoids on the Mammalian Respiratory System: A Scoping Review of Cyclooxygenase-Dependent Pathways. Cannabis Cannabinoid Res 2023; 8:434-444. [PMID: 37074668 PMCID: PMC10249741 DOI: 10.1089/can.2022.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.
Collapse
Affiliation(s)
| | | | - Oliver Liu-Lam
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mia White
- Emory Libraries, Emory University, Atlanta, Georgia, USA
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M. Levy
- Department of Otolaryngology—Head & Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Grabon W, Rheims S, Smith J, Bodennec J, Belmeguenai A, Bezin L. CB2 receptor in the CNS: from immune and neuronal modulation to behavior. Neurosci Biobehav Rev 2023; 150:105226. [PMID: 37164044 DOI: 10.1016/j.neubiorev.2023.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Despite low levels of cannabinoid receptor type 2 (CB2R) expression in the central nervous system in human and rodents, a growing body of evidence shows CB2R involvement in many processes at the behavioral level, through both immune and neuronal modulations. Recent in vitro and in vivo evidence have highlighted the complex role of CB2R under physiological and inflammatory conditions. Under neuroinflammatory states, its activation seems to protect the brain and its functions, making it a promising target in a wide range of neurological disorders. Here, we provide a complete and updated overview of CB2R function in the central nervous system of rodents, spanning from modulation of immune function in microglia but also in other cell types, to behavior and neuronal activity, in both physiological and neuroinflammatory contexts.
Collapse
Affiliation(s)
- Wanda Grabon
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France.
| | - Sylvain Rheims
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon - France
| | - Jonathon Smith
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Jacques Bodennec
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Amor Belmeguenai
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Laurent Bezin
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France.
| |
Collapse
|
16
|
Mota-Silva I, Castanho MARB, Silva-Herdade AS. Towards Non-Invasive Intravital Microscopy: Advantages of Using the Ear Lobe Instead of the Cremaster Muscle. Life (Basel) 2023; 13:life13040887. [PMID: 37109417 PMCID: PMC10145854 DOI: 10.3390/life13040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammation is essential in the protection of the organism and wound repair, but in cases of chronic inflammation can also cause microvasculature deterioration. Thus, inflammation monitorization studies are important to test potential therapeutics. The intravital microscopy (IVM) technique monitors leukocyte trafficking in vivo, being a commonly used procedure to report systemic conditions. Although the cremaster muscle, an established protocol for IVM, may affect the hemodynamics because of its surgical preparation, only male animals are used, and longitudinal studies over time are not feasible. Thinking how this impacts future studies, our aim is to understand if the IVM technique can be successfully performed using the ear lobe instead of the cremaster muscle. Elevated IL-1β plasmatic concentrations confirmed the systemic inflammation developed in a diabetic animal model, while the elevated number of adherent and rolling leukocytes in the ear lobe allowed for the same conclusion. Thus, this study demonstrates that albeit its thickness, the ear lobe protocol for IVM is efficient, non-invasive, more reliable, cost-effective and timesaving.
Collapse
|
17
|
Saraiva SM, Martín-Banderas L, Durán-Lobato M. Cannabinoid-Based Ocular Therapies and Formulations. Pharmaceutics 2023; 15:pharmaceutics15041077. [PMID: 37111563 PMCID: PMC10146987 DOI: 10.3390/pharmaceutics15041077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The interest in the pharmacological applications of cannabinoids is largely increasing in a wide range of medical areas. Recently, research on its potential role in eye conditions, many of which are chronic and/or disabling and in need of new alternative treatments, has intensified. However, due to cannabinoids’ unfavorable physicochemical properties and adverse systemic effects, along with ocular biological barriers to local drug administration, drug delivery systems are needed. Hence, this review focused on the following: (i) identifying eye disease conditions potentially subject to treatment with cannabinoids and their pharmacological role, with emphasis on glaucoma, uveitis, diabetic retinopathy, keratitis and the prevention of Pseudomonas aeruginosa infections; (ii) reviewing the physicochemical properties of formulations that must be controlled and/or optimized for successful ocular administration; (iii) analyzing works evaluating cannabinoid-based formulations for ocular administration, with emphasis on results and limitations; and (iv) identifying alternative cannabinoid-based formulations that could potentially be useful for ocular administration strategies. Finally, an overview of the current advances and limitations in the field, the technological challenges to overcome and the prospective further developments, is provided.
Collapse
Affiliation(s)
- Sofia M. Saraiva
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| | - Lucía Martín-Banderas
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla (IBIS), Campus Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556754
| | - Matilde Durán-Lobato
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
| |
Collapse
|
18
|
Nayak AP, Loblundo C, Bielory L. Immunomodulatory Actions of Cannabinoids: Clinical Correlates and Therapeutic Opportunities for Allergic Inflammation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:449-457. [PMID: 36280137 PMCID: PMC9918686 DOI: 10.1016/j.jaip.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
Endogenously produced cannabinoids as well as phytocannabinoids broadly exhibit anti-inflammatory actions. Recent emergence of cannabis for multiple medical issues combined with reports on potent immunomodulatory actions of distinct components has underscored the therapeutic potential of cannabis. Although synthetic cannabinoids that are based on structural similarities to the existing class of cannabinoids have been on the rise, their application in therapeutics have been limited owing to toxicity concerns. Herein, we review the current literature that details the immunomodulatory actions of cannabinoids. Further, we highlight the complexities of cannabinoid biology and examine the potential inflammatory risks associated with the use of cannabis including potential for toxic interactions between distinct constituents of cannabis.
Collapse
Affiliation(s)
- Ajay P Nayak
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pa; Center for Translational Medicine; Division of Pulmonary Allergy and Critical Care Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pa.
| | - Cali Loblundo
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pa; Center for Translational Medicine; Division of Pulmonary Allergy and Critical Care Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pa
| | - Leonard Bielory
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pa; Department of Medicine, Hackensack Meridian School of Medicine, Nutley, NJ; Rutgers University Center for Environmental Prediction, New Brunswick, NJ; Center for Aerobiological Research, Kean University, Union, NJ.
| |
Collapse
|
19
|
Lehmann C, Zhou J. Cannabinoid effects in the microvasculature - CB, or not CB? That is the question! A mini-review. Clin Hemorheol Microcirc 2022; 83:287-292. [PMID: 36591655 DOI: 10.3233/ch-221677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cannabinoids play critical roles in human pathophysiology through the cannabinoid (CB) receptors and non-CB receptors on variety of cells, tissues, and organs. Microvasculature with the inside bloodstream containing the plasmatic and cellular components exerts multiple functions in maintaining tissue and organ physiology through microcirculation. This review focusses on the impact of cannabinoids on the microvasculature, including mechanisms mediated by both CB receptor-related pathways and CB receptor-independent pathways.
Collapse
Affiliation(s)
- Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,Department of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
20
|
Terhaar HM, Henriksen MDL, Uhl LK, Boeckling C, Mehaffy C, Hess A, Lappin MR. Pro-inflammatory cytokines in aqueous humor from dogs with anterior uveitis and post-operative ocular hypertension following phacoemulsification, primary glaucoma, and normal healthy eyes. PLoS One 2022; 17:e0273449. [PMID: 35998207 PMCID: PMC9398016 DOI: 10.1371/journal.pone.0273449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background
The aim of this study was to evaluate the levels of pro-inflammatory cytokines in aqueous humor (AH) from dogs with anterior uveitis and post-operative ocular hypertension (POH) following phacoemulsification, in AH from dogs with primary glaucoma, and in normal healthy eyes with no signs of anterior uveitis or other ocular diseases.
Methods
An exploratory study including 21 samples of AH collected from 15 dogs; post-phacoemulsification with anterior uveitis and POH (‘POH group’, n = 10 samples), primary glaucoma (‘glaucoma group’, n = 6 samples), and normal (‘normal group’, n = 5 samples). Target mass spectrometry via multiple reaction monitoring (MRM-MS) with the Canine Cytokine SpikeMix™ as internal standard was used to measure the pro-inflammatory cytokine levels.
Results
The MRM-MS method measured 15 pro-inflammatory cytokines. Tumor-necrosis-factor-alpha (TNFα) and interleukin-18 (IL-18) levels in AH were different between all three groups (glaucoma>POH>normal) (p = .05, p = .02, respectively). Additionally, IL-6 was higher in the ‘POH group’ compared to the ‘glaucoma group’ (p = .04) and IL-4 was higher in the ‘POH group’ compared to the ‘normal group’ (p = .04). Intraocular pressure (IOP) was positively associated with increased AH levels of IL-18 (Spearman correlation = .64, p = .03).
Conclusions
MRM-MS using the Canine Cytokine SpikeMix™ as an internal standard was established as a method to detect pro-inflammatory cytokine levels in canine AH. The study demonstrated increased levels of IL-4, IL-6, IL-18, and TNFα in AH from canines with POH following phacoemulsification. Primary glaucomatous eyes had the highest levels of IL-18 and TNFα which may indicate that inflammation plays a role in the pathogenesis of primary glaucoma in dogs.
Collapse
Affiliation(s)
- Hannah M. Terhaar
- Department of Clinical Sciences, Comparative Ophthalmology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Michala de Linde Henriksen
- Department of Clinical Sciences, Comparative Ophthalmology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail:
| | - Lisa K. Uhl
- Department of Clinical Sciences, Comparative Ophthalmology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Pathology, Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Corey Boeckling
- Bioanalysis and Omics (ARC-BIO), Colorado State University, Fort Collins, CO, United States of America
| | - Carolina Mehaffy
- Bioanalysis and Omics (ARC-BIO), Colorado State University, Fort Collins, CO, United States of America
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Ann Hess
- Department of Statistics, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Michael R. Lappin
- Department of Clinical Sciences, Center for Companion Animal Studies, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
21
|
CB 1R, CB 2R and TRPV1 expression and modulation in in vivo, animal glaucoma models: A systematic review. Biomed Pharmacother 2022; 150:112981. [PMID: 35468582 DOI: 10.1016/j.biopha.2022.112981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is a complex biological regulatory system. Its expression and functionality have been widely investigated in ocular tissues. Recent data have reported its modulation to be valid in determining an ocular hypotensive and a neuroprotective effect in preclinical animal models of glaucoma. AIM This study aimed to explore the available literature on cannabinoid receptor 1 (CB1R), cannabinoid receptor 2 (CB2R), and transient receptor potential vanilloid 1 (TRPV1) expression in the trabecular meshwork (TM), ciliary body (CB), and retina as well as their ocular hypotensive and neuroprotective effects in preclinical, in vivo, animal glaucoma models. MATERIALS AND METHODS The study adhered to both PRISMA and SYRCLE guidelines. Sixty-nine full-length articles were included in the final analysis. RESULTS Preclinical studies indicated a widespread distribution of CB1R, CB2R, and TRPV1 in the TM, CB, and retina, although receptor-, age-, and species-dependent differences were observed. CB1R and CB2R modulation have been shown to exert ocular hypotensive effects in preclinical models via the regulation of inflow and outflow pathways. Retinal cell neuroprotection has been achieved in several experimental models, mediated by agonists and antagonists of CB1R, CB2R, and TRPV1. DISCUSSION Despite the growing body of preclinical data regarding the expression and modulation of ECS in ocular tissues, the mechanisms responsible for the hypotensive and neuroprotective efficacy exerted by this system remain largely elusive. Research on this topic is advocated to further substantiate the hypothesis that the ECS is a new potential therapeutic target in the context of glaucoma.
Collapse
|
22
|
Abidi AH, Alghamdi SS, Derefinko K. A critical review of cannabis in medicine and dentistry: A look back and the path forward. Clin Exp Dent Res 2022; 8:613-631. [PMID: 35362240 PMCID: PMC9209799 DOI: 10.1002/cre2.564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction In the last two decades, our understanding of the therapeutic utility and medicinal properties of cannabis has greatly changed. This change has been accompanied by widespread cannabis use in various communities and different age groups, especially within the United States. With this increase, we should consider the potential effects of cannabis–hemp on general public health and how they could alter therapeutic outcomes. Material and Methods The present investigation examined cannabis use for recreational and therapeutic use and a review of pertinent indexed literature was performed. The focused question evaluates “how cannabis or hemp products impact health parameters and do they provide potential therapeutic value in dentistry, and how do they interact with conventional medicines (drugs).” Indexed databases (PubMed/Medline, EMBASE) were searched without any time restrictions but language was restricted to English. Results The review highlights dental concerns of cannabis usage, the need to understand the endocannabinoid system (ECS), cannabinoid receptor system, its endogenous ligands, pharmacology, metabolism, current oral health, and medical dilemma to ascertain the detrimental or beneficial effects of using cannabis–hemp products. The pharmacological effects of pure cannabidiol (CBD) have been studied extensively while cannabis extracts can vary significantly and lack empirical studies. Several metabolic pathways are affected by cannabis use and could pose a potential drug interaction. The chronic use of cannabis is associated with health issues, but the therapeutic potential is multifold since there is a regulatory role of ECS in many pathologies. Conclusion Current shortcomings in understanding the benefits of cannabis or hemp products are limited due to pharmacological and clinical effects not being predictable, while marketed products vary greatly in phytocompounds warrant further empirical investigation. Given the healthcare challenges to manage acute and chronic pain, this review highlights both cannabis and CBD‐hemp extracts to help identify the therapeutic application for patient populations suffering from anxiety, inflammation, and dental pain.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Dentistry, Department of General Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sahar S Alghamdi
- Department of Phamaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Karen Derefinko
- College of Medicine, Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Medicine, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
23
|
Hu DN, Zhang R, Iacob CE, Yao S, Yang SF, Chan CC, Rosen RB. Toll-like receptor 2 and 6 agonist fibroblast-stimulating lipopeptide increases expression and secretion of CXCL1 and CXCL2 by uveal melanocytes. Exp Eye Res 2022; 216:108943. [DOI: 10.1016/j.exer.2022.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 01/09/2022] [Indexed: 11/24/2022]
|
24
|
Fenchone Derivatives as a Novel Class of CB2 Selective Ligands: Design, Synthesis, X-ray Structure and Therapeutic Potential. Molecules 2022; 27:molecules27041382. [PMID: 35209170 PMCID: PMC8878464 DOI: 10.3390/molecules27041382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+) and (1R,4S)-(−)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylformamide (DMF). The absolute configurations of four compounds were determined by X-ray single crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2′,6′-dimethoxy-4′-(2″-methyloctan-2″-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM, E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and analgesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the CB2 binding site.
Collapse
|
25
|
Scuteri D, Rombolà L, Hamamura K, Sakurada T, Watanabe C, Sakurada S, Guida F, Boccella S, Maione S, Gallo Afflitto G, Nucci C, Tonin P, Bagetta G, Corasaniti MT. Is there a rational basis for cannabinoids research and development in ocular pain therapy? A systematic review of preclinical evidence. Biomed Pharmacother 2021; 146:112505. [PMID: 34891121 DOI: 10.1016/j.biopha.2021.112505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Purpose of the present systematic review is to investigate preclinical evidence in favor of the working hypothesis of efficacy of cannabinoids in ocular pain treatment. METHODS Literature search includes the most relevant repositories for medical scientific literature from inception until November, 24 2021. Data collection and selection of retrieved records adhere to PRISMA criteria. RESULTS In agreement with a priori established protocol the search retrieved 2471 records leaving 479 results after duplicates removal. Eleven records result from title and abstract screening to meet the inclusion criteria; only 4 results are eligible for inclusion in the qualitative synthesis impeding meta-analysis. The qualitative analysis highlights the antinociceptive and anti-inflammatory efficacy of Δ8-tetrahydrocannabinol, cannabidiol and its derivative HU-308 and of new racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229. Moreover, CB2R agonists RO6871304 and RO6871085 and CB2R ligand HU910 provide evidence of anti-inflammatory efficacy. CB2 agonist HU308 reduces of 241% uveitis-induced leukocyte adhesion and changes lipidome profile. Methodological and design issues raise concern of risk of bias and the amount of studies is too small for generalization. Furthermore, the ocular pain model used can resemble only inflammatory but not neuropathic pain. CONCLUSIONS The role of the endocannabinoid system in ocular pain is underinvestigated, since only two studies assessing the effects of cannabinoid receptors modulators on pain behavior and other two on pain-related inflammatory processes are found. Preclinical studies investigating the efficacy of cannabinoids in ocular inflammatory and neuropathic pain models are needed to pave the way for clinical translation.
Collapse
Affiliation(s)
- D Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy.
| | - L Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - K Hamamura
- Department of Pharmacology, Daiichi University of Pharmacy, 815-8511 Fukuoka, Japan.
| | - T Sakurada
- Department of Pharmacology, Daiichi University of Pharmacy, 815-8511 Fukuoka, Japan.
| | - C Watanabe
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan.
| | - S Sakurada
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan.
| | - F Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - S Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - S Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy; IRCSS, Neuromed, Pozzilli, Italy.
| | - G Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - C Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - P Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy.
| | - G Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - M T Corasaniti
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
26
|
Hu DN, Zhang R, Yao S, Iacob CE, Yang WE, Rosen R, Yang SF. Cultured Human Uveal Melanocytes Express/secrete CXCL1 and CXCL2 Constitutively and Increased by Lipopolysaccharide via Activation of Toll-like Receptor 4. Curr Eye Res 2021; 46:1681-1694. [PMID: 33979551 DOI: 10.1080/02713683.2021.1929326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Purpose: Lipopolysaccharide (LPS) can activate Toll-like receptor 4 (TLR4) and increase the expression of CXCL1 and CXCL2, the potent neutrophils chemoattractants, in various cell types. These effects have not been previously reported in the uveal melanocytes. This study was designed to investigate the effects of LPS on the activation of TLR4 and expression of CXCL1/CXCL2 in cultured human uveal melanocytes and the relevant signal pathways.Methods: Effects of LPS on the expression of TLR4 were tested using real-time PCR, flow cytometry and fluorescence immunostaining. Effects of LPS-induced expression/secretion of CXCL1/CXCL2 were studied using real-time PCR in cell lysates and ELISA in conditioned media of cultured uveal melanocytes. Activated NF-κB and phosphorylated MAPK signals were tested in cells with and without LPS treatment using flow cytometry. Effects of various signal inhibitors on p38, ERK1/2, JNK1/2 and NF-κB on the secretion of CXCL1/CXCL2 were tested by ELISA. The effects of neutralized antibodies of CXCL1/CXCL2 on the severity of LPS-induced uveitis were tested in a mouse model.Results: LPS stimulation increased the expression of TLR4 mRNA and protein in culture uveal melanocytes. Constitutive secretion of CXCL1/CXCL2 was detected in uveal melanocytes and was significantly increased dose- and time-dependently by LPS stimulation. LPS mainly increased the activated NF-κB and phosphorylated JNK1/2. LPS-induced expression of CXCL1/CXCL2 was blocked by NF-κB and JNK1/2 inhibitors. The severity of LPS-induced uveitis was significantly inhibited by neutralizing antibody to CXCL1/CXCL2Conclusions: This is the first report on the LPS-induced expression of CXCL1 and CXCL2 by uveal melanocytes via the activation of TLR4. These results suggest that uveal melanocytes may play a role in the immune reaction that eliminates the invading pathogens. Conversely, an excessive LPS-induced inflammatory reaction may also lead to the development of inflammatory ocular disorders, such as non-infectious uveitis.
Collapse
Affiliation(s)
- Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, USA
- Departments of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ruihua Zhang
- Departments of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Shen Yao
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Codrin E Iacob
- Departments of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai, New York, USA
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Richard Rosen
- Departments of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Ophthalmology, New York Eye and Ear Infirmay of Mount Sinai, New York, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Pharmacological and toxicological activities of α-humulene and its isomers: A systematic review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
29
|
Zhou J, Kamali K, Lafreniere JD, Lehmann C. Real-Time Imaging of Immune Modulation by Cannabinoids Using Intravital Fluorescence Microscopy. Cannabis Cannabinoid Res 2021; 6:221-232. [PMID: 34042507 PMCID: PMC8266559 DOI: 10.1089/can.2020.0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The endocannabinoid system (ECS) is an endogenous regulatory system involved in a wide range of physiologic and disease processes. Study of ECS regulation provides novel drug targets for disease treatment. Intravital microscopy (IVM), a microscopy-based imaging method that allows the observation of cells and cell-cell interactions within various tissues and organs in vivo, has been utilized to study tissues and cells in their physiologic microenvironment. This article reviews the current state of the IVM techniques used in ECS-related inflammation research. Methodological Aspects of IVM: IVM with focus on conventional fluorescent microscope has been introduced in investigation of microcirculatory function and the behavior of individual circulating cells in an in vivo environment. Experimental setting, tissue protection under physiologic condition, and microscopical observation are described. Application of IVM in Experimental Inflammatory Disorders: Using IVM to investigate the effects of immune modulation by cannabinoids is extensively reviewed. The inflammatory disorders include sepsis, arthritis, diabetes, interstitial cystitis, and inflammatory conditions in the central nervous system and eyes. Conclusion: IVM is a critical tool in cannabinoid and immunology research. It has been applied to investigate the role of the ECS in physiologic and disease processes. This review demonstrates that the IVM technique provides a unique means in understanding ECS regulation on immune responses in diseases under their physical conditions, which could not be achieved by other methods.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Kiyana Kamali
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | | | - Christian Lehmann
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
- Department of Pharmacology, Dalhousie University, Halifax, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| |
Collapse
|
30
|
Gómez CT, Lairion F, Repetto M, Ettcheto M, Merelli A, Lazarowski A, Auzmendi J. Cannabidiol (CBD) Alters the Functionality of Neutrophils (PMN). Implications in the Refractory Epilepsy Treatment. Pharmaceuticals (Basel) 2021; 14:ph14030220. [PMID: 33807975 PMCID: PMC8001508 DOI: 10.3390/ph14030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
Cannabidiol (CBD), a lipophilic cannabinoid compound without psychoactive effects, has emerged as adjuvant of anti-epileptic drugs (AEDs) in the treatment of refractory epilepsy (RE), decreasing the severity and/or frequency of seizures. CBD is considered a multitarget drug that could act throughout the canonical endocannabinoid receptors (CB1-CB2) or multiple non-canonical pathways. Despite the fact that the CBD mechanism in RE is still unknown, experiments carried out in our laboratory showed that CBD has an inhibitory role on P-glycoprotein excretory function, highly related to RE. Since CB2 is expressed mainly in the immune cells, we hypothesized that CBD treatment could alter the activity of polymorphonuclear neutrophils (PMNs) in a similar way that it does with microglia/macrophages and others circulating leukocytes. In vitro, CBD induced PMN cytoplasmatic vacuolization and proapoptotic nuclear condensation, associated with a significantly decreased viability in a concentration-dependent manner, while low CBD concentration decreased PMN viability in a time-dependent manner. At a functional level, CBD reduced the chemotaxis and oxygen consumption of PMNs related with superoxide anion production, while the singlet oxygen level was increased suggesting oxidative stress damage. These results are in line with the well-known CBD anti-inflammatory effect and support a potential immunosuppressor role on PMNs that could promote an eventual defenseless state during chronic treatment with CBD in RE.
Collapse
Affiliation(s)
- Claudia Taborda Gómez
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Fabiana Lairion
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, (IBIMOL, UBA-CONICET), Buenos Aires C1113AAD, Argentina; (F.L.); (M.R.)
| | - Marisa Repetto
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, (IBIMOL, UBA-CONICET), Buenos Aires C1113AAD, Argentina; (F.L.); (M.R.)
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Institute of Neuroscience, University of Barcelona, 08193 Barcelona, Spain;
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Amalia Merelli
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Jerónimo Auzmendi
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQD, Argentina
- Correspondence:
| |
Collapse
|
31
|
CannabinEYEds: The Endocannabinoid System as a Regulator of the Ocular Surface Nociception, Inflammatory Response, Neovascularization and Wound Healing. J Clin Med 2020; 9:jcm9124036. [PMID: 33327429 PMCID: PMC7764860 DOI: 10.3390/jcm9124036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is a complex regulatory system, highly conserved among vertebrates. It has been widely described in nearly all human tissues. In the conjunctiva and cornea, the ECS is believed to play a pivotal role in the modulation of the local inflammatory state as well as in the regulation of tissue repair and fibrosis, neo-angiogenesis and pain perception. This review aims to summarize all the available data on ECS expression and its function in ocular surface structures to provide a specific insight concerning its modulation in dry eye disease, and to propose directions for future research.
Collapse
|
32
|
Cannabinoids affect the mouse visual acuity via the cannabinoid receptor type 2. Sci Rep 2020; 10:15819. [PMID: 32978469 PMCID: PMC7519129 DOI: 10.1038/s41598-020-72553-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, there have been increasing indications that the endocannabinoid (eCB) system is involved in vision. Multiple research teams studied the cannabinoid receptor type 2 (CB2R) expression and function in the mouse retina. Here, we examined the consequence of CB2R modulation on visual acuity using genetic and pharmacologic tools. We found that Cnr2 knockout mice show an enhanced visual acuity, CB2R activation decreased visual acuity while CB2R blockade with the inverse agonist AM630 increased it. The inhibition of 2-arachidonylglycerol (2-AG) synthesis and degradation also greatly increased and decreased visual acuity, respectively. No differences were seen when the cannabinoid receptor type 1 (CB1R) was deleted, blocked or activated implying that CB2R exclusively mediates cannabinoid modulation of the visual acuity. We also investigated the role of cannabinoids in retinal function using electroretinography (ERG). We found that modulating 2-AG levels affected many ERG components, such as the a-wave and oscillatory potentials (OPs), suggesting an impact on cones and amacrine cells. Taken together, these results reveal that CB2R modulates visual acuity and that eCBs such as 2-AG can modulate both visual acuity and retinal sensitivity. Finally, these findings establish that CB2R is present in visual areas and regulates vision-related functions.
Collapse
|
33
|
Hu DN, Yao S, Iacob CE, Giovinazzo J, Rosen RB, Grossniklaus HE, Sassoon J. Quantitative Study of Human Scleral Melanocytes and Their Topographical Distribution. Curr Eye Res 2020; 45:1563-1571. [PMID: 32397839 DOI: 10.1080/02713683.2020.1767789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE While fibroblasts constitute the main cell component of the sclera, the purpose of the present study was to investigate the cell densities of melanocytes at different regions of the sclera, and to compare them with associated scleral fibroblast densities in human donor eye sections. METHODS . Paraffin-embedded sections of sclera from 21 human eyes were stained with hematoxylin-eosin (H&E) and immunohistochemical staining (S-100/AEC). Scleral melanocyte and fibroblast numbers were counted in different regions of the sclera. The relationship between the melanocyte density and iris pigmentation was also analyzed. RESULTS . Melanocytes were found in the posterior region of the sclera, especially around the vessels and nerves in emmissarial canals, whereas no or rare melanocytes were found in equatorial and anterior regions. In H&E sections, melanocyte densities in eyes with light-colored irides were significantly less than in eyes with medium or dark-colored irides (P < .05). In S-100-stained sections, more melanocytes could be detected than those in the H&E sections in light-colored eyes (P < .05), but not in medium or dark-colored eyes (P > .05). The numbers of scleral fibroblasts were relatively stable in different regions. In the posterior scleral region, the numbers of fibroblasts were slightly higher than the number of melanocytes, however, this differences were not statistically significant (P > .05). CONCLUSION . Notable numbers of melanocytes were present in the posterior sclera suggesting that these cells may play a role in ocular physiology and in the pathogenesis of various disorders of the sclera.
Collapse
Affiliation(s)
- Dan-Ning Hu
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Shen Yao
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Codrin E Iacob
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Jerome Giovinazzo
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA
| | - Richard B Rosen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai , New York, NY, USA.,Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA
| | | | - Jodi Sassoon
- Department of Pathology, New York Eye and Ear Infirmary of Mount Sinai , New York, NY, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| |
Collapse
|
34
|
Sensitivity of the Fasciae to the Endocannabinoid System: Production of Hyaluronan-Rich Vesicles and Potential Peripheral Effects of Cannabinoids in Fascial Tissue. Int J Mol Sci 2020; 21:ijms21082936. [PMID: 32331297 PMCID: PMC7216169 DOI: 10.3390/ijms21082936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
The demonstrated expression of endocannabinoid receptors in myofascial tissue suggested the role of fascia as a source and modulator of pain. Fibroblasts can modulate the production of the various components of the extracellular matrix, according to type of stimuli: physical, mechanical, hormonal, and pharmacological. In this work, fascial fibroblasts were isolated from small samples of human fascia lata of the thigh, collected from three volunteer patients (two men, one woman) during orthopedic surgery. This text demonstrates for the first time that the agonist of cannabinoid receptor 2, HU-308, can lead to in vitro production of hyaluronan-rich vesicles only 3–4 h after treatment, being rapidly released into the extracellular environment. We demonstrated that these vesicles are rich in hyaluronan after Alcian blue and Toluidine blue stainings, immunocytochemistry, and transmission electron microscopy. In addition, incubation with the antagonist AM630 blocked vesicles production by cells, confirming that release of hyaluronan is a cannabinoid-mediated effect. These results may show how fascial cells respond to the endocannabinoid system by regulating and remodeling the formation of the extracellular matrix. This is a first step in our understanding of how therapeutic applications of cannabinoids to treat pain may also have a peripheral effect, altering the biosynthesis of the extracellular matrix in fasciae and, consequently, remodeling the tissue and its properties.
Collapse
|
35
|
Bán EG, Brassai A, Vizi ES. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res Bull 2019; 155:129-136. [PMID: 31816407 DOI: 10.1016/j.brainresbull.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is a chronic pain caused by central and peripheral nerve injury, long-term diabetes or treatment with chemotherapy drugs, and it is dissimilar to other chronic pain conditions. Chronic pain usually seriously affects the quality of life, and its drug treatment may result in increased costs of social and medical care. As in the USA and Canada, in Europe, the demand for pain-relieving medicines used in chronic pain has also significantly increased, but most European countries are not experiencing an opioid crisis. In this review, the role of various endogenous transmitters (noradrenaline, dopamine, serotonin, met- and leu-enkephalins, β-endorphin, dynorphins, cannabinoids, ATP) and various receptors (α2, μ, etc.) in the innate pain-relieving system will be discussed. Furthermore, the modulation of pain processing pathways by transmitters, focusing on neuropathic pain and the role of the sympathetic nervous system in the side effects of excessive opioid treatment, will be explained.
Collapse
Affiliation(s)
- E Gy Bán
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - A Brassai
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - E S Vizi
- Institute of Experimental Medicine, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
36
|
Berger G, Arora N, Burkovskiy I, Xia Y, Chinnadurai A, Westhofen R, Hagn G, Cox A, Kelly M, Zhou J, Lehmann C. Experimental Cannabinoid 2 Receptor Activation by Phyto-Derived and Synthetic Cannabinoid Ligands in LPS-Induced Interstitial Cystitis in Mice. Molecules 2019; 24:molecules24234239. [PMID: 31766439 PMCID: PMC6930590 DOI: 10.3390/molecules24234239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Interstitial cystitis (IC) is a chronic bladder disorder with unclear etiology. The endocannabinoid system has been identified as a key regulator of immune function, with experimental evidence for the involvement of cannabinoid receptors in bladder inflammation. This study used intravital microscopy (IVM) and behavioral testing in lipopolysaccharide-induced IC, to investigate the anti-inflammatory analgesic effects of a natural dietary sesquiterpenoid, beta-caryophyllene (BCP), which is present in cannabis among other plants, and has reported agonist actions at the cannabinoid 2 receptor (CB2R). BCP’s anti-inflammatory actions were compared to the synthetic CB2R-selective cannabinoid, HU308, and to an FDA-approved clinical treatment (dimethyl sulfoxide: DMSO). IVM data revealed that intravesical instillation of BCP and/or HU308 significantly reduces the number of adhering leukocytes in submucosal bladder venules and improves bladder capillary perfusion. The effects of BCP were found to be comparable to that of the selective CB2R synthetic cannabinoid, HU308, and superior to intravesical DMSO treatment. Oral treatment with BCP was also able to reduce bladder inflammation and significantly reduced mechanical allodynia in experimental IC. Based on our findings, we believe that CB2R activation may represent a viable therapeutic target for IC, and that drugs that activate CB2R, such as the generally regarded as safe (GRAS) dietary sesquiterpenoid, BCP, may serve as an adjunct and/or alternative treatment option for alleviating symptoms of inflammation and pain in the management of IC.
Collapse
Affiliation(s)
- Geraint Berger
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nipun Arora
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ian Burkovskiy
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yanfang Xia
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
| | - Anu Chinnadurai
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
| | - Robert Westhofen
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Georg Hagn
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ashley Cox
- Department of Urology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Melanie Kelly
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (G.B.); (N.A.); (I.B.); (Y.X.); (A.C.); (R.W.); (G.H.); (M.K.); (J.Z.)
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-(902)-423-9454
| |
Collapse
|
37
|
Ghonim AE, Ligresti A, Rabbito A, Mahmoud AM, Di Marzo V, Osman NA, Abadi AH. Structure-activity relationships of thiazole and benzothiazole derivatives as selective cannabinoid CB2 agonists with in vivo anti-inflammatory properties. Eur J Med Chem 2019; 180:154-170. [DOI: 10.1016/j.ejmech.2019.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022]
|
38
|
Sharaf A, Mensching L, Keller C, Rading S, Scheffold M, Palkowitsch L, Djogo N, Rezgaoui M, Kestler HA, Moepps B, Failla AV, Karsak M. Systematic Affinity Purification Coupled to Mass Spectrometry Identified p62 as Part of the Cannabinoid Receptor CB2 Interactome. Front Mol Neurosci 2019; 12:224. [PMID: 31616248 PMCID: PMC6763791 DOI: 10.3389/fnmol.2019.00224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023] Open
Abstract
The endocannabinoid system (ECS) consists particularly of cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, and enzymes that synthesize and degrade their ligands. It acts in a variety of organs and disease states ranging from cancer progression over neuropathic pain to neurodegeneration. Protein components engaged in the signaling, trafficking, and homeostasis machinery of the G-protein coupled CB2, are however largely unknown. It is therefore important to identify further interaction partners to better understand CB2 receptor functions in physiology and pathophysiology. For this purpose, we used an affinity purification and mass spectrometry-based proteomics approach of Strep-HA-CB2 receptor in HEK293 cells. After subtraction of background interactions and protein frequency library assessment we could identify 83 proteins that were classified by the identification of minimally 2 unique peptides as highly probable interactors. A functional protein association network analysis obtained an interaction network with a significant enrichment of proteins functionally involved in protein metabolic process, in endoplasmic reticulum, response to stress but also in lipid metabolism and membrane organization. The network especially contains proteins involved in biosynthesis and trafficking like calnexin, Sec61A, tubulin chains TUBA1C and TUBB2B, TMED2, and TMED10. Six proteins that were only expressed in stable CB2 expressing cells were DHC24, DHRS7, GGT7, HECD3, KIAA2013, and PLS1. To exemplify the validity of our approach, we chose a candidate having a relatively low number of edges in the network to increase the likelihood of a direct protein interaction with CB2 and focused on the scaffold/phagosomal protein p62/SQSTM1. Indeed, we independently confirmed the interaction by co-immunoprecipitation and immunocytochemical colocalization studies. 3D reconstruction of confocal images furthermore showed CB2 localization in close proximity to p62 positive vesicles at the cell membrane. In summary, we provide a comprehensive repository of the CB2 interactome in HEK293 cells identified by a systematic unbiased approach, which can be used in future experiments to decipher the signaling and trafficking complex of this cannabinoid receptor. Future studies will have to analyze the exact mechanism of the p62-CB2 interaction as well as its putative role in disease pathophysiology.
Collapse
Affiliation(s)
- Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonore Mensching
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Keller
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Scheffold
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | | | - Nevena Djogo
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meriem Rezgaoui
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Barbara Moepps
- Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | | | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
39
|
Porter RF, Szczesniak AM, Toguri JT, Gebremeskel S, Johnston B, Lehmann C, Fingerle J, Rothenhäusler B, Perret C, Rogers-Evans M, Kimbara A, Nettekoven M, Guba W, Grether U, Ullmer C, Kelly MEM. Selective Cannabinoid 2 Receptor Agonists as Potential Therapeutic Drugs for the Treatment of Endotoxin-Induced Uveitis. Molecules 2019; 24:molecules24183338. [PMID: 31540271 PMCID: PMC6767236 DOI: 10.3390/molecules24183338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
(1) Background: The cannabinoid 2 receptor (CB2R) is a promising anti-inflammatory drug target and development of selective CB2R ligands may be useful for treating sight-threatening ocular inflammation. (2) Methods: This study examined the pharmacology of three novel chemically-diverse selective CB2R ligands: CB2R agonists, RO6871304, and RO6871085, as well as a CB2R inverse agonist, RO6851228. In silico molecular modelling and in vitro cell-based receptor assays were used to verify CB2R interactions, binding, cell signaling (ß-arrestin and cAMP) and early absorption, distribution, metabolism, excretion, and toxicology (ADMET) profiling of these receptor ligands. All ligands were evaluated for their efficacy to modulate leukocyte-neutrophil activity, in comparison to the reported CB2R ligand, HU910, using an in vivo mouse model of endotoxin-induced uveitis (EIU) in wild-type (WT) and CB2R-/- mice. The actions of RO6871304 on neutrophil migration and adhesion were examined in vitro using isolated neutrophils from WT and CB2R-/- mice, and in vivo in WT mice with EIU using adoptive transfer of WT and CB2R-/- neutrophils, respectively. (3) Results: Molecular docking studies indicated that RO6871304 and RO6871085 bind to the orthosteric site of CB2R. Binding studies and cell signaling assays for RO6871304 and RO6871085 confirmed high-affinity binding to CB2R and selectivity for CB2R > CB1R, with both ligands acting as full agonists in cAMP and ß-arrestin assays (EC50s in low nM range). When tested in EIU, topical application of RO6871304 and RO6871085 decreased leukocyte-endothelial adhesion and this effect was antagonized by the inverse agonist, RO6851228. The CB2R agonist, RO6871304, decreased in vitro neutrophil migration of WT neutrophils but not neutrophils from CB2R-/-, and attenuated adhesion of adoptively-transferred leukocytes in EIU. (4) Conclusions: These unique ligands are potent and selective for CB2R and have good immunomodulating actions in the eye. RO6871304 and RO6871085, as well as HU910, decreased leukocyte adhesion in EIU through inhibition of resident ocular immune cells. The data generated with these three structurally-diverse and highly-selective CB2R agonists support selective targeting of CB2R for treating ocular inflammatory diseases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/pharmacology
- Cannabinoid Receptor Agonists/administration & dosage
- Cannabinoid Receptor Agonists/chemistry
- Cannabinoid Receptor Agonists/pharmacology
- Cell Adhesion/drug effects
- Cells, Cultured
- Disease Models, Animal
- Endotoxins/adverse effects
- Leukocytes/drug effects
- Leukocytes/metabolism
- Male
- Mice
- Mice, Knockout
- Models, Molecular
- Molecular Docking Simulation
- Molecular Structure
- Neutrophils/drug effects
- Neutrophils/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/genetics
- Signal Transduction
- Uveitis/chemically induced
- Uveitis/drug therapy
- Uveitis/immunology
Collapse
Affiliation(s)
| | | | - James Thomas Toguri
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Simon Gebremeskel
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Anesthesia, Pain Management and Perioperative Care, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Jürgen Fingerle
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Benno Rothenhäusler
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Camille Perret
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Mark Rogers-Evans
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Atsushi Kimbara
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Matthias Nettekoven
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Wolfgang Guba
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Christoph Ullmer
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Anesthesia, Pain Management and Perioperative Care, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS B3H 2Y9, Canada.
| |
Collapse
|
40
|
A selective CB 2 agonist protects against the inflammatory response and joint destruction in collagen-induced arthritis mice. Biomed Pharmacother 2019; 116:109025. [PMID: 31154267 DOI: 10.1016/j.biopha.2019.109025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, synovitis-dominated systemic disease with unknown etiology. RA is characterized by the involvement of multiple affected joints, symmetry, and invasive arthritis of the limbs, which can lead to joint deformity, cartilage destruction, and loss of function. Cannabinoid receptor 2 (CB2) has potent immunomodulatory and anti-inflammatory effects and is predominantly expressed in non-neuronal tissues. In the current study, the role of CB2 in the process of inflammatory bone erosion in RA was examined. The selective agonist or high-affinity ligand of CB2 (4-quinolone-3-carboxamides CB2 agonist, 4Q3C CB2 agonist, 4Q3C) significantly reduced the severity of arthritis, decreased histopathological findings, and markedly reduced bone erosion in collagen-induced arthritis (CIA) mice. In addition, 4Q3C prevented an increase in the nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio and inhibited the formation of osteoclasts in CIA mice. Furthermore, the expression of tumor necrosis factor-alpha, interleukin-1β, cyclooxygenase-2, and inducible nitric oxide synthase was lower in 4Q3C-treated CIA mice than in control CIA mice. Micro-computed tomography corroborated the finding that 4Q3C reduced joint destruction. These data clearly indicate that the CB2-selective agonist, 4Q3C, may have anti-inflammatory and anti-osteoclastogenesis effects in RA and may be considered to be a novel treatment for RA.
Collapse
|
41
|
Brook E, Mamo J, Wong R, Al-Salami H, Falasca M, Lam V, Takechi R. Blood-brain barrier disturbances in diabetes-associated dementia: Therapeutic potential for cannabinoids. Pharmacol Res 2019; 141:291-297. [DOI: 10.1016/j.phrs.2019.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
|
42
|
Zhou J, Noori H, Burkovskiy I, Lafreniere JD, Kelly MEM, Lehmann C. Modulation of the Endocannabinoid System Following Central Nervous System Injury. Int J Mol Sci 2019; 20:E388. [PMID: 30658442 PMCID: PMC6359397 DOI: 10.3390/ijms20020388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) injury, such as stroke or trauma, is known to increase susceptibility to various infections that adversely affect patient outcomes (CNS injury-induced immunodepression-CIDS). The endocannabinoid system (ECS) has been shown to have immunoregulatory properties. Therefore, the ECS might represent a druggable target to overcome CIDS. Evidence suggests that cannabinoid type 2 receptor (CB₂R) activation can be protective during the early pro-inflammatory phase after CNS injury, as it limits neuro-inflammation and, therefore, attenuates CIDS severity. In the later phase post CNS injury, CB₂R inhibition is suggested as a promising pharmacologic strategy to restore immune function in order to prevent infection.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Haneen Noori
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Ian Burkovskiy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - J Daniel Lafreniere
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Melanie E M Kelly
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
43
|
Lafreniere JD, Toguri JT, Gupta RR, Samad A, O'Brien DM, Dickinson J, Cruess A, Kelly MEM, Seamone ME. Effects of intravitreal bevacizumab in Gram-positive and Gram-negative models of ocular inflammation. Clin Exp Ophthalmol 2019; 47:638-645. [PMID: 30485637 DOI: 10.1111/ceo.13453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/06/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Exogenous endophthalmitis is a potential complication of intraocular surgery and frequently results in visual impairment. Current treatment involves administration of intravitreal (IVT) antibiotics with or without vitrectomy surgery. Evidence for the use of adjunctive anti-inflammatory agents is conflicting. We set out to determine if bevacizumab, a humanized monoclonal IgG1 antibody targeted against vascular endothelial growth factor (VEGF), has anti-inflammatory properties in experimental models of Gram-positive and Gram-negative inflammation. METHODS BALB/c mice were subjected to lipopolysaccharide- (LPS) or peptidoglycan- (PGN) induced ocular inflammation and treated with IVT bevacizumab. Iris microvasculature was imaged 6 hours following irritant/treatment using intravital microscopy (IVM) before the mice were euthanized and the eyes were enucleated immediately post-mortem. Following enucleation, levels of VEGF and 23 cytokines and chemokines (IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17, TNF, KC, G-CSF, GM-CSF, Eotaxin, INF-γ, MCP-1, MIP-1α, MIP-1β, RANTES) were quantified using a multiplex assay. RESULTS Levels of VEGF were significantly increased during the inflammatory response, triggered by either PGN or LPS. Both the adherence of leukocytes to the iris vascular endothelium and the levels of pro-inflammatory cytokines and chemokines were significantly increased following administration of either irritant. Treatment with bevacizumab decreased levels of leukocyte adherence in LPS-treated eyes, however, not in PGN-treated eyes. Conversely, bevacizumab treatment decreased levels of cytokines and chemokines (TNF, IL-6, MCP-1, MIP-1α, MIP-1β, RANTES, KC) in PGN-treated eyes, however, not in LPS-treated eyes. CONCLUSIONS Within a 6-hour window bevacizumab had anti-inflammatory actions that were distinct in both Gram-positive (PIU) and Gram-negative (EIU) models, respectively. Given our findings, this would suggest that bevacizumab may have utility as an adjunctive therapy to IVT antibiotics and vitrectomy in the management of exogenous endophthalmitis.
Collapse
Affiliation(s)
- J Daniel Lafreniere
- Retina and Optic Nerve Research Laboratory, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James T Toguri
- Retina and Optic Nerve Research Laboratory, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rishi R Gupta
- Department of Ophthalmology and Visual Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arif Samad
- Department of Ophthalmology and Visual Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dan M O'Brien
- Department of Ophthalmology and Visual Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John Dickinson
- Department of Ophthalmology and Visual Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan Cruess
- Department of Ophthalmology and Visual Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melanie E M Kelly
- Retina and Optic Nerve Research Laboratory, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark E Seamone
- Department of Ophthalmology and Visual Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
44
|
Lafreniere J, Kelly M. Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options. Neuronal Signal 2018; 2:NS20170144. [PMID: 32714590 PMCID: PMC7373237 DOI: 10.1042/ns20170144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Challenges in the management of ocular pain are an underappreciated topic. Currently available therapeutics lack both efficacy and clear guidelines for their use, with many also possessing unacceptable side effects. Promising novel agents would offer analgesic, anti-inflammatory, and possibly neuroprotective actions; have favorable ocular safety profiles; and show potential in managing neuropathic pain. Growing evidence supports a link between the endocannabinoid system (ECS) and a range of physiological and disease processes, notably those involving inflammation and pain. Both preclinical and clinical data suggest analgesic and anti-inflammatory actions of cannabinoids and ECS-modifying drugs in chronic pain conditions, including those of neuropathic origin. This review will examine existing evidence for the anatomical and physiological basis of ocular pain, specifically, ocular surface disease and the development of chronic ocular pain. The mechanism of action, efficacy, and limitations of currently available treatments will be discussed, and current knowledge related to ECS-modulation of ocular pain and inflammatory disease will be summarized. A perspective will be provided on the future directions of ECS research in terms of developing cannabinoid therapeutics for ocular pain.
Collapse
Affiliation(s)
| | - Melanie E.M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
45
|
Toguri J, Leishman E, Szczesniak A, Laprairie R, Oehler O, Straiker A, Kelly M, Bradshaw H. Inflammation and CB2 signaling drive novel changes in the ocular lipidome and regulate immune cell activity in the eye. Prostaglandins Other Lipid Mediat 2018; 139:54-62. [DOI: 10.1016/j.prostaglandins.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/09/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
|
46
|
Structure-Based Identification of Potent Natural Product Chemotypes as Cannabinoid Receptor 1 Inverse Agonists. Molecules 2018; 23:molecules23102630. [PMID: 30322136 PMCID: PMC6222380 DOI: 10.3390/molecules23102630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Natural products are an abundant source of potential drugs, and their diversity makes them a rich and viable prospective source of bioactive cannabinoid ligands. Cannabinoid receptor 1 (CB1) antagonists are clinically established and well documented as potential therapeutics for treating obesity, obesity-related cardiometabolic disorders, pain, and drug/substance abuse, but their associated CNS-mediated adverse effects hinder the development of potential new drugs and no such drug is currently on the market. This limitation amplifies the need for new agents with reduced or no CNS-mediated side effects. We are interested in the discovery of new natural product chemotypes as CB1 antagonists, which may serve as good starting points for further optimization towards the development of CB1 therapeutics. In search of new chemotypes as CB1 antagonists, we screened the in silico purchasable natural products subset of the ZINC12 database against our reported CB1 receptor model using the structure-based virtual screening (SBVS) approach. A total of 18 out of 192 top-scoring virtual hits, selected based on structural diversity and key protein⁻ligand interactions, were purchased and subjected to in vitro screening in competitive radioligand binding assays. The in vitro screening yielded seven compounds exhibiting >50% displacement at 10 μM concentration, and further binding affinity (Ki and IC50) and functional data revealed compound 16 as a potent and selective CB1 inverse agonist (Ki = 121 nM and EC50 = 128 nM) while three other compounds-2, 12, and 18-were potent but nonselective CB1 ligands with low micromolar binding affinity (Ki). In order to explore the structure⁻activity relationship for compound 16, we further purchased compounds with >80% similarity to compound 16, screened them for CB1 and CB2 activities, and found two potent compounds with sub-micromolar activities. Most importantly, these bioactive compounds represent structurally new natural product chemotypes in the area of cannabinoid research and could be considered for further structural optimization as CB1 ligands.
Collapse
|
47
|
da Silva-Leite KES, Girão DKFB, de Freitas Pires A, Assreuy AMS, de Moraes PAF, Cunha AP, Ricardo NMPS, Criddle DN, de Souza MHLP, Pereira MG, Soares PMG. Ximenia americana heteropolysaccharides ameliorate inflammation and visceral hypernociception in murine caerulein-induced acute pancreatitis: Involvement of CB2 receptors. Biomed Pharmacother 2018; 106:1317-1324. [DOI: 10.1016/j.biopha.2018.07.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023] Open
|
48
|
Borowska-Fielding J, Murataeva N, Smith B, Szczesniak AM, Leishman E, Daily L, Toguri JT, Hillard CJ, Romero J, Bradshaw H, Kelly MEM, Straiker A. Revisiting cannabinoid receptor 2 expression and function in murine retina. Neuropharmacology 2018; 141:21-31. [PMID: 30121200 DOI: 10.1016/j.neuropharm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/15/2018] [Accepted: 08/05/2018] [Indexed: 01/12/2023]
Abstract
The cannabinoid receptor CB2 plays a significant role in the regulation of immune function whereas neuronal expression remains a subject of contention. Multiple studies have described CB2 in retina and a recent study showed that CB2 deletion altered retinal visual processing. We revisited CB2 expression using immunohistochemistry and a recently developed CB2-eGFP reporter mouse. We examined the consequence of acute vs. prolonged CB2 deactivation on the electroretinogram (ERG) responses. We also examined lipidomics in CB2 knockout mice and potential changes in microglia using Scholl analysis. Consistent with a published report, in CB2 receptor knockout mice see an increased ERG scotopic a-wave, as well as stronger responses in dark adapted cone-driven ON bipolar cells and, to a lesser extent cone-driven ON bipolar cells early in light adaptation. Significantly, however, acute block with CB2 antagonist, AM630, did not mimic the results observed in the CB2 knockout mice whereas chronic (7 days) block did. Immunohistochemical studies show no CB2 in retina under non-pathological conditions, even with published antibodies. Retinal CB2-eGFP reporter signal is minimal under baseline conditions but upregulated by intraocular injection of either LPS or carrageenan. CB2 knockout mice see modest declines in a broad spectrum of cannabinoid-related lipids. The numbers and morphology of microglia were unaltered. In summary minimal CB2 expression is seen in healthy retina. CB2 appears to be upregulated under pathological conditions. Previously reported functional consequences of CB2 deletion are an adaptive response to prolonged blockade of these receptors. CB2 therefore impacts retinal signaling but perhaps in an indirect, potentially extra-ocular fashion.
Collapse
Affiliation(s)
| | - Natalia Murataeva
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Ben Smith
- Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | | | - Emma Leishman
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Laura Daily
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - J Thomas Toguri
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Cecelia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada; Anesthesia, Dalhousie University, Halifax, NS, Canada
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
49
|
Mérida S, Sancho-Tello M, Almansa I, Desco C, Peris C, Moreno ML, Villar VM, Navea A, Bosch-Morell F. Bevacizumab Diminishes Inflammation in an Acute Endotoxin-Induced Uveitis Model. Front Pharmacol 2018; 9:649. [PMID: 29971005 PMCID: PMC6018210 DOI: 10.3389/fphar.2018.00649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction: Uveitis is an eye disease characterized by inflammation of the uvea and an early and exhaustive diagnosis is essential for its treatment. The aim of our study is to assess the potential toxicity and anti-inflammatory efficacy of Bevacizumab in an experimental uveitis model by subcutaneously injecting lipopolysaccharide into Lewis rats and to clarify its mechanism. Material and Methods: Blood-aqueous barrier integrity was assessed 24 h after endotoxin-induced uveitis (EIU) by analyzing two parameters: cell count and protein concentration in aqueous humors. Histopathology of all eye structures was also studied. Enzyme-linked immunosorbent analyses of the aqueous humor samples were performed in order to calculate the diverse chemokine and cytokine protein levels and oxidative stress-related markers were also evaluated. Results: The aqueous humor's cellular content significantly increased in the group treated with only Bevacizumab, but it had no effect on retina histopathological grading. Nevertheless, the inflammation noted in ocular structures when administering Bevacizumab with endotoxin was mostly prevented since aqueous humor cell content considerably lowered, and concomitantly with a sharp drop in uveal, vitreous, and retina histopathological grading. The values of the multi-faceted cytokine IL-2 also significantly decreased (p < 0.05 vs. endotoxin group), and the protective IL-6 and IL-10 cytokines values rose with related anti-oxidant system recovery (p < 0.05 vs. endotoxin group). Concurrently, some related M1 macrophage chemokines substantially increased, e.g., GRO/KC, a chemokine that also displays any kind of protective role. Conclusion: All these results revealed that 24 h after being administered, Bevacizumab treatment in EIU significantly prevented inflammation in various eye structures and correct results in efficacy vs. toxicity balance were obtained.
Collapse
Affiliation(s)
- Salvador Mérida
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Inmaculada Almansa
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Carmen Desco
- Department of Medical Ophtalmology, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Cristina Peris
- Department of Medical Ophtalmology, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Mari-Luz Moreno
- Department of Basic Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Vincent M. Villar
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Amparo Navea
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Francisco Bosch-Morell
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Department of Medical Ophtalmology, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| |
Collapse
|
50
|
Arora N, Caldwell A, Wafa K, Szczesniak A, Caldwell M, Al-Banna N, Sharawy N, Islam S, Zhou J, Holbein BE, Kelly MEM, Lehmann C. DIBI, a polymeric hydroxypyridinone iron chelator, reduces ocular inflammation in local and systemic endotoxin-induced uveitis. Clin Hemorheol Microcirc 2018; 69:153-164. [PMID: 29630535 DOI: 10.3233/ch-189109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/OBJECTIVE Non-infectious uveitis is an inflammatory disease of the eye commonly treated by corticosteroids, though important side effects may result. A main mediator of inflammation are oxygen free radicals generated in iron-dependent pathways. As such, we investigated the efficacy of a novel iron chelator, DIBI, as an anti-inflammatory agent in local and systemic models of endotoxin induced uveitis (EIU). METHODS Firstly, the effects of DIBI in systemic EIU in Lewis rats were established. 2 hours post intravenous LPS or LPS/DIBI injections, leukocyte activation and functional capillary density (FCD) were examined using intravital microscopy (IVM) of the iridial microcirculation. Secondly, the toxicity of DIBI was evaluated in BALB/C mice for both acute and chronic dosages through gross ocular examination, intraocular pressure measurements and hematoxylin-eosin staining of ocular tissue. Lastly, three groups of BALB/C mice, control, LPS or DIBI + LPS, were studied to evaluate the effectiveness of DIBI in treating local EIU. Five hours post-local intravitreal (i.v) injection, leukocyte activation and capillary density were examined via IVM. RESULTS Treatment of systemic EIU with DIBI resulted in a reduction of leukocyte activation and FCD improvement within the iridial microcirculation. Toxicity studies suggested that acute and chronic DIBI administration had no adverse effects in the eye. In the local EIU model, DIBI was shown to reduce leukocyte activation and restored the FCD/DCD ratio, providing evidence for its anti-inflammatory properties. CONCLUSIONS Our study has provided evidence that DIBI has anti-inflammatory effects in experimental uveitis. Additionally, no local ocular toxicity was observed.
Collapse
Affiliation(s)
- N Arora
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - A Caldwell
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - K Wafa
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - A Szczesniak
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - M Caldwell
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - N Al-Banna
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - N Sharawy
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - S Islam
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - J Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - B E Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Chelation Partners Inc, Halifax, NS, Canada
| | - M E M Kelly
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Ch Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|