1
|
Zhang B, Li S, Ding J, Guo J, Ma Z, Duan H. Rho-GTPases subfamily: cellular defectors orchestrating viral infection. Cell Mol Biol Lett 2025; 30:55. [PMID: 40316910 PMCID: PMC12049043 DOI: 10.1186/s11658-025-00722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025] Open
Abstract
Ras homolog gene family-guanosine triphosphatases (Rho-GTPases), key molecular switches regulating cytoskeletal dynamics and cellular signaling, play a pivotal role in viral infections by modulating critical processes such as viral entry, replication, and release. This review elucidates the intricate mechanisms through which Rho-GTPases, via interactions with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and other signaling pathways, including the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), rat sarcoma (Ras), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, facilitate viral pathogenesis. Specific viruses, such as influenza A virus (IAV), herpesviruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), exploit Rho-GTPase-mediated cytoskeletal reorganization to enhance infectivity. For example, Rho-GTPases promote actin remodeling and membrane fusion, which are essential for viral entry and intracellular transport. Furthermore, Rho-GTPases modulate immune responses, often suppressing antiviral defenses to favor viral replication. Despite these insights, the molecular mechanisms underlying Rho-GTPase regulation during viral infections remain incompletely understood. Future research should focus on delineating the precise roles of Rho-GTPases in distinct viral life cycles, uncovering novel regulatory mechanisms, and developing targeted antiviral therapies that selectively inhibit Rho-GTPase signaling without compromising host cell functions. Such advancements could pave the way for broad-spectrum antiviral strategies, particularly against viruses that heavily rely on cytoskeletal manipulation for infection.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shuli Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jingxia Guo
- Disease Prevention and Control Center of Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Wang L, Tang Y, Buckley AF, Spurney RF. Podocyte specific knockout of the natriuretic peptide clearance receptor is podocyte protective in focal segmental glomerulosclerosis. PLoS One 2025; 20:e0319424. [PMID: 40063586 PMCID: PMC11892885 DOI: 10.1371/journal.pone.0319424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Natriuretic peptides (NPs) bind to glomerular podocytes and attenuate glomerular injury. The beneficial effects of NPs are negatively regulated by the NP clearance receptor (NPRC), which is highly expressed in podocytes. To determine if inhibiting NPRC is podocyte protective, we examined the effects of deleting NPRC in both cultured podocytes and in vivo. We found that: 1.Both atrial NP and C-type NP inhibit podocyte apoptosis in cultured podocytes, but these podocyte protective effects are significantly attenuated in cells expressing NPRC, and 2. Atrial NP was significantly more effective than CNP at inhibiting the apoptotic response. Consistent with the protective actions of NPs, podocyte specific knockout of NPRC reduced albuminuria, glomerular sclerosis and tubulointerstitial inflammation in a mouse model of focal segmental glomerulosclerosis. These beneficial actions were associated with: 1. Decreased expression of the myofibroblast marker alpha-smooth muscle actin, 2. Reduced expression of the extracellular matrix proteins collagen 4-alpha-1 and fibronectin, and 3. Preserved expression of the podocyte proteins nephrin and podocin. Inhibiting NP clearance may be a useful therapeutic approach to treat glomerular diseases.
Collapse
MESH Headings
- Podocytes/metabolism
- Podocytes/pathology
- Podocytes/drug effects
- Animals
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/genetics
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/deficiency
- Mice
- Apoptosis/drug effects
- Mice, Knockout
- Natriuretic Peptide, C-Type/pharmacology
- Natriuretic Peptide, C-Type/metabolism
- Disease Models, Animal
- Membrane Proteins/metabolism
- Albuminuria/genetics
- Male
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Yuping Tang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Anne F. Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert F. Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Kim H, Takegahara N, Choi Y. Protocadherin-7 Regulates Monocyte Migration Through Regulation of Small GTPase RhoA and Rac1. Int J Mol Sci 2025; 26:572. [PMID: 39859288 PMCID: PMC11766416 DOI: 10.3390/ijms26020572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable. Using an in vitro mouse monocyte cell culture system, we demonstrate that Pcdh7 plays a role in regulating monocyte migration by modulating the small GTPases RhoA and Rac1. Pcdh7-deficient (Pcdh7-/-) bone marrow-derived monocytes exhibited impaired migration along with the reduced activation of RhoA and Rac1. This impaired migration was rescued by transduction with constitutively active forms of RhoA and Rac1. Treatment with the PP2A-specific activator DT-061 enhanced cell migration, whereas treatment with the GSK3β-specific inhibitor AR-A014418 inhibited migration in wild-type monocytes. In contrast, treatment with DT-061 failed to restore the impaired migration in Pcdh7-/- monocytes. These findings suggest the involvement of PP2A and GSK3β in monocyte migration, although the forced activation of PP2A alone is insufficient to restore impaired migration in Pcdh7-/- monocytes. Taken together, these results indicate that Pcdh7 regulates monocyte migration through the activation of RhoA and Rac1. Given the pivotal role of cell migration in both physiological and pathological processes, our findings provide a foundation for future research into therapeutic strategies targeting Pcdh7-regulated migration.
Collapse
Affiliation(s)
| | | | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; (H.K.); (N.T.)
| |
Collapse
|
4
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Fang Y, Du X, Ji X, Wang W, Wang C, Chen R, Niu Y, Kan H. Genome-wide profiling of long non-coding RNA following ozone exposure: A randomized, controlled exposure trial. ENVIRONMENTAL RESEARCH 2024; 263:120101. [PMID: 39366440 DOI: 10.1016/j.envres.2024.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Exposure to ambient ozone has been associated with extrapulmonary health, but the underlying mechanisms remain to be understood. LncRNAs are involved in the regulation of gene expression, but their regulatory mechanisms in ozone-related health effects are scarcely explored. OBJECTIVE To investigate genome-wide lncRNA changes after short-term ozone exposure and their regulatory roles in ozone exposure and gene expression. METHOD We conducted a randomized, crossover, controlled exposure trial in 32 healthy college students in Shanghai, China. Each participant received both 200-ppb ozone exposure and filtered air exposure for 2 h in a random order with a 14-day washout period. Blood samples were collected after each exposure and used for lncRNA sequencing. Differentially expressed lncRNAs between the two exposures were identified using orthogonal partial least squares discriminant analysis and linear regression analysis. LncRNAs-targeted mRNAs were mapped and subjected to enrichment analyses. We also constructed lncRNA-miRNA-mRNA networks. RESULTS A total of 90 lncRNAs were differentially expressed after exposure to ozone, with 49 up-regulated and 41 down-regulated. Enrichment analyses suggested that these dysregulated lncRNAs were involved in a variety of biological processes, including those related to oxidative stress, inflammation response, and cell proliferation, development, and differentiation. Multiple pathways such as IL-17 signaling, NF-kB signaling, and Rho GTPases signaling were also enriched. Furthermore, the lncRNA-miRNA-mRNA network revealed that specific lncRNAs may regulate the expression of inflammation- and angiogenesis-related genes by interacting with miRNAs, such as NEAT1/hsa-miR-500a-3p/SIGLEC8, NEAT1/hsa-miR-6835-3p/SLC16A14, OIP5-AS1/miR-183-5p/EGR1, and SNHG25/hsa-miR-663a/FOSB axes. CONCLUSION This study characterized a thorough profile of human lncRNAs following short-term ozone exposure and suggested the regulatory roles of these lncRNAs in ozone-induced inflammatory responses and angiogenesis, providing novel epigenetic insights into the mechanisms of the health effects of ozone exposure.
Collapse
Affiliation(s)
- Ying Fang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Ji
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China.
| |
Collapse
|
6
|
Huuskonen S, Liu X, Pöhner I, Redchuk T, Salokas K, Lundberg R, Maljanen S, Belik M, Reinholm A, Kolehmainen P, Tuhkala A, Tripathi G, Laine P, Belanov S, Auvinen P, Vartiainen M, Keskitalo S, Österlund P, Laine L, Poso A, Julkunen I, Kakkola L, Varjosalo M. The comprehensive SARS-CoV-2 'hijackome' knowledge base. Cell Discov 2024; 10:125. [PMID: 39653747 PMCID: PMC11628605 DOI: 10.1038/s41421-024-00748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sini Huuskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Taras Redchuk
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Antti Tuhkala
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Garima Tripathi
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sergei Belanov
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Larissa Laine
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Palacios D, Majhi RK, Szabo EK, Clement D, Lachota M, Netskar H, Penna L, Krokeide SZ, Vincenti M, Kveberg L, Malmberg KJ. The G Protein-Coupled Receptor GPR56 Is an Inhibitory Checkpoint for NK Cell Migration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1349-1357. [PMID: 39320215 PMCID: PMC11491499 DOI: 10.4049/jimmunol.2400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of surface receptors and are responsible for key physiological functions, including cell growth, neurotransmission, hormone release, and cell migration. The GPCR 56 (GPR56), encoded by ADGRG1, is an adhesion GPCR found on diverse cell types, including neural progenitor cells, melanoma cells, and lymphocytes, such as effector memory T cells, γδ T cells, and NK cells. Using RNA-sequencing and high-resolution flow cytometry, we found that GPR56 mRNA and protein expression increased with NK cell differentiation, reaching its peak in adaptive NK cells. Small interfering RNA silencing of GPR56 led to increased spontaneous and chemokine-induced migration, suggesting that GPR56 functions as an upstream checkpoint for migration of highly differentiated NK cells. Increased NK cell migration could also be induced by agonistic stimulation of GPR56 leading to rapid internalization and deactivation of the receptor. Mechanistically, GPR56 ligation and downregulation were associated with transcriptional coactivator with PDZ-binding motif translocation to the nucleus and increased actin polymerization. Together, these data provide insights into the role of GPR56 in the migratory behavior of human NK cell subsets and may open possibilities to improve NK cell infiltration into cancer tissues by releasing a migratory checkpoint.
Collapse
Affiliation(s)
- Daniel Palacios
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center of Excellence in Cancer, Gangwal School of Medical Sciences and Technology, Mehta Family Center for Engineering in Medicine, Department of Biological Sciences and Bioengineering, IIT Kanpur, India
| | - Edina K. Szabo
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Dennis Clement
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Mieszko Lachota
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Warsaw, Poland
| | - Herman Netskar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Leena Penna
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Silje Z. Krokeide
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Marianna Vincenti
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Lise Kveberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Sweden
| |
Collapse
|
8
|
Zhang W, Chen W, Lei J, Li J, Yang M, Li L. The Expression of MAFB Gene in Circulating Monocytes Is Related to Chronic Inflammatory Status in T2DM Patients. Inflammation 2024; 47:1837-1852. [PMID: 38602607 DOI: 10.1007/s10753-024-02012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Immune cell-mediated chronic inflammation is one of the causes of type 2 diabetes mellitus (T2DM). Therefore, identifying inflammatory markers in circulating immune cells is highly important for predicting insulin resistance (IR) and the occurrence of T2DM. In this study, we discovered that differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) from T2DM patients were associated with innate immunity and chronic inflammatory responses through bulk transcriptome sequencing (bulk RNA-seq). Gene integration analysis revealed that nine DEGs were upregulated, and receiver operating characteristic (ROC) curve analysis revealed that V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB), a candidate biomarker, has a certain predictive value for T2DM. In population-based cohort studies, we found that MAFB expression was significantly upregulated in the PBMCs of T2DM patients and was significantly correlated with homeostasis model assessment of IR (HOMA-IR), tumor necrosis factor-α (TNF-α), adiponectin (Adipoq), etc. We further evaluated the sensitivity and specificity of MAFB and other clinical parameters for predicting and diagnosing T2DM and found that MAFB expression in PBMCs had a positive effect on the prediction and diagnosis of T2DM. Finally, single-cell RNA sequencing (scRNA-seq) analysis revealed that the increase in MAFB expression was mainly in nonclassical monocytes. Our results suggest that increased MAFB expression in circulating monocytes may mediate chronic inflammatory status in patients with T2DM. Therefore, MAFB gene expression in circulating monocytes has certain clinical significance for predicting and assisting in the diagnosis of T2DM.
Collapse
Affiliation(s)
- Wanliang Zhang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenyun Chen
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jingwei Lei
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jie Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Wang H, Yung MM, Xuan Y, Chen F, Chan W, Siu MK, Long R, Jia S, Liang Y, Xu D, Song Z, Tsui SK, Ngan HY, Chan KK, Chan DW. Polyunsaturated fatty acids promote M2-like TAM deposition via dampening RhoA-YAP1 signaling in the ovarian cancer microenvironment. Exp Hematol Oncol 2024; 13:90. [PMID: 39198883 PMCID: PMC11360340 DOI: 10.1186/s40164-024-00558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Peritoneal metastases frequently occur in epithelial ovarian cancer (EOC), resulting in poor prognosis and survival rates. Tumor-associated-macrophages (TAMs) massively infiltrate into ascites spheroids and are multi-polarized as protumoral M2-like phenotype, orchestrating the immunosuppression and promoting tumor progression. However, the impact of omental conditioned medium/ascites (OCM/AS) on TAM polarization and its function in tumor progression remains elusive. METHODS The distribution and polarization of TAMs in primary and omental metastatic EOC patients' tumors and ascites were examined by m-IHC, FACS analysis, and immunofluorescence. QPCR, immunofluorescence, FACS analysis, lipid staining assay, ROS assay, and Seahorse real-time cell metabolic assay characterized TAMs as being polarized in the ascites microenvironment. The oncogenic role of TAMs in tumor cells was demonstrated by co-cultured migration/invasion, proliferation, and spheroid formation assays. Mechanistic studies of the regulations of TAM polarization were performed by using RNA-Seq, GTPase pull-down, G-LISA activation assays, and other biochemical assays. A Yap1 macrophages (MФs) conditional knockout (cKO) mouse model demonstrated the roles of YAP1 in TAM polarization status and its pro-metastatic function. Finally, the anti-metastatic potential of targeting TAMs through restoring YAP1 by pharmacological agonist XMU MP1 was demonstrated in vitro and in vivo. RESULTS Abundant polyunsaturated fatty acids (PUFAs) in OCM/AS suppressed RhoA-GTPase activities, which, in turn, downregulated nuclear YAP1 in MФs, leading to increased protumoral TAM polarization accompanied by elevated OXPHOS metabolism. Abolishment of YAP1 in MФs further confirmed that a higher M2/M1 ratio of TAM polarization could alleviate CD8+ T cell infiltration and cytotoxicity in vivo. Consistently, the loss of YAP1 has been observed in EOC metastatic tissues, suggesting its clinical relevance. On the contrary, restoration of YAP1 expression by pharmaceutical inhibition of MST1/2 induced conversion of M2-to-M1-like polarized MФs, elevating the infiltration of CD8+ T cells and attenuating tumor growth. CONCLUSION This study revealed that PUFAs-enriched OCM/AS of EOC promotes M2-like TAM polarization through RhoA-YAP1 inhibition, where YAP1 downregulation is required for accelerating protumoral M2-like TAM polarization, thereby causing immunosuppression and enhancing tumor progression. Conversion of M2-to-M1-like polarized MФs through Yap1 activation inhibits tumor progression and contributes to developing potential TAMs-targeted immunotherapies in combating EOC peritoneal metastases.
Collapse
Affiliation(s)
- Huogang Wang
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, P.R. China
| | - Mingo Mh Yung
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Yang Xuan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Fushun Chen
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Waisun Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Michelle Ky Siu
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Runying Long
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Shuo Jia
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P.R. China
| | - Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, P.R. China
| | - Stephen Kw Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Hextan Ys Ngan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Karen Kl Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.
| | - David W Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P.R. China.
| |
Collapse
|
10
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
11
|
Parsons BD, Medina-Luna D, Scur M, Pinelli M, Gamage GS, Chilvers RA, Hamon Y, Ahmed IHI, Savary S, Makrigiannis AP, Braverman NE, Rodriguez-Alcazar JF, Latz E, Karakach TK, Di Cara F. Peroxisome deficiency underlies failures in hepatic immune cell development and antigen presentation in a severe Zellweger disease model. Cell Rep 2024; 43:113744. [PMID: 38329874 DOI: 10.1016/j.celrep.2024.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Peroxisome biogenesis disorders (PBDs) represent a group of metabolic conditions that cause severe developmental defects. Peroxisomes are essential metabolic organelles, present in virtually every eukaryotic cell and mediating key processes in immunometabolism. To date, the full spectrum of PBDs remains to be identified, and the impact PBDs have on immune function is unexplored. This study presents a characterization of the hepatic immune compartment of a neonatal PBD mouse model at single-cell resolution to establish the importance and function of peroxisomes in developmental hematopoiesis. We report that hematopoietic defects are a feature in a severe PBD murine model. Finally, we identify a role for peroxisomes in the regulation of the major histocompatibility class II expression and antigen presentation to CD4+ T cells in dendritic cells. This study adds to our understanding of the mechanisms of PBDs and expands our knowledge of the role of peroxisomes in immunometabolism.
Collapse
Affiliation(s)
- Brendon D Parsons
- University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton, AB T6G 1C9, Canada
| | - Daniel Medina-Luna
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Michal Scur
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Marinella Pinelli
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Gayani S Gamage
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Rebecca A Chilvers
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Yannick Hamon
- Aix Marseille University, CNRS, INSERM au Centre d'Immunologie de Marseille Luminy, 13288 Marseille, France
| | - Ibrahim H I Ahmed
- Dalhousie University, Department of Pharmacology, Halifax, NS B3H 4R2, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stéphane Savary
- University of Bourgogne, Laboratoire Bio-PeroxIL EA7270, Dijon, France
| | - Andrew P Makrigiannis
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Nancy E Braverman
- Research Institute of the McGill University Children's Hospital, Montreal, QC H4A 3J1, Canada
| | | | - Eicke Latz
- University of Bonn, Institute of Innate Immunity, Medical Faculty, 53127 Bonn, Germany
| | - Tobias K Karakach
- Dalhousie University, Department of Pharmacology, Halifax, NS B3H 4R2, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Francesca Di Cara
- University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton, AB T6G 1C9, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.
| |
Collapse
|
12
|
Wang Z, Liu D, Nie Y, Zhang Q. Cai's prescription inhibits granulosa cell apoptosis through ARHGAP4 on poor ovarian responders. J Ovarian Res 2024; 17:40. [PMID: 38355537 PMCID: PMC10865665 DOI: 10.1186/s13048-024-01363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
PURPOSE Poor ovarian response (POR) is a big challenge for in vitro fertilization. The traditional Chinese medicine, Cai's Prescription of Tonifying Kidney and Strengthening Vitals (Cai's Prescription) has yielded satisfactory results for POR treatment clinically, but systematic scientific research of Cai's Prescription is not well reported. This study aimed to investigate the clinical effect of Cai's Prescription on poor ovarian responders and its biological mechanism. METHODS Serum was collected from poor ovarian responders, and IL-1β, INFγ, FSH, E2 and AMH levels were analyzed by ELISA. Ovarian antral follicles were identified and counted using transvaginal ultrasound. The embryo quality grading were done on day 3 after retrieval. We used high-throughput sequencing of granulosa cells to investigate the gene transcription patterns of ovarian granulosa cells in poor ovarian responders after Cai's Prescription pretreatment. The expression level of ARHGAP4 was analyzed by quantitative real-time PCR and western blot. The effects of ARHGAP4 for granulosa cells were analyzed by CCK-8 assay, annexin-V and PI staining, ELISA and western blot. The effects of Cai's Prescription on the expression of PI3K-Akt pathway and apoptosis were analyzed by western blot. RESULTS In this study, we found that Cai's Prescription pretreatment had the tendency to improve the ovarian reserve function and could increase the number of high quality embryos for poor ovarian responders. Through high-throughput sequencing of mRNA in granulosa cells, we discovered ARHGAP4, which is a member of GTPase-activating proteins (GAPs) may be a candidate target for POR treatment. ARHGAP4 was significantly increased in poor ovarian responders and can be recovered after Cai's Prescription pretreatment. Mechanically, combining the cell line model and clinical tissue samples, we found that ARHGAP4 can accelerate cell apoptosis and inflammation response in granulosa cells via PI3K-Akt signaling pathway. In addition, Cai's Prescription pretreatment for three months significantly reduced the high level of ARHGAP4 in poor ovarian responders. CONCLUSION This study shows that the traditional Chinese medicine, Cai's Prescription yielded satisfactory results for poor ovarian responders clinically and ARHGAP4 may be a candidate target for POR treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200040, China.
| | - Denghao Liu
- Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200040, China
| | - Yonghong Nie
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200040, China
| | - Qinhua Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200040, China.
| |
Collapse
|
13
|
Pei L, Ouyang Z, Zhang H, Huang S, Jiang R, Liu B, Tang Y, Feng M, Yuan M, Wang H, Yao S, Shi S, Yu Z, Xu D, Gong G, Wei K. Thrombospondin 1 and Reelin act through Vldlr to regulate cardiac growth and repair. Basic Res Cardiol 2024; 119:169-192. [PMID: 38147128 DOI: 10.1007/s00395-023-01021-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/27/2023]
Abstract
Adult mammalian cardiomyocytes have minimal cell cycle capacity, which leads to poor regeneration after cardiac injury such as myocardial infarction. Many positive regulators of cardiomyocyte cell cycle and cardioprotective signals have been identified, but extracellular signals that suppress cardiomyocyte proliferation are poorly understood. We profiled receptors enriched in postnatal cardiomyocytes, and found that very-low-density-lipoprotein receptor (Vldlr) inhibits neonatal cardiomyocyte cell cycle. Paradoxically, Reelin, the well-known Vldlr ligand, expressed in cardiac Schwann cells and lymphatic endothelial cells, promotes neonatal cardiomyocyte proliferation. Thrombospondin1 (TSP-1), another ligand of Vldlr highly expressed in adult heart, was then found to inhibit cardiomyocyte proliferation through Vldlr, and may contribute to Vldlr's overall repression on proliferation. Mechanistically, Rac1 and subsequent Yap phosphorylation and nucleus translocation mediate the regulation of the cardiomyocyte cell cycle by TSP-1/Reelin-Vldlr signaling. Importantly, Reln mutant neonatal mice displayed impaired cardiomyocyte proliferation and cardiac regeneration after apical resection, while cardiac-specific Thbs1 deletion and cardiomyocyte-specific Vldlr deletion promote cardiomyocyte proliferation and are cardioprotective after myocardial infarction. Our results identified a novel role of Vldlr in consolidating extracellular signals to regulate cardiomyocyte cell cycle activity and survival, and the overall suppressive TSP-1-Vldlr signal may contribute to the poor cardiac repair capacity of adult mammals.
Collapse
Affiliation(s)
- Lijuan Pei
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhaohui Ouyang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hongjie Zhang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shiqi Huang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Rui Jiang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Yansong Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Mengying Feng
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Min Yuan
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haocun Wang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Su Yao
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuyue Shi
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhao Yu
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guohua Gong
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Ke Wei
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
14
|
Sun M, Wei Y, Zhang C, Nian H, Du B, Wei R. Integrated DNA Methylation and Transcriptomics Analyses of Lacrimal Glands Identify the Potential Genes Implicated in the Development of Sjögren's Syndrome-Related Dry Eye. J Inflamm Res 2023; 16:5697-5714. [PMID: 38050559 PMCID: PMC10693829 DOI: 10.2147/jir.s440263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Purpose Sjögren's syndrome-related dry eye (SS-related dry eye) is an intractable autoimmune disease characterized by chronic inflammation of lacrimal glands (LGs), where epigenetic factors are proven to play a crucial role in the pathogenesis of this disease. However, the alteration of DNA methylation in LGs and its role in the pathogenesis of SS-related dry eye is still unknown. Here, we performed an integrated analysis of DNA methylation and RNA-Seq data in LGs to identify novel DNA methylation-regulated differentially expressed genes (MeDEGs) in the pathogenesis of SS-related dry eye. Methods The DNA methylation and transcription profiles of LGs in NOD mice at different stages of SS-related dry eye (4-, 8-, 12- and 16 weeks old) were generated by reduced representation bisulfite sequencing (RRBS) and RNA-Seq. The differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were analyzed by MethylKit R package and edgeR. Correlation analysis between methylation level and mRNA expression was conducted with R software. The functional correlation of DMGs and DEGs was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, LG tissues from another litter of NOD mice were collected for methylation-specific polymerase chain reaction (MSP) and quantitative real-time PCR (qRT-PCR) to validate the methylation and expression levels of key genes. CD4+ cell infiltration of LGs was detected by immunofluorescence staining. Results Hypermethylation of LGs was identified in NOD mice with the progression of SS-related dry eye and the DMGs were mainly enriched in the GTPases activation and Ras signaling pathway. RNA-seq analysis revealed 1321, 2549, and 3712 DEGs in the 8-, 12- and 16-week-old NOD mice compared with 4-week-old normal control mice. For GO analysis, the DEGs were mainly enriched in T cell immune responses. Further, a total of 140 MeDEGs were obtained by integrated analysis of methylome and transcriptome, which were primarily enriched in T cell activation, proliferation and differentiation. Based on the main GO terms and KEGG pathways of MeDEGs, 8 genes were screened out. The expression levels of these key genes, especially Itgal, Vav1, Irf4 and Icosl, were verified to elevate after the onset of SS-related dry eye in NOD mice and positively correlated with the extent of inflammatory cell infiltration in LGs. Immunofluorescence assay revealed that CD4+ cell infiltration dramatically increased in LGs of SS-related dry eye mice compared with the control mice. And the expression levels of four genes showed significantly positive correlation with the extent of CD4+ cell infiltration in LGs. MSP showed the hypomethylation of the Irf4 and Itgal promoters in NOD mice with SS-related dry eye compared to control group. Conclusion Our study revealed the critical role of epigenetic regulation of T cell immunity-related genes in the progression of SS-related dry eye and reminded us that DNA methylation-regulated genes such as Itgal, Vav1, Irf4 and Icosl may be used as new targets for SS-related dry eye therapy.
Collapse
Affiliation(s)
- Mei Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Chengyuan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
15
|
Yuan HK, Li B, Wu L, Wang XL, Lv ZY, Liu Z, Xu Z, Lu J, Chen CT, Yang YQ, Zhu W, Yin LM. Discovery of zolinium TSG1180 as a novel agonist of transgelin-2 for treating asthma. Biomed Pharmacother 2023; 167:115556. [PMID: 37778269 DOI: 10.1016/j.biopha.2023.115556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Asthma is a complex and heterogeneous respiratory disease that causes serious social and economic burdens. Current drugs such as β2-agonists cannot fully control asthma. Our previous study found that Transgelin-2 is a potential target for treating asthmatic pulmonary resistance. Herein, we discovered a zolinium compound, TSG1180, that showed a strong interaction with Transgelin-2. The equilibrium dissociation constants (KD) of TSG1180 to Transgelin-2 were determined to be 5.363 × 10-6 and 9.81 × 10-6 M by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Cellular thermal shift assay (CETSA) results showed that the thermal stability of Transgelin-2 increased after coincubation of TSG1180 with lysates of airway smooth muscle cells (ASMCs). Molecular docking showed that Arg39 may be the key residue for the binding. Then, the SPR result showed that the binding affinity of TSG1180 to Transgelin-2 mutant (R39E) was decreased by 1.69-fold. Real time cell analysis (RTCA) showed that TSG1180 treatment could relax ASMCs by 19 % (P < 0.05). Once Transgelin-2 was inhibited, TSG1180 cannot induce a relaxation effect, suggesting that the relaxation effect was specifically mediated by Transgelin-2. In vivo study showed TSG1180 effectively reduced pulmonary resistance by 64 % in methacholine-induced mice model (P < 0.05). Furthermore, the phosphorylation of Ezrin at T567 was increased by 8.06-fold, the phosphorylation of ROCK at Y722 was reduced by 38 % and the phosphorylation of RhoA at S188 was increased by 52 % after TSG1180 treatment. These results suggested that TSG1180 could be a Transgelin-2 agonist for further optimization and development as an anti-asthma drug.
Collapse
Affiliation(s)
- Hong-Kai Yuan
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Bo Li
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leyun Wu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ling Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Zhi-Ying Lv
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Zhikai Liu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Lu
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Cai-Tao Chen
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yong-Qing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
16
|
Chong CF, Hasnizan NYU, Ahmad Mokhtar AM. Navigating the landscape of Rho GTPase signalling system in autoimmunity: A bibliometric analysis spanning over three decades (1990 to 2023). Cell Signal 2023; 111:110855. [PMID: 37598919 DOI: 10.1016/j.cellsig.2023.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Ras-homologous (Rho) guanosine triphosphatases (GTPases) are considered a central player in regulating various biological processes, extending to immune regulation. Perturbations in Rho GTPase signalling have been implicated in immune-related dysregulation, contributing to the development of autoimmunity. This study presents a scientometric analysis exploring the interlink between the Rho GTPase signalling system and autoimmunity, while also delving into the trends of past studies. A total of 967 relevant publications from 1990 to 2023 were retrieved from the Web of Science Core Collection database after throrough manual filtering of irrelevant articles. The findings show an upward trajectory in publications related to this field since 2006. Over the past three decades, the United States of America (41.68%) emerged as the primary contributor in advancing our understanding of the association between the Rho GTPase signalling system and autoimmunity. Research in autoimmunity has mainly centered around therapeutic interventions, with an emphasis on studying leukocyte (macrophage) and endothelial remodelling. Interestingly, within the domains of multiple sclerosis and rheumatoid arthritis, the current focus has been directed towards comprehending the role of RhoA, Rac1, and Cdc42. Notably, certain subfamilies of Rho (such as RhoB and RhoC), Rac (including Rac2 and RhoG), Cdc42 (specifically RhoJ), and other atypical Rho GTPases (like RhoE and RhoH) consistently demonstrating compelling link with autoimmunity, but still warrants emphasis in the future study. Hence, strategic manipulation of the Rho signalling system holds immense promise as a pivotal approach to addressing the global challenge of autoimmunity.
Collapse
Affiliation(s)
- Chien Fung Chong
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | - Nik Yasmin Umaira Hasnizan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | - Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
17
|
Torres-Sanchez A, Rivera-Robles M, Castillo-Pichardo L, Martínez-Ferrer M, Dorta-Estremera SM, Dharmawardhane S. Rac and Cdc42 inhibitors reduce macrophage function in breast cancer preclinical models. Front Oncol 2023; 13:1152458. [PMID: 37397366 PMCID: PMC10313121 DOI: 10.3389/fonc.2023.1152458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background Metastatic disease lacks effective treatments and remains the primary cause of mortality from epithelial cancers, especially breast cancer. The metastatic cascade involves cancer cell migration and invasion and modulation of the tumor microenvironment (TME). A viable anti-metastasis strategy is to simultaneously target the migration of cancer cells and the tumor-infiltrating immunosuppressive inflammatory cells such as activated macrophages, neutrophils, and myeloid-derived suppressor cells (MDSC). The Rho GTPases Rac and Cdc42 are ideal molecular targets that regulate both cancer cell and immune cell migration, as well as their crosstalk signaling at the TME. Therefore, we tested the hypothesis that Rac and Cdc42 inhibitors target immunosuppressive immune cells, in addition to cancer cells. Our published data demonstrate that the Vav/Rac inhibitor EHop-016 and the Rac/Cdc42 guanine nucleotide association inhibitor MBQ-167 reduce mammary tumor growth and prevent breast cancer metastasis from pre-clinical mouse models without toxic effects. Methods The potential of Rac/Cdc42 inhibitors EHop-016 and MBQ-167 to target macrophages was tested in human and mouse macrophage cell lines via activity assays, MTT assays, wound healing, ELISA assays, and phagocytosis assays. Immunofluorescence, immunohistochemistry, and flow cytometry were used to identify myeloid cell subsets from tumors and spleens of mice following EHop-016 or MBQ-167 treatment. Results EHop-016 and MBQ-167 inhibited Rac and Cdc42 activation, actin cytoskeletal extensions, migration, and phagocytosis without affecting macrophage cell viability. Rac/Cdc42 inhibitors also reduced tumor- infiltrating macrophages and neutrophils in tumors of mice treated with EHop-016, and macrophages and MDSCs from spleens and tumors of mice with breast cancer, including activated macrophages and monocytes, following MBQ-167 treatment. Mice with breast tumors treated with EHop-016 significantly decreased the proinflammatory cytokine Interleukin-6 (IL-6) from plasma and the TME. This was confirmed from splenocytes treated with lipopolysaccharide (LPS) where EHop-016 or MBQ-167 reduced IL-6 secretion in response to LPS. Conclusion Rac/Cdc42 inhibition induces an antitumor environment via inhibition of both metastatic cancer cells and immunosuppressive myeloid cells in the TME.
Collapse
Affiliation(s)
- Anamaris Torres-Sanchez
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Michael Rivera-Robles
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Magaly Martínez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Stephanie M. Dorta-Estremera
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| |
Collapse
|
18
|
Wang L, Tang Y, Herman MA, Spurney RF. Pharmacologic blockade of the natriuretic peptide clearance receptor promotes weight loss and enhances insulin sensitivity in type 2 diabetes. Transl Res 2023; 255:140-151. [PMID: 36563959 PMCID: PMC10441142 DOI: 10.1016/j.trsl.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
While natriuretic peptides (NPs) are primarily known for their renal and cardiovascular actions, NPs stimulate lipolysis in adipocytes and induce a thermogenic program in white adipose tissue (WAT) that resembles brown fat. The biologic effects of NPs are negatively regulated by the NP clearance receptor (NPRC), which binds and degrades NPs. Knockout (KO) of NPRC protects against diet induced obesity and improves insulin sensitivity in obese mice. To determine if pharmacologic blockade of NPRC enhanced the beneficial metabolic actions of NPs in type 2 diabetes, we blocked NP clearance in a mouse model of type 2 diabetes using the specific NPRC ligand ANP(4-23). We found that treatment with ANP(4-23) caused a significant decrease in body weight by increasing energy expenditure and reducing fat mass without a change in lean body mass. The decrease in fat mass was associated with a significant improvement in insulin sensitivity and reduced serum insulin levels. These beneficial effects were accompanied by a decrease in infiltrating macrophages in adipose tissue, and reduced expression of inflammatory markers in both serum and WAT. These data suggest that inhibiting NP clearance may be an effective pharmacologic approach to promote weight loss and enhance insulin sensitivity in type 2 diabetes. Optimizing the therapeutic approach may lead to useful therapies for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Yuping Tang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Mark A Herman
- Division of Endocrinology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina; Duke Molecular Physiology Institute, Durham, North Carolina
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina.
| |
Collapse
|
19
|
George S, Martin JAJ, Graziani V, Sanz-Moreno V. Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Front Cell Dev Biol 2023; 10:1091801. [PMID: 36699013 PMCID: PMC9869768 DOI: 10.3389/fcell.2022.1091801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Cell migration is crucial for efficient immune responses and is aberrantly used by cancer cells during metastatic dissemination. Amoeboid migrating cells use myosin II-powered blebs to propel themselves, and change morphology and direction. Immune cells use amoeboid strategies to respond rapidly to infection or tissue damage, which require quick passage through several barriers, including blood, lymph and interstitial tissues, with complex and varied environments. Amoeboid migration is also used by metastatic cancer cells to aid their migration, dissemination and survival, whereby key mechanisms are hijacked from professionally motile immune cells. We explore important parallels observed between amoeboid immune and cancer cells. We also consider key distinctions that separate the lifespan, state and fate of these cell types as they migrate and/or fulfil their function. Finally, we reflect on unexplored areas of research that would enhance our understanding of how tumour cells use immune cell strategies during metastasis, and how to target these processes.
Collapse
|
20
|
Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human. Nat Commun 2022; 13:3883. [PMID: 35794099 PMCID: PMC9259620 DOI: 10.1038/s41467-022-31403-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic information regulates gene expression and development. However, our understanding of the evolution of epigenetic regulation on brain development in primates is limited. Here, we compared chromatin accessibility landscapes and transcriptomes during fetal prefrontal cortex (PFC) development between rhesus macaques and humans. A total of 304,761 divergent DNase I-hypersensitive sites (DHSs) are identified between rhesus macaques and humans, although many of these sites share conserved DNA sequences. Interestingly, most of the cis-elements linked to orthologous genes with dynamic expression are divergent DHSs. Orthologous genes expressed at earlier stages tend to have conserved cis-elements, whereas orthologous genes specifically expressed at later stages seldom have conserved cis-elements. These genes are enriched in synapse organization, learning and memory. Notably, DHSs in the PFC at early stages are linked to human educational attainment and cognitive performance. Collectively, the comparison of the chromatin epigenetic landscape between rhesus macaques and humans suggests a potential role for regulatory elements in the evolution of differences in cognitive ability between non-human primates and humans. The evolution of epigenetic regulation of brain development in primates is not well understood. Here, the authors perform a comparative study of epigenetic dynamics of early prefrontal cortex development between human and rhesus macaque, finding divergent regulatory elements that may be related to cognitive capacity.
Collapse
|
21
|
Avalos A, Tietsort JT, Suwankitwat N, Woods JD, Jackson SW, Christodoulou A, Morrill C, Liggitt HD, Zhu C, Li QZ, Bui KK, Park H, Iritani BM. Hem-1 regulates protective humoral immunity and limits autoantibody production in a B cell-specific manner. JCI Insight 2022; 7:e153597. [PMID: 35531955 PMCID: PMC9090261 DOI: 10.1172/jci.insight.153597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic protein-1 (Hem-1) is a member of the actin-regulatory WASp family verprolin homolog (WAVE) complex. Loss-of-function variants in the NCKAP1L gene encoding Hem-1 were recently discovered to result in primary immunodeficiency disease (PID) in children, characterized by poor specific Ab responses, increased autoantibodies, and high mortality. However, the mechanisms of how Hem-1 deficiency results in PID are unclear. In this study, we utilized constitutive and B cell-specific Nckap1l-KO mice to dissect the importance of Hem-1 in B cell development and functions. B cell-specific disruption of Hem-1 resulted in reduced numbers of recirculating follicular (FO), marginal zone (MZ), and B1 B cells. B cell migration in response to CXCL12 and -13 were reduced. T-independent Ab responses were nearly abolished, resulting in failed protective immunity to Streptococcus pneumoniae challenge. In contrast, T-dependent IgM and IgG2c, memory B cell, and plasma cell responses were more robust relative to WT control mice. B cell-specific Hem-1-deficient mice had increased autoantibodies against multiple autoantigens, and this correlated with hyperresponsive BCR signaling and increased representation of CD11c+T-bet+ age-associated B cell (ABC cells) - alterations associated with autoimmune diseases. These results suggest that dysfunctional B cells may be part of a mechanism explaining why loss-of-function Hem-1 variants result in recurring infections and autoimmunity.
Collapse
Affiliation(s)
- Alan Avalos
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Jacob T. Tietsort
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | - Christopher Morrill
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - H. Denny Liggitt
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin K. Bui
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Dubey S, Jaiswal B, Gupta A. TIP60 acts as a regulator of genes involved in filopodia formation and cell migration during wound healing. J Biol Chem 2022; 298:102015. [PMID: 35525269 PMCID: PMC9249863 DOI: 10.1016/j.jbc.2022.102015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex phenomenon that requires coordination of numerous molecular and cellular changes to facilitate timely and efficient repair of the damaged tissue. Although many of these molecular pathways have been detailed, others remain to be elucidated. In the present work, we show for the first time, roles for the acetyltransferase TIP60 and nuclear receptor transcription factor PXR in this process, participating in wound healing by altering actin dynamics and cellular motility. We found that in response to wound-injury, TIP60 induces rapid formation of filopodia at the wounded cell front, leading to enhanced cell migration and faster closure of the wound. Further, qPCR analysis revealed heightened expression of Cdc42 and ROCK1 genes, key regulators involved in filopodia formation and actin reorganization, exclusively in TIP60-PXR-expressing cells upon wound-induction. We also performed ChIP assays to confirm the context-specific binding of TIP60 on the ROCK1 promoter and demonstrated that the TIP60 chromodomain is essential for loading of the TIP60–PXR complex onto the chromatin. Results from immunoprecipitation assays revealed that during the wounded condition, TIP60 alters the chromatin microenvironment by specifically acetylating histones H2B and H4, thereby modulating the expression of target genes. Overall, findings of this study show that TIP60 is a novel regulator of the wound healing process by regulating the expression of wound repair-related genes.
Collapse
Affiliation(s)
- Shraddha Dubey
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, India
| | - Bharti Jaiswal
- Integrative Chemical Biology, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, India.
| |
Collapse
|
23
|
Pope RL, Chitrakar A, Sah P, Shadid T, Ballard JD, Zenewicz LA. Clostridioides difficile Toxin B Activates Group 3 Innate Lymphocytes. Infect Immun 2022; 90:e0007322. [PMID: 35377172 PMCID: PMC9022501 DOI: 10.1128/iai.00073-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/20/2022] Open
Abstract
Group 3 innate lymphocytes (ILC3s) are rare immune cells localized in mucosal tissues, especially the gastrointestinal (GI) tract. Despite their rarity, they are a major source of the cytokine interleukin-22 (IL-22), which protects the GI epithelium during inflammation and infection. Although ILC3s have been demonstrated to be important for defense against Clostridioides difficile infection, the exact mechanisms through which they sense productive infection and become activated to produce IL-22 remain poorly understood. In this study, we identified a novel mechanism of ILC3 activation after exposure to C. difficile. Toxin B (TcdB) from C. difficile directly induced production of IL-22 in ILC3s, and this induction was dependent on the glucosyltransferase activity of the toxin, which inhibits small GTPases. Pharmacological inhibition of the small GTPase Cdc42 also enhanced IL-22 production in ILC3s, indicating that Cdc42 is a negative regulator of ILC3 activation. Further gene expression analysis revealed that treatment with TcdB modulated the expression of several inflammation-related genes in ILC3s. These findings demonstrate that C. difficile toxin-mediated inhibition of Cdc42 leads to the activation of ILC3s, providing evidence for how these cells are recruited into the immune response against the pathobiont.
Collapse
Affiliation(s)
- Rosemary L. Pope
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alisha Chitrakar
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tyler Shadid
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
24
|
Nath AS, Parsons BD, Makdissi S, Chilvers RL, Mu Y, Weaver CM, Euodia I, Fitze KA, Long J, Scur M, Mackenzie DP, Makrigiannis AP, Pichaud N, Boudreau LH, Simmonds AJ, Webber CA, Derfalvi B, Hammon Y, Rachubinski RA, Di Cara F. Modulation of the cell membrane lipid milieu by peroxisomal β-oxidation induces Rho1 signaling to trigger inflammatory responses. Cell Rep 2022; 38:110433. [PMID: 35235794 DOI: 10.1016/j.celrep.2022.110433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Phagocytosis, signal transduction, and inflammatory responses require changes in lipid metabolism. Peroxisomes have key roles in fatty acid homeostasis and in regulating immune function. We find that Drosophila macrophages lacking peroxisomes have perturbed lipid profiles, which reduce host survival after infection. Using lipidomic, transcriptomic, and genetic screens, we determine that peroxisomes contribute to the cell membrane glycerophospholipid composition necessary to induce Rho1-dependent signals, which drive cytoskeletal remodeling during macrophage activation. Loss of peroxisome function increases membrane phosphatidic acid (PA) and recruits RhoGAPp190 during infection, inhibiting Rho1-mediated responses. Peroxisome-glycerophospholipid-Rho1 signaling also controls cytoskeleton remodeling in mouse immune cells. While high levels of PA in cells without peroxisomes inhibit inflammatory phenotypes, large numbers of peroxisomes and low amounts of cell membrane PA are features of immune cells from patients with inflammatory Kawasaki disease and juvenile idiopathic arthritis. Our findings reveal potential metabolic markers and therapeutic targets for immune diseases and metabolic disorders.
Collapse
Affiliation(s)
- Anu S Nath
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Brendon D Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Rebecca L Chilvers
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Yizhu Mu
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Ceileigh M Weaver
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Irene Euodia
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Katherine A Fitze
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Juyang Long
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Michal Scur
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Duncan P Mackenzie
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Andrew P Makrigiannis
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Nicolas Pichaud
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB E1A 3E9, Canada; New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB E1A 3E9, Canada
| | - Luc H Boudreau
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB E1A 3E9, Canada; New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB E1A 3E9, Canada
| | - Andrew J Simmonds
- University of Alberta, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Christine A Webber
- University of Alberta, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Beata Derfalvi
- Dalhousie University, Department of Pediatrics, Halifax, NS B3K 6R8, Canada
| | - Yannick Hammon
- INSERM au Centre d'Immunologie de Marseille Luminy, Marseille 13288, France
| | | | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada; Dalhousie University, Department of Pediatrics, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
25
|
Enpp2 Expression by Dendritic Cells Is a Key Regulator in Migration. Biomedicines 2021; 9:biomedicines9111727. [PMID: 34829956 PMCID: PMC8615729 DOI: 10.3390/biomedicines9111727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Enpp2 is an enzyme that catalyzes the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which exhibits a wide variety of biological functions. Here, we examined the biological effects of Enpp2 on dendritic cells (DCs), which are specialized antigen-presenting cells (APCs) characterized by their ability to migrate into secondary lymphoid organs and activate naïve T-cells. DCs were generated from bone marrow progenitors obtained from C57BL/6 mice. Enpp2 levels in DCs were regulated using small interfering (si)RNA or recombinant Enpp2. Expression of Enpp2 in LPS-stimulated mature (m)DCs was high, however, knocking down Enpp2 inhibited mDC function. In addition, the migratory capacity of mDCs increased after treatment with rmEnpp2; this phenomenon was mediated via the RhoA-mediated signaling pathway. Enpp2-treated mDCs showed a markedly increased capacity to migrate to lymph nodes in vivo. These findings strongly suggest that Enpp2 is necessary for mDC migration capacity, thereby increasing our understanding of DC biology. We postulate that regulating Enpp2 improves DC migration to lymph nodes, thus improving the effectiveness of cancer vaccines based on DC.
Collapse
|
26
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
27
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
28
|
Li L, Deng F, Qiu H, Li Y, Gong Z, Wang L, Wang J, Wu W, Nan K. An adherent drug depot for retinal ganglion cell protection and regeneration in rat traumatic optic neuropathy models. RSC Adv 2021; 11:22761-22772. [PMID: 35480428 PMCID: PMC9034353 DOI: 10.1039/d0ra10362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Traumatic optic neuropathy (TON) describes an injury to the optic nerve following either blunt or penetrating trauma, and remains an important cause of vision loss. No generalized treatment of TON has been established so far to restore the injured optic nerve. We developed an adherent drug-encapsulated bi-layered depot (DBP) as a dual drug vehicle for local treatment to protect the residual retinal ganglion cells (RGCs) and regenerate axons following optic nerve damage. The inner layer of the depot was prepared by co-electrospinning poly(d,l-lactide-co-glycolide acid) (PLGA: 75 : 25) and collagen (COL) with the hydrophobic corticosteroid triamcinolone acetonide (TA) loaded. The outer layer was made of PLGA and the hydrophilic neuroprotective agent Fasudil (FA). The DBP showed suitable morphology, hydrophilicity and mechanical properties, and slowly released TA and FA in vitro by undergoing time-dependent degradation and swelling. All depots showed good biocompatibility with L929 mouse fibroblasts, and DBP was helpful in maintaining the morphology of RGCs in vitro. In addition, direct implantation of DBP at the injured optic nerve in a rat model mitigated inflammation and the death of RGCs, and increased the expression of nerve growth-related protein GAP-43. Therefore, DBP maybe a promising local therapy against TON in future.
Collapse
Affiliation(s)
- Lingli Li
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Fen Deng
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,The 2nd Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University Zhejiang Province P. R. China
| | - Haijun Qiu
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Yao Li
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Zan Gong
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Lei Wang
- University of Chinese Academy of Sciences Wenzhou Institute Zhejiang Province P. R. China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering Wenzhou Zhejiang 325027 China
| | - Jingjie Wang
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Wencan Wu
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| |
Collapse
|
29
|
Martirosyan A, Poghosyan D, Ghonyan S, Mkrtchyan N, Amaryan G, Manukyan G. Transmigration of Neutrophils From Patients With Familial Mediterranean Fever Causes Increased Cell Activation. Front Immunol 2021; 12:672728. [PMID: 34079554 PMCID: PMC8165278 DOI: 10.3389/fimmu.2021.672728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Familial Mediterranean fever (FMF) is caused by pyrin-encoding MEFV gene mutations and characterized by the self-limiting periods of intense inflammation, which are mainly mediated by a massive influx of polymorphonuclear neutrophils (PMNs) into the inflamed sites. Perturbation of actin polymerization by different pathogens was shown to activate the pyrin inflammasome. Our aim was to test whether cytoskeletal dynamics in the absence of pathogens may cause abnormal activation of PMNs from FMF patients. We also aimed to characterize immunophenotypes of circulating neutrophils and their functional activity. Circulating PMNs displayed heterogeneity in terms of cell size, granularity and immunophenotypes. Particularly, PMNs from the patients in acute flares (FMF-A) exhibited a characteristic of aged/activated cells (small cell size and granularity, up-regulated CXCR4), while PMNs form the patients in remission period (FMF-R) displayed mixed fresh/aged cell characteristics (normal cell size and granularity, up-regulated CD11b, CD49d, CXCR4, and CD62L). The findings may suggest that sterile tissue-infiltrated PMNs undergo reverse migration back to bone marrow and may explain why these PMNs do not cause immune-mediated tissue damage. A multidirectional expression of FcγRs on neutrophils during acute flares was also noteworthy: up-regulation of FcγRI and down-regulation of FcγRII/FcγRIII. We also observed spontaneous and fMPL-induced activation of PMNs from the patients after transmigration through inserts as seen by the increased expression of CD11b and intracellular expression of IL-1β. Our study suggests heightened sensitivity of mutated pyrin inflammasome towards cytoskeletal modifications in the absence of pathogens.
Collapse
Affiliation(s)
- Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - David Poghosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - Susanna Ghonyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - Nune Mkrtchyan
- National Pediatrics Center of Familial Mediterranean Fever "Arabkir" Joint Medical Center- Institute of Child and Adolescent Health, Yerevan, Armenia.,Department of Pediatrics, Yerevan State Medical University, Yerevan, Armenia
| | - Gayane Amaryan
- National Pediatrics Center of Familial Mediterranean Fever "Arabkir" Joint Medical Center- Institute of Child and Adolescent Health, Yerevan, Armenia.,Department of Pediatrics, Yerevan State Medical University, Yerevan, Armenia
| | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| |
Collapse
|
30
|
Dixon CL, Mekhail K, Fairn GD. Examining the Underappreciated Role of S-Acylated Proteins as Critical Regulators of Phagocytosis and Phagosome Maturation in Macrophages. Front Immunol 2021; 12:659533. [PMID: 33868308 PMCID: PMC8047069 DOI: 10.3389/fimmu.2021.659533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/04/2022] Open
Abstract
Phagocytosis is a receptor-mediated process used by cells to engulf a wide variety of particulates, including microorganisms and apoptotic cells. Many of the proteins involved in this highly orchestrated process are post-translationally modified with lipids as a means of regulating signal transduction, membrane remodeling, phagosome maturation and other immunomodulatory functions of phagocytes. S-acylation, generally referred to as S-palmitoylation, is the post-translational attachment of fatty acids to a cysteine residue exposed topologically to the cytosol. This modification is reversible due to the intrinsically labile thioester bond between the lipid and sulfur atom of cysteine, and thus lends itself to a variety of regulatory scenarios. Here we present an overview of a growing number of S-acylated proteins known to regulate phagocytosis and phagosome biology in macrophages.
Collapse
Affiliation(s)
- Charneal L Dixon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Katrina Mekhail
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| |
Collapse
|
31
|
Ong HS, Ang M, Mehta J. Evolution of therapies for the corneal endothelium: past, present and future approaches. Br J Ophthalmol 2021; 105:454-467. [PMID: 32709756 PMCID: PMC8005807 DOI: 10.1136/bjophthalmol-2020-316149] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Indexed: 12/13/2022]
Abstract
Corneal endothelial diseases are leading indications for corneal transplantations. With significant advancement in medical science and surgical techniques, corneal transplant surgeries are now increasingly effective at restoring vision in patients with corneal diseases. In the last 15 years, the introduction of endothelial keratoplasty (EK) procedures, where diseased corneal endothelium (CE) are selectively replaced, has significantly transformed the field of corneal transplantation. Compared to traditional penetrating keratoplasty, EK procedures, namely Descemet's stripping automated endothelial keratoplasty (DSAEK) and Descemet membrane endothelial keratoplasty (DMEK), offer faster visual recovery, lower immunological rejection rates, and improved graft survival. Although these modern techniques can achieve high success, there are fundamental impediments to conventional transplantations. A lack of suitable donor corneas worldwide restricts the number of transplants that can be performed. Other barriers include the need for specialized expertise, high cost, and risks of graft rejection or failure. Research is underway to develop alternative treatments for corneal endothelial diseases, which are less dependent on the availability of allogeneic tissues - regenerative medicine and cell-based therapies. In this review, an overview of past and present transplantation procedures used to treat corneal endothelial diseases are described. Potential novel therapies that may be translated into clinical practice will also be presented.
Collapse
Affiliation(s)
- Hon Shing Ong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Marcus Ang
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Jodhbir Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
- School of Material Science & Engineering and School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
32
|
Functional and Therapeutic Relevance of Rho GTPases in Innate Immune Cell Migration and Function during Inflammation: An In Silico Perspective. Mediators Inflamm 2021; 2021:6655412. [PMID: 33628114 PMCID: PMC7896857 DOI: 10.1155/2021/6655412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Systematic regulation of leukocyte migration to the site of infection is a vital step during immunological responses. Improper migration and localization of immune cells could be associated with disease pathology as seen in systemic inflammation. Rho GTPases act as molecular switches during inflammatory cell migration by cycling between Rho-GDP (inactive) to Rho-GTP (active) forms and play an essential role in the precise regulation of actin cytoskeletal dynamics as well as other immunological functions of leukocytes. Available reports suggest that the dysregulation of Rho GTPase signaling is associated with various inflammatory diseases ranging from mild to life-threatening conditions. Therefore, it is crucial to understand the step-by-step activation and inactivation of GTPases and the functioning of different Guanine Nucleotide Exchange Factors (GEFs) and GTPase-Activating Proteins (GAPs) that regulate the conversion of GDP to GTP and GTP to GDP exchange reactions, respectively. Here, we describe the molecular organization and activation of various domains of crucial elements associated with the activation of Rho GTPases using solved PDB structures. We will also present the latest evidence available on the relevance of Rho GTPases in the migration and function of innate immune cells during inflammation. This knowledge will help scientists design promising drug candidates against the Rho-GTPase-centric regulatory molecules regulating inflammatory cell migration.
Collapse
|
33
|
The role of ARHGAP9: clinical implication and potential function in acute myeloid leukemia. J Transl Med 2021; 19:65. [PMID: 33579308 PMCID: PMC7881617 DOI: 10.1186/s12967-021-02733-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Rho GTPase activating protein 9 (ARHGAP9) is expressed in various types of cancers and can inactivate Rho GTPases that mainly regulate cytoskeletal dynamics. However, the exact role of ARHGAP9 in acute myeloid leukemia (AML) has yet to be clarified. Methods We compared the transcriptional expression, prognosis, differentially expressed genes, functional enrichment, and hub genes in AML patients on the basis of the data published in the following databases: UALCAN, GEPIA, Gene Expression Omnibus, the Human Protein Atlas, Cancer Cell Line Encyclopedia, LinkedOmics, Metascape, and String. Data from the Cancer Genome Atlas database was used to evaluate the correlations between ARHGAP9 expression and various clinicopathological parameters, as well as the significantly different genes associated with ARHGAP9 expression. Results We found that ARHGAP9 expression was higher in the tissues and cell lines extracted from patients with AML than corresponding control tissues and other cancer types. ARHGAP9 overexpression was associated with decreased overall survival (OS) in AML. Compared with the ARHGAP9low group, the ARHGAP9high group, which received only chemotherapy, showed significantly worse OS and event-free survival (EFS); however, no significant difference was observed after treatment with autologous or allogeneic hematopoietic stem cell transplantation (auto/allo-HSCT). The ARHGAP9high patients undergoing auto/allo-HSCT also had a significantly better prognosis with respect to OS and EFS than those receiving only chemotherapy. Most overlapping genes of the significantly different genes and co-expression genes exhibited enriched immune functions, suggesting the immune regulation potential of ARHGAP9 in AML. A total of 32 hub genes were identified from the differentially expressed genes, within which the KIF20A had a significant prognostic value for AML. Conclusions ARHGAP9 overexpression was associated with poor OS in AML patients and can be used as a prognostic biomarker. AML patients with ARHGAP9 overexpression can benefit from auto/allo-HSCT rather than chemotherapy.
Collapse
|
34
|
RAC1 controls progressive movement and competitiveness of mammalian spermatozoa. PLoS Genet 2021; 17:e1009308. [PMID: 33539343 PMCID: PMC7861394 DOI: 10.1371/journal.pgen.1009308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
Mammalian spermatozoa employ calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) signaling in generating flagellar beat. However, how sperm direct their movement towards the egg cells has remained elusive. Here we show that the Rho small G protein RAC1 plays an important role in controlling progressive motility, in particular average path velocity and linearity. Upon RAC1 inhibition of wild type sperm with the drug NSC23766, progressive movement is impaired. Moreover, sperm from mice homozygous for the genetically variant t-haplotype region (tw5/tw32), which are sterile, show strongly enhanced RAC1 activity in comparison to wild type (+/+) controls, and quickly become immotile in vitro. Sperm from heterozygous (t/+) males, on the other hand, display intermediate RAC1 activity, impaired progressive motility and transmission ratio distortion (TRD) in favor of t-sperm. We show that t/+-derived sperm consist of two subpopulations, highly progressive and less progressive. The majority of highly progressive sperm carry the t-haplotype, while most less progressive sperm contain the wild type (+) chromosome. Dosage-controlled RAC1 inhibition in t/+ sperm by NSC23766 rescues progressive movement of (+)-sperm in vitro, directly demonstrating that impairment of progressive motility in the latter is caused by enhanced RAC1 activity. The combined data show that RAC1 plays a pivotal role in controlling progressive motility in sperm, and that inappropriate, enhanced or reduced RAC1 activity interferes with sperm progressive movement. Differential RAC1 activity within a sperm population impairs the competitiveness of sperm cells expressing suboptimal RAC1 activity and thus their fertilization success, as demonstrated by t/+-derived sperm. In conjunction with t-haplotype triggered TRD, we propose that Rho GTPase signaling is essential for directing sperm towards the egg cells.
Collapse
|
35
|
Liu Y, Zhang W, Wang S, Cai L, Jiang Y, Pan Y, Liang Y, Xian J, Jia L, Li L, Zhao H, Zhang Y. Cullin3-TNFAIP1 E3 Ligase Controls Inflammatory Response in Hepatocellular Carcinoma Cells via Ubiquitination of RhoB. Front Cell Dev Biol 2021; 9:617134. [PMID: 33553178 PMCID: PMC7859282 DOI: 10.3389/fcell.2021.617134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Rho family GTPase RhoB is the critical signaling component controlling the inflammatory response elicited by pro-inflammatory cytokines. However, the underlying mechanisms of RhoB degradation in inflammatory response remain unclear. In this study, for the first time, we identified that TNFAIP1, an adaptor protein of Cullin3 E3 ubiquitin ligases, coordinated with Cullin3 to mediate RhoB degradation through ubiquitin proteasome system. In addition, we demonstrated that downregulation of TNFAIP1 induced the expression of pro-inflammatory cytokines IL-6 and IL-8 in TNFα-stimulated hepatocellular carcinoma cells through the activation of p38/JNK MAPK pathway via blocking RhoB degradation. Our findings revealed a novel mechanism of RhoB degradation and provided a potential strategy for anti-inflammatory intervention of tumors by targeting TNFAIP1-RhoB axis.
Collapse
Affiliation(s)
- Yue Liu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Wenjuan Zhang
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Lili Cai
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongfu Pan
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yupei Liang
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingrong Xian
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Lijun Jia
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| |
Collapse
|
36
|
Ke W, Wang B, Hua W, Song Y, Lu S, Luo R, Li G, Wang K, Liao Z, Xiang Q, Li S, Wu X, Zhang Y, Yang C. The distinct roles of myosin IIA and IIB under compression stress in nucleus pulposus cells. Cell Prolif 2021; 54:e12987. [PMID: 33415745 PMCID: PMC7848961 DOI: 10.1111/cpr.12987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives Inappropriate or excessive compression applied to intervertebral disc (IVD) contributes substantially to IVD degeneration. The actomyosin system plays a leading role in responding to mechanical stimuli. In the present study, we investigated the roles of myosin II isoforms in the compression stress‐induced senescence of nucleus pulposus (NP) cells. Material and methods Nucleus pulposus cells were exposed to 1.0 MPa compression for 0, 12, 24 or 36 hours. Immunofluorescence and co‐immunoprecipitation analysis were used to measure the interaction of myosin IIA and IIB with actin. Western blot analysis and immunofluorescence staining were used to detect nuclear expression and nuclear localization of MRTF‐A. In addition, the expression levels of p‐RhoA/RhoA, ROCK1/2 and p‐MLC/MLC were measured in human NP cells under compression stress and in degenerative IVD tissues. Results Compression stress increased the interaction of myosin IIA and actin, while the interaction of myosin IIB and actin was reduced. The actomyosin cytoskeleton remodelling was involved in the compression stress‐induced fibrotic phenotype mediated by MRTF‐A nuclear translocation and inhibition of proliferation in NP cells. Furthermore, RhoA/ROCK1 pathway activation mediated compression stress‐induced human NP cells senescence by regulating the interaction of myosin IIA and IIB with actin. Conclusions We for the first time investigated the regulation of actomyosin cytoskeleton in human NP cells under compression stress. It provided new insights into the development of therapy for effectively inhibiting IVD degeneration.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
38
|
Arya H, Coumar MS. Design of novel ROCK inhibitors using fragment-based de novo drug design approach. J Mol Model 2020; 26:249. [PMID: 32829478 DOI: 10.1007/s00894-020-04493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/30/2020] [Indexed: 12/01/2022]
Abstract
Rho-associated coiled-coil protein kinase (ROCK) is playing a vital role in the regulation of key cellular events and also responsible for causing several pathological conditions such as cancer, hypertension, Alzheimer's, cerebral vasospasm, and cardiac stroke. Therefore, it has attracted us to target ROCK protein as a potential therapeutic target for combating various diseases. Consequently, we investigated the active site of ROCK I protein and designed novel leads against the target using the de novo evolution drug design approach. Caffeic acid (an aglycone of acteoside) as a scaffold and fragments from 336 reported ROCK inhibitors were used for the design of novel leads. Multiple copy simultaneous search docking was used to identify the suitable fragments to be linked with the scaffold. Basic medicinal chemistry rules, coupled with structural insights generated by docking, led to the design of 7a, 8a, 9a, and 10a as potential ROCK I inhibitors. The designed leads showed better binding than the approved drug fasudil and also interacted with the key hinge region residue Met156 of ROCK I. Further, molecular dynamics (MD) simulation revealed that the protein-ligand complexes were stable and maintained the hydrogen bond with Met156 throughout the MD run. The promising in silico outcomes suggest that the designed compounds could be suitable anti-cancer leads that need to be synthesized and tested in various cancer cell lines. Graphical abstract.
Collapse
Affiliation(s)
- Hemant Arya
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
39
|
Abbhi V, Piplani P. Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem 2020; 27:2222-2256. [PMID: 30378487 DOI: 10.2174/0929867325666181031102829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer's disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. EVIDENCE SYNTHESIS Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK β) and ROCK-II (ROCK α) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. CONCLUSION Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
Collapse
Affiliation(s)
- Vasudha Abbhi
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| | - Poonam Piplani
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
40
|
Kim SHJ, Hammer DA. Integrin crosstalk allows CD4+ T lymphocytes to continue migrating in the upstream direction after flow. Integr Biol (Camb) 2020; 11:384-393. [PMID: 31851360 DOI: 10.1093/intbio/zyz034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 01/13/2023]
Abstract
In order to perform critical immune functions at sites of inflammation, circulatory T lymphocytes must be able to arrest, adhere, migrate and transmigrate on the endothelial surface. This progression of steps is coordinated by cellular adhesion molecules (CAMs), chemokines, and selectins presented on the endothelium. Two important interactions are between Lymphocyte Function-associated Antigen-1 (LFA-1) and Intracellular Adhesion Molecule-1 (ICAM-1) and also between Very Late Antigen-4 (VLA-4) and Vascular Cell Adhesion Molecule-1 (VCAM-1). Recent studies have shown that T lymphocytes and other cell types can migrate upstream (against the direction) of flow through the binding of LFA-1 to ICAM-1. Since upstream migration of T cells depends on a specific adhesive pathway, we hypothesized that mechanotransduction is critical to migration, and that signals might allow T-cells to remember their direction of migration after the flow is terminated. Cells on ICAM-1 surfaces migrate against the shear flow, but the upstream migration reverts to random migration after the flow is stopped. Cells on VCAM-1 migrate with the direction of flow. However, on surfaces that combine ICAM-1 and VCAM-1, cells crawl upstream at a shear rate of 800 s-1 and continue migrating in the upstream direction for at least 30 minutes after the flow is terminated-we call this 'migrational memory'. Post-flow upstream migration on VCAM-1/ICAM-1 surfaces is reversed upon the inhibition of PI3K, but conserved with cdc42 and Arp2/3 inhibitors. Using an antibody against VLA-4, we can block migrational memory on VCAM-1/ICAM-1 surfaces. Using a soluble ligand for VLA-4 (sVCAM-1), we can promote migrational memory on ICAM-1 surfaces. These results indicate that, while upstream migration under flow requires LFA-1 binding to immobilized ICAM-1, signaling from VLA-4 and PI3K activity is required for the migrational memory of CD4+ T cells. These results indicate that crosstalk between integrins potentiates the signal of upstream migration.
Collapse
Affiliation(s)
- Sarah Hyun Ji Kim
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Hammer
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.,Bioengineering, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
41
|
Peng F, Lu L, Wei F, Wu D, Wang K, Tang J. The onjisaponin B metabolite tenuifolin ameliorates dopaminergic neurodegeneration in a mouse model of Parkinson's disease. Neuroreport 2020; 31:456-465. [PMID: 32168102 DOI: 10.1097/wnr.0000000000001428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Onjisaponin B (OB) is the main active ingredient of the traditional Chinese medicinal herb polygala, which is effective against neurodegenerative disorders. However, the target of OB is currently unknown. Neuroinflammation and oxidative stress are both risk factors for the pathogenesis and progression of Parkinson's disease (PD). Here, we used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD to explore the efficacy and neuroprotective mechanism of OB in PD. Immunohistochemistry was used to mark dopaminergic (DA) neurons and microglia in the substantia nigra pars compact. Administration of OB (20 and 40 mg/kg) prevented the degeneration of DA neurons and improved motor impairment in the rotarod test. Furthermore, OB attenuated microglia over-activation and reduced the secretion of inflammatory factors including tumor necrosis factor-alpha, interleukin-1 beta (IL-1β) and interleukin-6 (IL-6), as determined by ELISA. Meanwhile, the activities of superoxide dismutase and malondialdehyde were used to measure the level of oxidative stress in brain homogenates and suppression of excessive lipid epoxidation and increased antioxidant enzyme activity were found in OB-treated PD mice. Finally, OB inhibits the expression of the p65 subunit of NF-κB in the nucleus and attenuated expression of the RhoA and ROCK2 proteins in PD mice. Consequently, our results show that OB ameliorates DA neurodegeneration in a MPTP-induced mouse model of PD through anti-oxidant and anti-inflammatory activities mediated via the RhoA/ROCK2 signaling pathway. This finding demonstrates that OB may be a promising drug for DA neuron degeneration, which may provide a new therapeutic agent for future discovery of drugs for PD.See video abstract: http://links.lww.com/WNR/A580.
Collapse
Affiliation(s)
- Fang Peng
- Guangling College, Yangzhou University, Yangzhou
| | - Linyu Lu
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Wei
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Die Wu
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Wang
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juanjuan Tang
- Department of physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
42
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
43
|
Jiang Y, Hong D, Lou Z, Tu X, Jin L. Lupeol inhibits migration and invasion of colorectal cancer cells by suppressing RhoA-ROCK1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2185-2196. [PMID: 32025757 DOI: 10.1007/s00210-020-01815-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Metastasis is the main cause of death in colorectal cancer (CRC) patients. However, current treatment options for CRC metastasis are very limited. Lupeol, a triterpene that is widely found in vegetables and fruits, has been reported to possess the cancer-preventive and anti-inflammatory functions. However, the roles of Lupeol in the migration and invasion of colorectal cancer remain unclear. Here, we evaluated the effect of Lupeol treatment on colorectal cancer cell lines, HCT116 and SW620, and delineated its underlying mechanisms. Our results showed that Lupeol induced a dose-dependent inhibition of HCT116 and SW620 cells viability, measured by CCK8 assay. Wound healing and Transwell migration and invasion assays revealed that Lupeol significantly suppressed the migration and invasion of CRC cells. Using laser confocal microscope, we observed that the pseudopods and protrusions of HCT116 and SW620 cells decreased and disrupted after treatment with Lupeol. In addition, the quantitative real-time PCR and Western blotting results showed that Lupeol downregulated the expression of RhoA and RhoC, and their downstream effectors ROCK1, Cofilin, p-MLC, and the associated regulatory protein Cyclin A2. Interestingly, the migration and invasion capacity of CRC cells was reduced after RhoA knockdown. And there were no additional changes in CRC cells with RhoA knockdown to treat with Lupeol. These findings demonstrate that Lupeol can suppress the migration and invasion of colorectal cancer cells by remodeling the actin cytoskeleton via RhoA-ROCK1 pathway inhibition, which may provide an effective anti-metastatic agent for CRC patients.
Collapse
Affiliation(s)
- Yiwen Jiang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan Hong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhefeng Lou
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuezi Tu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Longjin Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
44
|
Xu C, Wu X, Lu M, Tang L, Yao H, Wang J, Ji X, Hussain M, Wu J, Wu X. Protein tyrosine phosphatase 11 acts through RhoA/ROCK to regulate eosinophil accumulation in the allergic airway. FASEB J 2019; 33:11706-11720. [PMID: 31361966 PMCID: PMC6902720 DOI: 10.1096/fj.201900698r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Src homology domain 2-containing protein tyrosine phosphatase 2 (SHP2) participates in multiple cell functions including cell shape, movement, and differentiation. Therefore, we investigated the potential role of SHP2 in eosinophil recruitment into lungs in allergic airway inflammation and explored the underlying mechanism. Both SHP2 and Ras homolog family member A (RhoA) kinase were robustly activated in the airway eosinophils of children with allergic asthma and of a mouse model with allergic airway inflammation. Moreover, inhibition of SHP2 activity by its specific inhibitors reverses the dephosphorylation of p190-A Rho GTPase-activating protein and in turn attenuates RhoA/Rho-associated protein kinase (ROCK) signaling, resulting in the attenuation of eosinophil migration in response to platelet-activating factor stimulation. Specifically, SHP2 deletion in myeloid cells did not affect the number and classification of circulating leukocytes but significantly attenuated the allergen-induced inflammatory cell, especially eosinophil, infiltration into lungs, and airway hyperreactivity. Notably, genetic interaction between RhoA and SHP2 indicated that RhoA inactivation and SHP2 deletion synergistically attenuated the allergen-induced eosinophil infiltration into lungs and airway hyperreactivity, whereas overexpression of active RhoA robustly restored the SHP2 deletion-resultant attenuation of allergen-induced eosinophil recruitment into lungs and airway hyperreactivity as well. Thus, this study demonstrates that SHP2 via RhoA/ROCK signaling regulates eosinophil recruitment in allergic airway inflammation and possibly in allergic asthma.-Xu, C., Wu, X., Lu, M., Tang, L., Yao, H., Wang, J., Ji, X., Hussain, M., Wu, J., Wu, X. Protein tyrosine phosphatase 11 acts through RhoA/ROCK to regulate eosinophil accumulation in the allergic airway.
Collapse
Affiliation(s)
- Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiling Wu
- Department of Respiratory Medicine, The Affiliated Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meiping Lu
- Department of Respiratory Medicine, The Affiliated Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanfang Tang
- Department of Respiratory Medicine, The Affiliated Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyi Yao
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jirong Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Ji
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Musaddique Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Duroux-Richard I, Robin M, Peillex C, Apparailly F. MicroRNAs: Fine Tuners of Monocyte Heterogeneity. Front Immunol 2019; 10:2145. [PMID: 31608049 PMCID: PMC6768098 DOI: 10.3389/fimmu.2019.02145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/27/2019] [Indexed: 01/13/2023] Open
Abstract
Small non-coding microRNAs (miRNAs) have been found to play critical roles in many biological processes by controlling gene expression at the post-transcriptional level. They appear to fine-tune the immune response by targeting key regulatory molecules, and their abnormal expression is associated with immune-mediated inflammatory disorders. Monocytes actively contribute to tissue homeostasis by triggering acute inflammatory reactions as well as the resolution of inflammation and tissue regeneration, in case of injury or pathogen invasion. Their contribution to tissue homeostasis can have many aspects because they are able to differentiate into different cell types including macrophages, dendritic cells, and osteoclasts, which fulfill functions as different as bone remodeling and immune response. Monocytes consist of different subsets with subset-specific expression of miRNAs linked to distinct biological processes dedicated to specific roles. Therefore, understanding the role of miRNAs in the context of monocyte heterogeneity may provide clues as to which subset gives rise to which cell type in tissues. In addition, because monocytes are involved in the pathogenesis of chronic inflammation, associated with loss of tissue homeostasis and function, identifying subset-specific miRNAs might help in developing therapeutic strategies that target one subset while sparing the others. Here, we give an overview of the state-of-the-art research regarding miRNAs that are differentially expressed between monocyte subsets and how they influence monocyte functional heterogeneity in health and disease, with descriptions of specific miRNAs. We also revisit the existing miRNome data to propose a canonical signature for each subset.
Collapse
Affiliation(s)
| | - Maxime Robin
- IRMB, INSERM, University of Montpellier, Montpellier, France
| | - Cindy Peillex
- IRMB, INSERM, University of Montpellier, Montpellier, France
| | - Florence Apparailly
- IRMB, INSERM, University of Montpellier, Montpellier, France
- Clinical Department for Osteoarticular Diseases, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
46
|
The Regulatory Role of Rac1, a Small Molecular Weight GTPase, in the Development of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8070965. [PMID: 31277234 PMCID: PMC6678477 DOI: 10.3390/jcm8070965] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy, a microvascular complication of diabetes, remains the leading cause of vision loss in working age adults. Hyperglycemia is considered as the main instigator for its development, around which other molecular pathways orchestrate. Of these multiple pathways, oxidative stress induces many metabolic, functional and structural changes in the retinal cells, leading to the development of pathological features characteristic of this blinding disease. An increase in cytosolic reactive oxygen species (ROS), produced by cytosolic NADPH oxidase 2 (Nox2), is an early event in the pathogenesis of diabetic retinopathy, which leads to mitochondrial damage and retinal capillary cell apoptosis. Activation of Nox2 is mediated through an obligatory small molecular weight GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), and subcellular localization of Rac1 and its activation are regulated by several regulators, rendering it a complex biological process. In diabetes, Rac1 is functionally activated in the retina and its vasculature, and, via Nox2-ROS, contributes to mitochondrial damage and the development of retinopathy. In addition, Rac1 is also transcriptionally activated, and epigenetic modifications play a major role in this transcriptional activation. This review focusses on the role of Rac1 and its regulation in the development and progression of diabetic retinopathy, and discusses some possible avenues for therapeutic interventions.
Collapse
|
47
|
RHO Family GTPases in the Biology of Lymphoma. Cells 2019; 8:cells8070646. [PMID: 31248017 PMCID: PMC6678807 DOI: 10.3390/cells8070646] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
RHO GTPases are a class of small molecules involved in the regulation of several cellular processes that belong to the RAS GTPase superfamily. The RHO family of GTPases includes several members that are further divided into two different groups: typical and atypical. Both typical and atypical RHO GTPases are critical transducers of intracellular signaling and have been linked to human cancer. Significantly, both gain-of-function and loss-of-function mutations have been described in human tumors with contradicting roles depending on the cell context. The RAS family of GTPases that also belong to the RAS GTPase superfamily like the RHO GTPases, includes arguably the most frequently mutated genes in human cancers (K-RAS, N-RAS, and H-RAS) but has been extensively described elsewhere. This review focuses on the role of RHO family GTPases in human lymphoma initiation and progression.
Collapse
|
48
|
Shaverdashvili K, Padlo J, Weinblatt D, Jia Y, Jiang W, Rao D, Laczkó D, Whelan KA, Lynch JP, Muir AB, Katz JP. KLF4 activates NFκB signaling and esophageal epithelial inflammation via the Rho-related GTP-binding protein RHOF. PLoS One 2019; 14:e0215746. [PMID: 30998758 PMCID: PMC6472825 DOI: 10.1371/journal.pone.0215746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding the regulatory mechanisms within esophageal epithelia is essential to gain insight into the pathogenesis of esophageal diseases, which are among the leading causes of morbidity and mortality throughout the world. The zinc-finger transcription factor Krüppel-like factor (KLF4) is implicated in a large number of cellular processes, such as proliferation, differentiation, and inflammation in esophageal epithelia. In murine esophageal epithelia, Klf4 overexpression causes chronic inflammation which is mediated by activation of NFκB signaling downstream of KLF4, and this esophageal inflammation produces epithelial hyperplasia and subsequent esophageal squamous cell cancer. Yet, while NFκB activation clearly promotes esophageal inflammation, the mechanisms by which NFκB signaling is activated in esophageal diseases are not well understood. Here, we demonstrate that the Rho-related GTP-binding protein RHOF is activated by KLF4 in esophageal keratinocytes, leading to the induction of NFκB signaling. Moreover, RHOF is required for NFκB activation by KLF4 in esophageal keratinocytes and is also important for esophageal keratinocyte proliferation and migration. Finally, we find that RHOF is upregulated in eosinophilic esophagitis, an important esophageal inflammatory disease in humans. Thus, RHOF activation of NFκB in esophageal keratinocytes provides a potentially important and clinically-relevant mechanism for esophageal inflammation and inflammation-mediated esophageal squamous cell cancer.
Collapse
Affiliation(s)
- Khvaramze Shaverdashvili
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Jennie Padlo
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Daniel Weinblatt
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Yang Jia
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Wenpeng Jiang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Divya Rao
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Dorottya Laczkó
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Kelly A. Whelan
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - John P. Lynch
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, United States of America
| | - Jonathan P. Katz
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Purvis GSD, Collino M, Loiola RA, Baragetti A, Chiazza F, Brovelli M, Sheikh MH, Collotta D, Cento A, Mastrocola R, Aragno M, Cutrin JC, Reutelingsperger C, Grigore L, Catapano AL, Yaqoob MM, Norata GD, Solito E, Thiemermann C. Identification of AnnexinA1 as an Endogenous Regulator of RhoA, and Its Role in the Pathophysiology and Experimental Therapy of Type-2 Diabetes. Front Immunol 2019; 10:571. [PMID: 30972066 PMCID: PMC6446914 DOI: 10.3389/fimmu.2019.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Annexin A1 (ANXA1) is an endogenously produced anti-inflammatory protein, which plays an important role in the pathophysiology of diseases associated with chronic inflammation. We demonstrate that patients with type-2 diabetes have increased plasma levels of ANXA1 when compared to normoglycemic subjects. Plasma ANXA1 positively correlated with fatty liver index and elevated plasma cholesterol in patients with type-2 diabetes, suggesting a link between aberrant lipid handling, and ANXA1. Using a murine model of high fat diet (HFD)-induced insulin resistance, we then investigated (a) the role of endogenous ANXA1 in the pathophysiology of HFD-induced insulin resistance using ANXA1−/− mice, and (b) the potential use of hrANXA1 as a new therapeutic approach for experimental diabetes and its microvascular complications. We demonstrate that: (1) ANXA1−/− mice fed a HFD have a more severe diabetic phenotype (e.g., more severe dyslipidemia, insulin resistance, hepatosteatosis, and proteinuria) compared to WT mice fed a HFD; (2) treatment of WT-mice fed a HFD with hrANXA1 attenuated the development of insulin resistance, hepatosteatosis and proteinuria. We demonstrate here for the first time that ANXA1−/− mice have constitutively activated RhoA. Interestingly, diabetic mice, which have reduced tissue expression of ANXA1, also have activated RhoA. Treatment of HFD-mice with hrANXA1 restored tissue levels of ANXA1 and inhibited RhoA activity, which, in turn, resulted in restoration of the activities of Akt, GSK-3β and endothelial nitric oxide synthase (eNOS) secondary to re-sensitization of IRS-1 signaling. We further demonstrate in human hepatocytes that ANXA1 protects against excessive mitochondrial proton leak by activating FPR2 under hyperglycaemic conditions. In summary, our data suggest that (a) ANXA1 is a key regulator of RhoA activity, which restores IRS-1 signal transduction and (b) recombinant human ANXA1 may represent a novel candidate for the treatment of T2D and/or its complications.
Collapse
Affiliation(s)
- Gareth S D Purvis
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rodrigo A Loiola
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Martina Brovelli
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy.,Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy
| | - Madeeha H Sheikh
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Alessia Cento
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Molecular Biotechnology and Sciences for the Health, University of Turin, Turin, Italy
| | - Juan C Cutrin
- Department of Molecular Biotechnology and Sciences for the Health, University of Turin, Turin, Italy
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Liliana Grigore
- Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy.,IRCCS Multimedica, Lombardy, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Magdi M Yaqoob
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy.,Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy
| | - Egle Solito
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Christoph Thiemermann
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
50
|
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells 2019; 8:E255. [PMID: 30884855 PMCID: PMC6468615 DOI: 10.3390/cells8030255] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Small GTPases are a family of low molecular weight GTP-hydrolyzing enzymes that cycle between an inactive state when bound to GDP and an active state when associated to GTP. Small GTPases regulate key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants in a great array of pathophysiological processes. Indeed, the dysfunction and deregulation of certain small GTPases, such as the members of the Ras and Arf subfamilies, have been related with the promotion and progression of cancer. Therefore, the development of inhibitors that target dysfunctional small GTPases could represent a potential therapeutic strategy for cancer treatment. This review covers the basic biochemical mechanisms and the diverse functions of small GTPases in cancer. We also discuss the strategies and challenges of inhibiting the activity of these enzymes and delve into new approaches that offer opportunities to target them in cancer therapy.
Collapse
Affiliation(s)
- Néstor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Institute of Biomedicine (IBIOMED), University of León, León 24010, Spain.
| | | | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Medical laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|