1
|
Baker SA, Karwa M, Lee JY, Riar S, Drumm BT, Sanders KM. Ca²⁺ signaling in myenteric interstitial cells of Cajal (ICC-MY) and their role as conditional pacemakers in the colon. Cell Calcium 2025; 125:102990. [PMID: 39755028 PMCID: PMC11737426 DOI: 10.1016/j.ceca.2024.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca2+ handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC. ICC-MY displayed stochastic, localized Ca2+ transients that seldom propagated between cells. Colonic ICC express ANO1 channels, so Ca2+ transients likely couple to activation of spontaneous transient inward currents (STICs) in these cells. The Ca2+ transients were due to Ca2+ release and blocked by cyclopiazonic acid (CPA), thapsigargin and caffeine, but unaffected by tetracaine. Antagonists of L- and T-type Ca2+ channels and reduction in extracellular Ca2+ had minimal effects on Ca2+ transients. We reasoned that STICs may not activate regenerative Ca2+ waves in ICC-MY because voltage-dependent Ca2+ conductances are largely inactivated at the relatively depolarized potentials of colonic muscles. We tested the effects of hyperpolarization with pinacidil, a KATP agonist. Ca2+ waves were initiated in some ICC-MY networks when muscles were hyperpolarized, and these events were blocked by a T-type Ca2+ channel antagonist, NNC 55-0396. Ca2+ waves activated by excitatory nerve stimulation were significantly enhanced by hyperpolarization. Our data suggest that colonic ICC-MY are conditional pacemaker cells that depend upon preparative hyperpolarization, produced physiologically by inputs from enteric inhibitory neurons and necessary for regenerative pacemaker activity.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA.
| | - Manushri Karwa
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA
| | - Ji Yeon Lee
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA
| | - Sarah Riar
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, A91K584, Ireland
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA.
| |
Collapse
|
2
|
Dossat AM, Trychta KA, Glotfelty EJ, Hinkle JJ, Fortuno LV, Gore LN, Richie CT, Harvey BK. Excitotoxic glutamate levels cause the secretion of resident endoplasmic reticulum proteins. J Neurochem 2024; 168:2461-2478. [PMID: 38491746 PMCID: PMC11401966 DOI: 10.1111/jnc.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Dysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca2+) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca2+-mediated processes such as proteostasis. To investigate this, we expressed a secreted ER Ca2+ modulated protein (SERCaMP) in primary cortical neurons to monitor exodosis, a phenomenon whereby ER calcium depletion causes the secretion of ER-resident proteins that perform essential functions to the ER and the cell. Activation of glutamatergic receptors (GluRs) led to an increase in SERCaMP secretion indicating that normally ER-resident proteins are being secreted in a manner consistent with ER Ca2+ depletion. Antagonism of ER Ca2+ channels attenuated the effects of glutamate and GluR agonists on SERCaMP release. We also demonstrate that endogenous proteins containing an ER retention/retrieval sequence (ERS) are secreted in response to GluR activation supporting that neuronal activation by glutamate promotes ER exodosis. Ectopic expression of KDEL receptors attenuated the secretion of ERS-containing proteins caused by GluR agonists. Taken together, our data indicate that excessive GluR activation causes disruption of neuronal proteostasis by triggering the secretion of ER-resident proteins through ER Ca2+ depletion and describes a new facet of excitotoxicity.
Collapse
Affiliation(s)
- Amanda M. Dossat
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Kathleen A. Trychta
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Elliot J. Glotfelty
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Joshua J. Hinkle
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lowella V. Fortuno
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lana N. Gore
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Christopher T. Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| |
Collapse
|
3
|
Cheng H, Kong CHT, James AF, Cannell MB, Hancox JC. Modulation of Spontaneous Action Potential Rate by Inositol Trisphosphate in Myocytes from the Rabbit Atrioventricular Node. Cells 2024; 13:1455. [PMID: 39273026 PMCID: PMC11394215 DOI: 10.3390/cells13171455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The atrioventricular node (AVN) is a key component of the cardiac conduction system and takes over pacemaking of the ventricles if the sinoatrial node fails. IP3 (inositol 1,4,5 trisphosphate) can modulate excitability of myocytes from other regions of the heart, but it is not known whether IP3 receptor (IP3-R) activation modulates AVN cell pacemaking. Consequently, this study investigated effects of IP3 on spontaneous action potentials (APs) from AVN cells isolated from rabbit hearts. Immunohistochemistry and confocal imaging demonstrated the presence of IP3-R2 in isolated AVN cells, with partial overlap with RyR2 ryanodine receptors seen in co-labelling experiments. In whole-cell recordings at physiological temperature, application of 10 µM membrane-permeant Bt3-(1,4,5)IP3-AM accelerated spontaneous AP rate and increased diastolic depolarization rate, without direct effects on ICa,L, IKr, If or INCX. By contrast, application via the patch pipette of 5 µM of the IP3-R inhibitor xestospongin C led to a slowing in spontaneous AP rate and prevented 10 µM Bt3-(1,4,5)IP3-AM application from increasing the AP rate. UV excitation of AVN cells loaded with caged-IP3 led to an acceleration in AP rate, the magnitude of which increased with the extent of UV excitation. 2-APB slowed spontaneous AP rate, consistent with a role for constitutive IP3-R activity; however, it was also found to inhibit ICa,L and IKr, confounding its use for studying IP3-R. Under AP voltage clamp, UV excitation of AVN cells loaded with caged IP3 activated an inward current during diastolic depolarization. Collectively, these results demonstrate that IP3 can modulate AVN cell pacemaking rate.
Collapse
Affiliation(s)
| | | | | | | | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (H.C.); (C.H.T.K.); (A.F.J.); (M.B.C.)
| |
Collapse
|
4
|
Naumenko N, Koivumäki JT, Lunko O, Tuomainen T, Leigh R, Rabiee M, Laurila J, Oksanen M, Lehtonen S, Koistinaho J, Tavi P. Presenilin-1 ΔE9 mutation associated sarcoplasmic reticulum leak alters [Ca 2+] i distribution in human iPSC-derived cardiomyocytes. J Mol Cell Cardiol 2024; 193:78-87. [PMID: 38851626 DOI: 10.1016/j.yjmcc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Mutations in ubiquitously expressed presenilin genes (PSENs) lead to early-onset familial Alzheimer's disease (FAD), but patients carrying the mutation also suffer from heart diseases. To elucidate the cardiac myocyte specific effects of PSEN ΔE9, we studied cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) from patients carrying AD-causing PSEN1 exon 9 deletion (PSEN1 ΔE9). When compared with their isogenic controls, PSEN1 ΔE9 cardiomyocytes showed increased sarcoplasmic reticulum (SR) Ca2+ leak that was resistant to blockage of ryanodine receptors (RyRs) by tetracaine or inositol-3-reseceptors (IP3Rs) by 2-ABP. The SR Ca2+ leak did not affect electrophysiological properties of the hiPSC-CMs, but according to experiments and in silico simulations the leak induces a diastolic buildup of [Ca2+] near the perinuclear SR and reduces the releasable Ca2+ during systole. This demonstrates that PSEN1 ΔE9 induced SR Ca2+ leak has specific effects in iPSC-CMs, reflecting their unique structural and calcium signaling features. The results shed light on the physiological and pathological mechanisms of PSEN1 in cardiac myocytes and explain the intricacies of comorbidity associated with AD-causing mutations in PSEN1.
Collapse
Affiliation(s)
- Nikolay Naumenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olesia Lunko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Robert Leigh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mina Rabiee
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jalmari Laurila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sarka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
6
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
7
|
Tao S, Hulpiau P, Wagner LE, Witschas K, Yule DI, Bultynck G, Leybaert L. IP3RPEP6, a novel peptide inhibitor of IP 3 receptor channels that does not affect connexin-43 hemichannels. Acta Physiol (Oxf) 2024; 240:e14086. [PMID: 38240350 DOI: 10.1111/apha.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
AIM Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca2+ -release channels with crucial roles in cell function. Current IP3 R inhibitors suffer from off-target effects and poor selectivity towards the three distinct IP3 R subtypes. We developed a novel peptide inhibitor of IP3 Rs and determined its effect on connexin-43 (Cx43) hemichannels, which are co-activated by IP3 R stimulation. METHODS IP3RPEP6 was developed by in silico molecular docking studies and characterized by on-nucleus patch-clamp experiments of IP3 R2 channels and carbachol-induced IP3 -mediated Ca2+ responses in IP3 R1, 2 or 3 expressing cells, triple IP3 R KO cells and astrocytes. Cx43 hemichannels were studied by patch-clamp and ATP-release approaches, and by inhibition with Gap19 peptide. IP3RPEP6 interactions with IP3 Rs were verified by co-immunoprecipitation and affinity pull-down assays. RESULTS IP3RPEP6 concentration-dependently reduced the open probability of IP3 R2 channels and competitively inhibited IP3 Rs in an IC50 order of IP3 R2 (~3.9 μM) < IP3 R3 (~4.3 μM) < IP3 R1 (~9.0 μM), without affecting Cx43 hemichannels or ryanodine receptors. IP3RPEP6 co-immunoprecipitated with IP3 R2 but not with IP3 R1; interaction with IP3 R3 varied between cell types. The IC50 of IP3RPEP6 inhibition of carbachol-induced Ca2+ responses decreased with increasing cellular Cx43 expression. Moreover, Gap19-inhibition of Cx43 hemichannels significantly reduced the amplitude of the IP3 -Ca2+ responses and strongly increased the EC50 of these responses. Finally, we identified palmitoyl-8G-IP3RPEP6 as a membrane-permeable IP3RPEP6 version allowing extracellular application of the IP3 R-inhibiting peptide. CONCLUSION IP3RPEP6 inhibits IP3 R2/R3 at concentrations that have limited effects on IP3 R1. IP3 R activation triggers hemichannel opening, which strongly affects the amplitude and concentration-dependence of IP3 -triggered Ca2+ responses.
Collapse
Affiliation(s)
- Siyu Tao
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Department of Bio-Medical Sciences, HOWEST University of Applied Sciences (Hogeschool West-Vlaanderen), Bruges, Belgium
| | - Larry E Wagner
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Katja Witschas
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent, Belgium
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
9
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
10
|
Zawieja SD, Pea GA, Broyhill SE, Patro A, Bromert KH, Li M, Norton CE, Castorena-Gonzalez JA, Hancock EJ, Bertram CD, Davis MJ. IP3R1 underlies diastolic ANO1 activation and pressure-dependent chronotropy in lymphatic collecting vessels. J Gen Physiol 2023; 155:e202313358. [PMID: 37851027 PMCID: PMC10585095 DOI: 10.1085/jgp.202313358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Pressure-dependent chronotropy of murine lymphatic collecting vessels relies on the activation of the Ca2+-activated chloride channel encoded by Anoctamin 1 (Ano1) in lymphatic muscle cells. Genetic ablation or pharmacological inhibition of ANO1 results in a significant reduction in basal contraction frequency and essentially complete loss of pressure-dependent frequency modulation by decreasing the rate of the diastolic depolarization phase of the ionic pacemaker in lymphatic muscle cells (LMCs). Oscillating Ca2+ release from sarcoendoplasmic reticulum Ca2+ channels has been hypothesized to drive ANO1 activity during diastole, but the source of Ca2+ for ANO1 activation in smooth muscle remains unclear. Here, we investigated the role of the inositol triphosphate receptor 1 (Itpr1; Ip3r1) in this process using pressure myography, Ca2+ imaging, and membrane potential recordings in LMCs of ex vivo pressurized inguinal-axillary lymphatic vessels from control or Myh11CreERT2;Ip3r1fl/fl (Ip3r1ismKO) mice. Ip3r1ismKO vessels had significant reductions in contraction frequency and tone but an increased contraction amplitude. Membrane potential recordings from LMCs of Ip3r1ismKO vessels revealed a depressed diastolic depolarization rate and an elongation of the plateau phase of the action potential (AP). Ca2+ imaging of LMCs using the genetically encoded Ca2+ sensor GCaMP6f demonstrated an elongation of the Ca2+ flash associated with an AP-driven contraction. Critically, diastolic subcellular Ca2+ transients were absent in LMCs of Ip3r1ismKO mice, demonstrating the necessity of IP3R1 activity in controlling ANO1-mediated diastolic depolarization. These findings indicate a critical role for IP3R1 in lymphatic vessel pressure-dependent chronotropy and contractile regulation.
Collapse
Affiliation(s)
- Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Grace A. Pea
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E. Broyhill
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H. Bromert
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Edward J. Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | | | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
12
|
Derkaczew M, Martyniuk P, Osowski A, Wojtkiewicz J. Cyclitols: From Basic Understanding to Their Association with Neurodegeneration. Nutrients 2023; 15:2029. [PMID: 37432155 DOI: 10.3390/nu15092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
13
|
Zhang X, Lee MD, Buckley C, Hollenberg MD, Wilson C, McCarron JG. Endothelial PAR2 activation evokes resistance artery relaxation. J Cell Physiol 2023; 238:776-789. [PMID: 36791026 PMCID: PMC10952239 DOI: 10.1002/jcp.30973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Protease-activated receptor-1 & -2 (PAR1 and PAR2) are expressed widely in cardiovascular tissues including endothelial and smooth muscle cells. PAR1 and PAR2 may regulate blood pressure via changes in vascular contraction or relaxation mediated by endothelial Ca2+ signaling, but the mechanisms are incompletely understood. By using single-cell Ca2+ imaging across hundreds of endothelial cells in intact blood vessels, we explored PAR-mediated regulation of blood vessel function using PAR1 and PAR2 activators. We show that PAR2 activation evoked multicellular Ca2+ waves that propagated across the endothelium. The PAR2-evoked Ca2+ waves were temporally distinct from those generated by muscarinic receptor activation. PAR2 activated distinct clusters of endothelial cells, and these cells were different from those activated by muscarinic receptor stimulation. These results indicate that distinct cell clusters facilitate spatial segregation of endothelial signal processing. We also demonstrate that PAR2 is a phospholipase C-coupled receptor that evokes Ca2+ release from the IP3 -sensitive store in endothelial cells. A physiological consequence of this PAR2 signaling system is endothelium-dependent relaxation. Conversely, PAR1 activation did not trigger endothelial cell Ca2+ signaling nor relax or contract mesenteric arteries. Neither did PAR1 activators alter the response to PAR2 or muscarinic receptor activation. Collectively, these results suggest that endothelial PAR2 but not PAR1 evokes mesenteric artery relaxation by evoking IP3 -mediated Ca2+ release from the internal store. Sensing mediated by PAR2 receptors is distributed to spatially separated clusters of endothelial cells.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Matthew D. Lee
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Morley D. Hollenberg
- Department of Physiology and Pharmacology and Department of MedicineUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| |
Collapse
|
14
|
Dwivedi R, Drumm BT, Griffin CS, Dudem S, Bradley E, Alkawadri T, Martin SL, Sergeant GP, Hollywood MA, Thornbury KD. Excitatory cholinergic responses in mouse primary bronchial smooth muscle require both Ca 2+ entry via l-type Ca 2+ channels and store operated Ca 2+ entry via Orai channels. Cell Calcium 2023; 112:102721. [PMID: 37023533 DOI: 10.1016/j.ceca.2023.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023]
Abstract
Malfunctions in airway smooth muscle Ca2+-signalling leads to airway hyperresponsiveness in asthma and chronic obstructive pulmonary disease. Ca2+-release from intracellular stores is important in mediating agonist-induced contractions, but the role of influx via l-type Ca2+ channels is controversial. We re-examined roles of the sarcoplasmic reticulum Ca2+ store, refilling of this store via store-operated Ca2+ entry (SOCE) and l-type Ca2+ channel pathways on carbachol (CCh, 0.1-10 µM)-induced contractions of mouse bronchial rings and intracellular Ca2+ signals of mouse bronchial myocytes. In tension experiments, the ryanodine receptor (RyR) blocker dantrolene (100 µM) reduced CCh-responses at all concentrations, with greater effects on sustained rather than initial components of contraction. 2-Aminoethoxydiphenyl borate (2-APB, 100 μM), in the presence of dantrolene, abolished CCh-responses, suggesting the sarcoplasmic reticulum Ca2+ store is essential for contraction. The SOCE blocker GSK-7975A (10 µM) reduced CCh-contractions, with greater effects at higher (e.g. 3 and 10 µM) CCh concentrations. Nifedipine (1 µM), abolished remaining contractions in GSK-7975A (10 µM). A similar pattern was observed on intracellular Ca2+-responses to 0.3 µM CCh, where GSK-7975A (10 µM) substantially reduced Ca2+ transients induced by CCh, and nifedipine (1 µM) abolished remaining responses. When nifedipine (1 µM) was applied alone it had less effect, reducing tension responses at all CCh concentrations by 25% - 50%, with greater effects at lower (e.g. 0.1 and 0.3 µM) CCh concentrations. When nifedipine (1 µM) was examined on the intracellular Ca2+-response to 0.3 µM CCh, it only modestly reduced Ca2+ signals, while GSK-7975A (10 µM) abolished remaining responses. In conclusion, Ca2+-influx from both SOCE and l-type Ca2+ channels contribute to excitatory cholinergic responses in mouse bronchi. The contribution of l-type Ca2+ channels was especially pronounced at lower doses of CCh, or when SOCE was blocked. This suggests l-type Ca2+ channels might be a potential target for bronchoconstriction under certain circumstances.
Collapse
Affiliation(s)
- R Dwivedi
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - B T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - C S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - S Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - E Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - T Alkawadri
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - S L Martin
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - G P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - M A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - K D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland.
| |
Collapse
|
15
|
Petroianu GA, Aloum L, Adem A. Neuropathic pain: Mechanisms and therapeutic strategies. Front Cell Dev Biol 2023; 11:1072629. [PMID: 36727110 PMCID: PMC9884983 DOI: 10.3389/fcell.2023.1072629] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The physiopathology and neurotransmission of pain are of an owe inspiring complexity. Our ability to satisfactorily suppress neuropathic or other forms of chronic pain is limited. The number of pharmacodynamically distinct and clinically available medications is low and the successes achieved modest. Pain Medicine practitioners are confronted with the ethical dichotomy imposed by Hippocrates: On one hand the mandate of primum non nocere, on the other hand, the promise of heavenly joys if successful divinum est opus sedare dolorem. We briefly summarize the concepts associated with nociceptive pain from nociceptive input (afferents from periphery), modulatory output [descending noradrenergic (NE) and serotoninergic (5-HT) fibers] to local control. The local control is comprised of the "inflammatory soup" at the site of pain origin and synaptic relay stations, with an ATP-rich environment promoting inflammation and nociception while an adenosine-rich environment having the opposite effect. Subsequently, we address the transition from nociceptor pain to neuropathic pain (independent of nociceptor activation) and the process of sensitization and pain chronification (transient pain progressing into persistent pain). Having sketched a model of pain perception and processing we attempt to identify the sites and modes of action of clinically available drugs used in chronic pain treatment, focusing on adjuvant (co-analgesic) medication.
Collapse
|
16
|
Demydenko K, Ekhteraei-Tousi S, Roderick HL. Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210319. [PMID: 36189803 PMCID: PMC9527928 DOI: 10.1098/rstb.2021.0319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contraction of cardiac muscle underlying the pumping action of the heart is mediated by the process of excitation-contraction coupling (ECC). While triggered by Ca2+ entry across the sarcolemma during the action potential, it is the release of Ca2+ from the sarcoplasmic reticulum (SR) intracellular Ca2+ store via ryanodine receptors (RyRs) that plays the major role in induction of contraction. Ca2+ also acts as a key intracellular messenger regulating transcription underlying hypertrophic growth. Although Ca2+ release via RyRs is by far the greatest contributor to the generation of Ca2+ transients in the cardiomyocyte, Ca2+ is also released from the SR via inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs). This InsP3-induced Ca2+ release modifies Ca2+ transients during ECC, participates in directing Ca2+ to the mitochondria, and stimulates the transcription of genes underlying hypertrophic growth. Central to these specific actions of InsP3Rs is their localization to responsible signalling microdomains, the dyad, the SR-mitochondrial interface and the nucleus. In this review, the various roles of InsP3R in cardiac (patho)physiology and the mechanisms by which InsP3 signalling selectively influences the different cardiomyocyte cell processes in which it is involved will be presented. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Lim XR, Drumm BT, Sergeant GP, Hollywood MA, Thornbury KD. Ca 2+ -activated Cl - channels (TMEM16A) underlie spontaneous electrical activity in isolated mouse corpus cavernosum smooth muscle cells. Physiol Rep 2022; 10:e15504. [PMID: 36394209 PMCID: PMC9669617 DOI: 10.14814/phy2.15504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Penile detumescence is maintained by tonic contraction of corpus cavernosum smooth muscle cells (CCSMC), but the underlying mechanisms have not been fully elucidated. The purpose of this study was to characterize the mechanisms underlying activation of TMEM16A Ca2+ -activated Cl- channels in freshly isolated murine CCSMC. Male C57BL/6 mice aged 10-18 weeks were euthanized via intraperitoneal injection of sodium pentobarbital (100 mg.kg-1 ). Whole-cell patch clamp, pharmacological, and immunocytochemical experiments were performed on isolated CCSM. Tension measurements were performed in whole tissue. TMEM16A expression in murine corpus cavernosum was confirmed using immunocytochemistry. Isolated CCSMC developed spontaneous transient inward currents (STICs) under voltage clamp and spontaneous transient depolarizations (STDs) in current clamp mode of the whole cell, perforated patch clamp technique. STICs reversed close to the predicted Cl- equilibrium potential and both STICs and STDs were blocked by the TMEM16A channel blockers, Ani9 and CaCC(inh)-A01. These events were also blocked by GSK7975A (ORAI inhibitor), cyclopiazonic acid (CPA, sarcoplasmic reticulum [SR] Ca2+- ATPase blocker), tetracaine (RyR blocker), and 2APB (IP3 R blocker), suggesting that they were dependent on Ca2+ release from intracellular Ca2+ stores. Nifedipine (L-type Ca2+ channel blocker) did not affect STICs, but reduced the duration of STDs. Phenylephrine induced transient depolarizations and transient inward currents which were blocked by Ani9. Similarly, phenylephrine induced phasic contractions of intact corpus cavernosum muscle strips and these events were also inhibited by Ani9. This study suggests that contraction of CCSM is regulated by activation of TMEM16A channels and therefore inhibition of these channels could lead to penile erection.
Collapse
Affiliation(s)
- Xin Rui Lim
- Smooth Muscle Research CentreDundalk Institute of TechnologyDublinIreland
| | - Bernard T. Drumm
- Smooth Muscle Research CentreDundalk Institute of TechnologyDublinIreland
| | - Gerard P. Sergeant
- Smooth Muscle Research CentreDundalk Institute of TechnologyDublinIreland
| | - Mark A. Hollywood
- Smooth Muscle Research CentreDundalk Institute of TechnologyDublinIreland
| | - Keith D. Thornbury
- Smooth Muscle Research CentreDundalk Institute of TechnologyDublinIreland
| |
Collapse
|
18
|
Feliziani C, Fernandez M, Quasollo G, Holstein D, Bairo SM, Paton JC, Paton AW, de Batista J, Lechleiter JD, Bollo M. Ca 2+ signalling system initiated by endoplasmic reticulum stress stimulates PERK activation. Cell Calcium 2022; 106:102622. [PMID: 35908318 PMCID: PMC9982837 DOI: 10.1016/j.ceca.2022.102622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 01/25/2023]
Abstract
The accumulation of unfolded proteins within the Endoplasmic Reticulum (ER) activates a signal transduction pathway termed the unfolded protein response (UPR), which attempts to restore ER homoeostasis. If this cannot be done, UPR signalling ultimately induces apoptosis. Ca2+ depletion in the ER is a potent inducer of ER stress. Despite the ubiquity of Ca2+ as an intracellular messenger, the precise mechanism(s) by which Ca2+ release affects the UPR remains unknown. Tethering a genetically encoded Ca2+ indicator (GCamP6) to the ER membrane revealed novel Ca2+ signalling events initiated by Ca2+ microdomains in human astrocytes under ER stress, induced by tunicamycin (Tm), an N-glycosylation inhibitor, as well as in a cell model deficient in all three inositol triphosphate receptor isoforms. Pharmacological and molecular studies indicate that these local events are mediated by translocons and that the Ca2+ microdomains impact (PKR)-like-ER kinase (PERK), an UPR sensor, activation. These findings reveal the existence of a Ca2+ signal mechanism by which stressor-mediated Ca2+ release regulates ER stress.
Collapse
Affiliation(s)
- Constanza Feliziani
- Instituto de Investigación Médica M y M
Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli,
Córdoba 5016, Argentina
| | - Macarena Fernandez
- Instituto de Investigación Médica M y M
Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli,
Córdoba 5016, Argentina
| | - Gonzalo Quasollo
- Instituto de Investigación Médica M y M
Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli,
Córdoba 5016, Argentina
| | - Deborah Holstein
- Department of Cell Systems and Anatomy, UT Health San
Antonio, 8403 Floyd Curl Dr., San Antonio, TX 78229-3904, USA
| | - Sebastián M Bairo
- Instituto de Investigación Médica M y M
Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli,
Córdoba 5016, Argentina
| | - James C Paton
- Research Centre for Infectious Diseases, School of
Molecular and Biomedical Science, University of Adelaide, South Australia 5005,
Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, School of
Molecular and Biomedical Science, University of Adelaide, South Australia 5005,
Australia
| | - Juan de Batista
- Instituto Universitario de Ciencias Biomédicas de
Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, 420
Naciones Unidas, Córdoba 5016, Argentina
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, UT Health San
Antonio, 8403 Floyd Curl Dr., San Antonio, TX 78229-3904, USA
| | - Mariana Bollo
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli, Córdoba 5016, Argentina.
| |
Collapse
|
19
|
Anesthetics and Cell-Cell Communication: Potential Ca 2+-Calmodulin Role in Gap Junction Channel Gating by Heptanol, Halothane and Isoflurane. Int J Mol Sci 2022; 23:ijms23169017. [PMID: 36012286 PMCID: PMC9409107 DOI: 10.3390/ijms23169017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cell–cell communication via gap junction channels is known to be inhibited by the anesthetics heptanol, halothane and isoflurane; however, despite numerous studies, the mechanism of gap junction channel gating by anesthetics is still poorly understood. In the early nineties, we reported that gating by anesthetics is strongly potentiated by caffeine and theophylline and inhibited by 4-Aminopyridine. Neither Ca2+ channel blockers nor 3-isobutyl-1-methylxanthine (IBMX), forskolin, CPT-cAMP, 8Br-cGMP, adenosine, phorbol ester or H7 had significant effects on gating by anesthetics. In our publication, we concluded that neither cytosolic Ca2+i nor pHi were involved, and suggested a direct effect of anesthetics on gap junction channel proteins. However, while a direct effect cannot be excluded, based on the potentiating effect of caffeine and theophylline added to anesthetics and data published over the past three decades, we are now reconsidering our earlier interpretation and propose an alternative hypothesis that uncoupling by heptanol, halothane and isoflurane may actually result from a rise in cytosolic Ca2+ concentration ([Ca2+]i) and consequential activation of calmodulin linked to gap junction proteins.
Collapse
|
20
|
Eustace AJ, Lee MJ, Colley G, Roban J, Downing T, Buchanan PJ. Aberrant calcium signalling downstream of mutations in TP53 and the PI3K/AKT pathway genes promotes disease progression and therapy resistance in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:560-576. [PMID: 36176752 PMCID: PMC9511797 DOI: 10.20517/cdr.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized as an aggressive form of breast cancer (BC) associated with poor patient outcomes. For the majority of patients, there is a lack of approved targeted therapies. Therefore, chemotherapy remains a key treatment option for these patients, but significant issues around acquired resistance limit its efficacy. Thus, TNBC has an unmet need for new targeted personalized medicine approaches. Calcium (Ca2+) is a ubiquitous second messenger that is known to control a range of key cellular processes by mediating signalling transduction and gene transcription. Changes in Ca2+ through altered calcium channel expression or activity are known to promote tumorigenesis and treatment resistance in a range of cancers including BC. Emerging evidence shows that this is mediated by Ca2+ modulation, supporting the function of tumour suppressor genes (TSGs) and oncogenes. This review provides insight into the underlying alterations in calcium signalling and how it plays a key role in promoting disease progression and therapy resistance in TNBC which harbours mutations in tumour protein p53 (TP53) and the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Alex J. Eustace
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Grace Colley
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Jack Roban
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Tim Downing
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Paul J. Buchanan
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin D9, Ireland
| |
Collapse
|
21
|
Choi NR, Kim JN, Kim BJ. Trypsin Depolarizes Pacemaker Potentials in Murine Small Intestinal Interstitial Cells of Cajal. APPLIED SCIENCES 2022; 12:4755. [DOI: 10.3390/app12094755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interstitial cells of Cajal (ICCs) generate pacemaker potentials in the gastrointestinal (GI) tract. In this study, the effects of trypsin on pacemaker potentials in murine small intestinal ICCs were examined. We used whole-cell patch-clamp analysis. The results of whole-cell patch-clamp analysis revealed that trypsin dose-dependently depolarized pacemaker potentials and decreased their amplitude. Treatments with the antagonists of neurokinin1 (NK1) and NK2 receptors (SR-140333 and SR-48968, respectively) slightly inhibited the trypsin-induced responses. However, treatment with the combination of SR-140333 and SR-48968 completely inhibited trypsin-induced responses. Trypsin slightly depolarized pacemaker potentials and increased their amplitude after the intracellular application of GDP-β-S. Additionally, incubation in external Ca2+-free solution inhibited trypsin-induced responses. In the presence of U-73122, staurosporine, Go6976, or xestospongin C, trypsin did not depolarize the pacemaker’s potentials. However, trypsin depolarized the pacemaker potentials in the presence of rottlerin. Finally, HC067047, a TRPV4 inhibitor, did not affect the trypsin-induced responses. These results suggest that trypsin depolarized pacemaker potentials through NK1 and NK2 receptors in the murine small intestinal ICCs, with this effect being dependent on the G protein, phospholipase C, protein kinase C, inositol triphosphate pathways, and extracellular Ca2+ but being independent of the TRPV4 pathway. Hence, trypsin-mediated GI motility regulation must be considered for prokinetic drug developments.
Collapse
Affiliation(s)
- Na Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
22
|
iRhom pseudoproteases regulate ER stress-induced cell death through IP 3 receptors and BCL-2. Nat Commun 2022; 13:1257. [PMID: 35273168 PMCID: PMC8913617 DOI: 10.1038/s41467-022-28930-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
The folding capacity of membrane and secretory proteins in the endoplasmic reticulum (ER) can be challenged by physiological and pathological perturbations, causing ER stress. If unresolved, this leads to cell death. We report a role for iRhom pseudoproteases in controlling apoptosis due to persistent ER stress. Loss of iRhoms causes cells to be resistant to ER stress-induced apoptosis. iRhom1 and iRhom2 interact with IP3 receptors, critical mediators of intracellular Ca2+ signalling, and regulate ER stress-induced transport of Ca2+ into mitochondria, a primary trigger of mitochondrial membrane depolarisation and cell death. iRhoms also bind to the anti-apoptotic regulator BCL-2, attenuating the inhibitory interaction between BCL-2 and IP3 receptors, which promotes ER Ca2+ release. The discovery of the participation of iRhoms in the control of ER stress-induced cell death further extends their potential pathological significance to include diseases dependent on protein misfolding and aggregation. Cells that cannot cope with persistent endoplasmic reticulum stress will die. Here, the authors show that iRhom pseudoproteases regulate cell death by modulating the ability of BCL-2 to inhibit calcium flow through IP3R channels.
Collapse
|
23
|
Drumm BT, Hannigan KI, Lee JY, Rembetski BE, Baker SA, Koh SD, Cobine CA, Sanders KM. Ca 2+ signalling in interstitial cells of Cajal contributes to generation and maintenance of tone in mouse and monkey lower esophageal sphincters. J Physiol 2022; 600:2613-2636. [PMID: 35229888 DOI: 10.1113/jp282570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The lower esophageal sphincter (LES) generates contractile tone preventing reflux of gastric contents into the esophagus. LES smooth muscle cells (SMCs) display depolarized membrane potentials facilitating activation of L-type Ca2+ channels. Interstitial cells of Cajal (ICC) express Ca2+ -activated Cl- channels encoded by Ano1 in mouse and monkey LES. Ca2+ signaling in ICC activates ANO1 currents in ICC. ICC displayed spontaneous Ca2+ transients in mice from multiple firing sites in each cell and no entrainment of Ca2+ firing between sites or between cells. Inhibition of ANO1 channels with a specific antagonist caused hyperpolarization of mouse LES and inhibition of tone in monkey and mouse LES muscles. Our data suggest a novel mechanism for LES tone in which Ca2+ transient activation of ANO1 channels in ICC generates depolarizing inward currents that conduct to SMCs to activate L-type Ca2+ currents, Ca2+ entry and contractile tone. ABSTRACT The lower esophageal sphincter (LES) generates tone and prevents reflux of gastric contents. LES smooth muscle cells (SMCs) are relatively depolarized, facilitating activation of Cav 1.2 channels to sustain contractile tone. We hypothesised that intramuscular interstitial cells of Cajal (ICC-IM), through activation of Ca2+ -activated-Cl- channels (ANO1), set membrane potentials of SMCs favorable for activation of Cav 1.2 channels. In some gastrointestinal muscles, ANO1 channels in ICC-IM are activated by Ca2+ transients, but no studies have examined Ca2+ dynamics in ICC-IM within the LES. Immunohistochemistry and qPCR were used to determine expression of key proteins and genes in ICC-IM and SMCs. These studies revealed that Ano1 and its gene product, ANO1 are expressed in c-Kit+ cells (ICC-IM) in mouse and monkey LES clasp muscles. Ca2+ signaling was imaged in situ, using mice expressing GCaMP6f specifically in ICC (Kit-KI-GCaMP6f). ICC-IM exhibited spontaneous Ca2+ transients from multiple firing sites. Ca2+ transients were abolished by CPA or caffeine but were unaffected by tetracaine or nifedipine. Maintenance of Ca2+ transients depended on Ca2+ influx and store reloading, as Ca2+ transient frequency was reduced in Ca2+ free solution or by Orai antagonist. Spontaneous tone of LES muscles from mouse and monkey was reduced ∼80% either by Ani9, an ANO1 antagonist or by the Cav 1.2 channel antagonist nifedipine. Membrane hyperpolarisation occurred in the presence of Ani9. These data suggest that intracellular Ca2+ activates ANO1 channels in ICC-IM in the LES. Coupling of ICC-IM to SMCs drives depolarization, activation of Cav 1.2 channels, Ca2+ entry and contractile tone. Abstract figure legend Proposed mechanism for generation of contractile tone in the lower esophageal sphincter (LES). Interstitial cells of Cajal (ICC) in the LES generate spontaneous, stochastic Ca2+ transients via Ca2+ release from the endoplasmic reticulum (ER). The Ca2+ transients activate ANO1 Cl- channels causing Cl- efflux (inward current). ANO1 currents have a depolarizing effect on ICC (+++s inside membrane) and this conducts through gap junctions (GJ) to smooth muscle cells (SMCs). Input from thousands of ICC results in depolarized membrane potentials (-40 to -50 mV) which is within the window current range for L-type Ca2+ channels. Activation of these channels causes Ca2+ influx, activation of contractile elements (CE) and development of tonic contraction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.,Smooth Muscle Research Centre, Dundalk Institute of Technology, Ireland
| | - Karen I Hannigan
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ji Yeon Lee
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Benjamin E Rembetski
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
24
|
Caffeine and MDMA (Ecstasy) Exacerbate ER Stress Triggered by Hyperthermia. Int J Mol Sci 2022; 23:ijms23041974. [PMID: 35216090 PMCID: PMC8880705 DOI: 10.3390/ijms23041974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion, which causes ER exodosis, the secretion of ER-resident proteins. In rodent models, club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. In human studies, MDMA stimulated an acute, dose-dependent increase in core body temperature, but an examination of caffeine and MDMA in combination remains a topic for clinical research. Here we examine the secretion of ER-resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER-resident proteins, and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter the canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/GRP78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis, contributing to cellular toxicity.
Collapse
|
25
|
Lv X, Chen Z, Zheng M, Bai R, Zhang L, Zhang X, Duan B, Zhao Y, Yin L, Fan B, Cui K, Xu T. The interaction between free Ca 2+ in host cells and invasion of E. tenella. Parasitol Res 2022; 121:965-972. [PMID: 35084557 DOI: 10.1007/s00436-022-07436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
Eimeria tenella is the most pathogenic and common coccidia that causes chicken coccidiosis. The intracellular free Ca2+ of the host cell is closely related to the invasion, development, and proliferation of intracellular parasites. To determine the dynamic changes of intracellular free Ca2+ and its function in the process of E. tenella invading host cells, we established a chick embryo cecal epithelial cells model of E. tenella infection. Chick embryo cecal epithelial cells were treated with different Ca2+ signal inhibitor, respectively, and then infected with E. tenella. The results showed that extracellular Ca2+, Ca2+ channels on the cell membrane, IP3R ion channels on the endoplasmic reticulum membrane, and RyR ion channels regulated the free Ca2+ in cecal epithelial cells. Through fluorescence labeling and invasion rate detection, we found that the intracellular Ca2+ did not change significantly during the invasion of E. tenella, but its stability was critical to the invasion of parasites.
Collapse
Affiliation(s)
- Xiaoling Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Zhaoying Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Mingxue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China.
| | - Rui Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Li Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Xuesong Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Buting Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Yongjuan Zhao
- School of Food and Environment, Jinzhong College of Information, Taigu, 030801, Jinzhong, China
| | - Liyang Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Bingling Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Kailing Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Tong Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| |
Collapse
|
26
|
Calcium Signaling Involves Na+/H+ Exchanger and IP3 Receptor Activation in T. cruzi Epimastigotes. BIOLOGICS 2021. [DOI: 10.3390/biologics1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The calcium ion (Ca2+) plays a fundamental role in the metabolism and cell physiology of eukaryotic cells. In general, increases in cytosolic Ca2+ may come from both of the extracellular environment through specific channels and/or calcium release from intracellular stores. The mechanism by which the ion calcium (Ca2+) is released from intracellular stores in higher eukaryotes is well known; however, in lower eukaryotes is still a subject of study. In the present work, it was elucidated that Trypanosoma cruzi epimastigotes can release Ca2+ from intracellular stores in response to high osmolarity, in a process involving a protein kinase-regulated Na+/H+ exchanger present in the acidocalsisomes of the parasite. In addition, we demonstrated that epimastigote membranes are able to release Ca2+ in response to exogenous activators of both inositol 1,4,5-triphosphate (IP3) and Ryanodine receptors. Furthermore, we also summarize the involvement of calcium-related signaling pathways in biochemical and morphological changes triggered by hyperosmotic stress in T. cruzi epimastigotes.
Collapse
|
27
|
Quantal Ca 2+ release mediated by very few IP 3 receptors that rapidly inactivate allows graded responses to IP 3. Cell Rep 2021; 37:109932. [PMID: 34731613 PMCID: PMC8578705 DOI: 10.1016/j.celrep.2021.109932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that link extracellular stimuli to Ca2+ signals. Ca2+ release from intracellular stores is "quantal": low IP3 concentrations rapidly release a fraction of the stores. Ca2+ release then slows or terminates without compromising responses to further IP3 additions. The mechanisms are unresolved. Here, we synthesize a high-affinity partial agonist of IP3Rs and use it to demonstrate that quantal responses do not require heterogenous Ca2+ stores. IP3Rs respond incrementally to IP3 and close after the initial response to low IP3 concentrations. Comparing functional responses with IP3 binding shows that only a tiny fraction of a cell's IP3Rs mediate incremental Ca2+ release; inactivation does not therefore affect most IP3Rs. We conclude, and test by simulations, that Ca2+ signals evoked by IP3 pulses arise from rapid activation and then inactivation of very few IP3Rs. This allows IP3Rs to behave as increment detectors mediating graded Ca2+ release.
Collapse
|
28
|
Apoptotic Cells Trigger Calcium Entry in Phagocytes by Inducing the Orai1-STIM1 Association. Cells 2021; 10:cells10102702. [PMID: 34685684 PMCID: PMC8534458 DOI: 10.3390/cells10102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
Swift and continuous phagocytosis of apoptotic cells can be achieved by modulation of calcium flux in phagocytes. However, the molecular mechanism by which apoptotic cells modulate calcium flux in phagocytes is incompletely understood. Here, using biophysical, biochemical, pharmaceutical, and genetic approaches, we show that apoptotic cells induced the Orai1-STIM1 interaction, leading to store-operated calcium entry (SOCE) in phagocytes through the Mertk-phospholipase C (PLC) γ1-inositol 1,4,5-triphosphate receptor (IP3R) axis. Apoptotic cells induced calcium release from the endoplasmic reticulum, which led to the Orai1-STIM1 association and, consequently, SOCE in phagocytes. This association was attenuated by masking phosphatidylserine. In addition, the depletion of Mertk, which indirectly senses phosphatidylserine on apoptotic cells, reduced the phosphorylation levels of PLCγ1 and IP3R, resulting in attenuation of the Orai1-STIM1 interaction and inefficient SOCE upon apoptotic cell stimulation. Taken together, our observations uncover the mechanism of how phagocytes engulfing apoptotic cells elevate the calcium level.
Collapse
|
29
|
Qian X, Wu YH, Che YY, Zhao W, Shu LF, Zhu J, Wang YH, Chen T. IP 3R-mediated activation of BK channels contributes to mGluR5-induced protection against spinal cord ischemia-reperfusion injury. Neurochem Int 2021; 150:105191. [PMID: 34547325 DOI: 10.1016/j.neuint.2021.105191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023]
Abstract
Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.
Collapse
Affiliation(s)
- Xiao Qian
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yong-Hui Wu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yuan-Yuan Che
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Wei Zhao
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Long-Fei Shu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
30
|
Ngadjui E, Kouam JY, Fozin GRB, Momo ACT, Deeh PBD, Wankeu-Nya M, Nguelefack TB, Watcho P. Uterotonic Effects of Aqueous and Methanolic Extracts of Lannea acida in Wistar Rats: An In Vitro Study. Reprod Sci 2021; 28:2448-2457. [PMID: 33475981 DOI: 10.1007/s43032-021-00465-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Lannea acida (Anacardiaceae), commonly called Kikié in the Noun division (West-Cameroon), is a tree whose bark is used locally to facilitate delivery. This study was aimed at evaluating the in vitro uterotonic effects of aqueous and methanol extracts of L. acida in Wistar rats. Uterine strips isolated from rats pretreated with 5 μg estradiol (48 h) were mounted in a single-organ bath containing aerated and thermostated De Jalon solution (37 °C). After equilibration, non-cumulative effects of L. acida extracts were recorded after application. The effect of the methanol extract (the most active extract) was monitored in the presence of atosiban (a competitive antagonist of oxytocin receptors), atropine (a specific type 3 muscarinic receptor antagonist), nifedipine (an L-type calcium channel antagonist), and 2-Aminoethoxydiphenyl borate (2-ADB, a specific antagonist of inositol 1,4,5-triphosphate receptors type 1), and in calcium-free medium containing EGTA to elucidate its mechanism of action. L. acida induced uterine contraction in a concentration-dependent manner with the methanol extract (1.506 ± 0.032 gf) being the most effective. Administration of atosiban (2 μmol/L) and atropine (1 μmol/L) reduced the contractile effect of L. acida. Complete inhibition was observed with nifedipine, 2-APB, and calcium-free medium containing EGTA. These results suggest that L. acida possesses uterotonic effects mediated through oxytocin receptors with mobilization of extracellular calcium.
Collapse
Affiliation(s)
- Esther Ngadjui
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, Box 67, Dschang, Cameroon.
- Department of Physiological and Biochemical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Box 67, Dschang, Cameroon.
| | - Jibril Yves Kouam
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, Box 67, Dschang, Cameroon
| | - Georges Romeo Bonsou Fozin
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, Box 67, Dschang, Cameroon
| | - Aimé Césaire Tetsatsi Momo
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, Box 67, Dschang, Cameroon
| | - Patrick Brice Defo Deeh
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, Box 67, Dschang, Cameroon
| | - Modeste Wankeu-Nya
- Department of Animal Organisms Biology, University of Douala, P.O. BOX, 24157, Douala, Cameroon
| | | | - Pierre Watcho
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, Box 67, Dschang, Cameroon
| |
Collapse
|
31
|
Effects of Metformin on Spontaneous Ca 2+ Signals in Cultured Microglia Cells under Normoxic and Hypoxic Conditions. Int J Mol Sci 2021; 22:ijms22179493. [PMID: 34502402 PMCID: PMC8430509 DOI: 10.3390/ijms22179493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microglial functioning depends on Ca2+ signaling. By using Ca2+ sensitive fluorescence dye, we studied how inhibition of mitochondrial respiration changed spontaneous Ca2+ signals in soma of microglial cells from 5-7-day-old rats grown under normoxic and mild-hypoxic conditions. In microglia under normoxic conditions, metformin or rotenone elevated the rate and the amplitude of Ca2+ signals 10-15 min after drug application. Addition of cyclosporin A, a blocker of mitochondrial permeability transition pore (mPTP), antioxidant trolox, or inositol 1,4,5-trisphosphate receptor (IP3R) blocker caffeine in the presence of rotenone reduced the elevated rate and the amplitude of the signals implying sensitivity to reactive oxygen species (ROS), and involvement of mitochondrial mPTP together with IP3R. Microglial cells exposed to mild hypoxic conditions for 24 h showed elevated rate and increased amplitude of Ca2+ signals. Application of metformin or rotenone but not phenformin before mild hypoxia reduced this elevated rate. Thus, metformin and rotenone had the opposing fast action in normoxia after 10-15 min and the slow action during 24 h mild-hypoxia implying activation of different signaling pathways. The slow action of metformin through inhibition of complex I could stabilize Ca2+ homeostasis after mild hypoxia and could be important for reduction of ischemia-induced microglial activation.
Collapse
|
32
|
Guidarelli A, Catalani A, Spina A, Varone E, Fumagalli S, Zito E, Fiorani M, Cantoni O. Functional organization of the endoplasmic reticulum dictates the susceptibility of target cells to arsenite-induced mitochondrial superoxide formation, mitochondrial dysfunction and apoptosis. Food Chem Toxicol 2021; 156:112523. [PMID: 34453993 DOI: 10.1016/j.fct.2021.112523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 01/28/2023]
Abstract
Arsenite induces many critical effects associated with the formation of reactive oxygen species (ROS) through different mechanisms. We focused on Ca2+-dependent mitochondrial superoxide (mitoO2-.) formation and addressed questions on the effects of low concentrations of arsenite on the mobilization of the cation from the endoplasmic reticulum and the resulting mitochondrial accumulation. Using various differentiated and undifferentiated cell types uniquely expressing the inositol-1, 4, 5-triphosphate receptor (IP3R), or both the IP3R and the ryanodine receptor (RyR), we determined that expression of this second Ca2+ channel is an absolute requirement for mitoO2-. formation and for the ensuing mitochondrial dysfunction and downstream apoptosis. In arsenite-treated cells, RyR was recruited after IP3R stimulation and agonist studies provided an indirect indication for a close apposition between RyR and mitochondria. It was also interesting to observe that arsenite fails to promote mitochondrial Ca2+ accumulation, mitoO2-. formation and mitochondrial toxicity in RyR-devoid cells, in which the IP3R is in close contact with the mitochondria. We therefore conclude that low dose arsenite-induced mitoO2- formation, and the resulting mitochondrial dysfunction and toxicity, are prerequisite of cell types expressing the RyR in close apposition with mitochondria.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alessia Catalani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ersilia Varone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
33
|
Sherwood MW, Arizono M, Panatier A, Mikoshiba K, Oliet SHR. Astrocytic IP 3Rs: Beyond IP 3R2. Front Cell Neurosci 2021; 15:695817. [PMID: 34393726 PMCID: PMC8363081 DOI: 10.3389/fncel.2021.695817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are sensitive to ongoing neuronal/network activities and, accordingly, regulate neuronal functions (synaptic transmission, synaptic plasticity, behavior, etc.) by the context-dependent release of several gliotransmitters (e.g., glutamate, glycine, D-serine, ATP). To sense diverse input, astrocytes express a plethora of G-protein coupled receptors, which couple, via Gi/o and Gq, to the intracellular Ca2+ release channel IP3-receptor (IP3R). Indeed, manipulating astrocytic IP3R-Ca2+ signaling is highly consequential at the network and behavioral level: Depleting IP3R subtype 2 (IP3R2) results in reduced GPCR-Ca2+ signaling and impaired synaptic plasticity; enhancing IP3R-Ca2+ signaling affects cognitive functions such as learning and memory, sleep, and mood. However, as a result of discrepancies in the literature, the role of GPCR-IP3R-Ca2+ signaling, especially under physiological conditions, remains inconclusive. One primary reason for this could be that IP3R2 has been used to represent all astrocytic IP3Rs, including IP3R1 and IP3R3. Indeed, IP3R1 and IP3R3 are unique Ca2+ channels in their own right; they have unique biophysical properties, often display distinct distribution, and are differentially regulated. As a result, they mediate different physiological roles to IP3R2. Thus, these additional channels promise to enrich the diversity of spatiotemporal Ca2+ dynamics and provide unique opportunities for integrating neuronal input and modulating astrocyte–neuron communication. The current review weighs evidence supporting the existence of multiple astrocytic-IP3R isoforms, summarizes distinct sub-type specific properties that shape spatiotemporal Ca2+ dynamics. We also discuss existing experimental tools and future refinements to better recapitulate the endogenous activities of each IP3R isoform.
Collapse
Affiliation(s)
- Mark W Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Misa Arizono
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Katsuhiko Mikoshiba
- ShanghaiTech University, Shanghai, China.,Faculty of Science, Toho University, Funabashi, Japan.,RIKEN CLST, Kobe, Japan
| | - Stéphane H R Oliet
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
34
|
Hu B, Boyle CA, Lei S. Roles of PLCβ, PIP 2 , and GIRK channels in arginine vasopressin-elicited excitation of CA1 pyramidal neurons. J Cell Physiol 2021; 237:660-674. [PMID: 34287874 DOI: 10.1002/jcp.30535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Arginine vasopressin (AVP) is a hormone exerting vasoconstrictive and antidiuretic action in the periphery and serves as a neuromodulator in the brain. Although the hippocampus receives vasopressinergic innervation and AVP has been shown to facilitate the excitability of CA1 pyramidal neurons, the involved ionic and signaling mechanisms have not been determined. Here we found that AVP excited CA1 pyramidal neurons by activation of V1a receptors. Functions of G proteins and phospholipase Cβ (PLCβ) were required for AVP-elicited excitation of CA1 pyramidal neurons, whereas intracellular Ca2+ release and protein kinase C were unnecessary. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) was required for AVP-elicited excitation of CA1 pyramidal neurons. AVP augmented the input resistance and increased the time constants of CA1 pyramidal neurons. AVP induced an inward current in K+ -containing intracellular solution, whereas no inward currents were observed with Cs+ -containing intracellular solution. AVP-sensitive currents showed inward rectification with a reversal potential close to the K+ reversal potential, suggesting the involvement of inwardly rectifying K+ channels. AVP-induced currents were sensitive to the micromolar concentration of Ba2+ and tertiapin-Q, whereas application of ML 133, a selective Kir2 channel blocker had no effects, suggesting that AVP excited CA1 pyramidal neurons by depressing G protein-gated inwardly rectifying K+ channels. Activation of V1a receptors in the CA1 region facilitated glutamatergic transmission onto subicular pyramidal neurons, suggesting that AVP modulates network activity in the brain. Our results may provide one of the cellular and molecular mechanisms to explain the in vivo physiological functions of AVP.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
35
|
Lei S, Hu B. Ionic and signaling mechanisms involved in neurotensin-mediated excitation of central amygdala neurons. Neuropharmacology 2021; 196:108714. [PMID: 34271017 DOI: 10.1016/j.neuropharm.2021.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Neurotensin (NT) serves as a neuromodulator in the brain where it regulates a variety of physiological functions. Whereas the central amygdala (CeA) expresses NT peptide and NTS1 receptors and application of NT has been shown to excite CeA neurons, the underlying cellular and molecular mechanisms have not been determined. We found that activation of NTS1 receptors increased the neuronal excitability of the lateral nucleus (CeL) of CeA. Both phospholipase Cβ (PLCβ) and phosphatidylinositol 4,5-bisphosphate (PIP2) depletion were required, whereas intracellular Ca2+ release and PKC were unnecessary for NT-elicited excitation of CeL neurons. NT increased the input resistance and time constants of CeL neurons, suggesting that NT excites CeL neurons by decreasing a membrane conductance. Depressions of the inwardly rectifying K+ (Kir) channels including both the Kir2 subfamily and the GIRK channels were required for NT-elicited excitation of CeL neurons. Activation of NTS1 receptors in the CeL led to GABAergic inhibition of medial nucleus of CeA neurons, suggesting that NT modulates the network activity in the amygdala. Our results may provide a cellular and molecular mechanism to explain the physiological functions of NT in vivo.
Collapse
Affiliation(s)
- Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA.
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
36
|
Boikov SI, Sibarov DA, Karelina TV, Shestakova NN, Antonov SM. The Role of Ryanodine and IP3-receptors
in Calcium Responses to Tricyclic Antidepressants in Rat Neocortical
Neurons. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Nii T, Eguchi R, Yamaguchi S, Otsuguro KI. Hydrogen sulfide induces Ca 2+ release from the endoplasmic reticulum and suppresses ATP-induced Ca 2+ signaling in rat spinal cord astrocytes. Eur J Pharmacol 2021; 891:173684. [PMID: 33129788 DOI: 10.1016/j.ejphar.2020.173684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Hydrogen sulfide (H2S) has a variety of physiological functions. H2S reportedly increases intracellular Ca2+ concentration ([Ca2+]i) in astrocytes. However, the precise mechanism and functional role of this increase are not known. Here, we examined the effects of H2S on [Ca2+]i in astrocytes from the rat spinal cord and whether H2S affects ATP-induced Ca2+ signaling, which is known to be involved in synaptic function. Na2S (150 μM), an H2S donor, produced a nontoxic increase in [Ca2+]i. The [Ca2+]i increase by Na2S was inhibited by Ca2+ depletion in the endoplasmic reticulum (ER) but not by removal of extracellular Ca2+, indicating that H2S releases Ca2+ from the ER. On the other hand, Na2S inhibited ATP-induced [Ca2+]i increase when Na2S clearly increased [Ca2+]i in the astrocytes, which was not suppressed by a reducing agent. In addition, Na2S had no effect on intracellular cyclic AMP (cAMP) level. These results indicate that oxidative post-translational modification of proteins and cAMP are not involved in the inhibitory effect of H2S on ATP-induced Ca2+ signaling. We conclude that H2S indirectly inhibits ATP-induced Ca2+ signaling by decreasing Ca2+ content in the ER in astrocytes. In this way, H2S may influence intercellular communication between astrocytes and neurons, thereby contributing to neuronal signaling in the nervous system.
Collapse
Affiliation(s)
- Takeshi Nii
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Soichiro Yamaguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
38
|
Gambardella J, Morelli MB, Wang X, Castellanos V, Mone P, Santulli G. The discovery and development of IP3 receptor modulators: an update. Expert Opin Drug Discov 2021; 16:709-718. [PMID: 33356639 DOI: 10.1080/17460441.2021.1858792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction: Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular calcium (Ca2+) release channels located on the endoplasmic/sarcoplasmic reticulum. The availability of the structure of the ligand-binding domain of IP3Rs has enabled the design of compatible ligands, but the limiting step remains their actual effectiveness in a biological context.Areas covered: This article summarizes the compelling literature on both agonists and antagonists targeting IP3Rs, emphasizing their strengths and limitations. The main challenges toward the discovery and development of IP3 receptor modulators are also described.Expert opinion: Despite significant progress in recent years, the pharmacology of IP3R still has major drawbacks, especially concerning the availability of specific antag onists. Moreover, drugs specifically targeting the three different subtypes of IP3R are especially needed.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| | - Marco B Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Vanessa Castellanos
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Pasquale Mone
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| |
Collapse
|
39
|
Kaimachnikov NP, Kotova PD, Kochkina EN, Rogachevskaja OA, Khokhlov AA, Bystrova MF, Kolesnikov SS. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA ADVANCES 2021; 1:100012. [PMID: 37082025 PMCID: PMC10074909 DOI: 10.1016/j.bbadva.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The integrative study that included experimentation and mathematical modeling was carried out to analyze dynamic aspects of transient Ca2+ signaling induced by brief pulses of GPCR agonists in mesenchymal stromal cells from the human adipose tissue (AD-MSCs). The experimental findings argued for IP3/Ca2+-regulated Ca2+ release via IP3 receptors (IP3Rs) as a key mechanism mediating agonist-dependent Ca2+ transients. The consistent signaling circuit was proposed to formalize coupling of agonist binding to Ca2+ mobilization for mathematical modeling. The model properly simulated the basic phenomenology of agonist transduction in AD-MSCs, which mostly produced single Ca2+ spikes upon brief stimulation. The spike-like responses were almost invariantly shaped at different agonist doses above a threshold, while response lag markedly decreased with stimulus strength. In AD-MSCs, agonists and IP3 uncaging elicited similar Ca2+ transients but IP3 pulses released Ca2+ without pronounced delay. This suggested that IP3 production was rate-limiting in agonist transduction. In a subpopulation of AD-MSCs, brief agonist pulses elicited Ca2+ bursts crowned by damped oscillations. With properly adjusted parameters of IP3R inhibition by cytosolic Ca2+, the model reproduced such oscillatory Ca2+ responses as well. GEM-GECO1 and R-CEPIA1er, the genetically encoded sensors of cytosolic and reticular Ca2+, respectively, were co-expressed in HEK-293 cells that also responded to agonists in an "all-or-nothing" manner. The experimentally observed Ca2+ signals triggered by ACh in both compartments were properly simulated with the suggested signaling circuit. Thus, the performed modeling of the transduction process provides sufficient theoretical basis for deeper interpretation of experimental findings on agonist-induced Ca2+ signaling in AD-MSCs.
Collapse
|
40
|
Anand P, Harper AGS. Human platelets use a cytosolic Ca 2+ nanodomain to activate Ca 2+-dependent shape change independently of platelet aggregation. Cell Calcium 2020; 90:102248. [PMID: 32629299 DOI: 10.1016/j.ceca.2020.102248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
Human platelets use a rise in cytosolic Ca2+ concentration to activate all stages of thrombus formation, however, how they are able to decode cytosolic Ca2+ signals to trigger each of these independently is unknown. Other cells create local Ca2+ signals to activate Ca2+-sensitive effectors specifically localised to these subcellular regions. However, no previous study has demonstrated that agonist-stimulated human platelets can generate a local cytosolic Ca2+ signal. Platelets possess a structure called the membrane complex (MC) where the main intracellular calcium store, the dense tubular system (DTS), is coupled tightly to an invaginated portion of the plasma membrane called the open canalicular system (OCS). Here we hypothesised that human platelets use a Ca2+ nanodomain created within the MC to control the earliest phases of platelet activation. Dimethyl-BAPTA-loaded human platelets were stimulated with thrombin in the absence of extracellular Ca2+ to isolate a cytosolic Ca2+ nanodomain created by Ca2+ release from the DTS. In the absence of any detectable rise in global cytosolic Ca2+ concentration, thrombin stimulation triggered Na+/Ca2+ exchanger (NCX)-dependent Ca2+ removal into the extracellular space, as well as Ca2+-dependent shape change in the absence of platelet aggregation. The NCX-mediated Ca2+ removal was dependent on the normal localisation of the DTS, and immunofluorescent staining of NCX3 demonstrated its localisation to the OCS, consistent with this Ca2+ nanodomain being formed within the MC. These results demonstrated that human platelets possess a functional Ca2+ nanodomain contained within the MC that can control shape change independently of platelet aggregation.
Collapse
Affiliation(s)
- Peterson Anand
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| | - Alan G S Harper
- School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
41
|
Shipton ML, Riley AM, Rossi AM, Brearley CA, Taylor CW, Potter BVL. Both d- and l-Glucose Polyphosphates Mimic d- myo-Inositol 1,4,5-Trisphosphate: New Synthetic Agonists and Partial Agonists at the Ins(1,4,5)P 3 Receptor. J Med Chem 2020; 63:5442-5457. [PMID: 32286062 PMCID: PMC7260056 DOI: 10.1021/acs.jmedchem.0c00215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Chiral sugar derivatives are potential
cyclitol surrogates of the
Ca2+-mobilizing intracellular messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Six novel polyphosphorylated analogues derived from both d- and l-glucose were synthesized. Binding to Ins(1,4,5)P3 receptors [Ins(1,4,5)P3R] and the ability to release
Ca2+ from intracellular stores via type 1 Ins(1,4,5)P3Rs were investigated. β-d-Glucopyranosyl 1,3,4-tris-phosphate,
with similar phosphate regiochemistry and stereochemistry to Ins(1,4,5)P3, and α-d-glucopyranosyl 1,3,4-tris-phosphate
are full agonists, being equipotent and 23-fold less potent than Ins(1,4,5)P3, respectively, in Ca2+-release assays and similar
to Ins(1,4,5)P3 and 15-fold weaker in binding assays. They
can be viewed as truncated analogues of adenophostin A and refine
understanding of structure-activity relationships for this Ins(1,4,5)P3R agonist. l-Glucose-derived ligands, methyl α-l-glucopyranoside 2,3,6-trisphosphate and methyl α-l-glucopyranoside 2,4,6-trisphosphate, are also active, while
their corresponding d-enantiomers, methyl α-d-glucopyranoside 2,3,6-trisphosphate and methyl α-d-glucopyranoside 2,4,6-trisphosphate, are inactive. Interestingly,
both l-glucose-derived ligands are partial agonists: they
are among the least efficacious agonists of Ins(1,4,5)P3R yet identified, providing new leads for antagonist development.
Collapse
Affiliation(s)
- Megan L Shipton
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U. K
| | - Andrew M Riley
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U. K
| | - Ana M Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U. K
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U. K
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U. K
| | - Barry V L Potter
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U. K
| |
Collapse
|
42
|
Wang X, Mick G, McCormick K. Pyridine nucleotide regulation of hepatic endoplasmic reticulum calcium uptake. Physiol Rep 2020; 7:e14151. [PMID: 31222964 PMCID: PMC6586769 DOI: 10.14814/phy2.14151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Pyridine nucleotides serve an array of intracellular metabolic functions such as, to name a few, shuttling electrons in enzymatic reactions, safeguarding the redox state against reactive oxygen species, cytochrome P450 (CYP) enzyme detoxification pathways and, relevant to this study, the regulation of ion fluxes. In particular, the maintenance of a steep calcium gradient between the cytosol and endoplasmic reticulum (ER), without which apoptosis ensues, is achieved by an elaborate combination of energy–requiring ER membrane pumps and efflux channels. In liver microsomes, net calcium uptake was inhibited by physiological concentrations of NADP. In the presence of 1 mmol/L NADP, calcium uptake was attenuated by nearly 80%, additionally, this inhibitory effect was blunted by concomitant addition of NADPH. No other nicotinamide containing compounds ‐save a slight inhibition by NAADP‐hindered calcium uptake; thus, only oxidized pyridine nucleotides, or related compounds with a phosphate moiety, had an imposing effect. Moreover, the NADP inhibition was evident even after selectively blocking ER calcium efflux channels. Given the fundamental role of endoplasmic calcium homeostasis, it is plausible that changes in cytosolic NADP concentration, for example, during anabolic processes, could regulate net ER calcium uptake.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gail Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth McCormick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
43
|
Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology 2020; 161:bqz028. [PMID: 31796960 PMCID: PMC7028010 DOI: 10.1210/endocr/bqz028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) mediates the first steps of protein assembly within the secretory pathway and is the site where protein folding and quality control are initiated. The storage and release of Ca2+ are critical physiological functions of the ER. Disrupted ER homeostasis activates the unfolded protein response (UPR), a pathway which attempts to restore cellular equilibrium in the face of ER stress. Unremitting ER stress, and insufficient compensation for it results in beta-cell apoptosis, a process that has been linked to both type 1 diabetes (T1D) and type 2 diabetes (T2D). Both types are characterized by progressive beta-cell failure and a loss of beta-cell mass, although the underlying causes are different. The reduction of mass occurs secondary to apoptosis in the case of T2D, while beta cells undergo autoimmune destruction in T1D. In this review, we examine recent findings that link the UPR pathway and ER Ca2+ to beta cell dysfunction. We also discuss how UPR activation in beta cells favors cell survival versus apoptosis and death, and how ER protein chaperones are involved in regulating ER Ca2+ levels. Abbreviations: BiP, Binding immunoglobulin Protein ER; endoplasmic reticulum; ERAD, ER-associated protein degradation; IFN, interferon; IL, interleukin; JNK, c-Jun N-terminal kinase; KHE, proton-K+ exchanger; MODY, maturity-onset diabetes of young; PERK, PRKR-like ER kinase; SERCA, Sarco/Endoplasmic Reticulum Ca2+-ATPases; T1D, type 1 diabetes; T2D, type 2 diabetes; TNF, tumor necrosis factor; UPR, unfolded protein response; WRS, Wolcott-Rallison syndrome.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
44
|
Drumm BT, Rembetski BE, Messersmith K, Manierka MS, Baker SA, Sanders KM. Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon. J Physiol 2020; 598:651-681. [PMID: 31811726 DOI: 10.1113/jp279102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Rhythmic action potentials and intercellular Ca2+ waves are generated in smooth muscle cells of colonic longitudinal muscles (LSMC). Longitudinal muscle excitability is tuned by input from subserosal ICC (ICC-SS), a population of ICC with previously unknown function. ICC-SS express Ano1 channels and generate spontaneous Ca2+ transients in a stochastic manner. Release of Ca2+ and activation of Ano1 channels causes depolarization of ICC-SS and LSMC, leading to activation of L-type Ca2+ channels, action potentials, intercellular Ca2+ waves and contractions in LSMC. Nitrergic neural inputs regulate the Ca2+ events in ICC-SS. Pacemaker activity in longitudinal muscle is an emergent property as a result of integrated processes in ICC-SS and LSMC. ABSTRACT Much is known about myogenic mechanisms in circular muscle (CM) in the gastrointestinal tract, although less is known about longitudinal muscle (LM). Two Ca2+ signalling behaviours occur in LM: localized intracellular waves not causing contractions and intercellular waves leading to excitation-contraction coupling. An Ano1 channel antagonist inhibited intercellular Ca2+ waves and LM contractions. Ano1 channels are expressed by interstitial cells of Cajal (ICC) but not by smooth muscle cells (SMCs). We investigated Ca2+ signalling in a novel population of ICC that lies along the subserosal surface of LM (ICC-SS) in mice expressing GCaMP6f in ICC. ICC-SS fired stochastic localized Ca2+ transients. Such events have been linked to activation of Ano1 channels in ICC. Ca2+ transients in ICC-SS occurred by release from stores most probably via inositol trisphosphate receptors. This activity relied on influx via store-operated Ca2+ entry and Orai channels. No voltage-dependent mechanism that synchronized Ca2+ transients in a single cell or between cells was found. Nitrergic agonists inhibited Ca2+ transients in ICC-SS, and stimulation of intrinsic nerves activated nitrergic responses in ICC-SS. Cessation of stimulation resulted in significant enhancement of Ca2+ transients compared to the pre-stimulus activity. No evidence of innervation by excitatory, cholinergic motor neurons was found. Our data suggest that ICC-SS contribute to regulation of LM motor activity. Spontaneous Ca2+ transients activate Ano1 channels in ICC-SS. Resulting depolarization conducts to SMCs, depolarizing membrane potential, activating L-type Ca2+ channels and initiating contraction. Rhythmic electrical and mechanical behaviours of LM are an emergent property of SMCs and ICC-SS.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Katelyn Messersmith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Marena S Manierka
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
45
|
Helassa N, Nugues C, Rajamanoharan D, Burgoyne RD, Haynes LP. A centrosome-localized calcium signal is essential for mammalian cell mitosis. FASEB J 2019; 33:14602-14610. [PMID: 31682764 PMCID: PMC6910830 DOI: 10.1096/fj.201901662r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
Mitosis defects can lead to premature ageing and cancer. Understanding mitosis regulation therefore has important implications for human disease. Early data suggested that calcium (Ca2+) signals could influence mitosis, but these have hitherto not been observed in mammalian cells. Here, we reveal a prolonged yet spatially restricted Ca2+ signal at the centrosomes of actively dividing cells. Local buffering of the centrosomal Ca2+ signals, by flash photolysis of the caged Ca2+ chelator diazo-2-acetoxymethyl ester, arrests mitosis. We also provide evidence that this Ca2+ signal emanates from the endoplasmic reticulum. In summary, we characterize a unique centrosomal Ca2+ signal as a functionally essential input into mitosis.-Helassa, N., Nugues, C., Rajamanoharan, D., Burgoyne, R. D., Haynes, L. P. A centrosome-localized calcium signal is essential for mammalian cell mitosis.
Collapse
Affiliation(s)
- Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Nugues
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Dayani Rajamanoharan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert D. Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
46
|
Phillips TJ, Gom RC, Wolff MD, Teskey GC. Caffeine Exacerbates Postictal Hypoxia. Neuroscience 2019; 422:32-43. [PMID: 31678341 DOI: 10.1016/j.neuroscience.2019.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
A stroke-like event follows seizures which may be responsible for the postictal state and a contributing factor to the development of seizure-induced brain abnormalities and behavioral dysfunction associated with epilepsy. Caffeine is the world's most popular drug with ∼85% of people in the USA consuming it daily. Thus, persons with epilepsy are likely to have caffeine in their body and brain during seizures. This preclinical study investigated the effects of acute caffeine on local hippocampal tissue oxygenation pre and post seizure. We continuously measured local oxygen levels in the CA1 region of the hippocampus and utilized the electrical kindling model in rats. Rats were acutely administered either caffeine, or one of its metabolites, or agonists and antagonists at adenosine sub-receptor types or ryanodine receptors prior to the elicitation of seizures. Acute caffeine administration caused a significant drop in pre-seizure hippocampal pO2. Following a seizure, caffeine, as well as two of its metabolites paraxanthine, and theophylline, increased the time below the severe hypoxic threshold (10 mmHg). Likewise, the specific A2A receptor antagonist, SCH-58261, mimicked caffeine by causing a significant drop in pre-seizure pO2 and the area and time below the severe hypoxic threshold. Moreover, the A2A receptor agonist, CGS-21680 was able to prevent the effect of both caffeine and SCH-58261 adding further evidence that caffeine is likely acting through the A2A receptor. Clinical tracking and investigations are needed to determine the effect of caffeine on postictal symptomology and blood flow in persons with epilepsy.
Collapse
Affiliation(s)
- Thomas J Phillips
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Renaud C Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
47
|
Bartok A, Weaver D, Golenár T, Nichtova Z, Katona M, Bánsághi S, Alzayady KJ, Thomas VK, Ando H, Mikoshiba K, Joseph SK, Yule DI, Csordás G, Hajnóczky G. IP 3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun 2019; 10:3726. [PMID: 31427578 PMCID: PMC6700175 DOI: 10.1038/s41467-019-11646-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/12/2019] [Indexed: 12/31/2022] Open
Abstract
Contact sites of endoplasmic reticulum (ER) and mitochondria locally convey calcium signals between the IP3 receptors (IP3R) and the mitochondrial calcium uniporter, and are central to cell survival. It remains unclear whether IP3Rs also have a structural role in contact formation and whether the different IP3R isoforms have redundant functions. Using an IP3R-deficient cell model rescued with each of the three IP3R isoforms and an array of super-resolution and ultrastructural approaches we demonstrate that IP3Rs are required for maintaining ER-mitochondrial contacts. This role is independent of calcium fluxes. We also show that, while each isoform can support contacts, type 2 IP3R is the most effective in delivering calcium to the mitochondria. Thus, these studies reveal a non-canonical, structural role for the IP3Rs and direct attention towards the type 2 IP3R that was previously neglected in the context of ER-mitochondrial calcium signaling.
Collapse
Affiliation(s)
- Adam Bartok
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Departent of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - David Weaver
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tünde Golenár
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Máté Katona
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Száva Bánsághi
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kamil J Alzayady
- Department of Physiology and Pharmacology, University of Rochester, Rochester, NY, USA
| | - V Kaye Thomas
- Department of Physiology and Pharmacology, University of Rochester, Rochester, NY, USA
| | - Hideaki Ando
- Lab for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Japan
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Katsuhiko Mikoshiba
- Lab for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Japan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David I Yule
- Department of Physiology and Pharmacology, University of Rochester, Rochester, NY, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Heathcote HR, Lee MD, Zhang X, Saunter CD, Wilson C, McCarron JG. Endothelial TRPV4 channels modulate vascular tone by Ca 2+ -induced Ca 2+ release at inositol 1,4,5-trisphosphate receptors. Br J Pharmacol 2019; 176:3297-3317. [PMID: 31177523 PMCID: PMC6692577 DOI: 10.1111/bph.14762] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The TRPV4 ion channels are Ca2+ permeable, non-selective cation channels that mediate large, but highly localized, Ca2+ signals in the endothelium. The mechanisms that permit highly localized Ca2+ changes to evoke cell-wide activity are incompletely understood. Here, we tested the hypothesis that TRPV4-mediated Ca2+ influx activates Ca2+ release from internal Ca2+ stores to generate widespread effects. EXPERIMENTAL APPROACH Ca2+ signals in large numbers (~100) of endothelial cells in intact arteries were imaged and analysed separately. KEY RESULTS Responses to the TRPV4 channel agonist GSK1016790A were heterogeneous across the endothelium. In activated cells, Ca2+ responses comprised localized Ca2+ changes leading to slow, persistent, global increases in Ca2+ followed by large propagating Ca2+ waves that moved within and between cells. To examine the mechanisms underlying each component, we developed methods to separate slow persistent Ca2+ rise from the propagating Ca2+ waves in each cell. TRPV4-mediated Ca2+ entry was required for the slow persistent global rise and propagating Ca2+ signals. The propagating waves were inhibited by depleting internal Ca2+ stores, inhibiting PLC or blocking IP3 receptors. Ca2+ release from stores was tightly controlled by TRPV4-mediated Ca2+ influx and ceased when influx was terminated. Furthermore, Ca2+ release from internal stores was essential for TRPV4-mediated control of vascular tone. CONCLUSIONS AND IMPLICATIONS Ca2+ influx via TRPV4 channels is amplified by Ca2+ -induced Ca2+ release acting at IP3 receptors to generate propagating Ca2+ waves and provide a large-scale endothelial communication system. TRPV4-mediated control of vascular tone requires Ca2+ release from the internal store.
Collapse
Affiliation(s)
- Helen R Heathcote
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Christopher D Saunter
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, Durham, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| |
Collapse
|
49
|
Potapenko E, Negrão NW, Huang G, Docampo R. The acidocalcisome inositol-1,4,5-trisphosphate receptor of Trypanosoma brucei is stimulated by luminal polyphosphate hydrolysis products. J Biol Chem 2019; 294:10628-10637. [PMID: 31138655 DOI: 10.1074/jbc.ra119.007906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
Acidocalcisomes are acidic calcium stores rich in polyphosphate (polyP) and are present in trypanosomes and also in a diverse range of other organisms. Ca2+ is released from these organelles through a channel, inositol 1,4,5-trisphosphate receptor (TbIP3R), which is essential for growth and infectivity of the parasite Trypanosoma brucei However, the mechanism by which TbIP3R controls Ca2+ release is unclear. In this work, we expressed TbIP3R in a chicken B lymphocyte cell line in which the genes for all three vertebrate IP3Rs were stably ablated (DT40-3KO). We show that IP3-mediated Ca2+ release depends on Ca2+ but not on ATP concentration and is inhibited by heparin, caffeine, and 2-aminomethoxydiphenyl borate (2-APB). Excised patch clamp recordings from nuclear membranes of DT40 cells expressing only TbIP3R disclosed that luminal inorganic orthophosphate (Pi) or pyrophosphate (PPi), and neutral or alkaline pH can stimulate IP3-generated currents. In contrast, polyP or acidic pH did not induce these currents, and nuclear membranes obtained from cells expressing rat IP3R were unresponsive to polyP or its hydrolysis products. Our results are consistent with the notion that polyP hydrolysis products within acidocalcisomes or alkalinization of their luminal pH activate TbIP3R and Ca2+ release. We conclude that TbIP3R is well-adapted to its role as the major Ca2+ release channel of acidocalcisomes in T. brucei.
Collapse
Affiliation(s)
| | - Núria W Negrão
- From the Center for Tropical and Emerging Global Diseases and.,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Guozhong Huang
- From the Center for Tropical and Emerging Global Diseases and
| | - Roberto Docampo
- From the Center for Tropical and Emerging Global Diseases and .,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
50
|
Reyes-Corral M, Sørensen NM, Thrasivoulou C, Dasgupta P, Ashmore JF, Ahmed A. Differential Free Intracellular Calcium Release by Class II Antiarrhythmics in Cancer Cell Lines. J Pharmacol Exp Ther 2019; 369:152-162. [PMID: 30655298 DOI: 10.1124/jpet.118.254375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Class II antiarrhythmics or β-blockers are antisympathetic nervous system agents that act by blocking β-adrenoceptors. Despite their common clinical use, little is known about the effects of β-blockers on free intracellular calcium (Ca2+ i), an important cytosolic second messenger and a key regulator of cell function. We investigated the role of four chemical analogs, commonly prescribed β-blockers (atenolol, metoprolol, propranolol, and sotalol), on Ca2+ i release and whole-cell currents in mammalian cancer cells (PC3 prostate cancer and MCF7 breast cancer cell lines). We discovered that only propranolol activated free Ca2+ i release with distinct kinetics, whereas atenolol, metoprolol, and sotalol did not. The propranolol-induced Ca2+ i release was significantly inhibited by the chelation of extracellular calcium with ethylene glycol tetraacetic acid (EGTA) and by dantrolene, an inhibitor of the endoplasmic reticulum (ER) ryanodine receptor channels, and it was completely abolished by 2-aminoethoxydiphenyl borate, an inhibitor of the ER inositol-1,4,5-trisphosphate (IP3) receptor channels. Exhaustion of ER stores with 4-chloro-m-cresol, a ryanodine receptor activator, or thapsigargin, a sarco/ER Ca2+ ATPase inhibitor, precluded the propranolol-induced Ca2+ i release. Finally, preincubation of cells with sotalol or timolol, nonselective blockers of β-adrenoceptors, also reduced the Ca2+ i release activated by propranolol. Our results show that different β-blockers have differential effects on whole-cell currents and free Ca2+ i release and that propranolol activates store-operated Ca2+ i release via a mechanism that involves calcium-induced calcium release and putative downstream transducers such as IP3 The differential action of class II antiarrhythmics on Ca2+ i release may have implications on the pharmacology of these drugs.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Naja M Sørensen
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Prokar Dasgupta
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|