1
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
2
|
Ippolito M, De Pascali F, Hopfinger N, Komolov KE, Laurinavichyute D, Reddy PAN, Sakkal LA, Rajkowski KZ, Nayak AP, Lee J, Lee J, Cao G, Donover PS, Reichman M, An SS, Salvino JM, Penn RB, Armen RS, Scott CP, Benovic JL. Identification of a β-arrestin-biased negative allosteric modulator for the β 2-adrenergic receptor. Proc Natl Acad Sci U S A 2023; 120:e2302668120. [PMID: 37490535 PMCID: PMC10401000 DOI: 10.1073/pnas.2302668120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Catecholamine-stimulated β2-adrenergic receptor (β2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous β-agonists in the treatment of airway disease. β2AR signaling is tightly regulated by GRKs and β-arrestins, which together promote β2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias β2AR signaling toward the Gs pathway while avoiding β-arrestin-mediated effects may provide a strategy to improve the functional consequences of β2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the β2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit β-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of β-arrestin recruitment to the β2AR while having no effect on β2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the β2AR and protects against the functional desensitization of β-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the β2AR with minimal effects on the β1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the β2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the β2AR.
Collapse
Affiliation(s)
- Michael Ippolito
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Nathan Hopfinger
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Konstantin E. Komolov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Daniela Laurinavichyute
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | | | - Leon A. Sakkal
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA19107
| | - Kyle Z. Rajkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA19107
| | - Ajay P. Nayak
- Center for Translational Medicine, Department of Medicine, and Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Justin Lee
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ08901
| | - Jordan Lee
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ08901
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ08901
| | | | | | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ08901
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ08854
| | | | - Raymond B. Penn
- Center for Translational Medicine, Department of Medicine, and Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA19107
| | - Charles P. Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
3
|
Shah SD, Lind C, De Pascali F, Penn RB, MacKerell AD, Deshpande DA. In silico identification of a β 2-adrenoceptor allosteric site that selectively augments canonical β 2AR-Gs signaling and function. Proc Natl Acad Sci U S A 2022; 119:e2214024119. [PMID: 36449547 PMCID: PMC9894167 DOI: 10.1073/pnas.2214024119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
Activation of β2-adrenoceptors (β2ARs) causes airway smooth muscle (ASM) relaxation and bronchodilation, and β2AR agonists (β-agonists) are front-line treatments for asthma and other obstructive lung diseases. However, the therapeutic efficacy of β-agonists is limited by agonist-induced β2AR desensitization and noncanonical β2AR signaling involving β-arrestin that is shown to promote asthma pathophysiology. Accordingly, we undertook the identification of an allosteric site on β2AR that could modulate the activity of β-agonists to overcome these limitations. We employed the site identification by ligand competitive saturation (SILCS) computational method to comprehensively map the entire 3D structure of in silico-generated β2AR intermediate conformations and identified a putative allosteric binding site. Subsequent database screening using SILCS identified drug-like molecules with the potential to bind to the site. Experimental assays in HEK293 cells (expressing recombinant wild-type human β2AR) and human ASM cells (expressing endogenous β2AR) identified positive and negative allosteric modulators (PAMs and NAMs) of β2AR as assessed by regulation of β-agonist-stimulation of cyclic AMP generation. PAMs/NAMs had no effect on β-agonist-induced recruitment of β-arrestin to β2AR- or β-agonist-induced loss of cell surface expression in HEK293 cells expressing β2AR. Mutagenesis analysis of β2AR confirmed the SILCS identified site based on mutants of amino acids R131, Y219, and F282. Finally, functional studies revealed augmentation of β-agonist-induced relaxation of contracted human ASM cells and bronchodilation of contracted airways. These findings identify a allosteric binding site on the β2AR, whose activation selectively augments β-agonist-induced Gs signaling, and increases relaxation of ASM cells, the principal therapeutic effect of β-agonists.
Collapse
Affiliation(s)
- Sushrut D. Shah
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, PA19107
| | - Christoffer Lind
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Computer-Aided Drug Design Center, University of Maryland, Baltimore,MD21201
| | - Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Raymond B. Penn
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, PA19107
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Computer-Aided Drug Design Center, University of Maryland, Baltimore,MD21201
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, PA19107
| |
Collapse
|
4
|
Lucero‐Garcia Rojas EY, Reyes‐Alcaraz A, Ruan K, McConnell BK, Bond RA. Fusion of the β 2-adrenergic receptor with either Gαs or βarrestin-2 produces constitutive signaling by each pathway and induces gain-of-function in BEAS-2B cells. FASEB Bioadv 2022; 4:758-774. [PMID: 36479208 PMCID: PMC9721090 DOI: 10.1096/fba.2022-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 07/04/2024] Open
Abstract
The β2AR is a prototypical G protein-coupled receptor (GPCR) known to orchestrate different cellular responses by the stimulation of specific signaling pathways. The best-established signaling pathways for the β2AR are the canonical Gs pathway and the alternative β arrestin 2 (βarr2) pathway. Exploring each pathway separately remains a challenging task due to the dynamic nature of the receptor. Here, we fused the β2AR with its cognate transducers, Gαs and βarr2, using short linkers as a novel approach for restricting the conformation of the receptor and preferentially activating one of its two signaling pathways. We characterized the behavior of our fusion proteins β2AR-Gαs and β2AR-βarr2 in HEK293 cells by measuring their constitutive activity, transducer recruitment, and pharmacological modulation. Our fusion proteins show (a) steric hindrance from the reciprocal endogenous transducers, (b) constitutive activity of the β2AR for the signaling pathway activated by the tethered transducer, and (c) pharmacologic modulation by β2AR ligands. Based on these characteristics, we further explored the possibility of a gain-of-function mechanism in the human lung non-tumorigenic epithelial cell line, BEAS-2B cells. This immortalized human bronchial epithelial cell line has immunomodulatory properties through cytokine release mediated by β2AR stimulation. Our findings suggest that each signaling pathway of the β2AR is biased toward either the Th1 or Th2 inflammatory response suggesting a role in regulating the immune phenotype of respiratory diseases. Our data imply that our fusion proteins can be used as tools to isolate the function elicited by a single signaling pathway in physiologically relevant cell types.
Collapse
Affiliation(s)
- Emilio Y. Lucero‐Garcia Rojas
- Department of Pharmacology and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
- Present address:
Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Arfaxad Reyes‐Alcaraz
- Department of Pharmacology and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
| | - Kehe Ruan
- Department of Pharmacology and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
| | - Bradley K. McConnell
- Department of Pharmacology and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
| | - Richard A. Bond
- Department of Pharmacology and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
| |
Collapse
|
5
|
Li N, Chen J, Xie S, Zhang M, Shi T, He Y, Jie Z, Su X. Oral antibiotics relieve allergic asthma in post-weaning mice via reducing iNKT cells and function of ADRB2. Front Immunol 2022; 13:1024235. [PMID: 36389706 PMCID: PMC9640740 DOI: 10.3389/fimmu.2022.1024235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
The role of normal gut microbiota in asthma or ovalbumin (OVA)-induced asthma tolerance (OT) remains unclear. Here, we established mouse models of asthma and OT followed by 2 weeks of antibiotic treatment, to clear the gut microbiota. Antibiotic treatment was found to alleviate allergic asthma accompanied with a reduction of invariant natural killer (iNKT) cells. By RNA-seq analysis, we found that β-adrenergic receptor (ADRB) genes, including Adrb1, Adrb2, and Adrb3, were downregulated in asthmatic lungs, but these changes were reversed in OT lungs. Moreover, Adrb2 and Adrb3 were significantly upregulated in asthmatic lungs after antibiotic treatment. Surprisingly, blocking ADRB with propranolol relieved allergic asthma while reducing T helper 2 (Th2) and Treg cell numbers. Further analyses using flow cytometry and immunofluorescence showed that the protein expression level of ADRB2 was higher in asthmatic lungs than that in the control and OT lungs. Notably, dendritic cells (DCs), especially the ADRB2+ DCs, were increased in asthmatic lungs compared to that in the control and OT lungs. In addition, ADRB2+ DCs were significantly reduced following the administration of the ADRB2-specific antagonist ICI118551. Our findings suggest that antibiotic treatment can alleviate OVA-induced allergic asthma via reducing the frequency of iNKT cells and function of ADRB2.
Collapse
Affiliation(s)
- Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Sitao Xie
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiao Su, ; Zhijun Jie,
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xiao Su, ; Zhijun Jie,
| |
Collapse
|
6
|
De Pascali F, Ippolito M, Wolfe E, Komolov KE, Hopfinger N, Lemenze D, Kim N, Armen RS, An SS, Scott CP, Benovic JL. β 2 -Adrenoceptor agonist profiling reveals biased signalling phenotypes for the β 2 -adrenoceptor with possible implications for the treatment of asthma. Br J Pharmacol 2022; 179:4692-4708. [PMID: 35732075 PMCID: PMC9474705 DOI: 10.1111/bph.15900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE β-Adrenoceptor agonists relieve airflow obstruction by activating β2 -adrenoceptors, which are G protein-coupled receptors (GPCRs) expressed on human airway smooth muscle (HASM) cells. The currently available β-adrenoceptor agonists are balanced agonists, however, and signal through both the stimulatory G protein (Gs )- and β-arrestin-mediated pathways. While Gs signalling is beneficial and promotes HASM relaxation, β-arrestin activation is associated with reduced Gs efficacy. In this context, biased ligands that selectively promote β2 -adrenoceptor coupling to Gs signalling represent a promising strategy to treat asthma. Here, we examined several β-adrenoceptor agonists to identify Gs -biased ligands devoid of β-arrestin-mediated effects. EXPERIMENTAL APPROACH Gs -biased ligands for the β2 -adrenoceptor were identified by high-throughput screening and then evaluated for Gs interaction, Gi interaction, cAMP production, β-arrestin interaction, GPCR kinase (GRK) phosphorylation of the receptor, receptor trafficking, ERK activation, and functional desensitization of the β2 -adrenoceptor. KEY RESULTS We identified ractopamine, dobutamine, and higenamine as Gs -biased agonists that activate the Gs /cAMP pathway upon β2 -adrenoceptor stimulation while showing minimal Gi or β-arrestin interaction. Furthermore, these compounds did not induce any receptor trafficking and had reduced GRK5-mediated phosphorylation of the β2 -adrenoceptor. Finally, we observed minimal physiological desensitization of the β2 -adrenoceptor in primary HASM cells upon treatment with biased agonists. CONCLUSION AND IMPLICATIONS Our work demonstrates that Gs -biased signalling through the β2 -adrenoceptor may prove to be an effective strategy to promote HASM relaxation in the treatment of asthma. Such biased compounds may also be useful in identifying the molecular mechanisms that determine biased signalling and in design of safer drugs.
Collapse
Affiliation(s)
- Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- These authors contributed equally
| | - Michael Ippolito
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- These authors contributed equally
| | - Emily Wolfe
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin E. Komolov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nathan Hopfinger
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Douglas Lemenze
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Charles P. Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Fonseca FV, Raffay TM, Xiao K, McLaughlin PJ, Qian Z, Grimmett ZW, Adachi N, Wang B, Hausladen A, Cobb BA, Zhang R, Hess DT, Gaston B, Lambert NA, Reynolds JD, Premont RT, Stamler JS. S-nitrosylation is required for β 2AR desensitization and experimental asthma. Mol Cell 2022; 82:3089-3102.e7. [PMID: 35931084 PMCID: PMC9391322 DOI: 10.1016/j.molcel.2022.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022]
Abstract
The β2-adrenergic receptor (β2AR), a prototypic G-protein-coupled receptor (GPCR), is a powerful driver of bronchorelaxation, but the effectiveness of β-agonist drugs in asthma is limited by desensitization and tachyphylaxis. We find that during activation, the β2AR is modified by S-nitrosylation, which is essential for both classic desensitization by PKA as well as desensitization of NO-based signaling that mediates bronchorelaxation. Strikingly, S-nitrosylation alone can drive β2AR internalization in the absence of traditional agonist. Mutant β2AR refractory to S-nitrosylation (Cys265Ser) exhibits reduced desensitization and internalization, thereby amplifying NO-based signaling, and mice with Cys265Ser mutation are resistant to bronchoconstriction, inflammation, and the development of asthma. S-nitrosylation is thus a central mechanism in β2AR signaling that may be operative widely among GPCRs and targeted for therapeutic gain.
Collapse
Affiliation(s)
- Fabio V Fonseca
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Thomas M Raffay
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kunhong Xiao
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Precious J McLaughlin
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zhaoxia Qian
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zachary W Grimmett
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Naoko Adachi
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rongli Zhang
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benjamin Gaston
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - James D Reynolds
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Richard T Premont
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Sharma P, Penn RB. Can GPCRs Be Targeted to Control Inflammation in Asthma? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:1-20. [PMID: 34019260 DOI: 10.1007/978-3-030-68748-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle (ASM) contraction or (2) indirectly regulate ASM contraction by inhibiting the principal cause of ASM contraction/bronchoconstriction and airway inflammation. To date, these tasks have been respectively assigned to two diverse drug types: agonists/antagonists of G protein-coupled receptors (GPCRs) and inhaled or systemic steroids. These two types of drugs "stay in their lane" with respect to their actions and consequently require the addition of the other drug to effectively manage both inflammation and bronchoconstriction in OLDs. Indeed, it has been speculated that safety issues historically associated with beta-agonist use (beta-agonists activate the beta-2-adrenoceptor (β2AR) on airway smooth muscle (ASM) to provide bronchoprotection/bronchorelaxation) are a function of pro-inflammatory actions of β2AR agonism. Recently, however, previously unappreciated roles of various GPCRs on ASM contractility and on airway inflammation have been elucidated, raising the possibility that novel GPCR ligands targeting these GPCRs can be developed as anti-inflammatory therapeutics. Moreover, we now know that many GPCRs can be "tuned" and not just turned "off" or "on" to specifically activate the beneficial therapeutic signaling a receptor can transduce while avoiding detrimental signaling. Thus, the fledging field of biased agonism pharmacology has the potential to turn the β2AR into an anti-inflammatory facilitator in asthma, possibly reducing or eliminating the need for steroids.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Michel MC, Michel-Reher MB, Hein P. A Systematic Review of Inverse Agonism at Adrenoceptor Subtypes. Cells 2020; 9:E1923. [PMID: 32825009 PMCID: PMC7564766 DOI: 10.3390/cells9091923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
As many, if not most, ligands at G protein-coupled receptor antagonists are inverse agonists, we systematically reviewed inverse agonism at the nine adrenoceptor subtypes. Except for β3-adrenoceptors, inverse agonism has been reported for each of the adrenoceptor subtypes, most often for β2-adrenoceptors, including endogenously expressed receptors in human tissues. As with other receptors, the detection and degree of inverse agonism depend on the cells and tissues under investigation, i.e., they are greatest when the model has a high intrinsic tone/constitutive activity for the response being studied. Accordingly, they may differ between parts of a tissue, for instance, atria vs. ventricles of the heart, and within a cell type, between cellular responses. The basal tone of endogenously expressed receptors is often low, leading to less consistent detection and a lesser extent of observed inverse agonism. Extent inverse agonism depends on specific molecular properties of a compound, but inverse agonism appears to be more common in certain chemical classes. While inverse agonism is a fascinating facet in attempts to mechanistically understand observed drug effects, we are skeptical whether an a priori definition of the extent of inverse agonism in the target product profile of a developmental candidate is a meaningful option in drug discovery and development.
Collapse
Affiliation(s)
- Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | | | | |
Collapse
|
11
|
Dawes RP, Burke KA, Byun DK, Xu Z, Stastka P, Chan L, Brown EB, Madden KS. Chronic Stress Exposure Suppresses Mammary Tumor Growth and Reduces Circulating Exosome TGF-β Content via β-Adrenergic Receptor Signaling in MMTV-PyMT Mice. Breast Cancer (Auckl) 2020; 14:1178223420931511. [PMID: 32595275 PMCID: PMC7301655 DOI: 10.1177/1178223420931511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Preclinical models of breast cancer have established mechanistic links between psychological stress and cancer progression. However, epidemiological evidence linking stress and cancer is equivocal. We tested the impact of stress exposure in female mice expressing the mouse mammary tumor virus polyoma middle-T antigen (MMTV-PyMT), a spontaneous model of mammary adenocarcinoma that mimics metastatic hormone receptor-positive human breast cancer development. MMTV-PyMT mice were socially isolated at 6 to 7 weeks of age during premalignant hyperplasia. To increase the potency of the stressor, singly housed mice were exposed to acute restraint stress (2 hours per day for 3 consecutive days) at 8 to 9 weeks of age during early carcinoma. Exposure to this dual stressor activated both major stress pathways, the sympathetic nervous system and hypothalamic-pituitary-adrenal axis throughout malignant transformation. Stressor exposure reduced mammary tumor burden in association with increased tumor cleaved caspase-3 expression, indicative of increased cell apoptosis. Stress exposure transiently increased tumor vascular endothelial growth factor and reduced tumor interleukin-6, but no other significant alterations in immune/inflammation-associated chemokines and cytokines or changes in myeloid cell populations were detected in tumors. No stress-induced change in second-harmonic generation-emitting collagen, indicative of a switch to a metastasis-promoting tumor extracellular matrix, was detected. Systemic indicators of slowed tumor progression included reduced myeloid-derived suppressor cell (MDSC) frequency in lung and spleen, and decreased transforming growth factor β (TGF-β) content in circulating exosomes, nanometer-sized particles associated with tumor progression. Chronic β-adrenergic receptor (β-AR) blockade with nadolol abrogated stress-induced alterations in tumor burden and cleaved caspase-3 expression, lung MDSC frequency, and exosomal TGF-β content. Despite the evidence for reduced tumor growth, metastatic lesions in the lung were not altered by stress exposure. Unexpectedly, β-blockade in nonstressed mice increased lung metastatic lesions and splenic MDSC frequency, suggesting that in MMTV-PyMT mice, β-AR activation also inhibits tumor progression in the absence of stress exposure. Together, these results suggest stress exposure can act through β-AR signaling to slow primary tumor growth in MMTV-PyMT mice.
Collapse
Affiliation(s)
- Ryan P Dawes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathleen A Burke
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Daniel K Byun
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Zhou Xu
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Petr Stastka
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Leland Chan
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Edward B Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Kelley S Madden
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
12
|
Zaidi S, Atrooz F, Valdez D, Liu H, Kochi C, Bond RA, Salim S. Protective effect of propranolol and nadolol on social defeat-induced behavioral impairments in rats. Neurosci Lett 2020; 725:134892. [PMID: 32165259 DOI: 10.1016/j.neulet.2020.134892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Benzodiazepines and SSRIs are considered as standard treatment options for anxiety and depression, hallmarks of Post-Traumatic Stress Disorder (PTSD), although their use is often limited by adverse effects. While promising evidence emerged with β-adrenergic receptor (β-AR) antagonists (or 'β-blockers') and PTSD relief, efficacy issues dampened the excitement. However, we believe it is premature to completely eliminate a beneficial role of β-blockers. Our previous work has suggested that social defeat (SD) results in anxiety-like and depression-like behaviors in rats. Here, using the SD paradigm, we examined the effect of several β-adrenergic receptor antagonists (propranolol, nadolol, bisoprolol) on these behaviors in rats. Following acclimatization, Sprague-Dawley rats received no treatment (for control groups) or treated with ; propranolol (50 mg/kg/day in water), or nadolol (18 mg/kg/day in rats' chow), or bisoprolol (15 mg/kg/day in water). The treatment lasted for 36 days, following which rats were subjected to SD/control exposures (1 week). Later, anxiety-like and depression-like behaviors, social interaction and learning-memory function tests were conducted. SD rats exhibited anxiety- and depression-like behavior as well as learning-memory impairment. Propranolol and nadolol protected SD rats from exhibiting anxiety-or depression-like behaviors. Bisoprolol treatment did not mitigate SD-induced behavioral impairments in rats. Nadolol, propranolol or bisoprolol have no effect in attenuating SD-induced memory function tests. These results suggest that certain 'β-blockers' have the potential to mitigate the negative psychological effects of traumatic events.
Collapse
Affiliation(s)
- Safiyya Zaidi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.
| | - Daniel Valdez
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Hesong Liu
- Department of Pediatrics, Baylor College of Medicine, TX, USA.
| | - Camila Kochi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.
| |
Collapse
|
13
|
Tiotiu A, Novakova P, Kowal K, Emelyanov A, Chong-Neto H, Novakova S, Labor M. Beta-blockers in asthma: myth and reality. Expert Rev Respir Med 2019; 13:815-822. [PMID: 31352857 DOI: 10.1080/17476348.2019.1649147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introduction: Patients with asthma often have important co-morbidities which reduce the likelihood of gaining optimal asthma control. Beta2-blockers are commonly prescribed for the treatment of different clinical indications, including coronary artery disease, cardiac arrhythmia, arterial hypertension, heart failure and glaucoma. Areas covered: The aim of this reviw is to summarize current evidence on the effect of systemic and local β-blockers on asthma outcomes based on their pharmacologic properties,and to help clinicians when prescribing for patients with asthma and co-morbidities. Current data suggest that risk of asthma worsening from systemic and local use of non-selective β-blockers outweighs any potential benefits for their clinical indications. Recent studies confirm that topical and systemic prescription of cardio-selective β-blockers is not associated with a significant increased risk of moderate or severe asthma exacerbations. Expert opinion: Non-selective β-blockers should not be prescribed for the management of comorbidities in patients with asthma while cardio-selective β-blockers, preferably in low doses, may be used when strongly indicated and other therapeutic options are not available. More prospective real-life studies are needed to evaluate the risk of long-term use of β-blockers in patients with asthma.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy , Nancy , France.,Cardio-respiratory regulation, EA3450 DevAH - Development, Adaptation and Disadvantage. Cardio-respiratory regulations and motor control. University of Lorraine , Nancy , France.,Airways Disease Section, National Heart and Lung Institute, Imperial College London , London , UK
| | - Plamena Novakova
- Clinic of Clinical Allergy, Medical University Sofia , Sofia , Bulgaria
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine , Bialystok , Poland.,Department of Experimental Allergology and Immunology, Medical University of Bialystok , Bialystok , Poland
| | - Alexander Emelyanov
- Department of Respiratory Medicine, North-Western Medical University , Saint-Petersburg , Russian Federation
| | - Herberto Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná , Curitiba , Brazil
| | - Silviya Novakova
- Allergy Unit, Internal Consulting Department, University Hospital "St. George" , Plovdiv , Bulgaria
| | - Marina Labor
- Department of Pulmonology, University Hospital Centre Osijek , Osijek , Croatia.,Medical Faculty Osijek, J.J. Strossmayer University , Osijek , Croatia
| |
Collapse
|
14
|
β 2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility. Proc Natl Acad Sci U S A 2017; 114:E9163-E9171. [PMID: 29073113 DOI: 10.1073/pnas.1710196114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mostly widely used bronchodilators in asthma therapy are β2-adrenoreceptor (β2AR) agonists, but their chronic use causes paradoxical adverse effects. We have previously determined that β2AR activation is required for expression of the asthma phenotype in mice, but the cell types involved are unknown. We now demonstrate that β2AR signaling in the airway epithelium is sufficient to mediate key features of the asthmatic responses to IL-13 in murine models. Our data show that inhibition of β2AR signaling with an aerosolized antagonist attenuates airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus-production responses to IL-13, whereas treatment with an aerosolized agonist worsens these phenotypes, suggesting that β2AR signaling on resident lung cells modulates the asthma phenotype. Labeling with a fluorescent β2AR ligand shows the receptors are highly expressed in airway epithelium. In β2AR-/- mice, transgenic expression of β2ARs only in airway epithelium is sufficient to rescue IL-13-induced AHR, inflammation, and mucus production, and transgenic overexpression in WT mice exacerbates these phenotypes. Knockout of β-arrestin-2 (βarr-2-/-) attenuates the asthma phenotype as in β2AR-/- mice. In contrast to eosinophilic inflammation, neutrophilic inflammation was not promoted by β2AR signaling. Together, these results suggest β2ARs on airway epithelial cells promote the asthma phenotype and that the proinflammatory pathway downstream of the β2AR involves βarr-2. These results identify β2AR signaling in the airway epithelium as capable of controlling integrated responses to IL-13 and affecting the function of other cell types such as airway smooth muscle cells.
Collapse
|
15
|
Joshi R, Valdez D, Kim H, Eikenburg DC, Knoll BJ, Bond RA. Effects of β-blockers on house dust mite-driven murine models pre- and post-development of an asthma phenotype. Pulm Pharmacol Ther 2017; 46:30-40. [PMID: 28729042 DOI: 10.1016/j.pupt.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/16/2017] [Accepted: 07/15/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Our previous studies suggested certain β-adrenoceptor blockers (β-blockers) attenuate the asthma phenotype in ovalbumin driven murine models of asthma. However, the ovalbumin model has been criticized for lack of clinical relevance. METHODS We tested the non-selective β-blockers, carvedilol and nadolol, in house dust mite (HDM) driven murine asthma models where drugs were administered both pre- and post-development of the asthma phenotype. We measured inflammation, mucous metaplasia, and airway hyper-responsiveness (AHR). We also measured the effects of the β-blockers on extracellular-signal regulated kinase (ERK 1/2) phosphorylation in lung homogenates. RESULTS We show that nadolol, but not carvedilol, attenuated inflammation and mucous metaplasia, and had a moderate effect attenuating AHR. Following HDM exposure, ERK1/2 phosphorylation was elevated, but the level of phosphorylation was unaffected by β-blockers, suggesting ERK1/2 phosphorylation becomes dissociated from the asthma phenotype. CONCLUSION Our findings in HDM models administering drugs both pre- and post-development of the asthma phenotype are consistent with previous results using ovalbumin models and show differential effects for nadolol and carvedilol on the asthma phenotype. Lastly, our data suggest that ERK1/2 phosphorylation may be involved in development of the asthma phenotype, but may have a limited role in maintaining the phenotype.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Daniel Valdez
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Hosu Kim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Douglas C Eikenburg
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Brian J Knoll
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| |
Collapse
|
16
|
Forkuo GS, Kim H, Thanawala VJ, Al-Sawalha N, Valdez D, Joshi R, Parra S, Pera T, Gonnella PA, Knoll BJ, Walker JKL, Penn RB, Bond RA. Phosphodiesterase 4 Inhibitors Attenuate the Asthma Phenotype Produced by β2-Adrenoceptor Agonists in Phenylethanolamine N-Methyltransferase-Knockout Mice. Am J Respir Cell Mol Biol 2017; 55:234-42. [PMID: 26909542 DOI: 10.1165/rcmb.2015-0373oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mice lacking the endogenous β2-adrenoceptor (β2AR) agonist epinephrine (phenylethanolamine N-methyltransferase [PNMT]-knockout mice) are resistant to developing an "asthma-like" phenotype in an ovalbumin sensitization and challenge (Ova S/C) model, and chronic administration of β2AR agonists to PNMT-KO mice restores the phenotype. Based on these and other studies showing differential effects of various β2AR ligands on the asthma phenotype, we have speculated that the permissive effect of endogenous epinephrine and exogenous β2AR agonists on allergic lung inflammation can be explained by qualitative β2AR signaling. The β2AR can signal through at least two pathways: the canonical Gαs-cAMP pathway and a β-arrestin-dependent pathway. Previous studies suggest that β-arrestin-2 is required for allergic lung inflammation. On the other hand, cell-based assays suggest antiinflammatory effects of Gαs-cAMP signaling. This study was designed to test whether the in vitro antiinflammatory effects of phosphodiesterase 4 inhibitors, known to increase intracellular cAMP in multiple airway cell types, attenuate the asthma-like phenotype produced by the β2AR agonists formoterol and salmeterol in vivo in PNMT-KO mice, based on the hypothesis that skewing β2AR signaling toward Gαs-cAMP pathway is beneficial. Airway inflammatory cells, epithelial mucus production, and airway hyperresponsiveness were quantified. In Ova S/C PNMT-KO mice, formoterol and salmeterol restored the asthma-like phenotype comparable to Ova S/C wild-type mice. However, coadministration of either roflumilast or rolipram attenuated this formoterol- or salmeterol-driven phenotype in Ova S/C PNMT-KO. These findings suggest that amplification of β2AR-mediated cAMP by phosphodiesterase 4 inhibitors attenuates the asthma-like phenotype promoted by β-agonists.
Collapse
Affiliation(s)
- Gloria S Forkuo
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Hosu Kim
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Vaidehi J Thanawala
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Nour Al-Sawalha
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Daniel Valdez
- 2 Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Radhika Joshi
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | | | - Tonio Pera
- 4 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Patricia A Gonnella
- 4 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Brian J Knoll
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas.,2 Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Julia K L Walker
- 5 Duke University School of Nursing, Duke University Medical Center, Durham, North Carolina
| | - Raymond B Penn
- 4 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Richard A Bond
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas.,2 Department of Biology and Biochemistry, University of Houston, Houston, Texas
| |
Collapse
|
17
|
Lipworth B, Jabbal S. Of mice and men-the curious tale of β blockers in asthma. THE LANCET RESPIRATORY MEDICINE 2017; 4:89-91. [PMID: 26868622 DOI: 10.1016/s2213-2600(16)00011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Brian Lipworth
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | - Sunny Jabbal
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
18
|
Luo J, Liu YH, Luo W, Luo Z, Liu CT. β 2-adrenoreceptor Inverse Agonist Down-regulates Muscarine Cholinergic Subtype-3 Receptor and Its Downstream Signal Pathways in Airway Smooth Muscle Cells in vitro. Sci Rep 2017; 7:39905. [PMID: 28051147 PMCID: PMC5209700 DOI: 10.1038/srep39905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023] Open
Abstract
Mechanisms underlying β2-adrenoreceptor (β2AR) inverse agonist mediated bronchoprotectiveness remain unknown. We incubated ICI118,551, formoterol, budesonide, and formoterol plus budesonide, as well as ICI118,551 or pindolol plus formoterol, ICI118,551 plus forskolin, SQ22,536 or H89 plus formoterol in ASMCs to detect expressions of M3R, PLCβ1 and IP3. The level of M3R in the presence of 10−5 mmol/L ICI118,551 were significantly decreased at 12 h, 24 h and 48 h (P < 0.05), and at 24 h were significantly reduced in ICI118,551 with concentration of 10−5 mmol/L, 10−6 mmol/L, 10−7 mmol/L, and 10−8 mmol/L (P < 0.05). The level of IP3 in 10−5 mmol/L ICI118,551 was significantly diminished at 24 h (P < 0.01), except for that at 1 h, neither was in the level of PLCβ1. A concentration of 10−5 mmol/L ICI118,551 at 24 h showed a significant reduction of M3R level compared to formoterol (P < 0.01), budesonide (P < 0.01), and formoterol + budesonide (P < 0.05), but significant reduction of PLCβ1 and IP3 was only found between 10−5 mmol/L ICI118,551 and formoterol at 24 h, but not in the comparison of budesonide or formoterol + budesonide. Pindolol and H89 could not inhibit the formoterol-induced expression of M3R (P > 0.05), but SQ22,536 significantly antagonized the formoterol-induced M3R expression (P < 0.05). In conclusions, β2AR inverse agonist, ICI118,551, exerts similar bronchoprotective effects to corticosteroids via decreasing the expression of M3R and inhibiting the production of IP3.
Collapse
Affiliation(s)
- Jian Luo
- Department of Respiratory Diseases, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan-Hua Liu
- Department of Respiratory Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Wei Luo
- Department of Respiratory Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Zhu Luo
- Department of Respiratory Diseases, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chun-Tao Liu
- Department of Respiratory Diseases, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Bond RA, Thanawala VJ, Parra S, Leff P. Differences in asthma study models and the effectiveness of β2 -adrenoceptor ligands: response to Lipworth et al. Br J Pharmacol 2016; 173:250-1. [PMID: 26687674 DOI: 10.1111/bph.13334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 01/14/2023] Open
Affiliation(s)
- Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Vaidehi J Thanawala
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Paul Leff
- Consultant in Pharmacology, Cheshire, UK
| |
Collapse
|
20
|
Lipworth BJ, Anderson WJ, Short PM. From mouse to man: predicting biased effects of beta-blockers in asthma. Br J Pharmacol 2016; 173:248-9. [PMID: 26687673 DOI: 10.1111/bph.13335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- B J Lipworth
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, Dundee, UK
| | - W J Anderson
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, Dundee, UK
| | - P M Short
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
21
|
Pera T, Penn RB. Bronchoprotection and bronchorelaxation in asthma: New targets, and new ways to target the old ones. Pharmacol Ther 2016; 164:82-96. [PMID: 27113408 PMCID: PMC4942340 DOI: 10.1016/j.pharmthera.2016.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
Despite over 50years of inhaled beta-agonists and corticosteroids as the default management or rescue drugs for asthma, recent research suggests that new therapeutic options are likely to emerge. This belief stems from both an improved understanding of what causes and regulates airway smooth muscle (ASM) contraction, and the identification of new targets whose inhibition or activation can relax ASM. In this review we discuss the recent findings that provide new insight into ASM contractile regulation, a revolution in pharmacology that identifies new ways to "tune" G protein-coupled receptors to improve therapeutic efficacy, and the discovery of several novel targets/approaches capable of effecting bronchoprotection or bronchodilation.
Collapse
Affiliation(s)
- Tonio Pera
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Raymond B Penn
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
22
|
Peitzman ER, Zaidman NA, Maniak PJ, O'Grady SM. Carvedilol binding to β2-adrenergic receptors inhibits CFTR-dependent anion secretion in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 310:L50-8. [PMID: 26566905 DOI: 10.1152/ajplung.00296.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/06/2015] [Indexed: 01/14/2023] Open
Abstract
Carvedilol functions as a nonselective β-adrenergic receptor (AR)/α1-AR antagonist that is used for treatment of hypertension and heart failure. Carvedilol has been shown to function as an inverse agonist, inhibiting G protein activation while stimulating β-arrestin-dependent signaling and inducing receptor desensitization. In the present study, short-circuit current (Isc) measurements using human airway epithelial cells revealed that, unlike β-AR agonists, which increase Isc, carvedilol decreases basal and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate-stimulated current. The decrease in Isc resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR). The carvedilol effect was abolished by pretreatment with the β2-AR antagonist ICI-118551, but not the β1-AR antagonist atenolol or the α1-AR antagonist prazosin, indicating that its inhibitory effect on Isc was mediated through interactions with apical β2-ARs. However, the carvedilol effect was blocked by pretreatment with the microtubule-disrupting compound nocodazole. Furthermore, immunocytochemistry experiments and measurements of apical CFTR expression by Western blot analysis of biotinylated membranes revealed a decrease in the level of CFTR protein in monolayers treated with carvedilol but no significant change in monolayers treated with epinephrine. These results demonstrate that carvedilol binding to apical β2-ARs inhibited CFTR current and transepithelial anion secretion by a mechanism involving a decrease in channel expression in the apical membrane.
Collapse
Affiliation(s)
| | - Nathan A Zaidman
- Department of Integrative Biology and Physiology, University of Minnesota, St. Paul, Minnesota
| | - Peter J Maniak
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota; and
| | - Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota; and Department of Integrative Biology and Physiology, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
23
|
Thanawala VJ, Valdez DJ, Joshi R, Forkuo GS, Parra S, Knoll BJ, Bouvier M, Leff P, Bond RA. β-Blockers have differential effects on the murine asthma phenotype. Br J Pharmacol 2015. [PMID: 26211486 DOI: 10.1111/bph.13253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Our previous studies have shown the β2 -adrenoceptor and its endogenous ligand, adrenaline, are required for development of the asthma phenotype in murine asthma models. Chronic administration of some, but not other, β-blockers attenuated the asthma phenotype and led us to hypothesize that biased signalling was the basis of their differential effects, experimentally and clinically. EXPERIMENTAL APPROACH We used mice with no detectable systemic adrenaline (PNMT(-/-) ) and wild-type (WT) mice to study the effects of four β-blockers, alprenolol, carvedilol, propranolol and nadolol, in an ovalbumin sensitization and challenge (Ova S/C) murine model of asthma. The parameters measured were inflammatory cell infiltration, mucous metaplasia and airway hyperresponsiveness. To interpret the pharmacological action of these ligands quantitatively, we conducted computer simulations of three-state models of receptor activation. KEY RESULTS Ova S/C PNMT(-/-) mice do not develop an asthma phenotype. Here, we showed that administration of alprenolol, carvedilol or propranolol in the absence of interference from adrenaline using Ova S/C PNMT(-/-) mice resulted in the development of an asthma phenotype, whereas nadolol had no effect. Ova S/C WT mice did develop an asthma phenotype, and administration of alprenolol, propranolol and carvedilol had no effect on the asthma phenotype. However, nadolol prevented development of the asthma phenotype in Ova S/C WT mice. Computer simulations of these four ligands were consistent with the isolated three-state receptor model. CONCLUSION AND IMPLICATIONS β-Blockers have different effects on the murine asthma phenotype that correlate with reported differences in activation or inhibition of downstream β2 -adrenoceptor signalling pathways.
Collapse
Affiliation(s)
- V J Thanawala
- Department of Integrative and Biology Pharmacology, University of Texas Health Science Center, Houston, TX, USA
| | - D J Valdez
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - R Joshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - G S Forkuo
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee Institute for Drug Discovery, Milwaukee, WI
| | - S Parra
- Vapogenix, Inc., Houston, TX, USA
| | - B J Knoll
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - M Bouvier
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada.,Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - P Leff
- Consultant in Pharmacology, Cheshire, UK
| | - R A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|